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Abstract

Background: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation
in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two
independent genome-wide approaches to search for such variants.

Results: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral
blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide
screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia.
Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive
epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1
differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional
environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen
also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis
genomic features including transposable elements.

Conclusions: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of
innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a
plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More
broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation
and human disease.
Background
Epigenetic mechanisms are established during develop-
ment and stably regulate gene expression potential in
differentiated cells [1]. A fundamental outstanding ques-
tion is whether and how interindividual epigenetic vari-
ation affects risk of disease [2,3]. A major focus is DNA
methylation, which in mammals occurs predominantly
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at cytosines within CpG dinucleotides. Developmental
establishment of CpG methylation can be influenced by
environment [4,5], and once established, CpG methyla-
tion is mitotically heritable and normally highly stable
[6]. Elucidating the role of epigenetic variation in human
disease is complicated, however, by the fact that epigen-
etic processes are inherently tissue-specific, and can
themselves be altered by disease [7,8]. A potential way to
circumvent these complications is to identify epigenetic
marks that are established in the very early embryo and
maintained during subsequent differentiation, thus af-
fecting all germ layer lineages.
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Accordingly, in this study we employed two different
approaches to identify DNA methylation changes that
are induced by periconceptional environment. First, we
performed a genomewide search for metastable epialleles
(MEs) in healthy Caucasian adults. MEs are genomic
regions at which DNA methylation is established sto-
chastically in the early embryo, leading to systemic
(cross-tissue) interindividual variation in epigenetic
regulation that is not mediated by genetic variation [9].
Establishment of epigenotype at MEs has previously
been shown to be affected by maternal nutrition around
the time of conception [10-12]. Second, we used geno-
mewide DNA methylation profiling to study a popula-
tion in rural Gambia, wherein seasonal variations in
food supply and metabolic demand provide a natural ex-
periment by which to study the effect of periconceptional
environment (including maternal nutritional status) on
epigenetic development in the offspring [13]. These two
independent and complementary genomewide screens
convergently identified the gene encoding the small non-
coding RNA VTRNA2-1 as the lead candidate environ-
mentally responsive epiallele. VTRNA2-1 (also called
nc886) appears to act as a tumor suppressor gene subject
to epigenetic silencing by promoter methylation. Elevated
methylation at VTRNA2-1 predicts poor prognosis in
leukemia [14], and lung [15] and esophageal cancer [16].
VTRNA2-1 is genomically imprinted, with preferential
methylation on the maternally inherited allele [17,18]. By
assaying DNA methylation in peripheral blood mono-
nuclear cells, Treppendahl et al. reported that about 25%
of healthy individuals exhibit hypomethylation on both al-
leles of VTRNA2-1 [14], suggesting polymorphic imprint-
ing. Here we report data indicating that polymorphic
imprinting at VTRNA2-1 is not regulated by cis genetic
variation, but is affected by maternal environment around
the time of conception, occurs systemically, and is highly
stable over many years. Our findings provide a plausible
causal pathway to explain previous observations that sea-
son of birth predicts adult mortality from infection-
related causes in rural Gambians [19].

Results
Genomewide screen for human metastable epialleles
As a first approach to identify genomic regions that are
epigenetically labile to periconceptional environment,
we performed a genomewide screen for human MEs.
Improving upon our reduced-representation screen for
systemic interindividual variation in DNA methylation
[20], we performed genomewide bisulfite sequencing
(Bisulfite-seq) on peripheral blood lymphocyte (PBL)
and hair follicle (HF) DNA (mesodermal and ectoder-
mal lineages, respectively) from two healthy male US
Caucasian adults (C01 and C02) [21]. Our analysis fo-
cused on the 6.2 million 200 base pair (bp) genomic
bins containing at least 2 CpG sites (hereafter referred
to as ‘bins’) [21]. As expected, bin-specific methylation
was highly correlated across the two individuals in both
PBL (Figure 1a) and HF (Figure S1 in Additional file 1).
We formulated a systemic interindividual variation
index (SIVI) to identify genomic regions at which inter-
individual methylation differences are concordant in
both tissues (Figure 1b; Table S1 in Additional file 2).
Since genetic differences are a major determinant of in-
terindividual epigenetic variation [7], we were not sur-
prised to find that regions of high SIVI (≥20) were
enriched for discordant SNPs (P < 10-10, chi-squared
test) (Figure 1c). To focus on putative stochastic effects,
subsequent analyses were restricted to the 4,852 high-SIVI
bins with no evidence of genetic variation (Figure 1d;
Table S2 in Additional file 2). To externally validate inter-
individual variation in these regions, we performed a tar-
geted analysis of genomewide CpG methylation calls in
monocyte DNA from six healthy individuals from the
BluePrint Epigenome project [22]. Above a threshold of
five CpG sites per bin, the range of bin-specific methyla-
tion among these individuals increased and was correlated
with CpG density (Figure 1e). We therefore considered
only the 109 high-SIVI bins containing ≥6 CpG sites as
the most reliable candidate MEs (Figure 1f,g; Table S3 in
Additional file 2).

