
Efficient Group Key Agreement & Recovery in Ad hoc

Networks

Nikos Komninos*, Georgios Mantas*

*Algorithms and Security Group

Athens Information Technology

GR-190 02 Peania (Attiki), Greece

{nkom, gman}@ait.edu.gr

Abstract

Ad hoc networks are dynamic peer-to-peer wireless networks

composed of a collection of nodes which employ wireless

transmission methods in a self-organized way without relying

on fixed infrastructure or predetermined connectivity. Such

networks pose great challenges in group communication. In

this paper, we propose an efficient group key agreement and

recovery mechanism based on key escrow systems for ad hoc

networks. Nodes randomly change their operation and perform

authentication services for specific groups.

Keywords: key escrow, Clipper, key agreement, key recovery.

1 Introduction

Ad hoc networks are characterized by the lack of any

centralized entity, as any centralized entity is very easy to be

attacked. Furthermore, an ad hoc network is extremely

dynamic as its nodes are able to join or leave the network at

any time [1, 5]. Moreover, the deployment of security

mechanism in an ad hoc network is a challenging issue because

of its above inherent characteristics. First of all, conventional

authentication techniques can not be used in ad hoc networks

since public key infrastructures with a centralized, trusted

entity is not possible to be implemented. Thus, only distributed

solutions are employed. In addition, group key agreement

protocols are applied in ad hock networks instead of key

agreement protocols due to lack of trust in the network.

However, ad hoc networks are subject to a lot of passive and

active attacks which can be derived from outside malicious

nodes or from inside compromised hosts [2]. Frequently, as a

result from the attacks in an ad hoc network is the loss or the

destruction of the secret key. Thus, it is very useful for the ad

hoc networks the existence of key recovery mechanisms so as

the key, which encrypts the data transferred among nodes, to

be obtained at any time it is necessary. A key recovery

mechanism can be achieved with a key escrow system. A key

escrow system requires a lot of complex computations and

storage of information. These requirements of a key escrow

system can be satisfied by smart cards.

In this paper, we proposed an efficient group key agreement

and recovery mechanism for ad hoc networks. Each node of

the ad hoc network is equipped with a smart card which

performs the complex computations required according the

group session key agreement protocol, as well as the key

recovery mechanism. Following the introduction, in section 2,

we present the related work of group session key agreement

protocols, key recovery, key escrow systems as well as the

Clipper key escrow system. In section 3, the design of the

proposed group session key agreement protocol is discussed.

Furthermore, in section 4, the modified Clipper key escrow

system is described. In section 5, the experimental results are

presented. Finally, section 6 concludes the paper.

2 Related Work

Group Session Key Agreement Protocols

Group key agreement protocols are generalized key agreement

protocols which establish a common group session key among

a group of parties and not only between two parties. Also,

group key agreement protocols take into consideration the

cases that parties may join or leave a group at any time. In these

dynamic cases, supplementary group key agreement protocols

are used in order that a new group session key to be derived.

Moreover, group key agreement protocols do not require

central authority. Thus, group key agreement protocols are

suitable for ad hoc networks characterized by their dynamic

changing topology, the lack of centralized control and trusted

third parties as well as the resetting of connections [4]. Several

group key agreement protocols are presented in [5].

Key Recovery

The objective of a key recovery system is to permit access to

encrypted communication data, when the encryption key is lost

or destroyed due to equipment failure or malicious activities.

An establishment of a session key is always required in order

to achieve a key recovery. A key recovery system derives the

encryption key from information stored in a secure back up

copy. Key escrow is a way to achieve key recovery. According

to this mechanism, information associated with the decryption

key is divided into several parts and these parts are distributed

and stored to trusted third parties (escrow agents). Thus, the

escrow agents are able to reconstruct the decryption key from

their stored parts at any time [4].

