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Abstract- Predicting the reliability of power electronics module wirebond structures requires accurate computer models to investigate the 

design space constraints in a computationally efficient manner. This paper details a model-order reduction (MOR) method to solve the 

governing equations for electro-thermal behaviour of wire-bond structures and a linear-damage rule and fatigue model to predict their 

wear-out behaviour. Various MOR methods are compared in terms of their accuracy and computational efficiency. Finite element 

calculations are used to validate the MOR predictions in terms of accuracy and solution times. The paper presents for the first time the 

significant benefits that MOR techniques can provide to reliability engineers for predicting the electro-thermal and fatigue behaviour of 

wirebonds in power modules. For the six MOR methods assessed, the Rational Krylov Algorithm (RKA) outperforms all other MOR methods 

in terms of accuracy and solution times, where it provides a solution 84 times faster than a full finite element solver. 

 

1. INTRODUCTION 

Power electronics modules (PEM) play a vital role in the 

conversion, control of alternative energy generation, and 

distribution. All power devices, such as IGBT, have finite on-

state voltage drops during turn-on and turn-off and this causes a 

small amount of power to be dissipated and converted into heat 

energy within the PEM device. Combination of converted heat 

energy and the environment temperature can initiate thermo-

mechanical failure mechanisms within the device due to the 

coefficients of thermal expansion (CTE) mismatch between 

various materials of the components. The wirebond lift-off is one 

of the dominant failure modes in PEM device, since it can lead 

to a non-homogeneous current distribution on the PEM device, 

and it further accelerate the other failure process. Generally, an 

electro-thermal finite element modelling of the wirebond 

substructure is generated by imposing accurate boundary 

condition to predict the reliability. 

For efficient thermal management of PEM structure, an 

electro-thermal (ET) numerical modelling of the structure is vital 

in order to identify the critical failure location. Due to the huge 

computational cost of numerical modelling of PEM structure, 

most of the academic practitioners tend to model the sub-section 

of the PEM structure with appropriate boundary conditions and 

loading to identify the localised effect of the physical process 

modelled. If the loading varies with time, then many numerical 

simulations at each discrete time interval are required to extract 

the physical process modelled, which is computationally 

expensive. The computational cost further exacerbates if the 

substructure has a complicated 3D shape, and these require finer 

numerical discretisation to capture the shape and topology. 

Reduced Order Modelling is widely applied in numerical 

modelling to reduce the computational cost.  

2. REDUCED ORDER MODELLING 

In the literature, various reduced order models (ROM) 

have been presented. ROM is described as a compact 

representation for a full order (high-fidelity) model and captures 

the physical behaviour of the high-fidelity model. The ROMs 

approaches can be categorised into three major distinct groups 

such as (a) surrogate modelling, (b) compact thermal model, and 

(c) model order reduction which are illustrated in Figure 1. In the 

surrogate modelling (SM) approach, the response surface 

technique is combined with design of experiment (DoE) 

sampling to generate the surrogate model representing the 

physical process being modelled. SM can be categorised into 

two distinct groups namely interpolation SM such as the Kriging 

model [1] and regression SM such as the quadratic polynomial 

model [2].  

 
Figure 1: Three major approaches in reduced order modelling 

In the compact thermal modelling (CTM) approach the 

high-fidelity model of the electronic package is replaced with 

less grid-intensive ROM. This less grid-intensive ROM can 

preserve the accuracy in predicting the temperatures at key 

points in the package whilst using far less computational effort. 

CTM is a simplified representation of a lumped thermal resistor-
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capacitor (RC) network which allows the approximation of the 

junction temperature and heat fluxes at specific locations. CTM 

has two approaches such as 2 Resistor network CTM [3] and 

DELPHI CTM [4].  

The final category of ROMs looked at, which forms the 

basis of this paper, is Model Order Reduction (MOR) approach. 
Application of the MOR in electro thermal finite element 

modelling is widely discussed within the literature, see Binion 

and Chen [5] and Bechtold et al [6]. This study focuses on the 

application of MOR in electro-thermal finite element modelling 

to predict the reliability of the wirebond structure of the PEM 

device in a computationally more efficient way. 

