
ORIGINAL ARTICLE

Land in Central America will become less suitable for coffee
cultivation under climate change

Leonel Lara-Estrada1,2 & Livia Rasche1 & Uwe A. Schneider1

Received: 15 October 2020 /Accepted: 18 June 2021
# The Author(s) 2021

Abstract
Coffee cultivation in Central America provides goods and services at local, national, and international levels. Climate change is
likely to affect the magnitude and continuity of these benefits by reducing the land suitability for coffee cultivation. To quantify
the impacts of climate change on land suitability, we use the Bayesian networkmodel Agroecological Land Evaluation forCoffea
arabica L. (ALECA) and estimate the land suitability for coffee production in 2000, 2050, and 2080 under three climate change
scenarios based on relative concentration pathways (RCPs) 2.6, 4.5, and 8.5. Results indicate that even under the less severe
climate scenarios, over half of the current coffee area in Central America will experience a decline in its land suitability for coffee
production, from excellent or good to moderate and marginal, and that the change will not happen in the more distant future of
2080, but by 2050. Under RCP 8.5, most coffee areas become of marginal and moderate suitability. The findings show that the
continuity of coffee cultivation in a large portion of coffee areas in Central America is under threat and that farmers and policy-
makers should develop adaptation portfolios for their farms and regions in a timely manner.
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Introduction

In the last two decades, the coffee sector in Central America
has experienced low prices and outbreaks of coffee rust, crises
that have threatened the sustainability of coffee production
(Avelino et al. 2015; CEPAL 2002; PROMECAFE 2018).
Climate models project drier and warmer climate conditions
in the Northern, and wetter conditions in the Southern, areas
of Central America (Hidalgo et al. 2017), which will affect the
climate suitability for coffee (Coffea arabica L.). The contin-
ued change in climate is likely to exacerbate existing problems
in the coffee sector and create new ones, making it more

difficult to sustain its production (Eakin et al. 2005; Frank
et al. 2011; Reyer et al. 2017).

One option to explore the impacts of climate change on
coffee yields and production across coffee regions would
be to use sophisticated scientific tools such as crop models
(Van Noordwijk and Lusiana 1998; van Oijen et al.
2010a). These models can provide a detailed assessment
of the threat; however, coffee crop models are still limited
in their ability to simulate coffee production beyond the
plot scale, and many high-resolution data would be neces-
sary as inputs, which are not readily available (van Oijen
et al. 2010b). Thus, it is currently not possible to represent
the existing complexity and variety of coffee systems with
crop models at the spatial level required (Jose et al. 2004;
Rao et al. 1997; Roupsard et al. 2009). Land evaluation is
an alternative approach for assessing spatially explicit
changes in coffee production suitability due to changes in
climatic, soil, and topography-related factors (Brown et al.
2011; Lara-Estrada et al. 2017; Manandhar et al. 2014;
Mighty 2015). Early warnings on expected changes in land
suitability for coffee will enable farmers and agronomists
to improve adaptation decisions and the planning of
longer-term investments.
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Other previous studies have employed species distribution
models to address the effect of climate change on climate
suitability for coffee cultivation, using only climate data and
the location of coffee areas (Chemura et al. 2015; Ovalle-
Rivera et al. 2015; Schroth et al. 2014). These types of models
were developed to study the dispersion patterns of wild spe-
cies in nature using presence-absence data (Convertino et al.
2014; Guillera-Arroita et al. 2014; Phillips et al. 2006;
Yackulic et al. 2013). Global studies indicate that in about half
of the current coffee area, the climate will become less suitable
for cultivation in the future (Bunn et al. 2014; Ovalle-Rivera
et al. 2015). As a solution, these authors propose to shift the
current coffee areas to higher altitudes to overcome climate
change alteration. However, if other agroecological factors
like soils, landforms, or land use are not considered, moving
coffee areas to climatically more suitable areas may either not
be possible due to land-use conflicts or not advisable due to
unsuitable soil or landform conditions. Considering all rele-
vant factors is necessary for actual agricultural planning (FAO
1976; McRae et al. 1981; Mighty 2015; Nzeyimana et al.
2014).

