
Investigating Knowledge-Based
Exploration-Exploitation Balance in a

Minimalist Swarm Optimiser
Mohammad Majid al-Rifaie

School of Computing & Mathematical Sciences
University of Greenwich

London, United Kingdom
0000-0002-1798-9615

Abstract—One of the key challenges in evolutionary, swarm
and population-based optimisers is the balance between ex-
ploration and exploitation. The reliance on both guided and
stochastic search in these algorithms allows researchers to take
different approaches to the topic. This work uses a minimal-
ist, vector-stripped swarm optimiser to present a theoretical
analysis on the behaviour of the particles. Being a population-
based continuous optimiser, dispersive flies optimisation or DFO,
bears several similarities with the well-known particle swarm
optimisers, differential evolution algorithms and their bare-bones
variants. The distinctive feature of this algorithm is its sheer
reliance on particles positions to update the population. The
minimalist nature of the algorithm reduces the challenges of
understanding particles oscillation around constantly changing
centres, particles’ influence on one another, and their trajectories.
This work presents a unified exploration-exploitation probability
study which is derived from six scenarios in order to examine
the population’s dimensional behaviour in each iteration. This
paves the way to propose and investigate adaptable, diversity
promoting mechanisms. The proposed methods, which may
be extendable to other optimisers, are then examined on a
comprehensive set of benchmarks, and finally applied to high-
dimensional tomographic reconstruction which is an important
inverse problem in medical and industrial imaging.

Index Terms—Exploration, exploitation, diversity, dispersive
flies optimisation, DFO

I. INTRODUCTION

Information exchange and communication between particles
in swarm intelligence and evolutionary computation manifest
themselves in a variety of forms, including the use of different
update equations and strategies, deploying extra vectors in
addition to the particles’ current positions, and dealing with
tunable parameters. Ultimately the goal of an optimiser is to
achieve a balance between global exploration of the search
space and local exploitation of potentially suitable areas in
order to guide the optimisation process [1], [2].

The motivation for studying dispersive flies optimisation
or DFO [3] is the algorithm’s minimalist update equation
which only uses particles’ position vectors for the purpose
of updating the population. This is in contrast to several other
population-based algorithms and their variants which besides
using the position vectors, use a subset of the following set
of vectors: velocities and memories (personal best and global

best) in particle swarm optimisation (PSO) [4], mutant and
trial vectors in differential evolution (DE) [5], pheromone,
heuristic vectors in Ant Colony Optimisation (ACO) [6], and
so forth. In addition to using only the position vectors at any
given time, the only tunable parameter in DFO, other than
the population size, is the restart or disturbance threshold, ∆,
which controls the component-wise restart in each dimension.
This is contrary to many well-known algorithms dealing with
several theoretically or empirically driven tunable parameters,
such as: learning factors, inertia weight in PSO, crossover and
mutation rates, tournament and elite sizes, and constricting
factor in DE and/or Genetic Algorithms (GA) [7], heuristic
strength, greediness and pheromone decay rate in ACO, impact
of distance on attractiveness, scaling factor and speed of
convergence in Firefly algorithm (FF) [8], and so on.

There have been several attempts to present compact al-
gorithms to better understand the dynamic of population’s
behaviour as well as the relevance of various communication
strategies but often with more components and parameters, and
at the expense of performance. Perhaps one of the most notable
minimalist swarm algorithm is bare-bones particle swarms
(BB-PSO) [9] whose collapse has been studied along with the
introduction of a component-wise jump or restart, thus propos-
ing bare-bones with jumps algorithm (BBJ) [10]. Another
algorithm is bare-bones differential evolution (BBDE) [11]
which is a hybrid of the bare-bones particle swarm optimiser
and differential evolution, aiming to reduce the number of
parameters, albeit with more than only the position vector.
It is well understood that swarm intelligence techniques are
dependant on the tuning of their parameters, as a result, ad-
justing a growing number of parameters becomes increasingly
complex.

This paper aims at providing a theoretical analysis of
exploration and exploitation based on the existing knowledge
of the swarm using the minimalist, vector-stripped algorithm;
therefore, using this analysis to identify ways to measure
exploration and exploitation probabilities, with the ultimate
goal of controlling the behaviour of population by suggesting
dimensional-based exploration-exploitation balance, without
degrading the performance of the algorithm. Furthermore, the

paper’s proposed methods are applied to tomographic recon-
struction, where images are reconstructed using tomography.

In this work, initially the swarm optimiser is presented in
Section II, followed by the theoretical analysis in Section III
which leads to proposing adaptable diversity mechanisms. Sec-
tion IV presents the empirical experiments on a comprehensive
set of benchmarks along with the results.

II. BACKGROUND

DFO belongs to the broad family of population-based,
swarm intelligence optimisers, which has been applied to
various domains, including medical imaging [12], optimis-
ing machine learning algorithms [13], training deep neural
networks [14], computer vision and quantifying symmetrical
complexities [15], [16], beer organoleptic optimisation [17],
solving diophantine equations [18] and analysis of autopoiesis
in computational creativity [19].

In this algorithm, components of the position vectors are
independently updated in each iteration, taking into account:
current particle’s position; current particle’s best neighbouring
individual (consider ring topology, where particles have left
and right neighbours); and best particle in the swarm.