Genomic features of regions flanking candidate
metastable epialleles
Relative to low-SIVI genomewide bins, the 109 candidate
MEs (Figure 1g) were approximately three-fold enriched
at subtelomeric regions (P = 7.4 × 10-5; chi-squared test).
Gene ontology analysis indicated that the 64 genes prox-
imal to these bins were not associated with any particu-
lar biological process, function, or cellular component.
To evaluate associations with sequence features, we
compared the 109 candidate ME bins with a genome-
wide reference set of 298,979 non-ME bins (all with ≥6
CpG sites, SIVI score between -5 and +5, and no evi-
dence of genetic variation), focusing on 20 kb windows
centered on each. Genomic regions flanking MEs were
depleted of CpG islands (CGIs) and short interspersed
nuclear elements (SINEs) (Figure 2a,b), and enriched for
long interspersed nuclear elements (LINEs) and en-
dogenous retroviruses (ERVs) (Figure 2c,d). The differ-
ences in SINE and ERV content were most dramatic;
relative to regions flanking non-ME bins, the 20 kb win-
dows centered on MEs exhibited, on average, a 26.9%
depletion of SINEs (P = 2.5 × 10-28) and a 38.5% enrich-
ment in ERVs (P = 3.5 × 10-15).

Validation of epigenetic metastability at VTRNA2-1
To identify the strongest candidates at which epigenetic
metastability is likely to affect transcription, we prioritized



Figure 1 Genomewide screen for human MEs. (a) DNA methylation in PBL is highly correlated across the two individuals included in the screen,
C01 and C02. The density plot summarizes all 4.1 million 200 bp bins that were covered by sufficient read depth in both samples (R2 = 0.926).
(b) Interindividual DNA methylation residuals (C01-C02) in HF versus those in PBL; 3.9 million 200 bp bins were informative in all four samples.
The hyperbola delineates regions containing potential MEs. (c) Genomewide, most bins showed no evidence of genetic discordance between
the two individuals. Regions of systemic interindividual variation (SIVI ≥20), however, were enriched for interindividual genetic variation. (d) HF
versus PBL interindividual residual plot for the 4,852 filtered ME bins (SIVI ≥20, no genetic variation, no segmental duplication). The SIVI algorithm
effectively targeted the regions indicated in panel (b). (e) Targeted analysis of Blueprint Epigenome data (DNA methylation in monocytes of six
healthy individuals); ME bins with six or more CpG sites exhibit greatest interindividual variation. (f) Interindividual discordance of DNA methylation
(C02 versus C01) of the 109 ME bins containing 6 or more CpG sites. (g) Manhattan plot of SIVI for all 200 bp bins with 6 or more CpG sites. Bins with
SIVI ≥20 (candidate MEs) are crowned; gene-associated bins with SIVI ≥25 are labeled.
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Figure 2 Distribution of CGIs and repetitive elements in ME versus non-ME genomic regions. In each pair of plots, 20 kb regions centered on ME
bins (SIVI ≥ 20, n = 109, right) are compared with 20 kb regions centered on comparable non-ME bins genomewide (SIVI = -5 to 5, n = 298,979,
left). For each 500 bp window, the normalized overlap score is the number of elements that overlap such windows, divided by the total number
of bins. (a) ME regions are slightly depleted of CGIs (P = 2.5 × 10-6). (b) ME regions are depleted of SINE elements (P = 2.5 × 10-28). (c) ME regions
are enriched for LINE elements (P = 7.0 × 10-8). (d) ME regions are enriched for ERVs (P = 3.5 × 10-15). All P-values based on chi-squared test.
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genes associated with multiple proximal MEs. The region
flanking the small non-coding transcript VTRNA2-1 was
exceptional in this regard; five adjacent high-SIVI bins
encompass the gene (Figure 3a). Interindividual variation
in DNA methylation in this region was confirmed by pub-
licly available data from the Blueprint Epigenome project



Figure 3 Interindividual epigenetic variation at VTRNA2-1. (a) UCSC browser shot of the VTRNA2-1 region on chromosome 5. A cluster of five bins
with high positive SIVI (top track) overlaps VTRNA2-1. Blueprint Epigenome DNA methylation data on monocytes from healthy individuals (orange)
confirm interindividual variation in this same region. (b) Bisulfite pyrosequencing results for two individuals with discordant VTRNA2-1 methylation. T/C
polymorphisms resulting from bisulfite conversion at three CpG sites are highlighted in gray. (c) Inter-tissue correlations of VTRNA2-1 methylation
across kidney, liver, and brain of 17 Asian cadavers confirm systemic nature of interindividual variation. (d) Clonal bisulfite sequencing data on
PBL DNA of two Gambian individuals (both A/A at SNP rs9327740) confirm pyrosequencing data and suggest interindividual variation in
VTRNA2-1 methylation is not driven by local genetic variation. Columns and rows correspond to CpG sites and individual clones, respectively.
Filled circles indicate methylation; gray circles indicate missing data.
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[22] (Figure 3a), and quantitative bisulfite pyrosequencing
(Figure 3b) across endodermal (liver), mesodermal (kidney)
and ectodermal (brain) tissues of Vietnamese cadavers
(Figure 3c) indicated that it occurs systemically (consistent
with establishment prior to gastrulation). Clonal bisulfite
sequencing data in two individuals matched for genotype
at the nearest common SNP (rs9327740) illustrate interin-
dividual variation at VTRNA2-1 in the absence of local
genetic variation (Figure 3d), consistent with its identifica-
tion as an ME. To test more comprehensively for genetic
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effects on methylation at VTRNA2-1 we analyzed data
from a recent genomewide study of human methylation
quantitative trait loci (mQTL) in 132 lymphoblastoid cell
lines representing Northern/Western European (CEU) and
West African (YRI) individuals [23]. Remarkably, these cell
lines indicated a bimodal distribution of individual methy-
lation values at VTRNA2-1 (Figure S2 in Additional file 1)
very similar to that in primary tissues (Figure 3c). This vari-
ation was not significantly associated with any SNPs within
100 kb of the locus (the predominant range for strong
mQTL) [23], indicating that interindividual variation in
VTRNA2-1 methylation is not genetically mediated. Fur-
ther, in PBL samples from Gambian children [10,20], we
found evidence that season of conception (SoC) affects es-
tablishment of VTRNA2-1 methylation. Those conceived
at the peak of the dry season (n = 110) were significantly
more likely to exhibit hypomethylation (<40%) at the
VTRNA2-1 differentially methylated region (DMR; P =
0.004) than those conceived in the rainy season (n = 105)
(Figure 4a). Similar results were obtained in HF (Figure 4b),
indicating that the environmental effect on VTRNA2-1 epi-
genotype occurred in the early embryo and was maintained
during differentiation of somatic lineages.