To address this gap, we used the Bayesian network model
Agroecological Land Evaluation for Coffea arabica L.
(ALECA) to evaluate the suitability of a given piece of land
for coffee cultivation based on climate, soil, and landform
information (Lara-Estrada et al. 2017). The model was specif-
ically developed based on parameters reported in the coffee
literature and empirical data and has been used to evaluate the
current conditions for coffee production in Central America.
In this paper, we assess the impact of climate change on land
suitability for coffee cultivation in Central America with con-
sideration of soil and landform factors. Furthermore, we brief-
ly discuss the land evaluation approach in agricultural plan-
ning and propose adaptation strategies for those regions where
a considerable loss of land suitability for coffee cultivation is
expected in the future.

Methods

Study area

Our study covers the coffee areas in all coffee-producing
countries of Central America. Guatemala has the largest cof-
fee area, followed by Honduras, Nicaragua, El Salvador,
Costa Rica, and Panama (Fig. 1) (PROMECAFE 2018).
While the region contributes only about 10% to worldwide
coffee production, the quality of the coffee is well appreciated
in the coffee business (ICO 2015;McCook 2017). Both coffee
production quantity and quality determine farmers’ income in
the market (Adams and Roldan 1980; Bolwig and You 2007).

The region has tropical and subtropical conditions and wet
(rainy) and dry seasons with some variations in duration and

intensity depending on the location resulting from the oceanic
influence and topography. Precipitation is the climatic vari-
able with the highest variability, temperature variations for a
given location are small during the year. The higher tempera-
ture changes are observed across altitudes (Imbach et al. 2017;
Taylor and Alfaro 2005). Farmers cultivate coffee in the re-
gion under diverse agroecological conditions and production
systems such as organic/conventional, low/high intensifica-
tion, and full-sun monocrop/agroforestry (Blanco and
Aguilar 2015; Haggar et al. 2011; Infante-Amate and Picado
2018; Meylan et al. 2013; Muschler 2001; Somarriba et al.
2004). Regarding the aptitude of the region for coffee cultiva-
tion, land suitability evaluations indicate that about 59% of the
region’s coffee areas can be considered moderately to very
good for coffee cultivation, and 14% as optimal (excellent);
Costa Rica, Nicaragua, and Honduras have the highest region-
al shares of optimal areas (Lara-Estrada et al. 2017).

The model ALECA

Land evaluation systems in agriculture rate the biophysical
qualities of the land for crop production, and because of their
simplicity and explicit nature serve as tools for planning and
management at local and national levels (Brown et al. 2011;
Manandhar et al. 2014; McRae et al. 1981). ALECA is a
Bayesian network (BN) model composed of two parts, (1) a
graphical structure that consists of a set of agroecological var-
iables linked by arcs, where the links define the conditional
dependencies between variables; and 2) conditional probabil-
ity tables that quantify the dependency between variables (Fig.
2). In BNs, the graphical structure and conditional probability
tables can be determined by implementing machine learning
algorithms from data, using literature, expert elicitations, or a
combination (Aguilera et al. 2011;Marcot 2012; Rodorff et al.
2018). Literature and machine learning were used for ALECA
(Lara-Estrada et al. 2017).