The update equation is

xt+1
id = xtind + u(xtsd − xtid) (1)

where,
• xtid: position of ith particle in dth dimension at time step t
• xtind: position of ~xti’s best neighbouring individual (in

ring topology) in dth dimension at time step t
• xtsd: position of the swarm’s best individual in the dth

dimension at time step t
• u ∼ U (0, 1): generated afresh for each dimension and

each individual update.
As a diversity-promoting mechanism, individual compo-

nents of the position vectors are reset if a random number
generated from a uniform distribution on the unit interval
U (0, 1) is less than the disturbance or restart threshold, ∆.
This ensures a restart to the otherwise permanent stagnation
over likely local minima. In this method, which is summarised
in Algorithm 11, each member of the population is assumed to
have two neighbours and particles are not clamped to bounds,
therefore, when out of bounds, are left unevaluated.

As a population-based continuous optimiser, DFO bears
several similarities with other well-known swarm and evolu-
tionary algorithms. Stemming from its bare-bones and vector-
stripped nature, DFO allows for further analyses while demon-
strating competitive performance despite being bare of “acces-
sories”. In terms of PSO, in many of the proposed variants,
the algorithm commonly uses the following parameters: popu-
lation size; c1, controlling the impact of cognitive component;
c2, controlling the impact of social component; χ or w,
depending on the update equation. Furthermore, in addition

1 Source code for the standard DFO: http://github.com/mohmaj/DFO

Algorithm 1 Dispersive Flies Optimisation
1: procedure DFO (N,D, ~xmin, ~xmax, f)*
2: for i = 0→ N− 1 do . Initialisation
3: for d = 0→ D − 1 do
4: x0

id ← U(xmin,d, xmax,d)
5: end for
6: end for
7: while ! termination criteria do . Main DFO loop
8: for i = 0→ N− 1 do
9: ~xi.fitness← f(~xi)

10: end for
11: ~xs = arg min [f(~xi)], i ∈ {0, 1, 2, . . . , N − 1}
12: for i = 0→ N− 1 and i 6= s do
13: ~xin = arg min [f(~x(i−1)%N), f(~x(i+1)%N)]
14: for d = 0→ D − 1 do
15: if U(0, 1) < ∆ then
16: xt+1

id ← U(xmin,d, xmax,d)
17: else
18: u← U(0, 1)
19: xt+1

id ← xt
ind + u(xt

sd − xt
id) . Update eq.

20: end if
21: end for
22: end for
23: end while
24: return ~xs

25: end procedure

* INPUT: N : swarm size, D: dimensions, ~xmin: lower bound,
~xmax: upper bound, f : fitness function.

to the position of particle i, ~xi, each PSO particle has an as-
sociated velocity, ~vi, and memory, ~pi, vectors. Other variants,
including bare-bones PSOs were also introduced to simplify
the algorithm, with the ultimate goal of offering insight into
the underlying behaviour of the algorithm. In one such cases,
one of the inventors of PSO, Kennedy, describes the process as
“strip[ping] away some traditional features” with the hope of
“revealing the mysteries of the algorithm” [9]. In this particular
model, the velocity vectors are removed while the algorithm
continues to benefit from the memory vectors; the work was
carried out to shed light on the behaviour of the algorithm, yet
at the cost of performance. There have been other contributions
that have tried to further explore the simplified versions [10],
[20], [21].

Following on from the above and to quote Kennedy [9]
“The particle swarm algorithm has just enough moving parts
to make it hard to understand”, this work builds on of its key
motivation to analyse a minimalistic algorithm to:

• reduce the challenges of understanding particles oscil-
lating around the constantly changing centres (in each
iteration, independently)

• understand particles’ influence on one another (and their
contribution to the swarm’s next iteration)

• strip the parameters in the analysis to understand the
trajectory of particles

To address these areas, the minimalist, vector-stripped fea-
tures of the optimiser are used to analyse the algorithm’s
diversity and its exploration-exploitation behaviour.

d1

d2

σ

gxn

d1

d2

σ

gxn

d1

d2

σ

gxn

σ < d1

d1 < σ

S1: Scenario 1

d1

σ

d2

gx n

S2: Scenario 2
d1

σ

d2

gx n

d1

σ

d2

gx n

d2 < d1

d1 < d2

d2 = d1 + σ

σ = d1 + d 2

σ

d1

d2

gx n

S3: Scenario 3
d1 = d2 + σ

σ

d1

d2

gx nd2 < σ

σ

d1

d2

gx nσ < d2

S1.1:

S1.2:

S2.1:

S2.2:

S3.1:

S3.2:

pexploit ≈ 0.307

pexplore ≈ 0.693

pexploit = 0

pexplore = 1

pexploit ≈ 0.614

pexplore ≈ 0.386

pexploit ≈ 0.614

pexplore ≈ 0.386

pexploit = 0

pexplore = 1

pexploit ≈ 0.307

pexplore ≈ 0.693

pexploit = 1

pexplore = 0

pexploit = 1

pexplore = 0

pexploit = 1

pexplore = 0

Fig. 1. Three scenarios for x ≤ g, with d1 = |n − x|, d2 = |g − n|.
The analysis also holds for the mirrored scenarios where g ≤ x. These
probabilities assume a start from the initial state. The analysis is extended
to further reflect particles’ dynamic in Section III-D.

