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Abstract

The promise of efficacious vaccines against SARS-CoV-2 is fulfilled and vaccination
campaigns have started worldwide. However, the fight against the pandemic is far from
over. Here, we propose an age-structured compartmental model to study the interplay
of disease transmission, vaccines rollout, and behavioural dynamics. We investigate, via
in-silico simulations, individual and societal behavioural changes, possibly induced by
the start of the vaccination campaigns, and manifested as a relaxation in the adoption
of non-pharmaceutical interventions. We explore different vaccination rollout speeds,
prioritization strategies, vaccine efficacy, as well as multiple behavioural responses. We
apply our model to six countries worldwide (Egypt, Peru, Serbia, Ukraine, Canada, and
Italy), selected to sample diverse socio-demographic and socio-economic contexts. To
isolate the effects of age-structures and contacts patterns from the particular pandemic
history of each location, we first study the model considering the same hypothetical
initial epidemic scenario in all countries. We then calibrate the model using real
epidemiological and mobility data for the different countries. Our findings suggest that
early relaxation of safe behaviours can jeopardize the benefits brought by the vaccine in
the short term: a fast vaccine distribution and policies aimed at keeping high
compliance of individual safe behaviours are key to mitigate disease resurgence.

Author summary

The start of vaccination campaigns is a decisive turning point in the global effort 1

against COVID-19. Nonetheless, at least in the short and medium-term, vaccine 2

availability and the logistical issues associated with an unprecedented mass vaccination 3

suggest that non-pharmaceutical interventions will still play an important role in virus 4

containment. Here, we propose an epidemic model to study the possible effects induced 5

by a relaxation of COVID-safe behaviours in response to the vaccine rollout. Individuals 6

may see this milestone as the end of the emergency and thus give up preventive 7

measures potentially exposing themselves to higher infection risk. We explore the 8

interplay between such behavioural changes and different population pyramids, contact 9

patterns, epidemic conditions, vaccine allocation strategies, rollout speed, and vaccine 10

efficacy. We show that early relaxation of COVID-safe behaviours can jeopardize and 11

even nullify the benefit brought by the vaccine in the short and medium-term. Our 12

results indicate that a high level of compliance to NPIs during vaccines rollout is crucial 13

to avoid hindering the gigantic effort of the vaccination campaigns. 14
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Introduction 15

The COVID-19 pandemic has been largely fought with non-pharmaceutical 16

interventions (NPIs). Bans of events and social gatherings, limitations in national and 17

international travels, school closures, shifts towards remote working, curfews, closure of 18

pubs and restaurants, cordon sanitaires, national and regional lockdowns are examples 19

of governmental interventions implemented around the world to curb the spreading of 20

SARS-CoV-2 [1–5]. While extremely effective, such top-down NPIs induce profound 21

behavioural changes, bring many social activities to a halt, and thus have huge 22

socio-economic costs. Hence, alongside these measures, governments nudged and/or 23

mandated populations to adopt another set of NPIs. Social distancing, face masks, and 24

increased hygiene are examples [6]. Although far from being cost-free, they are more 25

feasible, sustainable, and allow for higher levels of socio-economic activity. As such, they 26

have been the leitmotif of the post first COVID-19 wave in many countries. 27

Unfortunately, awareness, adoption, and compliance with these NPIs have been 28

spotty [6]. Furthermore, they have not been complemented with sufficiently aggressive 29

test and trace programs. As result, many countries experienced marked disease 30

resurgences after the summer 2020 and some had to resort to new lockdowns [7]. 31

As we write, we have turned a crucial corner in hampering the resurgence, diffusion 32

and severe outcomes of the disease. Several vaccines have shown great results of their 33

phase 3 trials, and have been authorized for emergency use by several regulating 34

agencies and tens of others are in the pipeline [8–10]. As result, we have witnessed the 35

start of vaccination campaigns around the world. However, the logistical issues linked to 36

the production, delivery, and administration of billions of doses on a global scale impose 37

caution when evaluating the impact vaccines will have on the pandemic in the short and 38

medium term. They will be a scarce resource and it will take time to vaccinate the 39

fraction of the population necessary for herd immunity [11,12]. Furthermore, vaccines 40

are not perfect and there are many other unknowns [13]. The extent to which vaccines 41

limit further transmission, how long the immunity lasts, and the levels of protection 42

offered against new variants are key features currently under investigation [13]. So far, 43

the results show high levels, around 95% [14,15], of direct protection against the disease. 44

Despite these first signs of the vaccine impact in the real world are extremely 45

encouraging [16,17], these figures might end up to be lower. Finally, vaccines’ 46

acceptance is a complex challenge. A recent survey among 13, 426 participants in 19 47

countries shows that, while 71.5% of the sample is very or somewhat likely to take the 48

vaccine, there are large heterogeneities [18]. Acceptance rates vary from 90% in China 49

to less than 55% in Russia. Furthermore, they are linked to socio-economic, 50

socio-demographic features, and education attainment [18]. Arguably, vaccines alone 51

will not be able to contain the spreading of the virus, at least in the short term [19,20]. 52

Social distancing, face masks, hygiene measures, and other NPIs will be still key during 53

the delivery of such vaccination programs, especially considering the emergence of 54

variants of concern as well as the challenges in vaccines procurement and administration 55

in the developing world [21]. 56

In this context, an important question emerges. What will happen to adoption and 57

compliance to NPIs as vaccination campaigns progress? Their arrival and delivery might 58

induce individual and collective behavioural changes. Some might see this milestone as 59

the official end of the emergency and as result relax their COVID-safe behaviours. 60

Somehow paradoxically, vaccines might have, at least initially, a net negative effect. 61

According to the health-belief model, one of the most commonly used psychological 62

theories to characterize health-related behaviours, beliefs, perceptions, barriers to take 63

action, and other modifying variables such as socio-demographic and socio-economic 64

factors are key ingredients driving behavioural changes [22–24]. A recent study may 65

offer an empirical evidence of this tendency [25]. By means of surveys delivered before 66
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the vaccination rollout in December 2020, authors found that vaccine information 67

reduce adherence to social distancing, hygiene measures, and the willingness to stay at 68

home. Several surveys conducted during the COVID-19 pandemic, well before any 69

concrete hope for a vaccine, confirm this picture, provide hints of how the arrival of 70

vaccines might corrode even more adoption, highlight how compliance is a complex 71

multi-faced problem [5] and that risk-perception as well as NPIs adoption are indeed 72

associated to several socio-economic determinants such as age, gender, wealth, 73

urban-rural divide [26–41]. 74

The literature aimed at estimating the epidemiological and societal impact of 75

COVID-19 vaccines has been focused mainly on two very important points. The first 76

line of research has been devoted to quantifying the effects of a vaccine on the evolution 77

of the pandemic, considering different efficacy and coverage levels [42]. The second 78

instead tackled the issue of vaccine allocation investigating strategies that target first 79

different groups (i.e., age brackets, high-risk individuals) or particular occupations (i.e., 80

doctors, nurses) [10,43–45]. Very recently, the intuition that social distancing remains 81

key during vaccination rollout stimulated few studies on the effects of a vaccine on the 82

adoption of NPIs in specific settings [46–50]. An agent-based model applied to North 83