ALECA evaluates land suitability based on the agroecolog-
ical variables mean annual temperature [°C], annual precipi-
tation [mm], dry season length [months], slope [%], aspect
[cardinal direction], pH in H20, cation exchange capacity
[Meq 100 g−1], and soil texture [categorical]. The variables
were selected based on the results reported in the literature,
correlations between variables, and data availability (Lara-
Estrada et al. 2017). In ALECA, the suitability evaluation is
inferred at three levels: variable, component, and land (Fig. 2).
The variables are grouped into the components climate, soil,
and landform. On Level 1, after entering the biophysical value
of a given variable, a suitability function (S variables) assigns
an individual suitability score to that value, ranging from 0 to
100%. Then, the suitability scores of each variable propagate
to the corresponding component (Level 2), where an average
component score is calculated. Finally, a weighted average is
computed to estimate the overall land suitability (Level 3)
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Fig. 1 Central American coffee areas. ICAFE (2013), MAG (2010), MAGA (2010), IAIP (2013), CATIE & MAGFOR (2012), and ANAM (2012)

Fig. 2 The graphical structure of
the Bayesian network model
ALECA (Lara-Estrada et al.
2017). The model infers the suit-
ability at three levels: single vari-
able suitability, component suit-
ability (climate, landform,
and soil), and overall land suit-
ability for coffee. See Lara-
Estrada et al. (2017) for the suit-
ability functions for soil and
landform variables
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from the suitability scores of the components climate (weight
= 49%), soil (36%), and landform (15%) (Lara-Estrada et al.
2017).

Data

For current conditions (2000), the WorldClim dataset was
used to obtain values for the climate variables (Chemura
et al. 2015; Hijmans et al. 2005). Using the elevation data
included in WorldClim, a spatial analysis was implemented
to calculate the landform variables (ESRI 2012a, 2012b). The
soil variables were obtained from the SoilGrids dataset1 for 0–
30 cm depth (Hengl et al. 2014). The individual datasets were
merged into a single dataset at a 1 km × 1 km resolution.

To depict future climate conditions in 2050 and 2080, we
used data from the model MPI-ESM-LR (ECHAM5) of the
Max Planck Institute driven by the relative concentration path-
way (RCP) scenarios 2.6, 4.5, and 8.5 (Jungclaus et al. 2006;
Ramírez and Jarvis 2008). The data were downloaded at 30 s
resolution (~1 km) (Ramirez-Villegas and Jarvis 2010) from
the CCAFSGCMdata portal2. TheMPI-ESM-LRwas chosen
because its performance in the study region was better than the
average performance of 20 other climate models (Conde
2011; Fuentes-Franco et al. 2015; Maloney et al. 2013;
Schaller et al. 2011). All modeling and data only cover the
coffee areas in the study region.

Assumptions

We assumed that soil and landform variables would remain
constant over time. Even though ALECA as a BN model can
deal with data uncertainty (Aguilera et al. 2011; Lara-Estrada
et al. 2018, 2017), we assumed no uncertainty in the input data
to simplify the analysis. Coffee areas correspond to country
coffee maps from the period 2010–2013 (Fig. 1) and are taken
to portray the area for the year 2000 in the modeling. Because
most of the coffee areas in the region are planted with Arabica
varieties, and we were not able to extract non-Arabica areas,
we assumed all coffee areas were planted with Arabica varie-
ties. We assume that all Arabica varieties have the same suit-
ability response to the agroecological variables. Even though
the ALECA model does not consider interactions between
agroecological variables and therefore cannot account for po-
tential complementary or compensatory effects, the model
performed very well in evaluating the current land suitability
for coffee cultivation in the study region (Lara-Estrada et al.
2017).

Estimating land suitability

We inferred the land suitability (LS) for coffee cultivation for
coffee areas under current and future climate conditions.
Possible values for LS range from 0 to 100%, with 100%
denoting the highest suitable value. In addition, a categorical
land suitability scale was used to put the values into perspec-
tive: ≤60% = unsuitable, > 60% = marginal, > 75% = moder-
ate, > 85% = good, >90% = excellent.

We also estimated the rate of change of LS under current
and future climate conditions for the coffee areas. For this, we
used the rate of change used by the FAO to depict changes in
the forest coverage between periods (Puyravaud 2003;
Velázquez et al. 2002). In this study, the equation depicts
the rate of change (Rc) of coffee areas with a given land suit-
ability between the years 2000, 2050, and 2080.