III. ITERATION-BASED EXPLOITATION ANALYSIS

As shown in the update equation, Eq. 1, for each particle,
the search focus is ~µ = ~xin , and the spread, ~σ = ~xs − ~xi, is
the distance between the best particle in the swarm and the
current particle. Therefore, the equation could be rewritten for
each particle’s dimension as

x = µ+ uσ (2)

Considering one dimension of a problem and for the ease
of readability in the remainder of this section, x refers to xti;
x′ refers to xt+1

i ; g refers to xts; and n refers to xtin .
When x ≤ g, where g is the same for all x in the

population for each iteration, the following three scenarios can
be analysed:
• S1: n ≤ x ≤ g S1.1: σ ≤ d1; S1.2: d1 < σ
• S2: x ≤ n ≤ g S2.1: d2 ≤ d1; S2.2: d1 < d2

• S3: x ≤ g ≤ n S3.1: σ ≤ d2; S3.2: d2 < σ

Fig. 1 illustrates these scenarios along with the 6 sub-
scenarios. The mirrored counterparts can be envisaged for
g ≤ x. The analysis is first presented from the initial
state, where the particles are initialised in the search space.
Furthermore, exploitation refers to the approaching of x to g
(i.e. |g−x′| < |g−x|). Analogously, exploration refers to the
increasing distance between x and g (i.e. |g − x′| > |g − x|).
Using these knowledge-based exploitation and exploration
concepts, the analysis in this section focuses on each scenario
and therefore, the overall impact on each iteration.

A. Scenario 1: n ≤ x ≤ g
In this scenario, the difference between |n−x| and |g−x|,

as well as the value of u in the update equation, determine

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

≈
≈

≈
≈

≈
≈

≈
≈

u > x
1−x

1

0.0 0.5 1.0
x

u

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

≈
≈

≈
≈

≈
≈

≈
≈

u > 1−x
x

1

0.0 0.5 1.0
x

u

Fig. 2. Exploitation probability in S1. Left: n ≤ x ≤ g; right: g ≤ x ≤ n

whether x′ approaches g. Given d1 = |n−x| and d2 = |g−n|,
in the first scenario, d2 = d1 + σ (see Fig. 1-top).

Depending on the proximity of x to either its best neighbour
or the best particle in the swarm, two distinct cases need to be
explored. Considering σ ≤ d1 (S1.1 in Fig. 1), the exploitation
probability, pexploit = 0, and the exploration probability is
pexplore = 1, where x moves away from g. On the other hand,
in S1.2, in Fig. 1, when d1 < σ, pexploit and pexplore depend on
the proximity of the x to n as well as the randomly generated
value of u. To analyse the probability of exploitation in this
scenario, the space is scaled so that n is placed at the origin,
g at 1, and x is uniformly distributed in [0, 1]. Therefore,

n = 0

g = 1

x′ = 0 + u(1− x)

P (exploit) = P (|g − x′| < |g − x|)
= P (1− u(1− x) < 1− x)

= P

(
u >

x

1− x

)
= 0.5−

∫ 0.5

0

x

1− x
dx

= 0.5− ([−x− log(1− x)]0.50)

≈ 0.307

This analysis holds for the mirrored case of scenario 1 (i.e.
g ≤ x ≤ n). The plots in Fig. 2 illustrate the exploitation
probabilities as shaded areas in S1, and the mirrored S1.

B. Scenario 2: x ≤ n ≤ g
Scaling the space, we have x = 0 and g = 1. Thus, there

are two possible outcome cases for x′:
1) x ≤ n ≤ g ≤ x′
2) x ≤ n ≤ x′ ≤ g
Therefore, given n ∈ [0, 1], u ∼ U(0, 1):

x′ = n + u

P (exploit) = P (|x′ − 1| < 1)

= P (|n + u− 1| < 1) = 1 Always holds

P (exploit) = P (n + u− 1 < 1), for case (1)
= P (n + u < 2) = 1

P (exploit) = P (1− (n + u) < 1), for case (2)
= P (−(n + u) < 0) = 1

The mirrored of this scenario (i.e. g ≤ n ≤ x) also holds
with exploitation probability equal to 1.

u < 2g−1
g

1

0.0 0.5 1.0
g

u

u < 2g−1
g−1

1

0.0 0.5 1.0
g

u

Fig. 3. Exploitation probability in S3. Left: x ≤ g ≤ n; right: n ≤ g ≤ x

C. Scenario 3: x ≤ g ≤ n

Scaling the space, we have x = 0 and n = 1. Therefore,

x = 0

n = 1

P (exploit) = P (ug + (1− g) < g)

= P (u <
2g − 1

g
)

=

∫ 1

0.5

(2− 1

g
)dg

= (2g − log(g))|10.5
≈ 0.307

The analysis for the mirrored cases in scenario 3 holds (i.e.
n ≤ g ≤ x) and Fig. 3 illustrates the exploitation probabilities
in S3, and the mirrored S3.

D. Unified exploitation analysis

The previous analysis provided the exploitation probabilities
in a scaled environment where the acceptable range (bounds)
of the search space in a problem domain did not play a role.
This section analyses exploitation in relation to the feasible
area of the search space.

Consider x to be uniform in [−L,R] while g and n are
fixed. Given this and as shown in Fig. 4, the areas highlighting
exploitation can be plotted using A and B below:

g = 0

n = 1

A : u = 1− 1

|x|

B : u =
1

x
− 1

To proceed, the exploitation probabilities in the following
four cases are presented individually:

1) R,L ≥ 1
2) R = L = 1
3) L ∈ [0, 1], R ∈

[
1
2
, 1
]

4) L ∈ [0, 1], R ∈
[
0, 1

2

]

B1 - log2 R - 1A

L - 1 - log L

z1 z2 z3 z4 z5

S2
S1S3

0

1 -

1

L

1

−L −1 g=0 n=1 R

x

u

Fig. 4. Unified exploitation probability, p. The shaded areas in the graph
represent exploitation, where particles in these areas at time t will be
exploiting at time t+ 1.