3. METHODOLOGY FOR WIREBOND RELIABILITY PREDICTION BY 

MOR 

The methodology for predicting the wirebond reliability by 

utilising MOR is illustrated in Figure 2. For an irregular electric 

loading in the wire, Joule heating effect generates an irregular 

temperature distribution in the structure.  The time invariant 

system (TIS) of the wirebond (as described in Section (4.a)) was 

extracted from finite element code without solving, then MOR 

algorithms (as described in Section (6.b)) were applied to 

generate the reduced order TIS. The generalized trapezoidal rule 

numerical scheme (as described in Section (4.b)) was employed 

to solve the reduced order TIS. The solution of reduced order 

TIS was projected back to the original dimension by projection 

matrix of the MOR algorithms. Then a cycle counting algorithm 

and a fatigue model (as described in Section (5)) were used to 

predict the reliability. Next sections address each step in the 

methodology. 

 
Figure 2: The methodology of the MOR in reliability prediction 

4. WIREBOND ELECTRO-THERMAL FINITE ELEMENT ANALYSIS 

A finite element analysis was undertaken to investigate the 

residual stress for the prediction of the wirebond wear out 

failure. The dimensional data of a wirebond (see Lu et al [7]) is 

used to generate the finite element model, as shown in Figure 3. 

This model captures a slice of the wire and uses periodic 

boundary conditions to represent the effect of the array of wires. 

The mirror plane symmetry of the structure is taken so that only 

half of the wire and surrounding structure are included in the 

model to reduce the computational complexity.  

Applied electrical loading current to the aluminium wire is 

illustrated in Figure 4. The ground voltage restriction was 

imposed on crosscut surfaces of the layers. The thermal 

convection coefficient of 1000 W/(m2.K) was imposed on the 

lower surface of the model to mimic the heatsink surface.  

 
Figure 3: The dimension of the wirebond model 

 
Figure 4: Applied load current through the cross section of the wire [1] 

Table 1: Wirebond model material properties for electro-thermal 

analysis 

Parameters Si 

Chip 

Copper AlN Sn3.5Ag Aluminium 

Resistivity 

(Ω.m) 

620 1.7 × 

10-8 

1 × 

1014 

1.23 × 

10-7 

2.65 × 10-8 

Thermal 

Conductivity 

(W/Mk) 

130 400 160 30 238 

Specific 

Heat 

Capacity 

700 385 740 219 900 

Density 

(Kg/m3) 

2329 8960 3300 7360 2700 

The material properties of the wirebond structure are as in 

Table 1. These material data were utilised in the Ansys finite 

element code to generate the electro-thermal model of the bond-

wire. The underlying physics involved in the coupled electro-

thermal finite element numerical model is described in the 

following section. 

a. Underlying Physics 

The conduction currents and the electric flux densities are 

computed by the following equations. 
{𝐽} = [𝜎]{𝐸}                                         (1) 

where [σ] - electrical conductivity matrix. {E}, and {J}, are 

electric field (V/m), and electric current density (A/m2), 

respectively. For Joule heating, the heat generation term �̈� is 
derived as 

{�̈�} =
1

[𝜎]
|{𝐽}|2                                                         (2) 

The heat transfer equation for the temperature evaluation by 

Joule heating is defined as 

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ {∇. 𝑞} = {�̈�}                                                   (3)                   
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Where ρ – density, C- specific heat, T- temperature, t- time, {q}- 

heat flux vector, and �̈�- heat generation rate per unit volume. By 

Fourier law, heat flux vector and thermal gradients are related by  
{𝑞} = −[𝐷]{∇T}                                                     (4) 

where [D] - conductivity matrix. By combining (3) and (4), heat 

conduction equation can be derived as 

𝜌𝐶
𝜕𝑇

𝜕𝑡
= {∇. [𝐷]{∇T}} + �̈�                                         (5) 