Carolina showed that lifting NPIs during vaccines distribution would imply a substantial 84

increase in infections and deaths [51]. Similarly, a data-driven model of SARS-CoV-2 85

transmission for China estimated that NPIs need to remain in place at least one year 86

after the start of vaccination to avoid a generalized disease resurgence [20]. Despite 87

these examples, the impact on real-world scenarios of the interplay of disease dynamics, 88

behaviour change, and vaccines rollout is still largely unexplored. Furthermore, because 89

of the novelty of the problem, also modeling frameworks able to characterize the 90

possible behavioural dynamics linked to vaccinations are scarce. 91

To tackle such limitations, we introduce an age-structured compartmental epidemic 92

model capturing the possible relaxation of NPIs adoption in response to the vaccine 93

rollout. We model different compliance levels as distinct compartments and consider 94

different behavioural dynamics driving the relaxation of NPIs. We test extensively the 95

effects of behaviour change on disease spreading for different prioritization strategies, 96

vaccine efficacy, and vaccination rollout speeds, using real demographic data and 97

contacts matrices for six countries: Egypt, Peru, Serbia, Ukraine, Canada, and Italy. 98

We choose these countries sampling levels of economic development. Indeed, in the 99

World Economic Situation and Prospects 2020 issued by the United Nations, Egypt and 100

Peru are classified as Developing Economies [52], Serbia and Ukraine as Economies in 101

Transition, Canada and Italy as Developed Economies. Furthermore, considering 102

dissimilar countries allows us to explore the interplay between vaccination and 103

behaviours also as a function of population pyramids and intra/inter-generational 104

mixing observed around the world. High income countries are typically characterized by 105

higher average age, but lower inter-generational interactions respects to mid/low income 106

countries [53]. These observations, together with the dependence of COVID-19 fatality 107

rates on age, point to the possibility of non-trivial dependencies which we aim to 108

explore here. As a way to realistically account for the different epidemic trajectories, we 109

also explore the model after calibrating it on COVID-19 weekly deaths in the period 110

2020/09/01− 2020/12/31 in these countries. To this end, we incorporate the timeline 111

and effects of governmental restrictions on social contacts. 112

Our results provide quantitative insights on the interaction between sustained NPIs 113

and an effective vaccination program. We show that an early relaxation of COVID-safe 114

behaviours may lower, and even nullify, the advantages brought by the vaccine in the 115

short term. Overall, the picture that emerges from the analysis of the different countries 116

is consistent: a high level of compliance towards NPIs such as mask-wearing, social 117

distancing, and avoidance of large gatherings, is needed in order to avoid spoiling the 118
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great effort of the vaccination campaigns. 119

Results 120

Vaccine-Behaviour Model 121

We consider an age-structured epidemic model based on a 122

Susceptible-Latent-Infectious-Recovered compartmentalization with the addition of 123

pre-symptomatic and asymptomatic infection stages and deaths. On top of the disease 124

dynamics, we model both the vaccination rollout and the behavioural responses linked 125

to it. After the start of the vaccination rollout, on each day a fraction of the population 126

receives a vaccine that decreases both the probability of infection (with efficacy V ES) 127

and of developing symptoms (with efficacy V ESymp) and enters in the compartment 128

V [44]. As result, in our simulations, the overall efficacy of vaccine against severe 129

outcomes such as death is V E = 1− (1− V ES)(1− V ESymp). We introduce the rollout 130

speed rV as the number of daily administered vaccine doses expressed as a percentage of 131

the total population. 132

We study and compare three different strategies of vaccine prioritization. The first 133

considers distributing vaccines in decreasing order of age. Previous research on 134

COVID-19 vaccines allocation has shown that this strategy is the most effective in 135

reducing the number of deaths and overall severity [10,43,44]. It is also the main 136

strategy currently deployed in the different vaccination campaigns across the globe. In 137

the second and third strategy vaccines are either distributed homogeneously or first to 138

the individuals in age brackets 20-49 [54] and then to the rest of the population. The 139

last strategy seeks to reduce symptomatic transmission targeting the most social active 140

part of the population [10]. For simplicity, we will refer to the three rollout approaches 141

as vaccine strategy 1, vaccine strategy 2, and vaccine strategy 3. In parallel to the 142

vaccination, individuals (both susceptible S and vaccinated V ) may start giving up safe 143

behaviours and expose themselves to higher infection risks. We introduce the 144

compartments SNC and V NC for susceptible and vaccinated individuals respectively, to 145

describe different behavioural classes (for convenience “NC” refers to “non-compliant” 146

to COVID-safe behaviours). The increased infection risk for these individuals is 147

captured by the parameter r > 1 (for example, r = 1.3 indicates an increased risk of 148

30%). Sensitivity analysis on parameter r has been performed for values in the range of 149

current estimates, as reported in Materials and Methods section). We model the 150

transition from S and V towards riskier behavioural classes as a function of the fraction 151

of the vaccinated population and the parameter α. In turn, we imagine that a 152

worsening of the epidemiological conditions may push non-compliant individuals back to 153

safer behaviours. Here, we consider the number of fatalities per 100, 000 individuals in 154

the previous time step (i.e., day) and the parameter γ to control the second behavioural 155

transition. We refer the reader to the Materials and Methods section and the 156

Supplementary Information for more details on the model. We refer to the the 157

Supplementary Information, for results related to different behavioural mechanisms: a 158

simpler one with constant rate, and a more complex one with different rates for 159

vaccinated vs. unvaccinated individuals. 160

Interplay between NPIs adoption and vaccination campaign 161

We use data for six different countries: Egypt, Peru, Serbia, Ukraine, Canada, and Italy. 162

As mentioned above, these countries have been selected to sample a range of 163

demographics and socio-economic contexts. In Fig. 1A, we represent some key 164

characteristics of the demographic and the mixing patterns between age groups of these 165
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countries. First, we consider the fraction of people aged over 65. This is a measure of 166

the epidemic fragility of a country: indeed 65+ individuals are at particularly high risk 167

of mortality from COVID-19 disease [55]. Italy is the country showing the highest 168

fraction of 65+ people (24%), while the developing economies show the lowest fraction 169

(Egypt 5.3% and Peru 8.7%). Indeed, low/middle-income countries tend to have a 170

younger population with respect to the high-income ones. Second, we present also the 171

contacts intensity of different age groups. This is defined as the total number of 172

contacts that an individual in a certain age group has, on average, with all the others in 173

a day. We observe a typical decreasing trend, with younger people that tend to have 174

more contacts. In particular, developing economies show a much higher number of daily 175

contacts for individuals aged under 30. This can play an important role in the spreading 176

even in developed economies. According to a recent study the resurgence of the 177

COVID-19 Pandemic in the US after Summer 2020 was mainly sustained by younger 178

people [54]. Finally, we represent a measure of inter-generational mixing. We define it 179

simply as the number of daily contacts that an individual in the age groups at high 180

mortality risk from COVID-19 (65+) receives from individuals in the age brackets 181