R,L ≥ 1 : P (exploit) =
L + R− 1− log 2L

L + R
put L = R = x

P (exploit) =
2x− 1− log 2x

2x

lim
x→∞

P (exploit) = lim
x→∞

1− 1

2x
− log 2x

2x
= 1

R = L = 1 : P (exploit) =
1− log 2

2

L ∈ [0, 1], R ∈
[

1

2
, 1

]
: P (exploit) =

2R− 1− log 2R

L + R

L ∈ [0, 1], R ∈
[
0,

1

2

]
: P (exploit) = 0.

For {x ∈ R : −L ≤ x ≤ R} and given the tendency of
L,R ≥ 1 in the scaled space (influenced by the proximity
of g and n over time), the unified exploitation probability,
P (exploit) or p, is summarised as:

p = P (exploit) = P (|x′ − g| < |x− g|)

=
L + R− 1− log 2L

L + R
(3)

Based on this, an immediate line of research is to measure the
iteration-based probabilities of exploitation to facilitate diver-
sity adjustment. This, in addition to having an adaptable restart
threshold, ∆dynamic (as opposed to a pre-determined parameter
value, ∆), allows for a dimensional diversity mechanism.
Using this approach, the unified exploitation probability, p,
is measured for each dimension and in each iteration. Using
p, the component-wise restart is triggered when r < ∆dynamic
where r = U(0, 1) and ∆dynamic = 1/1500p. The rationale
is to take into account the previously reported empirical
restart threshold of ∆ = 0.001 [3] where ∆dynamic = ∆
when p = 0.6̄, and higher when p < 0.6̄ (see Fig. 5). The
adapted algorithm, which benefits from the unified exploitation
probability, is termed unified DFO or uDFO. Using this
approach, enables the adaptive, dimension-dependant diversity
to be present throughout the optimisation process, and reduced
when the population is more inclined towards exploitation, be
it local or global.

To demonstrate the evident effect of individual’s restart on
p over the iterations, Fig. 9 illustrates the behaviour of p
during the optimisation process where the restart mechanism
is triggered when p > {0.90, 0.95}.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
1

0
.0

0
5

0
.0

5
0

p

D

Ddynamic =
1

1500p

D = 0.001

Fig. 5. Component-wise restart based on p, where the dynamic restart
threshold is ∆dynamic = 1/1500p

In addition to the scenarios, S1−3, which are based on the
position of x in relation to n and g, Fig. 4 highlights the
exploitation-related borderlines at x ∈ {−L,−1, 0, 0.5, 1, R},
and based on that, the search space is categorised into
5 zones (z1−5). Using the zones provides a fitting way to
investigate the behaviour of the individuals in the context
of the unified exploitation probabilities as well as particle
trajectories. In these zones, z2,3 are explore-only, z5 is exploit-
only and z1,4 influence both exploration and exploitation.
In other words, zones impacting exploration are z1−4, and
zones impacting exploitation are z1,4,5. Fig. 6 illustrates the
visit-frequency of particle components in each zone over
the iterations. Having these properties, investigating the state
transitions from one zone at time t (xt) to the next at time
t + 1 (xt+1) provides each particle’s dimensional trajectory,
which is illustrated in Fig. 7 and summarised below:
• xt ∈ z1 → xt+1 ∈ z5

• xt ∈ z2 → xt+1 ∈ z5[1,2]

• xt ∈ z3 → xt+1 ∈ z4

• xt ∈ z4 → xt+1 ∈ {z3, z4}
• xt ∈ z5 → xt+1 ∈ {z1, z2, z3, z4}
To show the trajectory density for each of these transitions,

1,000,000 component updates are initiated from each of the
zones with L,R = 4. The associated density plots from
different zone are shown in Fig. 8. The figure also presents the
trajectory density of the independent updates across all zones,
illustrating the densest area (see Fig. 8-bottom) which is in
line with the search focus being n. State transition analysis
allows for devising a strategy to control diversity through
particle position’s zone-relocation. Observing the density plot
for z5 in Fig. 8 or the state transition from z5 in Fig. 7, it
is evident that particles in z5 at time t will be relocated to
z1−4 at time t+1. Therefore, in another experiment, when the
restart mechanism is triggered with r < ∆dynamic, components
are relocated to z5. Using this strategy, the components are
effectively restarted to the exploit-only zone. As a result,

0 100 200 300 400 500

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Iterations

In
s
ta

n
c
e
s

z1

z2

z3

z4

z5

z1-5

Fig. 6. Number of components in each zone over the iterations in a sample
run optimising Rastrigin function, where z5 is the most frequently visited
zone, and z3 is the least visited.

z1 z2 z3 z4 z5

Fig. 7. State transition of components between zones. Transitions from z5
are highlighted.

-L=-4 -3 -2 -1 g = 0 n = 1 2 3 R=4
xt + 1

0.0

0.1

0.2

0.3

0.4

De
ns

ity z1

z1 : xt [-4, -1]

-L=-4 -3 -2 -1 g = 0 n = 1 2 3 R=4
xt + 1

0.0
0.5
1.0
1.5
2.0

De
ns

ity z2

z2 : xt [-1, 0]

-L=-4 -3 -2 -1 g = 0 n = 1 2 3 R=4
xt + 1

0
1
2
3
4

De
ns

ity z3

z3 : xt [0, 0.5]

-L=-4 -3 -2 -1 g = 0 n = 1 2 3 R=4
xt + 1

0.0

0.5

1.0

De
ns

ity z4

z4 : xt [0.5, 1]

-L=-4 -3 -2 -1 g = 0 n = 1 2 3 R=4
xt + 1

0.0

0.1

0.2

0.3

0.4

De
ns

ity z5

z5 : xt [1, 4]

-L=-4 -3 -2 -1 g = 0 n = 1 2 3 R=4
xt + 1

0.0

0.2

0.4

0.6

De
ns

ity z1 z2 z3 z4 z5

xt [-4, 4]