The equation for a conducting solid with convection surfaces is 

defined as 

{𝑞}𝑇{𝜂} = {𝜂}[𝐷]{∇T} = ℎ𝑓(𝑇𝑆 − 𝑇𝑅𝑒𝑓)                       (6) 

Where hf – film coefficient, Ts – surface temperature, TRef –

temperature of the surrounding medium, and {η} – unit outward 

normal vector. Electro thermal coupling matrix equation is 

defined as 

[
[𝐶] [0]

[0] [0]
] {

{�̇�}

{�̇�}
} + [

[𝐾𝑇] [0]

[0] [𝐾𝑉]
] {

{𝑇}

{𝑉}
} = [

{𝑄}

{𝐼}
]           (7) 

where {𝑄} - convection surface vector and heat generation 

vector, {𝐾𝑇}– thermal conductivity matrix of material and 

convection surface, {C} – thermal specific heat matrix, {KV} -

electric conductivity matrix, {I} – applied nodal electric current 

vector. The stiffness ([
[𝐾𝑇] [0]

[0] [𝐾𝑉]
] ∈ ℛ2𝑛×2𝑛)and damping 

([
[𝐶] [0]

[0] [0]
] ∈ ℛ2𝑛×2𝑛) matrices can be extracted from Ansys 

finite element code without solving as described by Rudnyi et al 

[8]. The next section addresses the numerical solution process of 

the time invariant system (TIS) as in Equation (7).  

b. Solution of the Time Invariant System  

Various approaches for numerically solving the TIS (Equation 

(7)) are described in literature [9]. One of the numerical solution 

approaches for the first order TIS (Equation (7)) is the 

generalized trapezoidal rule (GTR). The GTR is defined as 

{
{𝑇𝑛+1}

{𝑉𝑛+1}
} = {

{𝑇𝑛}

{𝑉𝑛}
} + (1 − 𝜃)Δ𝑡 {

{�̇�𝑛}

{�̇�𝑛}
} + 𝜃Δ𝑡 {

{�̇�𝑛+1}

{�̇�𝑛+1}
}     (8) 

where θ – transient integration parameter (typically in the range 

of 0.5 and 1), Δt =tn+1 -tn, {
{𝑇𝑛}

{𝑉𝑛}
} – the nodal value of temperature 

vector and voltage vector at time tn and {
{�̇�𝑛}

{�̇�𝑛}
} – the time nodal 

rate of change of temperature vector and time nodal rate of 

change of voltage vector at time tn (computed at previous time 

step). Equation (7) can be rewritten at time tn+1 by substituting 

(8) into it  

(
1

𝜃Δ𝑡
[
[𝐶] [0]

[0] [0]
] + [

[𝐾𝑇] [0]

[0] [𝐾𝑉]
]) {

{𝑇𝑛+1}

{𝑉𝑛+1}
} = [

{𝑄}

{𝐼}
] +

[
[𝐶] [0]

[0] [0]
] (

1

𝜃Δ𝑡
{
{𝑇𝑛}

{𝑉𝑛}
} +

1−𝜃

𝜃
{

{�̇�𝑛}

{�̇�𝑛}
})                                 (9) 

𝐴 {
{𝑇𝑛+1}

{𝑉𝑛+1}
} = 𝐵                                                      (10) 

where  𝐴 = (
1

𝜃Δ𝑡
[
[𝐶] [0]

[0] [0]
] + [

[𝐾𝑇] [0]

[0] [𝐾𝑉]
]), and  

 𝐵 = [
{𝑄}

{𝐼}
] + [

[𝐶] [0]

[0] [0]
] (

1

𝜃Δ𝑡
{
{𝑇𝑛}

{𝑉𝑛}
} +

1−𝜃

𝜃
{

{�̇�𝑛}

{�̇�𝑛}
})                                                  

The equation (10) is a linear system, which can be solved by 

direct or indirect numerical methods. In Figure 5.a, the 

numerical solution of TIS (Equation (10)) by GTR is plotted 

against Ansys simulation results at the intersection point for 

applied electrical load (Figure 4). Numerical solution by GTR is 

identical to Ansys solution. The nodal temperature data (Figure 

(5.a)) is at the wirebond/chip intersection point as illustrated in 

Figure (5.b) 