0− 49. We observe that Egypt is the country showing the highest inter-generational 182

mixing, followed closely by Peru. 183

It is important to notice how heterogeneities in health infrastructures, access to 184

health care, and comorbities are expected across the six countries under 185

examination [53]. These features might induce variations in the IFR. For simplicity 186

however, in the following, we use the same fatality rates for all countries. We leave the 187

exploration of this important aspect to future work. 188

Prioritization strategies, rollout speed, and vaccine efficacy 189

The proposed model allows to investigate the impact of the behavioural response under 190

different conditions. We consider six populations matching the characteristics of the 191

countries under consideration and exploring the model with the same epidemic initial 192

conditions. The experimental setup considers that each population has already 193

experienced a previous wave of infections and that restrictive measures are in place to 194

mitigate the spreading. Therefore, we set the basic reproductive number R0 = 1.15, 195

0.5% of initially infected individuals, and 10% of immune individuals. In line with 196

estimates of vaccine efficacy against COVID-19 we set V ES = 70% and we choose 197

V ESymp such that V E = 90% [56], while we let vary the vaccine rollout speed rV 198

between 0.1% and 1% to cover the spectrum of real vaccination rollout speeds of the 199

vaccination campaigns across the globe. Peru, for example, administered on average 200

0.05 daily doses per 100 people in the week commencing on the 8th of March, Italy 201

administered 0.30, and Serbia 0.70 [57]. In Fig. 1B we show the relative deaths 202

difference for the three vaccine prioritization strategies and the three vaccine rollout 203

speed rV = 0.1%, 0.5%, 1.0%. The relative deaths difference (RDD) is defined as the 204

fraction of deaths averted thanks to the vaccine with respect to a baseline simulation 205

without vaccine and, therefore, no behavioural response. For example, RDD = 0.2 206

indicates that 20% of deaths are averted. Note how this quantity may become negative 207

if the behavioural response causes more deaths than those averted thanks to the vaccine. 208

We refer the reader to the Materials and Methods section for further details. Moreover, 209

we explore a range of behavioural responses running the simulations for a range of 210

values of the parameter α. Starting from α = 0 (which implies no behavioural response), 211

we perform simulations with increasing α values (implying stronger reactions), while 212

keeping constant the other behavioural parameter (γ = 0.5). 213

As a first observation, across the different countries and rollout speeds considered, 214

the strategy aiming to curb the severity of the pandemic (i.e., vaccine strategy 1) is 215

indeed the most effective in reducing the number of deaths. 216
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Fig 1. Demographic, mixing patterns, and relative deaths difference for
different rollout speeds and prioritization strategies. A) Demographic
characteristics and mixing patterns of the six countries considered are shown:
percentage of the population aged over 65, contacts intensity for different age groups,
and a measure of inter-generational mixing. B) Relative deaths difference is computed
as the fraction of deaths that are avoided with a vaccine with respect to a baseline
simulation without vaccine. We display results of the simulations for three vaccine
rollout speed and prioritization strategies. Other parameters used are γ = 0.5,
R0 = 1.15, r = 1.3, V ES = 70% and V ESymp such that V E = 90%, 0.5% of initially
infected, 10% of initially immune individuals, and simulations length is set to 1 year.
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As illustrative and concrete example let us consider the case of Canada. When α = 0 217

(i.e., no behaviour response) and rV = 1% with this strategy the fraction of averted 218

deaths is 0.77 with respect to a baseline without vaccine. This fraction reduces to 0.72 219

with the homogeneous vaccination strategy, and to 0.70 with the strategy prioritizing 220

younger individuals. When rV = 0.5%, these fractions reduce to, respectively, 0.67, 0.64, 221

0.62. The ordering of the strategies slightly changes when rV = 0.1%, in this case we 222

obtain 0.28. 0.35, 0.36. Overall, the picture that emerges is consistent with previous 223

studies on the allocation of COVID-19 vaccines among age groups showing that the 224

strategy minimizing deaths is generally the one targeting the elderly, even though for 225

some combination of the parameters the strategy targeting the younger might be 226

preferable [43,44]. 227

When the behavioural response to the vaccine rollout is considered (i.e., α > 0), we 228

note a consistent decreasing trend of the relative deaths difference for increasing values 229

of α. This shows that the behavioural response impacts the unfolding of the epidemic, 230

and that a relaxation of NPIs leads to a smaller fraction of averted deaths. Interestingly, 231

a concerning effect also emerges: in some conditions, as non-compliance becomes larger, 232

the benefit brought by the vaccine is nullified and the number of observed deaths 233

increases with respect to the no-vaccine and no-behaviour change scenario (i.e., the 234

relative deaths difference become negative). This is solely attributable to the 235

behavioural reaction to the vaccination campaign which in turn is not efficient enough 236

to balance behaviour relaxation. Indeed, this phenomenon is observed in particular 237

when strategies that do not target a reduction in severity are employed, and when the 238

vaccine rollout speed is low. In the case of Serbia, with rV = 1% and a strategy aimed 239

at reducing severity, the fraction of averted deaths goes from 0.84 when α = 0 to 0.73 240

when α = 10, with a potential loss of 0.11 attributable to the NPIs relaxation. This 241

effect is more pronounced in the case of the vaccination strategy 2 (or 3): the fraction of 242

averted deaths goes in this case from 0.76 (0.73) when α = 0 to 0.59 (0.50) when α = 10, 243

with a potential loss of 0.17 (0.23) attributable to the NPIs relaxation. Similarly, lower 244

vaccine rollout speed are impacted more significantly by behavioural responses. In the 245

previous example, an immunization campaign with a rV of 1%, 0.5%, and 0.1% would 246

induce a relative deaths difference, in the case of the vaccination strategy 1, of 0.84, 247

0.75, 0.40 when α = 0. By setting instead α = 10, these figures would drop to 0.73, 0.44, 248

−0.67 with a loss of 0.11 in the first, of 0.31 in the second, and of 1.07 in the third case. 249

In the results presented in Fig. 1B, we observe that the most disadvantaged 250

countries are the developing economies, Egypt and Peru. At first, this may seem 251

counter-intuitive. Indeed, these countries have a lower fraction of individuals aged over 252

65. A possible explanation is given by the high activity of young individuals combined 253

with the high inter-generational mixing. Moreover, it is worth stressing that these 254

results are to be intended in relative terms: a relative worst performance in averting 255

deaths does not necessarily imply a worst absolute performance. In other words, the 256

relative impact of behavioral responses might be stronger in those countries, but their 257

age pyramid might induce still a smaller number of deaths in absolute terms. On this 258

point, it is important to remember that we are not considering possible modulations of 259

the IFRs due to the heterogeneity in health care infrastructure, prevalence of 260

co-morbidities and access to health care. In the Supplementary Information we provide 261

an example highlighting this point by comparing Italy and Egypt. We observe also that 262

the difference between countries is more profound for the vaccination strategy aimed at 263

reducing transmission (i.e., strategy 3). Furthermore, behavioural relaxation widens the 264

distance between the countries. With rV = 0.1% and vaccination strategy 3, the gap 265

between the relative deaths difference for Italy and Egypt is 0.24 when α = 0. This 266

figure increases to 0.87 when α = 10. 267

In the Supplementary Information we repeat the analysis considering the fraction of 268
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averted infections instead of deaths. We find that the ranking of allocation strategies is 269

inverted. Indeed, in line with previous findings [43], when considering averted infections 270

the most efficient strategy is the one targeting the younger population first, followed by 271

the homogeneous, and the strategy aimed at curbing severity. In the Supplementary 272