Genomewide screen for DNA methylation changes
associated with season of conception in rural Gambians
identifies VTRNA2-1 as the top hit
In subsequent studies we took a completely different ap-
proach to identify genomic regions that are epigeneti-
cally labile to periconceptional environment, using the
Illumina HumanMethylation450 BeadChip array [24] to
search genomewide (467,264 CpG sites) for effects of
SoC on PBL DNA methylation in 120 Gambian infants
[10]. Our pipeline for quality control and pre-processing
of the raw methylation data was validated by comparing
estimated methylation (beta) values from the 450k array
with those obtained from pyrosequencing at five ME loci
present on the 450k array (Figure S3 in Additional file
1). Because methylation at neighboring CpG sites is cor-
related, and biologically relevant variation in methylation
often involves clusters of CpG sites [25], we tested for
effects across genomic regions rather than at individual
probes. We searched for ‘SoC-DMRs’ using the ‘bump
hunting’ method [26], with probes adjacent to SNPs
common in populations of African ancestry removed,
and with sex as an adjustment covariate. Since analysis
of leukocyte composition [27] suggested subtle seasonal
effects on proportion of CD4+ T cells and natural killer
cells (Figure S4 in Additional file 1), we also included
leukocyte composition as an adjustment covariate. The
top 10 SoC-DMRs by permutation P-value are presented
in Table 1. We were surprised to find that VTRNA2-1
was the top-ranking SoC-DMR and alone survived mul-
tiple testing correction (P = 2.0 × 10-5; FWER-adjusted
P = 0.009). Whereas our pyrosequencing data (Figure 4a)
focused on only three CpG sites, the 450k results
(Figure 4c) showed that the SoC effect on methylation
spans the entire VTRNA2-1 imprinted DMR (represented
by the 10 CpG sites with methylation close to 50%). Des-
pite this interindividual variation, methylation across the
entire VTRNA2-1 DMR was tightly regulated within each
individual (Figure 4d). The observed distribution is sug-
gestive of a failure to maintain methylation at the nor-
mally silenced allele in some children, especially those
conceived in the dry season, although confirmation of
this would require further studies. Notably, the last 10
CpG sites in the VTRNA2-1 SoC DMR (Figure 4c,
cg04481923 to cg18797653) correspond to those re-
cently reported to show differences in tumor versus
normal tissues, using the same array platform [18].
All of the top 10 SoC-DMRs (Table 1) showed lower

methylation in the dry relative to the rainy season (that
is, a positive coefficient), consistent with our previous
studies focused on candidate MEs [10,20]. Plots of
methylation by SoC for the second and third highest
ranking SoC-DMRs (PAX8 and PRDM9) are provided as
examples (Figure S5a,b in Additional file 1). Importantly,
VTRNA2-1 was not the only candidate ME that showed
SoC effects in the 450k data. PAX8 and AKAP12, identified
as candidate MEs in our previous reduced-representation
screen [20], were among the top 10 SoC-DMRs (Table 1),
reinforcing the notion that developmental establishment of
DNA methylation at MEs is particularly sensitive to peri-
conceptional environment.