Fig. 8. Density plots for transition trajectory of 1 million independent
components from each of the zones at time t (shaded) to t + 1 in one-step
updates. The dashed lines represent zones’ boundaries. The x-axes represent
the scaled positions in range [−L,R] with L,R = 4, g = 0, n = 1, and
the y-axes illustrate the trajectory density. For instance, the top graph shows
the trajectory density of xt values in z1 which are originated from range
[−4,−1] at time t, and trajected to [1, 4] at time t + 1. The bottom graph
presents the density plot across all zones, highlighting the focus as µ = n.
Note that the number of components initialised in each zone is equal.

while expecting lower diversity, the purpose of zone-relocation
experiment is to examine the impact of ‘targeted’ restarts, with
potential follow-up exploitation and visits to other zones. The
adapted algorithm using the proposed zone-relocation strategy
is termed uDFOz5.

Restart when p > 0.90 Restart when p > 0.95
Fig. 9. Illustrating the link between exploitation probability, p, and diversity
when restart commences at p > {0.90, 0.95}. In the bottom graphs, µ, and
σ represent p’s average and standard deviation in each iteration. As shown,
increased diversity, which is the average distance around the population centre
(see top graphs), decreases the p values (see bottom graphs), and vice versa.

IV. EMPIRICAL STUDY AND RESULTS

This section examines the results of the theoretical study of
exploitation over a combined benchmark [22] which consists
of functions presented in [23]–[25]. The combined benchmark
CEC05 + CEC13 + ENG13 provides 84 unique problems
whose details are provided in [22]. The benchmark includes
functions with the following properties: U: unimodal, M: mul-
timodal, S: separable, NS: non-separable, N: noisy, B: x∗ on
bounds (where x∗ is the optimum), NV: x∗ in narrow valley,
UB: x∗ outside initialisation volume, F: neutrality (has flat
areas), HC: high conditioning, SD: sensitivity (f has one or
more sensitive directions), A: asymmetric, D: deceptive (x∗ is
far from next local optimum) and C: composition.

In this section, uDFO and uDFOz5 are compared against the
standard DFO (with ∆ = 0.001) and DFO∆=0 (i.e. without the
restart mechanism) where the population size is NDFO = 150.
Furthermore, standard PSO algorithm in two neighbourhood
structures, global PSO (GPSO) and local PSO (LPSO) are
also used with the parameters derived from [25], where the
population size, NPSO = 30, ω = 0.729844, c = 1.49618
and the initial v = 0. Each algorithm is run 50 times on each
test function and the termination criterion is set to reaching
150,000 function evaluations. The problems’ dimensionality is
constant in all trials and is set to D = 30.

The metrics used to evaluate the results are error: best
function value and proximity to known optimal values; the
population’s terminal diversity: mean distance between indi-
viduals and centroid (in PSO, the memory or personal best
vectors are used, as opposed to DFOs where particles positions
are used); and last improvements: significant activity late in
the run, which indicates a potential move leading to hill
climbing or escaping local minima. Measuring the significance
of improvement depends on the nature of the test function
(details for measuring this metric are provided in [22]).

In total, 25, 200 trials (6 algorithms × 84 test functions
× 50 runs) are analysed by grouping them in terms of
functions and function properties. To analyse the performance
of the algorithms over the test functions, Wilcoxon [26] non-
parametric tests of significance (p < 0.05) is used.

Additionally, the algorithms are applied to tomographic re-

TABLE I
SUMMARY OF THE RESULTS FOR UDFO.

(a) Error
Algorithms Win Loss Tie Win Rate (significant cases)
uDFO (vs DFO) 21 10 53 68%
uDFO (vs DFO∆=0) 40 11 33 78%
uDFO (vs GPSO) 47 17 20 73%
uDFO (vs LPSO) 45 29 10 61%

(b) Last improvements
Algorithms Win Loss Tie Win Rate (significant cases)
uDFO (vs DFO) 9 29 46 24%
uDFO (vs DFO∆=0) 54 2 28 96%
uDFO (vs GPSO) 37 14 33 73%
uDFO (vs LPSO) 18 32 34 36%

(c) Diversity
Algorithms Win Loss Tie Win Rate (significant cases)
uDFO (vs DFO) 0 84 0 0%
uDFO (vs DFO∆=0) 84 0 0 100%
uDFO (vs GPSO) 60 21 3 74%
uDFO (vs LPSO) 22 59 3 27%

The numbers indicate uDFO’s wins and losses when compared against other
algorithms. uDFO exhibits outperformance in the majority of significant cases.

TABLE II
SUMMARY OF THE RESULTS FOR UDFOz5 .

(a) Error
Algorithms Win Loss Tie Win Rate (significant cases)
uDFOz5 (vs DFO) 25 14 45 64%
uDFOz5 (vs DFO∆=0) 39 11 34 78%
uDFOz5 (vs GPSO) 43 17 24 72%
uDFOz5 (vs LPSO) 45 29 10 61%
uDFOz5 (vs uDFO) 4 13 67 24%

(b) Last improvements
Algorithms Win Loss Tie Win Rate (significant cases)
uDFOz5 (vs DFO) 9 29 46 24%
uDFOz5 (vs DFO∆=0) 52 2 30 96%
uDFOz5 (vs GPSO) 36 11 37 77%
uDFOz5 (vs LPSO) 22 31 31 42%
uDFOz5 (vs uDFO) 8 6 70 57%

(c) Diversity
Algorithms Win Loss Tie Win Rate (significant cases)
uDFOz5 (vs DFO) 0 84 0 0%
uDFOz5 (vs DFO∆=0) 84 0 0 100%
uDFOz5 (vs GPSO) 57 21 6 73%
uDFOz5 (vs LPSO) 22 60 2 27%
uDFOz5 (vs uDFO) 0 45 39 0%

The numbers indicate uDFOz5’s wins and losses when compared against other
algorithms. uDFOz5 exhibits outperformance in the majority of significant cases when

compared against DFO, DFO∆=0, GPSO and LPSO.

construction (reconstruction of images by tomography), which
is an important inverse problem in medical and industrial
imaging [27]. In this problem, downsampled standard test im-
ages, the Shepp-Logan image phantoms [28], are reconstructed
by using two projections. The images have the following
dimensions: 25D (5 × 5), 100D (10 × 10), 255D (15 × 15),
400D (20× 20) and 625D (25× 25).