Information, we also repeat the results presented in Fig. 1B exploring different vaccine 273

efficacy V E (50%, 70%, 90%) rather than rollout speed. Similarly to the case presented 274

in the main text, also in these additional analyses we find that early behavioural 275

relaxation reduces the fraction of averted infections, influences heterogeneously the 276

prioritization strategies, and impacts more significantly lower vaccine efficacy or slower 277

rollout. 278

To further explore how to mitigate the impact of behavioural relaxation once that 279

the vaccination campaign started, in Fig. 2 we systematically explored the interplay 280

between vaccine efficacy V E and vaccination rollout speed rV . The black dashed lines 281

highlight the combinations of V E and rV that achieve a 30% drop in observed deaths 282

(taken as reference value), in the absence of a behavioural response (i.e., α = 0). In most 283

countries, it can be achieved with rV smaller than 0.2%. On the contrary, when even a 284

mild behavioural response is active (red dash-dotted lines, α = 1), the rollout speed has 285

to increase greatly when vaccine efficacy diminishes: for the case of Italy, a 30% drop in 286

deaths would be achieved with a rV of 0.4% when the vaccine efficacy is 90%, but in the 287

case of V E = 60% the rollout speed has to grow up to 0.8% to achieve the same result. 288
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Fig 2. Interplay between vaccine efficacy and rollout speed. Contourplot of
the relative deaths difference in the scenario with a mild behavioural response (α = 1)
for different combinations of V E and rV . We let V ES vary between 30% and 70% and
we choose different V ESymp such that the overall efficacy V E vary between 50% and
90%. A 30% reduction of deaths is highlighted with a Red dashdotted line. The black
dashed line highlight the 30% death drop achieved with a vaccination campaign without
the behavioural component (α = 0). Vaccination Strategy 1 is considered, parameters
used are γ = 0.5, R0 = 1.15, r = 1.3, 0.5% of initially infected, 10% of initially immune
individuals, and simulations length is set to 1 year.
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Epidemic trajectories and impact of behavioural relaxation 289

As a way to ground the model on more realistic epidemic scenarios, we calibrate it to 290

the real epidemic trajectories of the six countries considered. The calibration is 291

performed via an Approximate Bayesian Computation technique (ABC) [58] on weekly 292

deaths for the period 2020/09/01− 2020/12/31. In doing so, we estimate some key 293

epidemiological parameters matching the context of each country, thus defining realistic 294

initial conditions for the model. To capture the effects of non-pharmaceutical 295

interventions on the contacts between people we consider data from the Google Mobility 296

Report [59] and the Oxford Coronavirus Government Response Tracker [60] until week 297

11 of 2021. After the calibration step, the model evolves from 2021/01/01 up to 298

2021/06/01 with the vaccination rollout for each of the countries. Note that in some of 299

these countries, the vaccination campaigns officially started in the second half of 300

December, though mostly symbolically. 301

In Fig. 3A we show key indicators resulting from the calibration. In particular, for 302

the six countries we report the boxplot for the calibrated infection parameter β, the 303

projected number of symptomatic infections per 100, 000, and the fraction of recovered 304

individuals on the 2021/01/01, which is the start of the vaccination campaign in our 305

simulations. We acknowledge a significantly high acquired immunity in the case of Peru, 306

where the estimated attack rate as of 1st January, 2021, is around 38%. Nonetheless, 307

this figure is line with other available estimates [57]. We observe how the calibration 308

allows for an heterogeneous representation of the epidemiological conditions of the 309

different countries. In Figure 3A we also show the effects of restrictive measures on 310

contacts. As a proxy, we consider the ratio between the leading eigenvalue of the 311

contacts matrix (considering the restrictions) and the leading eigenvalue of the baseline 312

contacts matrix (without restrictions). The leading eigenvalue of the contacts matrix 313

influences the reproductive number of the disease (see Materials and Methods), and 314

more broadly it measures the intensity of contacts among people. By normalizing with 315

respect to the baseline contacts matrix (with no restrictions) we can grasp the strictness 316

of the measures in place. For example, a ratio of 0.3 would imply, in our simulations, a 317

70% reduction of the reproductive number with respect to the baseline without 318

restrictions. The effect of restrictive measures on contacts varies over time up to week 319

11, 2021. In the case of Italy, for example, we observe the partial ease of the measures 320

during January and February (i.e., ρ(Ct)/ρ(Cb) increases) followed by the tightening of 321

measures in March aimed at curbing the third wave of infections. Afterwards, we keep 322

the mixing levels as those observed for week 11 (more details in the Materials and 323

Methods section). This is a conservative assumption as we can imagine that the 324

seasonality and impact of the vaccination campaign might induce a relaxation of NPIs 325

as the number of cases and deaths, hopefully, will go down. In this scenario, the 326

countries with the strictest measures in place after week 11, are Peru and Italy, and 327

Canada, while Egypt and Ukraine show the most permissive measures. In the 328

Supplementary Information, we repeat the analysis using real data to compute contacts 329

reduction parameters for the whole period. The results are in line with the observations 330

presented below. 331

In Fig. 3B we study, for the calibrated model in the six countries, the difference 332

between the fraction of averted deaths with respect to a baseline without vaccine in the 333

case of a strong behavioural reaction to vaccine deployment (i.e., α = 102) and in the 334

case of no relaxation of NPIs (i.e., α = 0). This quantity, which we indicate with ∆RDD, 335

represents the additional fraction of deaths that occur due to lower compliance to 336

COVID-safe behaviours in our simulations (see Materials and Methods for more details). 337

We study two vaccination rates. A fast deployment that manages to vaccinate rV = 1% 338

of the population daily (aligned with the preparedness plan for Influenza pandemic [61] 339

and vaccination rates achieved by countries like Israel or Chile), and a slower rollout 340
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Fig 3. Giving up NPIs during rollout may nullify the benefits brought by
the vaccine. A) We display for the different countries the boxplot of the calibrated
infection parameter β, the projected number of symptomatic infectious cases per
100′000 and the fraction of recovered at the 2021/01/01, start of the vaccination
campaign in our simulation. We also report the ratio between the leading eigenvalue of
the contacts matrix considering restrictions and of the baseline contacts matrix with no
restrictions. B) We display the median relative deaths difference for the calibrated
model in the different countries. We consider the three vaccination strategies and two
possible rollout speed: rV = 1% (faster rollout), and rV = 0.25% (slower rollout). We
run the model over the period 2021/01/01-2021/06/01. Other parameters are γ = 0.5,
α = 102, r = 1.3, V ES = 70% (V E = 90%).
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rV = 0.25%. Worryingly, in the different countries, even in a scenario with several 341

restrictions and a successful vaccination campaign in place, it is possible to witness a 342

significant increase in deaths exclusively due to a relaxation of COVID-safe behaviours. 343