Key escrow systems – The Clipper key escrow system

A key escrow system provides encryption of user data using a

session key (Ks) which can be recovered by an authorized third

party under special circumstances. Thus, a third party, which

has monitored the encrypted user data with the session key, is

able to decrypt them. A very famous implementation of a key

escrow system was the Clipper key escrow system, which uses

the Clipper chip. This chip was developed and started to be

promoted by the U.S. government as an embedded encryption

device for voice communication systems in 1993. Clipper key

escrow system offers encryption of the user’s data as well as

capability of session key recovery (Ks). This system is based

on the fact that two key components, which can create an

encryption key, can be stored into two escrow agents

(authorized third parties) which are going to be part of the user

data recovery mechanism when a recovery request exists [4].

3 Proposed Group Key Agreement Protocol

First of all, we consider a group of N nodes. We suppose that

this group is a cluster created by applying any clustering

algorithm in an ad hoc network [3]. We consider that the

cluster-head (one of the N nodes) which is elected according

the applied clustering algorithm is our Checker. Furthermore,

we consider that the Checker and each node of this cluster are

connected with a smart card. Firstly, we employ our group

session key agreement protocol on the created cluster. Then,

our modified Clipper key escrow system can be employed for

key recovering at any time in our group (cluster). The Checker

is considered as the only key escrow agent in our system.

Furthermore we consider that each node has a unique identity

number, ID. Also, each node knows the secret master key (KM

), which is the stored key in the smart card, and the ID of the

Checker. In addition, each node has embedded a unique key (

KU).

In the first step, each node sends to the Checker a message that

includes its ID (id_node), the ID of the Checker (id_checker),

and an encrypted message with the master key KM , which is

derived from the concatenation of the ID of the node (id_node),

the ID of the Checker (id_checker) and a nonce (nonce_node)

generated randomly by each node (i.e. EKM (id _ node || id _

chec ker || nonce _ node)).

In the second step, the Checker decrypts the received

encrypted message from each node and obtains the ID of each

node. Then, the Checker compares it with the ID of each node

sent outside of the encrypted message in order to authenticate

each node. After that, the Checker sends to each node a

message that includes its ID (id_checker), the ID of the

corresponding node (id_node), and an encrypted message with

the master key KM , which is derived from the concatenation of

the ID of the Checker (id_checker), the ID of the

corresponding node (id_node), the nonce generated by the

corresponding node in the step one increased by one

(nonce_node+1) and a nonce (nonce_checker) generated by

Checker,

(i.e.EKM(id_checker||id_node||nonce_node+1||nonce_checker).

In the third step, each node decrypts the received encrypted

message from the Checker and obtains the ID of the Checker.

Then, each node compares it with the ID of the Checker sent

outside of the encrypted message in order to authenticate the

Checker. After that, each node sends to the Checker a message

that includes its ID (id_node), the ID of the Checker

(id_checker), and an encrypted message with the master key

KM , which is derived from the concatenation of the ID of the

node (id_node), the ID of the Checker (id_checker), the nonce

(nonce_checker) generated by the Checker increased by one

(nonce_checker+1) and the unique key of each node (i.e. EKM

(id _node||id _checker||nonce_checker+1|| KU_node)).

In the forth step, the Checker decrypts all the received

encrypted messages and obtains the unique keys of all nodes.

Thus, the Checker is able to create the family key (KF). The

family key is calculated in the Checker by the following

formula:

KF = KU _node1 ⊕ KU __ node2 ⊕ ... ⊕ KU __ nodeN−1 We note

that the family key (KF) is a key which contains key

contributions of each node apart from the Checker. Then, the

Checker broadcasts the family key (KF) to all nodes. In

particular, the Checker broadcasts a message which includes

its ID (id_checker), and an encrypted message with the master

key (KM), which is derived from the concatenation of the ID

of the Checker (id_checker), the family key (KF), a random

quantity (S_checker) generated by the Checker and another

random quantity (nonce1) generated by the Checker

(i.e. EKM (id _ chec ker || KF || S _ chec ker || nonce1)).

In the fifth step, each node decrypts the received encrypted

message from the Checker, obtains the random quantity

(S_checker) generated by the Checker, the random quantity

(nonce1) generated by the Checker and the family key (K F)

which was created by the Checker in the previous step. After

that, each node constructs a session key (Ki) with the

following XOR function:

Ki = KF ⊕ S _ chec ker

Then, each node sends to the Checker a message that includes

its ID (id_node), the ID of the Checker (id_checker), and the

hash value produced by the hash function H of a message

derived from the concatenation of the ID of the Checker

(id_checker), the random quantity (nonce1) generated by the

Checker in the forth step increased by one (nonce1+1) and the

calculated session key (Ki)

(i.e. H (id _ chec ker || nonce1+1|| Ki)).