Rc ¼ A2

A1

� �1=n
−1

where A2 and A1 are the percent of areas with a given LS-
score value at different years, and n is the number of years
between the two years under comparison.

Results

In our simulations, the land suitability for coffee cultivation
decreased under all climate change scenarios in Central
America. About half of the areas currently classified as excel-
lent or good were downgraded to moderate or marginal under
the less severe scenarios RCP 2.6 and 4.5, and they almost
disappeared under the most severe scenario, RCP 8.5.

RCPs 2.6 and 4.5 show a similar trend in land suitability
changes over time, but losses in land suitability scores are a
little higher in RCP 4.5 (Fig. 3). In both scenarios, most
changes occurred between 2000 and 2050, with only minor
changes between 2050 and 2080. For RCP 8.5, the suitability
losses were much higher (Fig. 3A) and more constant over
time (Fig. 3B). Furthermore, the cumulative LS distribution
functions reveal non-linear impacts of climate change across
land qualities. The observed variations in the LS changes be-
tween periods are mainly caused by temperature and precipi-
tation changes depicted in the CMIP5 data. For surface tem-
perature, there is an overall rise close to the middle of the
century in all RCPs, followed by an abated warming in RCP
2.6, a slightly abated warming in RCP 4.5, and a marked
continuation of warming in RCP 8.5 until 2080 (Knutti &
Sedláček, 2012). See Online Resource 1 for additional results
on regional LS.

The unequal impacts of climate change on land suitability
in the different periods are also shown in Table 1. The average
annual rates of change (Rc) in LS scores are generally higher

1 www.soilgrids.org
2 http://www.ccafs-climate.org
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between 2000 and 2050 than between 2050 and 2080. In
addition, the Rc shows a particular pattern of changes across
different land qualities. Areas with 70% ≤ LS > 90% have the
highest rates under all the RCPs and periods. Negative chang-
es occur in areas with LS > 80% and positives in areas with LS

scoring between 60 and 80%. Areas with LS scores below
60% display positive or negative changes depending on
RCP and period. The Rc can help identify which LS coffee
areas will be more affected and where actions need to be
focused on coping with the adverse effects.

Table 1 The annual rate of change Rc of LS scores of coffee areas between the periods 2000–2050 and 2050–2080. Rates of change are highest for
areas with 70% ≤ LS > 90% and generally higher in 2000–2050 than in 2050–2080. The rate depicts the intensity and direction: win [+] or loss [−]

LS (%) RCP 2.6 RCP 4.5 RCP 8.5 2000
(ha)

2000−2050 2050−2080 2000−2050 2050−2080 2000−2050 2050−2080

50.01–60 –1.80 –0.20 2.70 –0.79 6.01 8.27 18
60.01–70 2.10 0.05 2.27 0.30 3.97 0.94 22,400
70.01–80 0.46 0.17 0.73 0.11 1.33 0.37 261,443
80.01–90 –0.15 –0.07 −0.27 –0.11 –1.00 –1.60 630,264
90.01–100 –1.11 –0.23 −1.62 –0.12 −4.41 −0.28 145,639

Fig. 3 Current and future land
suitability of coffee areas (Coffea
arabica L.) under three scenarios
of climate change in Central
America. The data shown in
panels A and B are the same; inA,
the differences between climate
change scenarios is highlighted;
in B, the differences between the
different time periods. Most
changes occur between 2000 and
2050 for RCPs 2.6 and 4.5; for
RCP 8.5, suitability losses are
higher and more constant over
time. Land suitability classes:
≤60% = unsuitable, >60% =
marginal, >75% = moderate,
>85% = good, >90% = excellent
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In 2000, 145,639 ha of coffee areas in Central America
were scored excellent, 235,415 ha good, 547,897 ha moder-
ate, 130,793 ha marginal, and 18 ha unsuitable (Fig. 4, first
map). The absolute LS losses of most coffee areas remain
below 15% under RCPs 2.6 and 4.5 but reach 37% under
RCP 8.5 (Fig. 4, other maps). Most coffee areas follow the
general trend of increasing losses of land suitability from RCP
2.6 to 8.5 and 2000 to 2080, but there are exceptions in each
country. Some coffee areas in Western Honduras, e.g., show
higher losses under RCP 2.6 than under RCP 4.5 in 2050,
some areas in Costa Rica experience an LS-score loss in
2050 but improve by 2080, and a fraction of coffee areas will
experience positive changes under all RCPs and periods
(green areas in Fig. 4). This is particularly promising for some
areas in Guatemala, Honduras, and Costa Rica. See Online
Resources 1 for regional maps on LS changes.