 
Figure 5:(a) The comparison of numerical solution (Equation (10)) and 
the Ansys solution of the nodal temperature on the wirebond/chip 
intersection point (Figure 5.b) versus time (s), (b) Intersection location 
at which the temperature profile (Figure 5.a) was extracted for 
current load profile (Figure 4) 

5. RELIABILITY PREDICTION OF THE WIREBOND STRUCTURE 

 In order to predict the reliability of the wirebond for power 

cycling, a fatigue model proposed by Held et al [10] was utilised. 

The Held’s fatigue model depends on the amplitude of the 

temperature cycle and on the mean value of the thermal cycle by 

means of Arrhenius term as defined in Equation (11)  

𝑁𝑓 = 𝐴∆𝑇𝛼 . 𝑒
(

𝑄

𝑅.𝑇𝑚
)
                                                         (11) 

where Nf - the number of cycles to failure by power cycling, ΔT 

- the difference between maximum and minimum temperature, 

Tm – the mean temperature in Kelvin, A, α, Q are constants values 

of 640, -5, and 7.8 ×104 Jmol-1, respectively. R is the gas constant 

(8.314 J/mol.K). The fatigue model (Equation (11)) is 

descriptive only and it does not consider the physical structure 

of the wirebond or actual failure mechanisms of the wirebond, 

see [11].  The random load current on the crosscut interface 

generates random fluctuation temperature on the structure by 

Joule heating. Generally, the fatigue models such as equation 

(11) can be applied to cyclic loading, hence a cycle counting 

algorithm was utilised to extract the cycles. 

 
Figure 6: Temperature profile on the heel of the wirebond and the 
associated cycles extracted by rainflow cycle counting algorithms 

Rainflow counting algorithm which was first proposed by 

Matsuishi and Endo [12] is widely cited in the literature. The 

Rainflow cycle counting algorithm (RCCA) according to the 

ASTM E1049 standard was utilised for the temperature profile 
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(Figure 5.a) of the wirebond. Figure 6 illustrates the plots of the 

extracted cycles by RCCA.  

Summing the damages caused by the cycles extracted from 

RCCA, a linear damage rule (LDR) can be utilised. LDR is 

number of significant influences are ignored, and there will be 

failure prediction errors. The most significant drawback to the 

linear damage rule is its inability to account for the order of 

loading. Therefore, the failure prediction by this rule is 

independent of the load interaction effects that have been 

observed experimentally. LDR is defined as 𝐷 = ∑
𝑛𝑗

𝑁
𝑗
𝑓

19
𝑗=1 , where 

D denotes the damage, nj and 𝑁𝑗
𝑓
 are the applied number of 

cycles of operation and total cycles to failure under jth constant 

amplitude load level. Tables 2 illustrate the total damage D by 

LDR for load profile in Figure 4. 

Table 2: Total damage D count by LDA 

Temperatur

e Range 

(ΔT (⸰C)) 

Mean 

Temperatur

e (Tm (⸰C)) 

Number 

of 

Cycles 

(nj) 

Number 

of Cycles 

to Failure 

(𝑁𝑗
𝑓

) 

Wear out 

Ratio 

(𝑊𝑅 =
𝑛𝑗

𝑁𝑗
𝑓) 