Maternal periconceptional nutrition predicts offspring
hypomethylation at VTRNA2-1, which is stable for many
years
Seasonal differences in maternal nutritional status affect-
ing one-carbon metabolism (Figure 4e) suggest a poten-
tial mechanism to explain the SoC effect on VTRNA2-1
methylation. To test this, each of 13 maternal nutritional
status biomarkers sampled in early pregnancy [10] was
evaluated as a potential predictor of VTRNA2-1 hypo-
methylation in her infant (<40% by pyrosequencing) [28]
(Table S4 in Additional file 2). Low maternal vitamin B2
(riboflavin) and methionine (MET) specifically around
the time of conception predicted VTRNA2-1 hypome-
thylation in her infant, whereas low maternal plasma
dimethylglycine (DMG) protected against hypomethyla-
tion (Figure 4f; P = 0.05, 0.01, and 0.05 respectively).
Each of these associations appears to follow a dose-
response relationship, but larger datasets will be needed
to confirm them and model the relevant methyl donor
pathways. The riboflavin finding, consistent with our
previous observations across a panel of MEs [10], is par-
ticularly noteworthy; riboflavin is required for synthesis
of flavin-adenine dinucleotide, an essential cofactor for
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Figure 4 Season of conception (SoC) and maternal periconceptional nutritional status predict methylation at VTRNA2-1. (a) Bisulfite pyrosequencing
data on 215 Gambian children according to SoC. The rank plot (left) highlights the markedly different distribution according to SoC. The histogram
(right) shows that individuals conceived in the dry season are under-represented for intermediate methylation expected at an imprinted locus (40 to
60%, highlighted) and over-represented for hypomethylation (P = 0.004). (b) In 80 Gambian infants with pyrosequencing data on both HF and PBL
(left), VTRNA2-1 methylation in HF is highly correlated with that in PBL. Rank plot of average VTRNA2-1 methylation in HF of Gambian infants (right)
shows that the SoC effect in HF is similar to that in PBL. (c) 450k array data on 120 Gambian children, according to SoC. Shown are 15 CpGs mapping
to the VTRNA2-1 locus. The box highlights 10 CpGs corresponding to the imprinted DMR. The SoC effect on hypomethylation spans the entire
imprinted DMR (P = 0.02, chi-squared test). (d) Rank plot of 450k array data at VTRNA2-1. Each box represents the methylation values across the 10
CpG sites spanning the imprinted DMR for one individual. (e) Seasonal variation in 13 methyl donor-related biomarkers and associated derivatives,
back-extrapolated to time of conception and adjusted for gestation age (n = 164 pregnant mothers) [10]. Biomarkers are expressed as percentage of
bi-season geometric mean. ANOVA P-values of seasonal differences: *<0.05; **<0.01, ***<0.001. (f) Maternal nutritional status biomarkers around the
time of conception predict VTRNA2-1 hypomethylation (<40%) in her infant. Low maternal vitamin B2 or methionine (MET) status increases risk of
VTRNA2-1 hypomethylation (P = 0.05 and P = 0.01, respectively). Low maternal dimethylglycine (DMG) is protective (P = 0.05). (g) Repeat measurements
by bisulfite pyrosequencing in 55 Gambians indicate that VTRNA2-1 methylation in PBL is highly stable over a period of 10 years.
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methylenetetrahydrofolate reductase (MTHFR), a rate-
limiting enzyme in one-carbon metabolism. Riboflavin
deficiency is very common in low-income populations
with low intakes of dairy and animal foods, including
rural Gambia.
In order for a nutritionally mediated epigenetic change

in early life to affect risk of disease in adulthood, such
marks must persist for many years. To test the temporal
stability of VTRNA2-1 methylation, we obtained serial
PBL DNA samples from 55 rural Gambians, spanning a
10-year period. Average VTRNA2-1 methylation was
generally stable from approximately 7 to 17 years of age
(Figure 4g), indicating that individual patterns of methy-
lation at the locus, once established in the early embryo,
persist to adulthood.

Discussion
Previous studies have cataloged interindividual variation
in DNA methylation in specific cell types [29,30]. Our
approach, screening for concordant variation in multiple
tissues representing different embryonic lineages, is
unique in enabling the identification of systemic
Table 1 The 10 most significant SoC-associated DMRs (SoC-DM

Chr SoC-DMR start SoC-DMR end Mean
coefficient

Probes in
SoC-DMR

Pro
in c

5 135,415,762 135,416,613 0.61 15 15

2 113,992,762 113,993,313 0.47 8 8

5 23,507,030 23,507,752 0.36 12 13

6 32,729,442 32,729,847 0.14 20 36

17 17,109,570 17,110,120 0.38 8 11

6 29,648,345 29,649,024 0.27 14 18

6 151,646,312 151,647,133 0.30 9 9

12 57,040,045 57,040,204 0.36 4 9

5 191,242 192,103 0.26 10 11

13 36,944,640 36,944,649 0.36 2 8

Analysis includes adjustment for sex and estimated white blood cell composition. G
with an asterisk, for which overlapping or proximal genes are listed. TSS, transcripti
interindividual variation [20]. Here, using Bisulfite-seq to
analyze the PBL and HF DNA methylomes of two
Caucasian adults, we performed the first truly genome-
wide screen for human MEs. We followed this with a
genomewide search for SoC effects on DNA methylation
in Gambian infants. VTRNA2-1 was a top hit by both
approaches. The convergence of these two independent
genomewide screens at this one locus positions
VTRNA2-1 as a potential major indicator of early envir-
onmental effects on epigenetic regulation in humans. In-
terindividual variation in VTRNA2-1 methylation has
been reported in peripheral blood mononuclear cells of
healthy individuals [14] and in adjacent normal tissues
collected during tumor biopsies [18]. Neither of those
previous studies, however, demonstrated concordant in-
terindividual variation across multiple tissues from the
same individuals. (Although Romanelli et al. [18] showed
four examples of allelic methylation in both placenta and
cord blood of the same individuals, all were approximately
50% methylated - that is, no interindividual variation.)
Here, by studying liver, kidney, and brain of Vietnamese
cadavers, and PBL and HF of healthy Caucasians and
Rs) identified by the bump hunting analysis

bes
luster

SoC
P-value

SoC P-value
(FWER)