Table 2 provides a comprehensive overview of all estimat-
ed LS changes. Coffee areas classified as excellent in the year
2000 shrink by 56%, 63%, and 93% under the three different
RCP scenarios, respectively. Most of these areas downgrade
to the moderate or marginal categories. At the other end of the
suitability scale, the picture is different: between 89 and 94%
of currently rated marginal areas remain marginal under the
three RCPs. Some upgrades were observed from marginal or
moderate to excellent or good but remained below 5%. In all
periods for RCP 2.6 and 4.5, 71% of areas currently rated
unsuitable for coffee production experience an upgrade to
marginal, and for RCP 8.5 to moderate, but since the actual
unsuitable area is only 18 ha, the change is irrelevant to the
whole picture. These improvements are observed in areas
where the current low suitability is caused by colder condi-
tions, shorter dry seasons, higher annual precipitation values,
or a combination of all. Changes in climate to warmer and
drier conditions improve the climate suitability for coffee in
these areas. Areas that remain marginal or unsuitable are al-
ready warm and dry, so climate change does not improve the
conditions for coffee production (Hidalgo et al. 2017).

We can thus observe changes in both directions on the
suitability scale, but changes are negative for a much larger
area, with a decrease in highly suitable areas and an increase in
moderately and marginally suitable areas. Therefore, the
quantity and quality of the regional coffee production are un-
der threat.

A closer look at the changes in suitability for each variable
in the climate component reveals that mean temperature suit-
ability for coffee cultivation experienced the highest losses,
from 10.24% under RCP 2.6 in 2050 to 47.27% in RCP 8.5 in
2080 (Table 3). The average precipitation suitability variabil-
ity is much lower, with losses from 0.36 to 6.17% and lowest
in dry season length suitability, ranging from 0.55 to − 1.17%.
However, even if the mean changes in precipitation and dry
season length are small compared to temperature, the standard
deviation, minimum, and maximum of the three distributions

are very similar. This suggests that in some areas, the positive
or negative changes in precipitation and dry season length will
be much larger than the average, confirming our previous
finding that some areas will experience land suitability chang-
es in opposition to the regional average (cf. Fig. 4).

We looked at six representative coffee zones in Central
America (described in detail in Lara-Estrada et al. 2017) to
have a clearer insight into the dynamics of LS changes at the
local level. Currently, the coffee area Tarrazú is considered
excellent, Jinotega and Márcala as good, and El Paraíso,
Masatepe, and Turrialba as moderate (Bertrand et al. 2006;
Haggar et al. 2011; Lara-Estrada et al. 2017; Teuber 2009).
Figure 5 shows that most zones experience a downgrade in LS
from 2000 to 2050 and 2080, but the magnitude differs be-
tween selected zones. Tarrazú, Jinotega, and Márcala down-
grade the least with less than 4.5% on average. Tarrazú and
Márcala may even experience some upgrades in LS under the
less severe scenarios of RCP 2.6 and 4.5. Turrialba and
Masatepe incur the highest losses in LS under the three
RCPs, by 6–12% on average. Under RCP 8.5, all locations
except Tarrazú experience considerable LS reductions, and
some zones become marginal by 2080. These insights may
enable local farmers, stakeholders, and institutions involved in
coffee production to develop adaptation plans customized for
every region.