As a result of the calibration step, the countries under investigation face different 344

epidemiological conditions (e.g., effective reproductive number, immunity from previous 345

waves, initial number of infected, estimated effects of restrictions). These translate into 346

phenomenological differences with respect to the results of the previous analyses. In 347

particular, Ukraine and Egypt are significantly impacted by behavioural relaxation in 348

the case of the slower rollout rV = 0.25%, while Peru, differently from the previous 349

analysis, is less impacted. From Fig. 3A we see that in the first two countries the 350

estimated effect of restrictions on contacts (especially in the last weeks) is smaller with 351

respect to the others. On the other hand, Peru features tougher NPIs, together with 352

Italy and Canada, which are also less impacted by behaviour in Fig. 3B. This 353

underlines how, besides the characteristics of the vaccination campaign, also the 354

epidemiological conditions and the measures in place are important factors influencing 355

the behaviour-vaccine interplay. In the case of the faster rollout rV = 1%, the obtained 356

values of ∆RDD are smaller and the differences between countries are less pronounced. 357

A possible explanation is that when a fast rollout is employed the influence of 358

epidemiological conditions and restrictions become less important because of the 359

efficiency of vaccine administration. Furthermore, we observe that, for both rV , the 360

vaccination strategy targeting a reduction of severity (strategy 1) performs generally 361

better in case of NPIs relaxation with respect to the other strategies. In the 362

Supplementary Information we investigate more in detail the comparison between 363

vaccination strategies in terms of robustness to behaviour relaxation considering both 364

averted deaths and infections. We find that, when considering deaths, a vaccine 365

allocation aimed at reducing disease severity (i.e., strategy 1) is always preferable. 366

Instead, vaccination strategy 2 and 3 perform better when the number of avoided 367

infections is used as evaluation metric. Information about vaccination strategy 368

robustness against behavioural changes might be used to tune and design resilient 369

rollout campaigns. Policy-makers might also consider to optimize vaccination strategies 370

with respect to a combination of multiple metrics. In this direction, our analysis provide 371

additional insights, and suggests that behavioural changes might play an important role 372

possibly modifying the impact of vaccine prioritization strategies. 373

Discussion 374

For almost a year, in the midst of a global pandemic, policymakers struggled to 375

implement sustainable restrictions to slow SARS-CoV-2 spreading. Every 376

non-pharmaceutical intervention was aimed at slowing (in few countries stopping) the 377

disease progression buying time for the development, test, production and distribution 378

of vaccines that might ultimately protect the population. With an impressive scientific 379

endeavor, several vaccines have been developed and an early distribution campaign was 380

rolled out by the last days of December 2020. Besides the potential threats emerging 381

from new virus strains [62], the current vaccination campaign represents the beginning 382

of a new normal and a gigantic step towards complete virus suppression. However, we 383

demonstrated that if the growth in vaccination uptake would lead to overconfident 384

conducts inducing relaxation of COVID-safe behaviours, additional avoidable deaths 385

will occur. We extended the literature proposing a mechanistic compartmental model 386

able to simulate the unfolding of COVID-19, the vaccination dynamics and the 387

compliance/non-compliance transition modulated by different behavioural mechanisms. 388

Performing in-silico simulations allowed us to explore, from a theoretical standpoint, the 389

interplay among different vaccination strategies, rollout speeds, vaccine efficacy, and 390
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behavioural responses. We found that behaviour impacts non-linearly vaccine 391

effectiveness. Indeed, early NPIs relaxation affects more significantly slower rollouts, 392

lower vaccine efficacy, and allocation strategies that target reduction in transmission 393

rather in severity. We included in our analysis six different countries (Egypt, Peru, 394

Serbia, Ukraine, Canada, and Italy), representatives of various points of the spectrum of 395

world economies. This allowed us to observe the effects of behaviour-vaccine 396

relationships for various population pyramids and mixing patterns. We observed that 397

the developing economies, characterized by a younger population, but higher contacts 398

activity and inter-generational mixing, are generally more affected by behaviour change 399

with respect to developed economies. Then, as a way to ground the model on more 400

realistic epidemiological conditions, we calibrated it using real epidemic and mobility 401

data for the six countries considered and simulated the unfolding of the first months of 402

the vaccination campaign. In such realistic scenario, we observed that even with 403

restrictive measures in place and a successful vaccination campaign, it is possible to 404

witness to non-negligible increases in deaths attributable to an early relaxation of 405

COVID-safe behaviours. The calibration step allowed us to highlight that also the 406

epidemiological conditions related to the country-specific unfolding of the disease are an 407

important factor influencing the interplay behaviour-vaccine. 408

We acknowledge some limitations in the present study. First, we considered the 409

vaccines fully working immediately after the first dose and we neglected that 410

vaccination campaigns are using a portfolio of vaccines rather than a single one. We 411

have also studied three simple vaccination strategies that neglect the complexities of an 412

unprecedented mass vaccination. As result, both the vaccination priorities, vaccine 413

effects and vaccination rates are an approximation of reality. In the Supplementary 414

Information, we studied a data-driven vaccination rollout for Italy, where vaccines are 415

distributed to the various age brackets following the real daily administration data. The 416

results we obtained are qualitatively similar to those presented in the main text. 417

Second, while the model calibration suggests that our approach can nicely capture 418

national trends, the model is not meant to provide accurate forecasts of the local 419

unfolding of the disease, but rather to test what-if scenarios in a comparative fashion. 420

We have considered a simple age-structure compartmental model that does not capture 421

spatio-temporal heterogeneity both in terms of spreading and of NPIs implementation 422

which have instead been observed in the countries under investigation. Third, our model 423

does not include new, more transmissible, variants of concern and assumes the same 424

IFR across the six countries. Finally, we propose and model two potential mechanisms 425

leading to behavioural changes, but data are not available to perform a quantitative 426

validation of the behavioural components of the model. 427

Implementation of individual protective behaviours and adherence to NPIs have 428

been vital in order to reduce the transmission of SARS-CoV-2 leading to substantial 429

population-level effects [5, 63–74]. Behavioural science can provide valuable insights for 430

managing policies, incentives, communication strategies and can help coordinate efforts 431

to control threats and evaluate such interventions [75]. As during the first waves of 432

COVID-19, when NPIs were the only available mitigation measures [76], the results of 433

our paper call for adequate strategies to keep high the attention and compliance 434

towards individual COVID-safe behaviours, such as mask-wearing, social distancing, 435

and avoidance of large gatherings now that vaccines are finally available. 436

Communication strategies and policies should keep targeting such non-pharmaceutical 437

intervention to avoid frustrating the immense effort of the vaccination campaigns. 438
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Materials and methods 439

Epidemic Model 440

Model Definition 441

We propose an age-stratified compartmental model that incorporates both the 442

vaccination process and the behaviour dynamics possibly linked to it. See Figure 4 for a 443

schematic representation. Individuals are divided into 16 five-year age groups (last 444

group is 75+). The virus transmission is modeled using the following approach. 445