12.49 85.46 1 4.84×108 2.065×10-9 

25.49 134.46 1 5.9×105 1.695×10-6 

2.82 148.04 1 1.7×1010 5.884×10-11 

19.00 125.64 1 4.27×106 2.344×10-7 

26.05 127.06 1 8.1×105 1.235×10-6 

0.78 118.69 1 5.63×1013 1.776×10-14 

44.01 131.13 1 4.64×104 2.153×10-5 

20.02 104.66 1 1.21×107 8.252×10-8 

19.47 123.81 1 4.20×106 2.381×10-7 

4.53 107.36 1 1.70×1010 5.866×10-11 

47.27 118.10 1 7.03×104 1.422×10-5 

21.25 110.62 1 6.11×106 1.636×10-7 

24.88 120.34 1 1.52×106 6.586×10-7 

159.91 109.95 0.5 264 1.892×10-3 

100.17 139.83 0.5 466 1.072×10-3 

43.47 111.48 0.5 1.62×105 3.093×10-6 

26.50 119.96 0.5 1.13×106 4.409×10-7 

21.17 117.30 0.5 4.10×106 1.219×10-7 

14.00 120.88 0.5 2.60×107 1.922×10-8 

Total Wear out (%) of the wirebond heel structure 

for the applied current profile (Figure 4) 

0.3008% 

6. MODEL ORDER REDUCTION   

The Model Order Reduction (MOR) is a mathematical 

technique to reduce the dimension of the time invariant system 

matrices arising from a numerical discretisation of partial 

differential/integral equations while preserving the character of 

the input – output relations. The dimensional reduction of the 

original system introduces an error; nonetheless, this error value 

should be within an acceptable tolerance for the methods.  

The MOR techniques in the literature can be categorised 

into two main groups namely (a) projection-based moment 

matching techniques and (b) singular value decomposition 

(SVD) or Gramian based method as in Figure 7. When an SVD 

based method is applied to stable systems, it preserves the 

stability of the system and additionally estimates a priori the 

bound of the approximation error. However, for large systems, 

the SVD based MOR techniques are computationally expensive 

to evaluate and it overshadow the benefit of MOR application to 

the TIS solution. Moment matching or Krylov subspace methods 

are based on the moment matching technique, the goal of this 

techniques is to construct a reduced dimension system that 

matches a certain number of moments. 

 
Figure 7: Two major approaches in MOR methods 

Compared to SVD based methods, moment matching methods 

are relatively faster to evaluate, however, moment matching 

methods do not have a priori error bound, hence, this is a 

disadvantage as the error can become larger than the allowable 

errors. The TIS (equation (10)) can be written in simplified form 

as  

𝐸�̇� = 𝐴𝝃 + 𝐵                                              (12) 

where 𝐸 = [
[𝐶] [0]

[0] [0]
],  𝐴 = [

[𝐾𝑇] [0]

[0] [𝐾𝑉]
], 𝐵 = [

{𝑄}

{𝐼}
], and  

𝝃 = {
{𝑇}

{𝑉}
} 

 Laplace transform of the Equation (12) yields, 

𝑠𝐸𝝃(𝑠) = 𝐴𝝃(𝑠) + 𝐵(𝑠)                                                      (13) 

The transfer function H(s) is defined as 

 𝐻(𝑠) = (𝑠𝐸 − 𝐴)−1𝐵                             (14) 

Transfer function (Equation 14) can also be written as 

 𝐻(𝑠) = (𝑠𝐼 − 𝐸−1𝐴)−1(𝐸−1𝐵) = − ∑ 𝑚𝑖𝑠
𝑖∞

𝑖=0           (15) 

where 𝑚𝑖 = (𝐴−1𝐸)𝑖(𝐴−1𝐵) is the ith moment of transfer 

function H by Taylor expansion around s = 0. In essence, the 

moment matching based MOR technique involves choosing the 

transformation matrix V and projection matrix W in order to 

transform the compact system into lower dimensional reduced 

system approximation as below  

𝑊𝑇𝐸𝑉𝑧̇ = 𝑊𝑇𝐴𝑉𝑧 + 𝑊𝑇𝐵(𝑡)                               (16) 

Equation (16) can be written in simplified form as 

𝐸𝑟 �̇� = 𝐴𝑟𝑧 + 𝐵𝑟                                                          (17) 

where   (𝑊, 𝑉) ∈ ℛ𝑛×𝑚, 𝑚 ≪ 𝑛. Er, Ar and Br are reduced 

matrices of the E, A and B.  