The zones El Paraiso and Turrialba show high internal
variability in LS scores, whereas others like Tarrazú or
Masatepe have more homogenous profiles. Looking at the
two representative zones in Nicaragua, Masatepe (461
m.a.s.l.) and Jinotega (1091 m.a.s.l.), one can also observe
how the LS profiles, composed of soil, landform, and climate
components, influence the future dynamic of LS-score chang-
es. The landform and soil conditions are better suited for cof-
fee cultivation inMasatepe than in Jinotega because the region
has flatter slopes and better physical and chemical soil prop-
erties (e.g., slope 2.17 ± 1.6% inMasatepe vs. 6.77 ± 4.06% in
Jinotega; CEC 27.11 ± 1.72 vs. 16.50 ± 1.90 Meq 100 g−1).
However, climatic conditions in Masatepe are less suitable for
coffee because temperatures are higher and the dry season
more prolonged (mean temperature 24.26 ± 0.35 in
Masatepe vs. 19.85 ± 0.96 °C in Jinotega; dry season length
5 ± 0 vs. 3.03 ± 0.2 months) (Haggar et al. 2011; Hengl et al.
2014; Hijmans et al. 2005). Coffee plantations in Masatepe
thus experience temperature and water stress during the year
and particularly in the dry season, which can lead to abortion
or abnormalities in the flowering and fruiting stages, which
impacts productivity and coffee quality. In the long term,
these climatic stresses lead to a reduced life expectancy of
coffee plants (DaMatta and Ramalho 2006; Melke and
Fetene 2014); and therefore, coffee plantations may have to
be replanted more frequently. This explains why climate
change, even in the more benign RCP scenarios, leads to a
rapid loss of land suitability scores in zones like Masatepe.

   88 Page 6 of 13 Reg Environ Change           (2021) 21:88 



Fig. 4 Changes in land suitability forCoffea arabica L. under climate change scenarios in Central America. Land suitability classes: ≤60% = unsuitable,
>60% = marginal, >75% = moderate, >85% = good, >90% = excellent. Total coffee areas = 1,059,763 ha. Pixel size = 1 km
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Discussion

Given the magnitude of expected LS losses even until 2050,
effective and timely adaptations are needed to sustain coffee
production in Central America. Some authors suggest moving
the coffee areas to higher altitudes or other areas that will

become suitable in the future (Läderach et al. 2010; Zullo
et al. 2011). However, considering the financial state of the
farmers and the coffee sector as a whole after the series of
crises in the last years and decades, the existing land-rights
issues, and national land-use regulations, this suggestion may
not be easily realized (Boucher et al. 2005; Broegaard 2010;

Table 2 Estimated changes in land suitability under future climate
scenarios for coffee areas in Central America. The diagonal values in
italic show the area shares that remain in the same land suitability
category from one period to the next. The values to the right of the
italic values indicate a land suitability downgrade, the ones to the left a

suitability upgrade. The first row, e.g., shows that from the 100% of areas
classified as excellent in 2000, only 45.36% will remain excellent in
2050, whereas 32.71% will be downgraded to good, and 21.92% to
moderate under RCP 2.6. The values in brackets show the changes
from 2000 to 2080

Land Suitabilitya 2050 (2080)
Excellent Good Moderate Marginal Unsuitable

2000 \ RCP 2.6
Excellent 45.36 (43.90) 32.71(30.09) 21.92 (25.96)
Good 3.66 (2.37) 52.60 (49.06) 43.55 (48.33) 0.19 (0.24)
Moderate 1.58 (0.84) 5.00 (3.19) 77.94 (78.78) 15.48 (17.20)
Marginal 0.09 (0.02) 5.70 (6.12) 94.20 (93.87) <0.01(<0.01)
Unsuitable 71.12 (71.12) 28.88 (28.88)