In the sixth step, the Checker compares the hash values that it

received from each node. If the Checker finds that all the

received hash values are the same

(Ks =K1 =K2 = ... =KN−1), it means that each node has

generated the same session key (K). Then, the Checker

notifies all nodes that the session key has been established

successfully. Thus, the Checker sends to each node a message

that includes its ID (id_checker), and an encrypted message

with the master key (KM), which is derived from the

concatenation of the ID of the Checker (id_checker) and an

number (ack_code) which is known to the nodes a priori and

means that the session key has been established successfully

(i.e. EKM (id _ checker || ack _ code)).

Thus, the group session key agreement protocol flow is the

following:

Fig. 1. The proposed group session key agreement protocol

flow

4 Modified Clipper Key Escrow System

When the group session key agreement protocol is

accomplished, each node has obtained the two critical keys

which are going to be used for the creation of its modified

LEAFs. These two critical keys are the family key (KF) and

the session key (Ki) of each node which is the group session

key (Ks = Ki) as all nodes have created the same session key

according to the sixth step of group session key agreement

protocol. Our modified key escrow system consists of the

following processes:

Process 1

First of all, the modified LEAF is created. The modified LEAF

is a data block which contains the ID of the node, the encrypted

session key with the unique key of each node

(EKU_node (Ks)), a hash value (hash_value) and a timestamp.

The hash value (hash_value) is created by the hash function H

of a message derived from the concatenation of the session key

(KS) and a random value.

Then, the LEAF block is encrypted with the family key (KF)

(i.e. EKF (id_node|| EKU_node(KS)||hash_value||timestam)p). After

that, the node sends its ID and the LEAF block to the Checker.

The Checker stores the received LEAF in a file according to

the ID of the node that sent it. Thus, the Checker stores the

LEAFs of each node.

Process 2

In case that a node wants to recover the session key, it needs to

send a recovery request message to the Checker. Thus, the

node sends to the Checker a recovery request message that

includes its ID (id_node), and an encrypted message with the

master key KM , which is derived from the concatenation of the

ID of the node (id_node) and the recovery code (rec_code) (i.e.

EKM (id _ node || rec _ code)).

Process 3

When the Checker receives the recovery request message, it

decrypts the received encrypted message and obtains the ID of

the node and the recovery code. Then, the Checker compares

the obtained ID with the ID of the node sent outside of the

encrypted message in order to authenticate the node. After that,

the Checker recognizes the recovery code and restores the

LEAF that corresponds to the node that sent the recovery

request message. Then, the Checker decrypts the restored

LEAF with the family key (KF), which is common for the

Checker and all nodes according to the group session key

protocol, and obtains the encrypted session key with the unique

key of the node (EKU_node (Ks)). Then, the Checker sends to the

node a message that includes its ID (id_checker) and an

encrypted message with the master key KM , which is derived

from the concatenation of the ID of the Checker (id_checker)

and the encrypted session key with the unique key of the node

(EKU_node)(Ks)

(i.e. EKM (id _ chec ker || EKU_node (Ks))).

Process 4

The node that sent the recovery request message, receives the

response message of the Checker, decrypts the received

encrypted message and obtains the ID of the Checker as well

as the encrypted session key with its unique key (EKU_node (Ks)

).Then, the node compares the obtained ID with the ID of the

Checker sent outside of the encrypted message in order to

authenticate the Checker. After that, the node decrypts the

quantity (EKU_node)(Ks) with its unique key in order to obtain the

session key (KS).

5 Experimental Results

For the implementation, we considered that our group consists

of three nodes and each node is connected with a smart card.

One of them is the Checker. Thus, the simulation environment

consists of the Checker, the Node1 and the Node2. For the

communication between the Checker and Node1 and for the

communication between the Checker and Node2 we used the

client/server model. Furthermore, all required cryptographic

functions (encryption, decryption, hashing), were executed by

the Cryptoflex Smart Card. There are three types of

encryption: encryption with the master key, encryption with

the family key and encryption with the unique key of each

node.