Gene Annotation

2.0E-05 0.009 VTRNA2-1 Overlaps TSS

5.5E-04 0.228 PAX8* Intron/exon

8.7E-04 0.349 PRDM9 Overlaps TSS

1.6E-03 0.576 HLA-DQB2 Intron/exon

1.8E-03 0.578 PLD6 Overlaps TSS

1.8E-03 0.601 ZFP57* ~3 kb upstream of TSS

2.8E-03 0.733 AKAP12 Overlaps TSS

3.2E-03 0.782 ATP5B* Promoter

3.8E-03 0.848 LRRC14B Overlaps TSS

4.4E-03 0.864 SPG20 Promoter

ene annotations are those provided by Illumina, except for entries marked
on start site.
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Gambians we showed that hypomethylation, suggestive of
loss of imprinting at VTRNA2-1, occurs systemically in
specific individuals in diverse populations. Further, we
demonstrated that this is partially determined by pericon-
ceptional environment, and is stable over at least 10 years.
The unbiased nature of our ME screen enabled us to

characterize genomic features associated with epigenetic
metastability. Rather than localized differences, our ana-
lysis identified substantial depletion of CGIs and SINEs,
and enrichment of LINEs and ERVs across genomic re-
gions at least 10 kb upstream and downstream of candi-
date MEs (Figure 2). Since transposable elements are
important determinants of regional DNA methylation pat-
terns [31], these widespread sequence features likely con-
tribute to the stochastic epigenetic variation at these loci.
The enrichment of ERVs is particularly noteworthy in that
all documented mouse MEs are associated with retrotran-
sposition of an intracisternal A particle (a murine ERV) [9].
Although genomically unbiased, our ME screen does

have limitations. Due to the expense of performing
Bisulfite-seq, we profiled two tissues from only two indi-
viduals. More MEs are likely to be discovered by future
screens including more individuals; including at least
three tissues (representing all three germ layer lineages)
may also be advantageous. As expected, several of the
genes identified as candidate MEs in our previous
reduced-representation screen [20] were also identified
here. Our results also corroborate those of another ME
screen based on our multiple-tissue approach. Using the
Illumina 450k array to profile DNA methylation in per-
ipheral blood leukocytes and colonic mucosa of 10 chil-
dren, Harris et al. [32] identified 1,776 CpG sites
associated with 1,013 genes as candidate MEs. Of the
1,013 genes they identified, 198 (19.5%) overlap with
those associated with the unfiltered candidate MEs we
identified (Table S1 in Additional file 2), many more
than expected by chance (P = 2.1 × 10-8; chi-squared
test). Moreover, of the 1,776 CpGs Harris et al. identi-
fied as candidate MEs, four are within or near our top
10 SoC DMRs (Table S7 in Additional file 2). Among
these, Harris et al. identified one probe (cg04515200)
within the VTRNA2-1 SoC DMR (Figure 4c). Given the
low intraindividual variance at VTRNA2-1 (Figure 4d),
we were surprised that a lone probe would be identified
as an ME (rather than the entire region). Indeed, exam-
ination of the Harris et al. data confirmed systemic in-
terindividual variation in methylation across the entire
VTRNA2-1 imprinted DMR (Figure S6 in Additional file
1), suggesting that perhaps the filtering criteria they used
were overly conservative. Evidence of a SoC effect at the
other three loci (Table S7 in Additional file 2)
strengthens their candidacy as MEs.
Of these, the SoC DMR at ZFP57 is particularly inter-

esting because ZFP57 plays a key role in maintaining
allelic methylation during pre-implantation development
[33]. This genomic region (approximately 3 kb upstream
of the gene) was identified as a candidate ME by both
Harris et al. [32] and our current screen (prior to SNP fil-
tering) (Table S1 in Additional file 2). Although it is intri-
guing that ZFP57 is among the top SoC DMRs (Table 1),
the effect is very subtle (Figure S5c in Additional file 1)
and should be interpreted with caution. Nonetheless, in a
recent genomewide (450k) study of immune cells from
cord blood of newborn infants [34], methylation in this
same region was found to be strongly predicted by mater-
nal folate status in late pregnancy. Future studies will be
required to determine if this master regulator of allelic
methylation is indeed an ME.
This and preceding studies [20,32] have thus far

screened for MEs only in Caucasians. We did previously
show that candidate MEs identified by our multiple-
tissue screen in Caucasians exhibit similar patterns of in-
terindividual DNA methylation variation across Asians
and West Africans [20], suggesting that epigenetic meta-
stability is an ancestral feature of the human genome.
This conclusion is reinforced here by our data on
VTRNA2-1. Indeed, our discovery in Gambians of a SoC
effect at the VTRNA2-1 ME (which was identified in
Caucasians) is a great strength of this study. Nonethe-
less, it will be important for future studies to perform
the multiple-tissue ME screen in non-Caucasians.
One potential criticism of our approach for identifying