a. Residual Error By MOR 

The residual error r caused by the MOR is defined as 𝑟 = 𝐴𝜉 +

𝐵(𝑡)-𝐸 �̇�, and requirement of the inner product of r with W 

should be zero (WTr=0). If W = V, then the MOR is named 

orthogonal projection methods and solution of Equation (12) is 

generated from the reduced model by following substitution, 𝜉 ≈

MOR Methods 

Krylov (Moment Matching) 
• Interpolation 

• Lanczos 

• Arnoldi 

• Passive reduced-order 

interconnect macromodelling 

algorithm (PRIMA) 

• Asymptotic waveform 

evaluation (AWE) 

• Others 

SVD (‘Gramian”) 
• Balanced Truncation 

• Hankel Approximation 

• Balanced Singular 
Perturbation 

• Laguerre SVD 

• Others 

 

Combined (SVD-Krylov) Method 



 
𝑉𝑧. The project matrices V and W are computed by a MOR 

method with the MOR projection error of ɛ defined as 

 𝜀 =
‖𝐻(𝑠)−𝐻𝑟(𝑠)‖

‖𝐻(𝑠)‖
                                                          (18)                  

where H(s) and Hr(s) are transfer function (Equation (14 

)) of full and reduced systems. 

b. MOR methods  

Coupled ET analysis setup of the wirebond model 

resulted in TIS for which various MOR schemes were applied. 

The most widely used MOR schemes are based on the moment 

matching (Krylov subspace) technique. One of the drawbacks of 

the moment matching based MOR is it requires prior knowledge 

of the number of moments (dimension of the reduced system) to 

be matched and the expansion point for the transfer function, see 

Feng et al [13]. I.e., the dimension of the reduced system should 

be known priory before applying the MOR to full compact 

system. Expansion point (s) depend on the frequency (f) of the 

linear time invariant system(𝑠 = 2𝜋𝑗𝑓).  

The widely used Krylov subspace-based method is 

Passive Reduced order Interconnect Macro modeling Algorithm 

(PRIMA) which was originally developed for the RLC circuit 

system by Odabasioglu et al [14]. Although more expensive in 

computational cost in forming the projection matrix V of the 

PRIMA method in comparison with other Krylov based method, 

PRIMA preserves the stability and passivity of the reduced 

system. Furthermore, we utilized one of the MOR opensource 

code namely sssMOR Toolbox [15] in this study. An algorithm 

named ‘Rational Krylov algorithm (RKA) subspace method 

proposed by Grime [16] which was also used. Another algorithm 

Iterative Rational Krylov Algorithm (IRKA) proposed by 

Gugergin et al [17] use iteration to search for an optimal set of 

shifts (expansion points) in Krylov subspace in order to find a 

reduced system known as local optimum with respect to H2 norm 

of the error.  

The Arnoldi algorithm (AA) finds the orthogonal vectors 

of the projector matrices as the columns for projection matrices 

of Krylov subspaces.  In Arnoldi algorithm, the projection matrix 

V and W are an orthogonal matrix, such that WT V = I. Lanczos 

algorithm (LA) MOR iteratively applies a modified version of 

Gram Schmidt process to form two pairs of biorthogonal basis 

matrices for the Krylov subspace, V and W. In this study, the 

Lanczos algorithm by Binion and Chen [5] was utilized. One of 

the SVD based MOR algorithm Modal Truncation algorithm 

(MTA) order reduction was also utilized with other Krylov based 

order reduction algorithms.   

Table 3: Model reduction error and time efficiency of the MOR 
algorithms    

MOR 
Algorithm 

Model 
Reduction Error 
(Equation (21)) 

Time 
Efficiency 

 

Total Wear out (%) 
prediction of the 

wirebond  

PRIMA 3.176×10-04 68 0.3224 

IRKA  5.545×10-9 65 0.2928 

AA 8.762×10-9 62 0.1667 

LA 5.09×10-04 59 0.3224 

RKA 8.762×10-9 84 0.3008 

MTA 7.582×10-5 - 0.3008 

                          

 
Figure 8: Temperature(⸰C) at the interface by full order model and 
temperature projected by MORs. 