Susceptible individuals (S compartment) in contact with infectious compartments 446

become latent (L compartment). After the latent period (ε−1), L individuals enter the 447

pre-symptomatic stage of the infection (P ). Then, they can transition either in the 448

asymptomatic (A) or the symptomatic stage (I) at rate ω (the length of time spent in 449

the L and P compartments is the incubation period). The probability of being 450

asymptomatic is f . After the infectious period (µ−1), both I and A individuals enter 451

the Recovered compartment (RI , RA). Alternatively, I individuals can also die and 452

transit to the D compartment. Note how we include a delay of ∆ days from the time 453

individuals enter the compartment D and die (Do compartment, the superscript stands 454

for “observed”). The infectious compartments are P , A, I. The transmission rate is β 455

and the force of infection is dependent on the age-stratified contact matrix C ∈ IRK×K , 456

whose element Cij represents the average number of contacts that an individual in age 457

group i make with individuals in j per day. The matrix C has four location-specific 458

contributions: contacts at home, workplace, school, and other locations. We adopt 459

country-specific contacts matrices provided in Ref. [77]. We assume that P and A have 460

lower infectiousness with respect to symptomatic I (βχ, with χ < 1). Similar 461

approaches have been used in several modeling studies in the context of the current 462

pandemic [69,78]. 463

On top of the disease dynamics, we model both the vaccination process and the 464

behavioural change that is possibly coupled to the vaccination. More in detail, after the 465

start of the vaccination campaign at tV , at each time step, a fraction of the susceptible 466

population receive a vaccine and transit to compartment V . We introduce the rollout 467

speed rV as the number of daily available doses expressed as a percentage of the total 468

population. We adjust the number of doses available per day considering the fraction of 469

susceptibles among all those that can receive the vaccine (S, L, P , A, and RA) and we 470

assume that the remaining doses are wasted. We consider a “leaky” vaccine that 471

reduces susceptibility with a certain efficacy V ES and the probability of developing 472

symptoms by V ESymp. In other words, the infection rate for V individuals is 473

β(1− V ES) and the probability of entering the infectious symptomatic compartment 474

IV from PV is (1− f)(1− V ESymp). Similar approaches have been used in previous 475

works in the context of mathematical modeling of COVID-19 immunization 476

campaigns [44,79]. As mentioned above, we consider three vaccination strategies: one in 477

which the vaccine is given in decreasing order of age (vaccination strategy 1 aimed at 478

reducing the severity), one in which it is given homogeneously to the population 479

(vaccination strategy 2), and one in which it is first given to individuals in age brackets 480

20-49 and then to the rest of the population (vaccination strategy 3 aimed at reducing 481

the transmission of the virus) [10]. In parallel, we imagine a behavioural dynamics 482

triggered by the presence of the vaccine. Indeed, susceptible individuals (both 483

vaccinated and not) may start adopting less safe behaviours because reassured by the 484

presence of an effective vaccine. This is encoded in the model with a transition from the 485

compartment S (V ) to a new compartment SNC (V NC) - NC stands for non-compliant 486

- of individuals that protect less themselves and as a result get infected at a higher rate. 487

The parameter r > 1 captures the increased risk of contagion for NC individuals. It 488
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modulates the contribution to the force of infection from the SNC and V NC 489

compartments. In the simulations presented in the main text we used r = 1.3 imagining 490

a scenario where the relaxation of COVID safe behaviors increases the transmission rate 491

of 30%. This choice is informed by the estimated effects of NPIs such as face masks and 492

social distancing on COVID-19 spreading, as reported in the literature [4, 20,80,81]. 493

Nonetheless, in the Supplementary Information we perform a sensitivity analysis 494

considering also r = 1.1, 1.5. We propose two mechanisms to model the behavioural 495

transition. In the first mechanism, the transition towards non-compliance happens at a 496

rate α and it is catalyzed by the cumulative fraction of individuals that received a 497

vaccine (vt, including both compliant and non-compliant). The opposite transition from 498

SNC (V NC) to S (V ) happens at rate γ and is catalyzed by the number of deaths per 499

100, 000 observed in the previous time step (dot−1, including both compliant and 500

non-compliant). Indeed, an increase in deaths is frequently used - especially by media - 501

as an indicator of the severity of the current epidemiological situation. Existing 502

literature suggests that risk perception (in the form of number of infected individuals or 503

deaths) and communication of such risk significantly affect adherence to personal 504

mitigation strategies such as social distancing and wearing face masks [5, 82]. 505

Expressing the number of deaths in proportion to the population allows us to compare 506

countries of different size. Overall, this approach aims to depict the adaptive nature of 507

human behaviour where individual choices are influenced by vaccination and pandemic 508

progression [83]. In the second mechanism, S (V ) individuals transit to the 509

non-compliant compartment SNC (V NC) at a constant rate α. We also account for the 510

possibility of non-compliant going back to safer behaviours again at a constant rate γ. 511

To simplify the narrative, we present the results considering this second mechanism only 512

in the Supplementary Information. The overall picture discussed above does not change 513

significantly. Note that in order to avoid issues with transition probabilities large than 514

one we model the rates as λX→XNC = 1− exp−g(α), λXNC→X = 1− exp−h(γ) with 515

X = [S, V ] and where the specific expression of the exponent depend on the two 516

mechanisms described above:g(α) = αvt, h(γ) = γdot−1 in the first one, and g(α) = α, 517

h(γ) = γ in the second mechanism. Note how for small values of g(α), h(γ) the rate 518

converges to the usual mass-action law. The model just described can be written down 519

as the following system of differential equations for individuals in age group k: 520
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dSk
dt

=− λkSk − (1− e−g(α))Sk + (1− e−h(γ))SNCk
dSNCk
dt

=− rλkSNCk + (1− e−g(α))Sk − (1− e−h(γ))SNCk
dLk
dt

= + λkSk + rλkS
NC
k − εLk

dPk
dt

=εLk − ωPk
dIk
dt

=ω(1− f)Pk − µIk
dAk
dt

=ωfPk − µAk
dRk
dt

=µ(1− IFRk)Ik + µAk

dDk

dt
=µIFRkIk −∆−1Dk

dDo
k

dt
=∆−1Dk

dVk
dt

=− (1− V ES)λkVk − (1− e−g(α))Vk + (1− e−h(γ))V NCk

dV NCk

dt
=− r(1− V ES)λkV

NC
k + (1− e−g(α))Vk − (1− e−h(γ))V NCk

dLVk
dt

= + (1− V E)λkVk + r(1− V E)λkV
NC
k − εLVk

dPVk
dt

=εLVk − ωPVk
dIVk
dt

=ω(1− f)(1− V ESymp)PVk − µIVk
dAVk
dt

=ω(1− (1− f)(1− V ESymp))PVk − µAVk
dRVk
dt

=µ(1− IFRk)IVk + µAVk

dDV
k

dt
=µIFRkI

V
k −∆−1DV

k

dDV o
k

dt
=∆−1DV

k

(1)

Where λk = β
∑K
k′=1 Ckk′

Ik′+I
V
k′+χ(Pk′+Ak′+P

V
k′+A

V
k′ )