2000 \ RCP 4.5
Excellent 40.48 (37.49) 31.33 (31.95) 28.20 (30.55)
Good 1.38 (1.66) 44.83 (40.76) 53.50 (57.16) 0.28 (0.42)
Moderate 0.41 (0.41) 2.13 (2.14) 78.18 (75.04) 19.28 (22.41)
Marginal 0.06 5.04 (5.93) 94.86 (94.04) 0.05 (0.03)
Unsuitable 71.12 (71.12) 28.88 (28.88)

2000 \ RCP 8.5
Excellent 8.43 (7.23) 32.21 (12.55) 59.05 (75.78) 0.31 (4.44)
Good 1.01 (0.88) 17.05 (2.09) 79.00 (69.52) 2.94 (27.45) (0.06)
Moderate 0.12 (0.12) 3.77 (0.59) 56.08 (34.08) 40.02 (63.62) (1.59)
Marginal 0.66 (0.12) 5.01 (3.86) 94.08 (89.49) 0.25 (6.53)
Unsuitable 71.12 (71.12) 28.88 (28.88)

Table 3 Descriptive statistics of the actual climate data for the reference
year 2000 and changes in suitability [%] for the climate variables under
different climate change scenarios in the coffee areas in Central America.

Mean temperature suitability for coffee cultivation experiences the
highest losses, precipitation, and dry season length suitability variability
is much lower

RCP Year Variables Units Mean SDa Min Max
2000 Mean Temperature ° C 20.95 1.84 8.90 28.00

Annual Precipitation mm 2,139.92 670.56 819.00 5,390
Dry Season Length Months 3.53 1.43 0.00 6.00

Changes in suitability:
RCP 2.6 2050 Mean Temperature −10.24 11.31 −53.73 71.04

Annual Precipitation % −0.36 10.23 −34.75 49.57
Dry Season Length 0.32 7.10 −40.04 40.04

2080 Mean Temperature −9.34 10.73 −53.73 70.15
Annual Precipitation % −1.50 8.05 −38.19 44.84
Dry Season Length 0.39 8.36 −40.04 40.04

RCP 4.5 2050 Mean Temperature −10.35 11.32 −53.73 56.24
Annual Precipitation % −3.10 8.01 −39.28 32.12
Dry Season Length −0.55 7.43 −40.04 40.04

2080 Mean Temperature −12.37 12.73 −57.76 72.66
Annual Precipitation % −3.07 8.48 −37.72 44.94
Dry Season Length 0.05 8.84 −40.04 40.04

RCP 8.5 2050 Mean Temperature −23.33 17.35 −71.15 74.8
Annual Precipitation % −2.19 10.36 −30.6 37.05
Dry Season Length 1.77 9.18 −30.88 40.00

2080 Mean Temperature −47.27 21.37 −86.15 89.76
Annual Precipitation % −6.17 10.20 −65.77 39.75
Dry Season Length 0.13 12.29 −75.15 40.00
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Charlip 1999; Zeledon and Kelly 2009). A more feasible so-
lution for small- and medium-scale farmers in the region is to
increase current coffee areas’ resilience. Haggar and Schepp
(2012), for example, mention a series of adaptation strategies
that include technical (e.g., agroforestry and income diversifi-
cation), financial (climate insurance), and organizational as-
pects (joint efforts and planning) that coffee farmers and
farmers’ organizations can consider and implement to im-
prove their level of resilience to climate change.

The effects of climate change can also be alleviated by a
change in farming practices, such as adjusting the shade of
trees in the coffee plantations to improve the microclimate and
soil conditions, irrigation, fertilization, soil conservation prac-
tices, or better-adapted coffee varieties (Meylan et al. 2017; de
Souza et al. 2012; Vaast et al. 2016). Agroforestry is already
used in the coffee areas in the region as a strategy to improve
microclimatic and soil conditions under suboptimal condi-
tions (areas at low altitudes) (Harvey et al. 2017), which ex-
plains the presence of a considerable proportion of the current
coffee area under marginal LS conditions. Conservation prac-
tices of soil and water could be adopted to improve other
biophysical conditions (Blanco and Aguilar 2015; Harvey
et al. 2014), and the planting of coffee varieties better adapted
to shade, drought, and warming conditions may improve the
resilience of coffee farms under marginal and moderate LS
conditions (Bertrand et al. 2011; Montagnon et al. 2012).