Table 3 illustrate the projection error and the time 

efficiency of each MOR algorithms. The error by MOR 

application is derived by Equation (18). Time efficiency 

improvement is the ratio between the time taken for full order 

system iteration and the time taken for reduced order system 

iteration. The last column indicates the total wear out percentage 

of the temperature profile at the intersection of the wirebond 

extracted by each MOR method. For each projected temperature 

by the MOR algorithms, rainflow cycle counting algorithm and 

linear damage rule were utilised to predict the total damage as 

described in Section (5). It can be concluded that in this analysis, 

the rational Krylov algorithm (RKA) MOR outperforms well in 

terms of projection error, time efficiency and total wear out (%) 

prediction of wirebond in comparison with other MOR 

algorithms. Furthermore, the total wearout prediction from the 

temperature projected from the reduced system by RKA MOR is 

identical to the full order system prediction. Hence applying 

MOR to a high-fidelity model will indeed reduce the 

computational complexity by a large factor. Obviously, MOR 

projection matrices generation requires some additional time, 

especially for SVD based method, the time required to reduce 

the system is relatively large. Nevertheless, Once the reduced 

system is formed then, the solution process is relatively faster in 

comparison with the full order system. Hence MOR approach is 

in fact advantage in terms of reducing the computational 

complexity.   

c. Mapping the Projected Temperature Distribution by 

MOR 

The projected temperature by the MOR approximation can be 

‘mapped’ into the finite element solver (Ansys). In Ansys 

‘external data’ option can be utilised to map the projected 

temperature distribution of the wirebond model. The system 

matrices extracted from the Ansys EMAT file (see Rudnyi [18]) 

which consists of the system matrices with reordered indices. 

Ansys reorders the system obtained from the finite element 

formation (Equation (10)) for computational efficiency. The 

reordered system can be reduced by MOR algorithms, solved by 

an iterative solver and then the solution can be projected back to 

the original dimension. The projected solution will need to be 

rearranged against each nodal value and mapped in Ansys. 

Figure 9 illustrates the mapped results of the temperature 

distributions projected from MOR algorithms and numerical 

solution.  
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Figure 9: (a) The temperature distribution by the solution of the GTR 
(Equation (10)) of the wirebond model at 106 seconds of the profile 
(Figure 4), (b)The temperature distribution by Modal Truncated MOR 
projection, (c)The temperature distribution by Rational Krylov MOR 
projection, (d) The temperature distribution by PRIMA MOR projection, 
(e) The temperature distribution by Lanczos MOR projection, (f)The 
temperature distribution by IRKA MOR projection  

7. CONCLUSION 

The discretized coupled electro-thermal equations result in a 

time-invariant system (TIS) of equations that can be solved using 

a full-field solver such as finite elements. This paper has used a 

full-field solver such as ANSYS and has implemented a full-

field solver in MATLAB for comparisons with model-order 

reduction methods. These solvers have been demonstrated for an 

aluminium wire-bond structure, which is a major reliability risk 

in power modules due to its electro-thermal behavior. 

Predictions for temperature have been used to assess fatigue 

using a fatigue model proposed by Held et al [10]. This fatigue 

model depends on the temperature range and its mean of the 

cyclic temperature load, which are calculated using a rainflow 

cycle counting algorithm. Key conclusions from this work are:  

1) The six implemented MOR methods all show benefits 

in terms of solution times compared to a full-field finite element 

solver 

2) The accuracy of each MOR method in terms of 

projection error ranges from 5.09×10-04 for the LA method to 

5.545×10-9 for the IRKA method. 

3) The best MOR method in terms of accuracy and 

computational time is the RKA method which has an accuracy 

with projection error of 8.762×10-9 and provides 84 times speed 

up in solution time compared to a full-field finite element solver.  

Hence, it is clear that MOR methods can be used to accurately 

solve the coupled electro-thermal equations and for power 

electronic module structures, such as the wire-bond; this 

provides reliability engineers with a powerful tool for design 

space exploration. 
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