SoC DMRs is that our 450k analyses were performed
using unfractionated leukocytes. Using the method of
Jaffe and Irizarry [27], however, we found evidence of only
minor SoC effects on leukocyte composition (Figure S4 in
Additional file 1), and our analyses of the 450k data in-
cluded adjustment for this. An analysis of previous
Illumina 450k data on flow-sorted blood cells [27]
found no cell type-specific differences in DNA methy-
lation at any of the 15 CpGs comprising the VTRNA2-
1 SoC DMR (Table S5 in Additional file 2). Hence, the
SoC effect at VTRNA2-1 should be unaffected by
changes in blood cell composition. Indeed, we found a
similar SoC effect in HF and PBL (Figure 4a,b), tissues
derived from different germ layer lineages.
In an attempt to focus on interindividual epigenetic

variation that is not genetically mediated, we filtered out
candidate MEs associated with genetic variation within
200 bp bins. However, genetic variants that influence
DNA methylation (mQTL) can operate over vast gen-
omic distances. To evaluate potential longer-range genetic
effects on DNA methylation at VTRNA2-1, we analyzed
genome-wide mQTL data recently reported by Zhang
et al. [23] on lymphoblastoid cell lines from 132 indi-
viduals of European and African origin. The distribu-
tion of polymorphic imprinting in these cell lines was
impressively similar to that in primary tissues; the 10
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CpG sites comprising the VTRNA2-1 imprinted DMR
were hypomethylated in approximately 20% of individ-
uals (Figure S2 in Additional file 1). However, at none
of these sites did the study by Zhang et al. (currently
among the largest genome-wide mQTL screens) detect
mQTL. Given the strong bimodal distribution of indi-
vidual VTRNA2-1 methylation, if hypomethylation at
the locus was regulated by cis genetic variation, it
should have been detected. Hence, these data argue
strongly against interindividual variation at VTRNA2-1
being genetically mediated. The environmentally medi-
ated effect of SoC on hypomethylation in Gambian
children further supports this interpretation.
Conclusions
Together, our data suggest that the effect of maternal
nutrition on DNA methylation at VTRNA2-1 exhibits all
the hallmarks of ‘metabolic imprinting’ [35]: a critical
window of sensitivity (in the pre-implantation embryo),
a dose-response relation between exposure and out-
come, and a persistent effect. Because VTRNA2-1 is
transcriptionally regulated by methylation at its pro-
moter [14,17] and appears to act as a tumor suppressor
in various types of cancer [14-16], metabolic imprint-
ing of VTRNA2-1 DNA methylation is a likely deter-
minant of cancer risk. Moreover, since the VTRNA2-1
transcript affects PKR-mediated regulation of immune
function [36], this early environmental effect on DNA
methylation could have far-reaching effects on immune
function and might offer an explanation for how
season of birth (which maps onto SoC) affects adult
mortality from infectious disease in rural Gambians
[19,37]. More generally, we anticipate that the list of
candidate metastable epialleles we identified will pro-
vide a resource for future studies of epigenetic vari-
ation and human disease.
Materials and methods
Human subjects
Informed written consent was obtained from all subjects
prior to participation, and experimental methods com-
plied with the Helsinki declaration. Scientific approval
for the Caucasian studies was obtained under IRB
protocol H-18849 at the Baylor College of Medicine.
For the Gambian studies, the Scientific Coordinating
Committee of MRC Unit, The Gambia, granted scien-
tific approval and the joint Gambian Government/MRC
Ethics Committee (SCC/EC 1151) and the London School
of Hygiene and Tropical Medicine Ethics Committee (EC
5525) granted ethical permission for this study. Sample
collection, study populations, and DNA isolation have
been previously described [10,20,21].
Bisulfite-seq, SNP calling from Bisulfite-seq data, and fil-
tering bins based on SNP score
Bisulfite-seq library preparation and sequencing were
performed in the Baylor College of Medicine Human
Genome Sequencing Center, and read mapping and data
processing were performed as previously described [21].
The accuracy of our methylation calls by Bisulfite-seq has
been quantitatively validated [21]. Combined bisulfite-seq
data from HF and PBL samples from two individuals (C01
and C02) [21] were used to determine SNP scores for 200
bp bins genomewide. Reads were mapped to hg19 with
BISMARK [38] and BisSNP (v.0.82.2) [39] was run to call
SNPs on each combined sample (PBL + HF) using the de-
fault settings and dbSNP 135. The VCFpostprocess tool of
BisSNP was used with the default settings to filter the raw
SNP calls. SNP scores were assigned at each locus for
which there was a SNP called in either C01 or C02. A
score of 1 was assigned to those loci at which both C01
and C02 had the same SNP call. A score of 0 was assigned
otherwise. Average SNP scores were calculated for all 200-
bp bins genomewide. Genomewide bins were defined as
those containing at least 2 CpG sites and which had map-
ping coverage [21] in at least one of the four C01/C02
HF/PBL samples (N = 5,257,320). A bin’s SNP score was
set to 1 if no SNP was called in either individual.

Formulation of the systemic interindividual variation index

x ¼ PBL residual %meth in C01 ‐ %meth in C02ð Þ
y ¼ HF residual %meth in C01 ‐ %meth in C02ð Þ
SIVI ¼ Aþ Bþ C

Where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x⋅yj jð Þ

p
ðrewards maximal interindividual differencesÞ
B ¼ �sdðx; yÞ
rewards interindividual differences that are similar in both tissuesð Þ