A. Results

Table I(a) summarises the performance of the algorithms on
84 test functions where ‘win’ and ‘loss’ of uDFO against other
algorithms are considered when there is a recorded statistically
significant outperformance in terms of the error values. The
results illustrate uDFO’s outperformance in 68%, 78%, 73%
and 61% of the cases with statistically significant difference,
when compared against DFO, DFO∆=0 and GPSO and LPSO
respectively. Understanding the potential reduced rate of the
restart mechanism at the tail end of p, uDFO presents a higher

TABLE III
PERFORMANCE COMPARISON BY FUNCTION PROPERTIES.

(a) uDFO
f Property Total uDFO DFO uDFO DFO∆=0 uDFO GPSO uDFO LPSO

U Unimodal 22 14 0 8 8 14 6 17 3
M Multimodal 62 7 10 32 3 33 11 28 26
S Separable 18 8 1 13 5 10 5 11 3
NS Non-separable 66 13 9 27 6 37 12 34 26
N Noisy 3 0 0 3 0 0 1 1 2
B x∗ on bounds 4 2 0 1 1 3 0 2 2
NVx∗ in narrow val 3 0 1 0 0 2 0 2 1
UB x∗ out init vol 2 0 1 2 0 1 1 1 1
F Neutrality 8 0 2 6 0 2 1 1 7
HC High condition 2 0 1 0 0 1 1 1 1
SD Sensitivity 2 2 0 2 0 2 0 2 0
A Asymmetric 20 4 1 7 0 9 4 7 7
D Deceptive 2 0 1 1 0 1 0 1 0
C Composition 19 2 3 9 0 5 4 2 13∑

233 52 30 111 23 120 46 110 92
% 63% 37% 83% 17% 72% 28% 54% 46%

(b) uDFOz5
f Property Total uDFOz5 DFO uDFOz5 DFO∆=0 uDFOz5 GPSO uDFOz5 LPSO

U Unimodal 22 16 1 7 8 13 6 18 3
M Multimodal 62 9 13 32 3 30 11 27 26
S Separable 18 9 5 12 5 9 5 12 4
NS Non-separable 66 16 9 27 6 34 12 33 25
N Noisy 3 0 1 2 0 0 1 1 2
B x∗ on bounds 4 2 0 1 2 2 1 2 2
NVx∗ in narrow val 3 1 0 1 0 2 0 2 1
UB x∗ out init vol 2 1 1 1 0 1 1 1 1
F Neutrality 8 0 1 6 0 1 1 1 7
HC High condition 2 0 0 0 0 1 1 1 1
SD Sensitivity 2 2 0 2 0 2 0 2 0
A Asymmetric 20 3 4 7 0 7 3 7 7
D Deceptive 2 0 1 1 0 1 0 1 0
C Composition 19 2 2 9 1 3 4 2 13∑

233 61 38 108 25 106 46 110 92
% 62% 38% 81% 19% 70% 30% 54% 46%

Bold type indicates significantly lower function error by the algorithm for greater
number of function instances with a given property.

number of last improvement cases and higher termination
diversity against DFO∆=0 and GPSO, as shown in Tables I(b)
and I(c), however, the contrary can be observed with DFO
and LPSO. The rationale is the consistent value of the restart
threshold in standard DFO throughout the optimisation (given
∆ = 0.001) and the well understood higher diversity of local
neighbourhood population in LPSO [29].

Table II presents performance comparison of uDFOz5 with
other algorithms. As expected, in terms of error, the winning
rates of uDFOz5 and uDFO are similar when compared against
other algorithms, although the latter offers better overall per-
formance. The last rows in Tables II(a,b,c) compare uDFOz5

and uDFO, demonstrating the largest number of ties (see
figures underlined) as indicators of similarities, which are
likely to be influenced by the coverage similarity of holistic
and zone-based restarts. However, as expected and explained
earlier, uDFO exhibits higher diversity than uDFOz5.

In order to analyse the error-related strengths and weak-
nesses of uDFO and uDFOz5, each of the algorithm pairs
are broken down in Table III based on fourteen function
properties; the total number of function properties (shared by
the test functions) is 233. The results demonstrate an overall
outperformance of uDFO and uDFOz5, where the most visible
contribution of the unified exploitation approaches can be
seen for functions with the following properties {U,S,NS,SD},
while being competitive in {M,NV,A}, and less effective

TABLE IV
TOMOGRAPHIC RECONSTRUCTION: PERFORMANCE COMPARISON.