Nk′
is the force of infection for age 521

group k. 522

The basic reproduction number is R0 = ρ(C̃)[βχω + β(1−f)
µ + βχf

µ ], where C̃ is the 523

contacts matrix weighted by the relative population in different age groups. In the 524

Supplementary Information we provide details on its derivation. We adopt the model 525

integrating numerically the equations, thus it is deterministic. However, it is worth 526

stressing that when we calibrate the model to the real epidemic trajectory in the six 527

countries, we use a probabilistic framework through an Approximate Bayesian 528

Computation technique. Said differently, the calibrated parameters are characterized by 529

posterior probability distributions rather than exact values. For this reason, the results 530

presented in Fig. 3 (i.e., the median of model’s projections) are to be intended as an 531

ensemble of multiple trajectories generated sampling from the posterior distribution of 532
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the fitted parameters. The model is implemented in the programming language python 533

with the use of the libraries scipy [84], numpy [85], and numba [86]. The visualization of 534

the results is realized with the library matplotlib [87]. 535

In the Results section, we kept for simplicity γ = 0.5 and we let vary α. The choice 536

of γ is informed by the maximum number of deaths observed in the countries of focus. 537

In Italy, for example, the maximum number of deaths reported on a single day is around 538

1, 000. Therefore, this value of γ is such that, in a similar situation, non-compliant 539

individuals would likely return to COVID-safe behaviours. As described in the previous 540

paragraph, in the dynamic-rate behavioural mechanism we model the transition rate as 541

λXNC→X = 1− exp−γd
o
t−1 (X = [S, V ]), where dot−1 is the number of deaths per 542

100, 000 individuals observed at time t− 1. Hence at the peak of deaths the transition 543

rate towards compliance is λXNC→X ∼ 0.6. The sensitivity to this choice is discussed in 544

the Supplementary Information, where we also report additional analyses to better 545

understand the effects of the behavioural parameters. More in detail, we plot the rates 546

λX→XNC and λXNC→X together with the actual number of NC individuals in time for 547

several values of α, γ, vt, d
o
t−1 and different epidemiological conditions. 548

In Tab. 1 we report a list of the model’s parameters together with their values used 549

in the simulations and the related sources. We also indicate which values are optimized 550

during the calibration step (described in the next sections). 551
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Fig 4. Compartmental model. We consider an extension of the classic SLIR model
adding compartments for presymptomatic (P ) and asymptomatic (A). We also design
compartments for vaccinated (V ), dead (D describes individuals that will die with a
delay of ∆−1 entering the compartment Do), susceptible (SNC) and vaccinated (V NC)
individuals that do not comply with COVID-safe behaviours. The vaccine offers a
protection V ES against infection and V ESymp against symptoms that can lead to
severe outcomes such as death. The transmission rate for susceptible is β and for
susceptible non-compliant rβ (r > 1). The parameter α regulates the transition from
compliant to non-compliant behaviours, while γ regulates the opposite flow. Arrows
describe the transitions between compartments. For simplicity of visualization, we do
not display the compartments mediating the different transitions. For example, the
transition S → L is mediated by the infectious compartments (P,A, I, PV , IV , AV ).
The compartmentalization is then extended to account for empirical age-structure and
contact matrices.
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Parameter Symbol Value Source
Transmissibility β calibrated calibration range

informed by Ref. [88]
Latent period ε 3.7 days [89,90]
Presymptomatic period ω 1.5 days [89,90]
Fraction of asymptomatic f 0.35 [91,92]
Reduced infectiousness of P and A χ 0.55 [93]
Infectious period µ 2.5 days [94,95]
Infection fatality rate IFR age-stratified [55]
Days spent in D before ∆ calibrated calibration range
transitioning to Do informed by Ref. [96]

Table 1. Model Parameters

Relative deaths difference 552

In the previous analyses, we compared the vaccination strategies in the six countries
using different evaluation metrics. The relative deaths difference (RDD) represents the
fraction of deaths that are avoided in a simulation with vaccines (and behavioural
response) with respect to a baseline simulation without vaccines (and no behavioural
response). We compute it as:

RDD(α) =
deathsnovaccine − deathsvaccine(α)

deathsnovaccine

Where we made explicit the dependence from α. By definition, a value of RDD = 0.2
indicates that 20% less deaths are observed in the simulation with vaccines
administered. Negative values of RDD capture instead scenarios where the behavioral
response induces more deaths that in the case without vaccines. An analogous quantity
can be easily computed for infections. In Fig. 3B we have also considered the difference
between the fraction of averted deaths with respect to a baseline without vaccine in the
case of behavioural reaction (i.e., α > 0) and in the case of no relaxation of NPIs (i.e.,
α = 0). We indicated this quantity with ∆RDD(α), and we compute it as follows:

∆RDD(α) = RDD(α)−RDD(0)

With respect to the simple RDD, the ∆RDD provides a slightly different piece of 553

information. Indeed, by subtracting the RDD obtained with α = 0 we isolate only the 554

effects of behaviour. As a clarifying example, ∆RDD(α) ∼ 0 refers to a negligible effect 555

of behaviour on the fraction of averted deaths. Instead, ∆RDD(α) < 0, indicates that 556

due to behaviour relaxation more deaths are occurring. Also in the case of ∆RDD(α), 557

an analogous for infections can be easily derived. 558

Vaccination Strategies 559

We consider three vaccination strategies. In the first one, the vaccine is given in 560

decreasing order of age. Since the IFR of COVID-19 strongly correlates with age, many 561

countries worldwide are adopting similar strategies prioritizing the vaccination among 562

the elderly. Previous modeling works in the context of COVID-19 showed that this is 563

the preferable strategy when considering the number of averted deaths [10,43,44]. In 564

practice, this means that in our simulations we start giving the vaccine to the 75+ age 565

bracket and we proceed in decreasing order only when everyone in this group is 566

vaccinated. In the second strategy the vaccine is given homogeneously to the population 567

respecting the age distribution. This means that, of the X vaccines available at step t, 568

the fraction Nk/N is given to age group k (where Nk is the number of individuals in 569
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age bracket k, and N is the total number of individuals). In the third strategy, we 570

prioritize age groups 20− 49. Indeed, individuals at high mortality risk from COVID-19 571

disease may be protected indirectly by vaccinating age brackets that sustain the 572

transmission [97,98]. In practice, in our simulations we start giving the vaccine 573

homogeneously to the 20− 49 age brackets, and when they are all vaccinated we give it 574

homogeneously to all other groups. In the previous two strategies, if, on a given time 575

step, the number of people remained in the age group which is currently being 576

vaccinated is smaller than the total number of vaccines available, the exceeding part is 577

given to the next age group in line. This implies that the number of vaccines given in 578

different time steps is always constant. Since doses may be administered to 579

non-susceptible, on each day we compute the fraction of S individuals among all those 580

who may have received a vaccine (latent, presymptomatic, infectious asymptomatic, and 581

recovered asymptomatic individuals) and we adjust accordingly the number of doses 582

available. A similar approach has been used in Refs. [44, 79]. Though a simplification of 583

reality this approach allows to avoid making assumptions about the possible 584

modulations of vaccine efficacy for individuals vaccinated when not susceptible. In the 585