C ¼ −max
�
sd %methPBL;%methHFð ÞC01; sd %methPBL;%methHFð ÞC02

�

rewards consistent percent methylation across both tissuesð Þ

Targeted analysis of BluePrint epigenome data
Bisulfite-seq methylation calls from each of six mono-
cyte samples (C000S5, C0010K, C001UY, C004SQ,
C005PS, S000RD) from the Blueprint Epigenome project
[22] were placed into 200 bp bins and an average methy-
lation score was determined for each bin. Each bin
which had a methylation score in at least two samples
was then assigned a range score, defined as the differ-
ence between the highest and lowest methylation score
of all informative samples.
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Comparison of genomic features among metastable
epiallele and non-metastable epiallele genomewide bins
The distances from each non-ME and ME bin genome-
wide were determined for all SINE, LINE, and ERV ele-
ments (UCSC RepeatMasker track, hg19) and CGIs
(UCSC CpG islands track, hg19). Non-ME bins (N =
298,979) were defined as those having a SIVI score be-
tween -5 and 5, a SNP score of 1, no overlap with seg-
mental duplication (UCSC, hg19), and at least six CpG
sites. ME bins (N = 109) had a minimum SIVI of 20 but
otherwise the same characteristics. A 20 kb window cen-
tered on the midpoint of each bin was divided into 40
intervals of 500 bp each. The overlap score is the num-
ber of each type of individual elements that overlap the
interval. The 'normalized overlap score' was calculated
by dividing the raw overlap score by the total number of
bins in each set. Chi-squared tests were performed on
the raw overlap scores for CGIs and SINE, LINE, and
ERV elements. A chi-squared test was also performed to
determine the significance of the localization of ME bins
to subtelomeric regions (defined as the 1 Mb flanking
each 10 kb telomere).

Bisulfite pyrosequencing
Quantitative analysis of CpG site-specific DNA methylation
at VTRNA2-1 was performed by bisulfite pyrosequencing
[40]. The pyrosequencing assay was validated using stan-
dards composed of known mixtures of methylated and
unmethylated human genomic DNA [41] (Figure S7 in
Additional file 1). The primers used were as follows: for-
ward TGAAGGTGTGATAGAAAGTATG, reverse (Biotin)
ACATTTTTTTATCCCCATA, sequencing AGTATGGA
GGTTGGTTATT.

450k array hybridization, data processing, and analysis of
the Gambian sample cohort
Sample preparation and hybridization to the Illumina
HumanMethylation450 BeadChip arrays were performed
at the Genetics Services Platform of the International
Agency for Research on Cancer, according to manufac-
turer’s instructions. Data processing and analysis were
performed as follows: 1) pre-filtering and quality control
(QC); 2) color adjustment, probe-type bias correction
and inter-sample quantile normalization; 3) batch effect
correction and evaluation of alternative QC pipelines; 4)
data-driven estimation of white blood cell counts; 5) rep-
licate removal and outlier detection; 6) removal of
probes close to SNPs; 7) bump hunting analysis.

Pre-filtering and quality control
Raw data for 485,577 CpG probes on the 450k array
were loaded from IDAT files (n = 124 samples including
three technical replicates). Array-wide two-dimensional
multi-dimensional scaling plots clustered into two groups
representing infant sex, confirming that recorded sex was
correct for all samples. We then removed 11,656 probes
on X and Y chromosomes, together with 57 SNP probes
provided to detect potential sample mix-ups; 473,864
probes remained.
A further probe filtering step was implemented based

on probe detection P-values. Using a detection P-value
threshold of P = 0.01, the maximum sample failure rate
was 0.00383 (sample ID = 9007225117_R06C01; Figure
S8 in Additional file 1). This sample also appears as an
outlier on principal component analysis plots of array-
wide methylation (Figure S9 in Additional file 1) and
was removed from all subsequent analysis; n = 123
samples remained. We also removed 6,600 probes that
failed in one or more samples (using the same detection
P-value threshold), leaving 467,264 probes for subse-
quent analysis. Additional quality control checks (over-
all signal intensity (M + U) across samples, M-value
distributions and multi-dimensional scaling plot ex-
cluding X and Y probes) revealed no further issues.
Color adjustment, probe-type bias correction and inter-sample
quantile normalization
Standard pre-processing adjustments as described in
[42] were applied as follows: a) correction for probe
color bias (lumi col adj), b) inter-sample quantile
normalization (lumi QN), and c) probe type correction
using beta mixture quantile dilation (BMIQ) [43]
Batch effect correction and evaluation of alternative quality
control pipelines
The following alternative QC pipelines with and without
correction for batch covariates (sample plate, sample
slide, sample position on slide) were considered:

p1A: col adj + QN + BMIQ + batch correction (using
ComBat [44])*
p1B: col adj + QN + BMIQ + batch correction,
adjusting for SoC (using ComBat [44])*
p2: col adj + BMIQ + adjust for batch covariates on
locus-by-locus basis**
p3: col adj + QN + BMIQ adjust for batch covariates
on locus-by-locus basis**
p4: col adj + QN + BMIQ (no adjustment for batch
covariates)
p5: col adj + BMIQ (no adjustment for batch
covariates)

*Batch correction using ComBat can be applied with
or without adjusting for the variable of interest (in our
case SoC).
**For p2 and p3, batch effects are first estimated in a

linear multiple regression including batch covariates and
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SoC. Adjusted data are then the residual variation after
adjusting for estimated batch effects only.
The performance of each pipeline was evaluated by com-

paring 450k beta values with percentage methylation esti-
mates obtained from pyrosequencing data at five ME loci
overlapping 450k CpG probes (Figure S3 in Additional
file 1). Each pipeline was further evaluated by compar-
ing 450k beta values between three pairs of technical
replicates on the 450k array. Bland-Altman plots [45]
illustrating replication performance across the full
range of percentage methylation for each of three tech-
nical replicates using ‘optimal’ QC pipeline (p4) are
presented in Figure S10 in Additional file 1.