(a) uDFO
Algorithms D=25 D=100 D=225 D=400 D=625
uDFO vs DFO – uDFO uDFO DFO uDFO
uDFO vs GPSO – uDFO uDFO uDFO uDFO
uDFO vs LPSO uDFO uDFO uDFO* uDFO* uDFO*

(b) uDFOz5
Algorithms D=25 D=100 D=225 D=400 D=625
uDFOz5 vs DFO - uDFOz5 uDFOz5 uDFOz5 uDFOz5
uDFOz5 vs GPSO - uDFOz5 uDFOz5 uDFOz5 uDFOz5
uDFOz5 vs LPSO uDFOz5 uDFOz5 uDFOz5* uDFOz5* uDFOz5*
uDFOz5 vs uDFO - uDFOz5 uDFOz5 uDFOz5 uDFOz5

*: LPSO does not compute solutions for D = {255, 400, 625}. This is due to a
large number of particles components’ off-shooting out of bounds.

TABLE V
TOMOGRAPHIC RECONSTRUCTION: ERROR VALUES

Algorithm Min Max Median Mean StdDev

D=25

uDFO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uDFOz5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DFO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
LPSO 0.00E+00 5.24E-32 3.08E-33 7.36E-33 1.14E-32

D=100

uDFO 1.6806E-14 1.6884E-14 1.6810E-14 1.6818E-14 1.6127E-17
uDFOz5 1.6806E-14 1.6808E-14 1.6806E-14 1.6806E-14 4.2304E-19
DFO 1.98E-14 1.55E-11 5.65E-14 4.53E-13 2.18E-12
GPSO 9.00E+01 2.48E+02 2.05E+02 1.94E+02 3.99E+01
LPSO 1.17E+02 2.23E+02 1.67E+02 1.67E+02 2.53E+01

D=225

uDFO 6.02E-10 1.98E-08 4.49E-09 5.77E-09 4.34E-09
uDFOz5 2.09E-11 1.38E-09 1.94E-10 2.53E-10 2.40E-10
DFO 1.45E-07 1.49E-06 4.15E-07 4.75E-07 2.48E-07
GPSO 5.54E+02 7.08E+02 6.39E+02 6.42E+02 3.41E+01
LPSO NA NA NA NA NA

D=400

uDFO 1.71E-05 4.93E-05 2.77E-05 2.92E-05 7.14E-06
uDFOz5 1.60E-07 2.47E-06 6.14E-07 7.21E-07 4.41E-07
DFO 1.32E-05 5.18E-05 2.59E-05 2.64E-05 7.72E-06
GPSO 1.60E+03 1.86E+03 1.77E+03 1.76E+03 6.46E+01
LPSO NA NA NA NA NA

D=625

uDFO 1.89E-03 4.03E-03 2.75E-03 2.73E-03 4.65E-04
uDFOz5 1.33E-05 6.11E-05 2.97E-05 3.13E-05 1.03E-05
DFO 1.01E-02 2.33E-02 1.73E-02 1.72E-02 2.67E-03
GPSO 3.89E+03 4.41E+03 4.15E+03 4.15E+03 1.09E+02
LPSO NA NA NA NA NA

for {N,C}. Among the suitable function properties is non-
separable or NS, where variables interact, making it chal-
lenging to decompose the problem into sub-problems; this
property is amongst the more demanding in the benchmark
and in real-world fitness functions. Further analysis is required
to better understand the function properties in the context of
the algorithms performance.

Finally, the proposed approaches are trialled on tomographic
construction, taking into account problems with larger dimen-
sionality (Tables IV and V). Each algorithm is run 50 times for
each problem, therefore a total of 1, 250 trials are conducted
(5 algorithms × 5 problems × 50 runs). Barring the lowest
dimensional problem (25D), the results illustrate the overall
competitiveness of uDFO in 92% (11 out of 12), and uDFOz5

in 100% (12 out 12) of the algorithm-problem pairs in high-
dimensional problems (see Tables IV-a and IV-b respectively).

In summary, while the performance of uDFO and uDFOz5

are similar on the lower dimensional problem, uDFOz5 demon-
strates better performance in all higher-dimensional problems
(i.e. 100D, 255D, 400D, 625D) with wider performance gaps
as the dimensionality grows (see Table V). Further experiments
are needed to verify the extendibility of performance in other
high-dimensional problems.

Among the limitations of the approach is the need for a-
priori knowledge of the bounds to feasible solutions. Whilst
setting indicative bounds in many real-world problems is
practically possible, further investigation is needed in this
area. Additionally, although the main computational expense is
associated with function evaluation, the impact of calculating
exploitation probability, p, on the computational cost is a
topic for an ongoing research. Furthermore, having tested the
approaches on a comprehensive set of test functions as well
as identifying a number of suitable function properties, one
of the next steps is applying the methods to other complex
real-world problems with known function properties.

V. CONCLUSION

This work provides a theoretical, iteration-based analysis
of particles’ movements to measure the knowledge-based,
dimensional exploitation probabilities. In addition to better
understanding the particles’ behaviour, the work focuses on
providing a strategy to control the population’s interaction
in the search space. This is attempted through a unified
exploitation probability, p, through (1) uDFO algorithm which
uses a holistic restart, and (2) uDFOz5 which is trialled
for the purpose of examining zone-relocation restart mech-
anism. Both methods allow adaptable dimensional control
of the particles. The proposed approaches are then exam-
ined over 84 test functions with a combined 233 function
properties, where uDFO performs better in 68%, 78%, 73%
and 61% of cases with statistically significant difference
when compared against DFO, DFO∆=0 and GPSO and LPSO
respectively; and uDFOz5 in 64%, 78%, 72% and 61% of
the significant cases. The performance is then investigated
on the high-dimensional tomographic reconstruction problems
where uDFO and uDFOz5 exhibited better performance in
92% and 100% of the high-dimensional algorithm-problem
pairs respectively. Potential future work includes extending
the exploitation analyses to other swarm optimisers and in-
vestigating unbounded problems. Studying the effect of the
presented approaches on dynamically changing environments
and exploring the combinations of function properties, which
benefit from the analysis, are also topics for future research.