The master key is a DES key stored in the smart card. In case

that one of the three applications needs to make encryption

with the master key, then the application gets connection with

the smart card, sends the data for encryption to it and the smart

card encrypts these data with the stored DES key. Then, the

smart card returns the encrypted data back to the application.

The family key is created during the group key agreement

protocol. Now, the encryption with the family key includes two

steps. In the first step, the application, which wants to make

encryption with the family key, gets connection with the smart

card, sends the data for encryption to it and the smart card

encrypts these data with the stored DES key. Then, the smart

card returns the encrypted data back to the application. In the

second step, the application is XORing the returned encrypted

data with the family key.

Each node has embedded a unique key. The encryption with

the unique key of a node includes two steps too. In the first

step, the application, which wants to make encryption with the

unique key, gets connection with the smart card, sends the data

for encryption to it and the smart card encrypts these data with

the stored DES key. Then, the smart card returns the encrypted

data back to the application. In the second step, the application

is XORing the returned encrypted data with the unique key.

Furthermore, for each of the above encryption type there is the

corresponding decryption type: decryption with the master

key, decryption with the family key and decryption with the

unique key of each node. Thus, in case that one of the three

applications needs to decrypt encrypted data with the master

key, then the application gets connection with the smart card,

sends the encrypted data for decryption to it and the smart card

decrypts these data with the stored DES key. Then, the smart

card returns the decrypted data back to the application.

In case that one application needs to decrypt encrypted data

with the family key, then two steps are required. In the first

step, the application is XORing the encrypted data with the

family key. In the second step, the application gets connection

with the smart card, sends the data which is the result of XOR

for decryption to the smart card and the smart card decrypts

these data with the stored DES key. Then, the smart card

returns the decrypted data back to the application.

In case that one application needs to decrypt encrypted data

with the unique key of a node, then two steps are required. In

the first step, the application is XORing the encrypted data

with the unique key. In the second step, the application gets

connection with the smart card, sends the data which is the

result of XOR for decryption to the smart card and the smart

card decrypts these data with the stored DES key. Then, the

smart card returns the decrypted data back to the application.

Regarding hashing, in case that one application needs to

calculate the hash value of an amount of data, then the

application gets connection with the smart card, sends the data

to it and the smart card calculates the corresponding hash

value.

We measured that the proposed group session key agreement

protocol requires 21 seconds until to be accomplished. In other

words, Node1 should wait 21 sec until to receive the ack_code

in step 6. Furthermore, we calculated that Node1 should wait

4 sec until to recover the session key. This is the required time

from the moment that Node1 sends the rec_code in process 2

until to achieve the recovery.

6 Conclusion

Ad hoc networks suffer from lack of reliable security

mechanisms due to their inherent characteristics. In this paper,

we proposed an efficient group key agreement and recovery

mechanism. Our mechanism performs better than other

protocols [5] at the key agreement and recovery phase.

References

[1] M. Bechler, H.-J. Hof, D. Kraft, F. Pählke, L. Wolf, “A

Cluster-Based Security Architecture for Ad Hoc

Networks”,

IEEE INFOCOM 2004

[2] Kai Inkinen, “New Secure Routing in Ad Hoc Networks:

Study and Evaluation of Proposed Schemes”, HUT T-

110.551

Seminar on Internetworking, Sjökulla, 2004-04-26/27

[3] Kadri, A. M’hamed, M. Feham, “Secured Clustering

Algorithm for Mobile Ad Hoc Networks”, IJCSNS

International Journal of Computer Science and Network

Security, volume 7 No.3, March 2007

[4] Menezes A., Oorschot van P. and Vanstone S., 1996,

Handbook of Applied Cryptography, CRC Press

[5] Bing Wu, Jie Wu and Mihaela Cardei, “A Survey of Key

Management in Mobile Ad Hoc Networks”, HANDBOOK

OF RESEARCH ON WIRELESS SECURITY, Y. Zhang, J.

Zheng, and M. Ma