Summary of QC pipeline evaluation

� The p4 (col adj + QN + BMIQ) and p5 (col adj +
BMIQ) approaches gave the best performance when
comparing 450k and pyrosequencing methylation
estimates at overlapping loci.

� Neither of these methods (p4 or p5) feature direct
batch adjustment, although p4 does remove a
substantial amount of batch variation through
inter-sample QN.

� Regression-based locus-by-locus adjustment for
batch covariates gives relatively poor 450k versus
pyrosequencing correlations.

� We selected p4 (col adj + QN + BMIQ) as our
optimal pipeline. This achieves a Pearson correlation
of 0.92 (Spearman R = 0.94) between 450k and
pyrosequencing assays, with 88% of beta values
differing by less than 15% between the two
platforms. These figures compare favorably with a
similar analysis [45] performed across 340 CpGs
from 4 human breast cancer cell lines (Spearman R
= 0.88; 81% with beta difference <15%).

Data-driven estimation of white blood cell counts
Interpretation of analyses investigating DMRs or differ-
entially methylated positions (DMPs) in whole blood
should be treated with caution, due to the possibility of
confounding by white blood cell (WBC) type. We ob-
tained methylation data-driven estimates of WBC-type
composition using the method described by Jaffe and Iri-
zarry [27]. These estimates are stable across technical
replicates (Figure S11 in Additional file 1).
There is some evidence for potential confounding by

WBC in our data. First, WBC type may be weakly asso-
ciated with SoC (Figure S4 in Additional file 1). Secondly
WBC composition is strongly associated with principal
components explaining a large portion of genomewide
variation in methylation (Table S6 in Additional file 2).
We therefore performed our DMR analysis using bump
hunting with adjustment for estimated WBC composition.
An independent study [27] identified probes on the 450k
array that are differentially methylated according to WBC
type. None of the probes mapping to VTRNA2-1 in our
study fall within this set (Table S5 in Additional file 2).

Replicate removal and outlier detection
For each of the three technical replicates, we remove the
replicate with the highest probe fail rate. One outlier is
also removed (see ‘Pre-filtering and quality control’ sec-
tion above), leaving n = 120 samples for final analysis.

Removal of probes close to SNPs
450k probes within 10 bp of a common African SNP, de-
fined as ‘AFR’ designated polymorphisms with a minor
allele frequency >1% using data from the 1000 Genomes
Project [46] were removed. We identified 42,435 such
probes, so that 424,829 CpGs remain for the bump
hunting analysis. SNP filtering was performed using the
R ‘Illumina450ProbeVariants.db’ package.

Bump hunting analysis
The bump hunting method [26] measures differential
methylation across pre-defined clusters of neighboring
CpGs. We used the recommended proximity-based cri-
teria for defining clusters so that each cluster contains a
minimum of seven probes on the 450k array, with each
probe located within 300 bp of its nearest neighbour.
After filtering of SNP-proximal probes (see previous sec-
tion), this resulted in a total of 10,394 clusters, with a
maximum cluster size of 104 CpGs. We performed the
bump hunting analysis with methylation pre-adjusted for
sex and WBC composition, since the inclusion of adjust-
ment covariates in the bumphunter linear model is not
recommended (see [47]). M-values (logit-transformed
beta-values) are used in place of untransformed beta-
values throughout [48].
The bump hunting method first fits a linear model at

each CpG within a cluster, with M-value as the outcome
variable and SoC as the predictor variable. A smooth
curve (loess) is then fitted to the estimated SoC coeffi-
cients across each cluster. Regions where the smoothed
estimated coefficients deviate far from zero were consid-
ered candidate DMRs. Specifically, these are defined as
groups of neighboring probes whose smoothed absolute
coefficients exceed the 99th percentile of all estimated
coefficients. To form a null distribution that accounts
for (a) correlations between probes, (b) differences in
cluster size and (c) potential non-normal distribution of
model errors, this process is repeated 1,000 times with
the outcome variables (M-values) permuted. The permu-
tation P-value for a specific DMR is then the proportion
of candidate DMRs across all permutations that had
both a larger mean absolute coefficient and a larger
length (number of probes) than the empirically observed
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DMR. We additionally report FWER-adjusted P-values,
which are the proportion of permutations having at least
one region as extreme as the empirically observed DMR.

Analysis of associations between infant methylation at
VTRNA2-1 and season of conception and maternal
1-carbon biomarker concentrations
VTRNA2-1 methylation assayed at three CpG sites by
bisulfite pyrosequencing was observed to be highly cor-
related (mean Spearman R = 0.93). Because percentage
methylation values followed a distinct bimodal pattern,
we used mean methylation, dichotomized at 40% [28], as
our outcome variable. Association of SoC with dichoto-
mized mean methylation was assessed using a Pearson
chi-squared test. For testing associations of maternal
biomarkers with dichotomized mean methylation, all
biomarkers were back-extrapolated to time of concep-
tion, adjusted for gestational age, and analyzed in the
logarithm, as described previously [10]. Biomarker asso-
ciations were analyzed in a logistic regression model
using the glm function in R.

Data availability
The Gene Expression Omnibus (GEO) accession num-
ber for the raw sequence reads for the four Bisulfite-seq
libraries is GSE44806. The GEO accession number for
the original 450k data sets is GSE59592.
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Additional file 1: Supplementary Figures S1 to S11.

Additional file 2: Supplementary Tables S1 to S7.
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