REFERENCES

[1] I. C. Trelea, “The particle swarm optimization algorithm: conver-
gence analysis and parameter selection,” Information processing letters,
vol. 85, no. 6, pp. 317–325, 2003.

[2] O. Olorunda and A. P. Engelbrecht, “Measuring exploration/exploitation
in particle swarms using swarm diversity,” in Evolutionary Computation,
2008. CEC 2008. IEEE, 2008, pp. 1128–1134.

[3] M. M. al-Rifaie, “Dispersive flies optimisation,” in Proceedings of
the 2014 Federated Conference on Computer Science and Information
Systems, M. P. M. Ganzha, L. Maciaszek, Ed., vol. 2. IEEE, 2014, pp.
pages 529–538.

[4] J. Kennedy, “The particle swarm: social adaptation of knowledge,”
Evolutionary Computation, 1997., IEEE International Conference on,
pp. 303–308, 1997.

[5] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[6] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in Evolutionary Computation, 1999. CEC 99. Proceedings of
the 1999 Congress on, vol. 2. IEEE, 1999, pp. 1470–1477.

[7] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary
computation. IOP Publishing Ltd., 1997.

[8] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in In-
ternational symposium on stochastic algorithms. Springer, 2009, pp.
169–178.

[9] J. Kennedy, “Bare bones particle swarms,” in Proceedings of Swarm
Intelligence Symposium, 2003 (SIS’03). IEEE, 2003, pp. 80–87.

[10] T. Blackwell, “A study of collapse in bare bones particle swarm
optimisation,” IEEE Transactions on Evolutionary Computing, vol. 16,
no. 3, pp. 354–372, 2012.

[11] M. G. Omran, A. P. Engelbrecht, and A. Salman, “Bare bones differential
evolution,” European Journal of Operational Research, vol. 196, no. 1,
pp. 128–139, 2009.

[12] M. M. al-Rifaie and A. Aber, “Dispersive flies optimisation and medical
imaging,” in Recent Advances in Computational Optimization. Springer,
2016, pp. 183–203.

[13] H. Alhakbani, “Handling class imbalance using swarm intelligence tech-
niques, hybrid data and algorithmic level solutions,” Ph.D. dissertation,
Goldsmiths, University of London, London, United Kingdom, 2018.

[14] H. Oroojeni, M. M. al-Rifaie, and M. A. Nicolaou, “Deep neuroevolu-
tion: Training deep neural networks for false alarm detection in intensive
care units,” in European Association for Signal Processing (EUSIPCO)
2018. IEEE, 2018, pp. 1157–1161.

[15] M. M. al-Rifaie, A. Ursyn, R. Zimmer, and M. A. J. Javid, “On symme-
try, aesthetics and quantifying symmetrical complexity,” in International
Conference on Evolutionary and Biologically Inspired Music and Art.
Springer, 2017, pp. 17–32.

[16] P. Aparajeya, F. F. Leymarie, and M. M. al-Rifaie, “Swarm-based
identification of animation key points from 2d-medialness maps,” in
Computational Intelligence in Music, Sound, Art and Design. Cham:
Springer International Publishing, 2019, pp. 69–83.

[17] M. M. al-Rifaie and M. Cavazza, “Beer organoleptic optimisation,”
in Proceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion, ser. GECCO ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 255–256.

[18] B. Lazov and T. Vetsov, “Sum of three cubes via optimisation,” arXiv
preprint arXiv:2005.09710, 2020.

[19] M. M. al-Rifaie, F. F. Leymarie, W. Latham, and M. Bishop, “Swarmic
autopoiesis and computational creativity,” Connection Science, pp. 1–19,
2017.

[20] R. A. Krohling and E. Mendel, “Bare bones particle swarm optimization
with gaussian or cauchy jumps,” in Evolutionary Computation, 2009.
CEC’09. IEEE Congress on. IEEE, 2009, pp. 3285–3291.

[21] M. M. al-Rifaie and T. Blackwell, “Cognitive bare bones particle swarm
optimisation with jumps,” International Journal of Swarm Intelligence
Research (IJSIR), vol. 7, no. 1, pp. 1–31, 2016.

[22] T. Blackwell and J. Kennedy, “Impact of communication topology
in particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 4, pp. 689–702, 2019.

[23] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” 2005.

[24] J. Liang, B. Qu, P. Suganthan, and A. G. Hernández-Dı́az, “Problem
definitions and evaluation criteria for the cec 2013 special session on
real-parameter optimization,” Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou, China and Nanyang Technological
University, Singapore, Technical Report, no. 34, pp. 281–295, 2013.

[25] A. P. Engelbrecht, “Particle swarm optimization: Global best or local
best?” in 2013 BRICS congress on computational intelligence and 11th
Brazilian congress on computational intelligence. IEEE, 2013, pp.
124–135.

[26] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test,”
Selected tables in mathematical statistics, vol. 1, pp. 171–259, 1970.

[27] P. P. Bruyant, “Analytic and iterative reconstruction algorithms in spect,”
Journal of Nuclear Medicine, vol. 43, no. 10, pp. 1343–1358, 2002.

[28] L. A. Shepp and B. F. Logan, “The fourier reconstruction of a head
section,” IEEE Transactions on nuclear science, vol. 21, no. 3, pp. 21–
43, 1974.

[29] S. Cheng and Y. Shi, “Diversity control in particle swarm optimization,”
in 2011 IEEE Symposium on Swarm Intelligence. IEEE, 2011, pp. 1–9.