Supplementary Information, we repeat part of the analyses considering that some 586

individuals may decide not to get vaccinated. We find that, despite shifts due to vaccine 587

hesitancy, the main findings remain unchanged. 588

Model Calibration 589

In this section we describe the methods used to calibrate the model to the real epidemic 590

trajectories in the countries considered. We use an Approximate Bayesian Computation 591

technique to calibrate the model on weekly deaths during the period 592

2020/09/01− 2020/12/31. We account for government-mandated restrictions and their 593

effect on the contacts between individuals modifying the contacts matrices using data 594

from the Google Mobility Report [59] and the Oxford Coronavirus Government 595

Response Tracker [60]. 596

Approximate Bayesian Computation 597

We calibrate the model for each country using the Approximate Bayesian Computation 598

(ABC) rejection method [58,99]. At each step of the rejection algorithm, a set of 599

parameters θ is sampled from a prior distribution and an instance of the model is 600

generated using θ. Then, an output quantity E′ of the model is compared to the 601

corresponding real quantity E using a distance measure s(E′, E). If this distance is 602

greater (smaller) than a predefined tolerance ψ, then the sampled set of parameters is 603

discarded (retained). After accepting N sets, the iteration stops and the distribution of 604

accepted parameters is an approximation of the real posterior distribution P (θ,E). The 605

free parameters of our model and the related prior distributions are: 606

• The transmission rate β. We explore uniformly values of β such that the related 607

R0 is between 0.8 and 2.2. The basic reproduction number of SARS-CoV-2 is 608

higher [100], but we consider lower values since our calibration starts on 609

2020/09/01 when restrictions were in place to mitigate the spreading. 610

• The delay in deaths ∆ ∼ [14, 25]. Indeed, for COVID-19 the average time between 611

symptoms onset and death is about 2 weeks [96] and we also account for possible 612

additional delays in death reporting. 613

• The initial number of infected individuals. We explore uniformly values between 614

0.5 and 15 times the number of reported cases in the week before the start of the 615

simulation. We then assign these individuals to the infected compartments (L, P , 616
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A, I) proportionally to the time spent there by individuals (ε−1 for L, ω−1 for P , 617

and µ−1 for I, A), and we split between I and A individuals considering the 618

fraction of asymptomatic f . 619

The model is calibrated on the period 2020/09/01− 2020/12/31 using the weighted 620

mean absolute percentage error on weekly deaths as an error metric with a tolerance 621

ψ = 0.3 (ψ = 0.4 for Egypt for convergence issues) and 5, 000 accepted parameters set. 622

Model Initialization 623

The number of individuals in different age groups is initialized considering the 2019 624

United Nation World Population Prospects [101]. We consider 16 age brackets of 625

five-years, except for the last one that includes 75+ individuals. As specified above, the 626

initial number of infected individuals is calibrated considering the total number of 627

confirmed cases in the week before the start of the simulation according to the data 628

issued from the European Centre for Disease Prevention and Control [102]. To initialize 629

the number of non-susceptible individuals (placed in the R compartment) we compute 630

the average of several publicly available projections of total COVID-19 infections up to 631

2020/09/01 (i.e., start of the simulation) from different modeling approaches [57]. Both 632

the initial number of infected and of non-susceptibles is assigned homogeneously across 633

age groups. Other parameters used are ε−1 = 3.7 days, µ−1 = 2.5 days, ω−1 = 1.5 days 634

χ = 0.55, f = 0.35 in line with current estimates of COVID-19 infection dynamics 635

parameters [89–91,94,95]. We use the age-stratified Infection Fatality Rate (IFR) from 636

Ref. [55]. 637

Modeling the Effects of NPIs on Contact Matrices 638

In our model, we incorporate the implementation of top-down NPIs by changing the 639

contacts patterns defined by the contacts matrix C. As mentioned, we use the 640

country-specific contacts matrices provided in Ref. [77]. These are made by four 641

contributions: contacts that happen at school, workplace, home, and other locations. In 642

a baseline scenario, the overall contacts matrix C is simply the sum of these four 643

contributions. Following Ref. [103], we implement the reductions in contacts, due to the 644

restrictions, multiplying the single contribution by a reduction factor ηi(t). Thus, in 645

general the overall contacts matrix at time t become: 646

C(t) = home+ ηw(t) · work + ηs(t) · school + ηol(t) · other locations (2)

For simplicity, we assume no changes to contacts at home, though lockdowns tend to 647

increase them [63]. For the contacts locations work and other locations we use data 648

from the Google Mobility Report [59]. In detail, we consider the fields workplaces 649

percent change from baseline to model reduction in the contacts location work 650

and the average of the fields retail and recreation percent change from 651

baseline and transit stations percent change from baseline for 652

other locations. A general entry of the report pl(t) represents the percentage change on 653

day t of total visitors to a specific location l with respect to a pre-pandemic baseline. 654

From pl(t) we derive a contacts reduction coefficient as follows: ηl(t) = (1 + pl(t)/100)2. 655

Indeed, the number of potential contacts in a specific location is proportional to the 656

square of the the number of visitors. We model contacts reduction in school considering 657

instead the Oxford Coronavirus Government Response Tracker [60]. More in detail, we 658

use the ordinal index C1 School closing. The index ranges from a minimum of 0 (no 659

measures) to a maximum of 3 (require closing all levels). We turn this quantity into the 660

contacts reduction coefficient in school as follows: ηs(t) = (3− C1 School closing)/3. 661

We use these datasets to inform contacts reductions up to week 11, 2021. After, we 662
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assume that contacts remain at the same level of week 11. Note how we let vary both 663

the transmission rate β and the contact matrix. The former describes the risk of 664

infection given contacts with infectious individuals. This is function of the disease 665

(which is assumed to be the same, we don’t consider multiple or emergent new strains 666

possibly more transmissible) and of the protective behaviours such as social distancing 667

and use of face masks. The latter describes variations to the number and types of 668

contacts induced by top-down NPIs as for example remote working, schools closure and 669

lockdowns. By splitting the contributions to the force of infection of transmission rate 670

and contact matrix we are able to take into consideration different behavioural attitudes 671

which, given the same number of contacts, might lead to higher or lower risks of 672

infection. This allows us to consider explicitly both top-down and bottom-up NPIs. 673

Calibration Results 674

In Figure 5, we report the results of the calibration. It is important to stress how our 675

goal is not to develop a predictive model aimed at forecasting the pandemic trajectory. 676

The fit is used to ground the model and to define the epidemic conditions at the start of 677

the vaccination campaign in the six countries. In fact, our aim is to understand the 678

possible interplay between behaviours and vaccine rollout which is also function of the 679

epidemic progression. In the Figure we report the official and simulated weekly number 680

of deaths (median, 50% and 95% confidence interval). Despite its simplicity and 681

approximations, the model is able to reproduce the evolution of the pandemic in the six 682

countries capturing well its progression after the summer. In the Supplementary 683

Information we also report the posterior distributions for the parameters. 684
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Fig 5. Calibration Results. For each country we represent the observed and
simulated weekly deaths (median, 50% and 95% confidence intervals).
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