The selection of farming adaptation practices and final
strategies at the farm level should be tailored to the region
and reflect the severity of the expected changes (Vermeulen
et al. 2013). Coffee farmers in areas where only a slight de-
crease in land suitability is expected, like Tarrazú, Jinotega,
and Marcala, may only need to adjust at a varietal, or shading,

or intensification level. Farmers in coffee areas with medium
LS losses may need to make further adjustments like introduc-
ing shade trees of higher economic value (producing timber
and fruits), adding market value to the coffee (certification,
postharvest processing), and improving the efficiency of farm-
ing practices. In the areas with the highest LS losses, where
climate will become unsuitable for Coffea arabica L. cultiva-
tion, changing to other crops like Coffea canephora (robusta
coffee) or cocoa is an option that may allow the farmers to
continue cultivating without changing their whole operations.

Climate change is expected to progressively increase
the occurrence and severity of the most important pests
and diseases like the coffee berry borer (Hypothenemus
hampei) and the coffee rust (Hemileia vastatrix) over
time (Jaramillo et al. 2011, 2009; Merle et al. 2020;
Ward et al. 2017). Some even consider the past out-
break of coffee rust in Central America as an early
warning of what may become more recurrent in the
future (Avelino et al. 2015). On the other hand, the
occurrence of diseases favored by cold conditions like
leaf spot (Mycena citricolor) will probably decrease
(Avelino et al. 2007). Adaptation strategies and prac-
tices need to be incorporated into farm planning, not
only against latent threats like pests and diseases, but
also for expected changes in biophysical conditions,
price crises, local land-use changes, market or financial
opportunities, and farmers’ socioeconomic conditions
and preferences (Vega and Somarriba 2005; Waldick
et al. 2017).

Land evaluations like the one we presented here can sup-
port the planning and decision-making processes at the farm,
local, national, and regional levels (Bizikova et al. 2015).

Fig. 5 Changes in land suitability scores from 2000 to 2080 in six representatives (i.e., well known or well studied) coffee zones in Central America
under different climate change scenarios. Most zones experience a downgrade in LS from 2000 to 2050 and 2080, but the magnitude differs
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Stakeholders can use these results or even the model ALECA
itself to explore how changes in the soil, landform, and climate
variables affect the aptitude of their land for coffee cultivation
instead of relying on general tendencies (Brown et al. 2011).
At the governmental level, based on the rates of change, spa-
tial distribution, and severity of the LS changes to be expected
in the coffee areas in the Central America region, policies, and
programs oriented to support the coffee farmers should in-
clude technical and financial tools as well as a legal frame-
work for planning and implementing region-specific adapta-
tion strategies. Finally, because of the magnitude of the chang-
es in the land suitability across the coffee areas in the region, it
is possible that even if all possible adaptation actions are im-
plemented and coffee production continues in the region, the
quantity and quality of the coffee will change.

Conclusions

The suitability of current coffee areas in Central America to
produce coffee will decrease at an alarming rate under climate
change. Highly suitable areas will decrease in size, while the
size of only marginally suitable areas will increase. Under the
most severe climate change scenario (RCP 8.5), most of the
current coffee areas will become marginal or unsuitable for
Coffea arabica L. cultivation. Given the expected speed of
land suitability downgrades in the period 2000–2050 and the
perennial nature of the coffee plant, adaptation actions need to
be implemented urgently. They should be customized to the
specific coffee areas and the expected changes there. High-
resolution land evaluations like this one may support stake-
holders in this endeavor by giving an estimation of not only
the expected change in overall suitability for coffee cultivation
but also of the single component changes that showcase what
factors adaptation measures need to target to be most
effective.
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