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Abstract: In this paper, we investigate the cavitation-induced erosion and breakdown mechanism of free-

floating Al3Zr crystals exposed to ultrasonic vibrations in water at different exposure times using in-situ 

high-speed imaging technique and scanning electron microscopy (SEM). The post-mortem 

microstructural examination of the damaged crystals shows that the micron-sized hierarchical crack 

network structure is initially formed in the outer layer of the crystals. Subsequently, the cracked surface 

undergoes delamination with subsequent layer-by-layer breakdown into micro-fragments in the range of 

5-50 μm. This process is accelerated every time the fragment is dragged into the cavitation zone by the 

recirculating acoustic flow conditions. 
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1. Introduction 

Grain refinement during solidification of Al-alloy melts can be achieved either using chemical 

inoculation by adding refiners or through dynamic nucleation and multiplication of grains when subjected 

to an external processing field [1]. The inoculation approach is usually influenced by the formation of a 

constitutional supercooling zone and the selection of a nucleant [2]. On the other hand, dynamic nucleation 

and multiplication of solid phases primarily depends on the type of external field applied, i.e. mechanical, 

electromagnetic or ultrasonic vibration [3–5]. As the chemical inoculation brings along additional solutes 

and/or impurities, the application of external fields is a more appropriate choice for high-purity Al cast 

alloys.  

Structure refinement using ultrasonic cavitation melt treatment (UST) has gained popularity in casting 

technology owing to its simple, effective and eco-friendly response during solidification process [6]. The 

mechanism of grain refinement by ultrasonic processing operate through either cavitation-induced 

dendritic/crystal fragmentation [3] or cavitation-assisted heterogeneous nucleation [7] through wetting and 

activation of inclusions [8]. Fragmentation of primary intermetallic crystals has been identified as the most 

promising method of producing microstructural refinement in Al-based alloys during controlled UST [6,9]. 

However, understanding the interaction dynamics of cavitation bubbles, ultrasound induced acoustic flow 

and solidifying intermetallic phases especially at the liquid–solid (L-S) interface in real alloy melts becomes 

complex, not least owing to real-time observational difficulties caused by the opaqueness of molten metals. 

Lately, studies related to observations of such highly dynamic phenomena have used water [6,10] and other 

transparent organic melts [11] to replicate the liquid metal behaviour and monitor the dynamic interaction 

of bubbles with solid phases.  
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In the present work, experiments were conducted, to study the cavitation erosion mechanism of free-

floating primary Al3Zr intermetallic in de-ionised water upon exposure to high power ultrasound for 

different treatment durations. The micro-fragmentation behaviour of the crystal was  elucidated by means 

of high-speed imaging and post-mortem SEM observations. The results revealed that ultrasonic treatment 

of floating crystals lead to severe erosion and breakdown into small size fragments that can act as 

favourable sites facilitating heterogeneous nucleation and promoting microstructural refinement in real 

alloy melts. 

2. Materials and Methods 

Primary Al3Zr crystals were initially extracted from an Al-3 wt% Zr alloy using the process described 

in Priyadarshi et al. [10]. Single crystals with dimensions in the range of 4.5 ± 1 mm × 3.3 ± 1 mm × 0.06 ± 

0.01 mm were then exposed to ultrasonic irradiation using a transducer (UP200S, Hielscher Ultrasonics) 

operating at a frequency of 24 kHz in a transparent vessel of size 25 mm × 10 mm × 45 mm (L×W×H) 

containing 4 ml of de-ionised water. The ultrasound was supplied using a titanium built sonotrode (Ø = 3 

mm) submerged 10 mm below the liquid surface under ambient conditions. The in-situ fragmentation of 

an extracted crystal as mentioned above was captured in real-time using a high-speed camera (Photron SA-

Z Fast Cam) in-combination with a Navitar 12x adapter lens providing a focussed view of intermetallic 

disintegration at a working distance of 165 mm. The imaging was carried out at an optimum frame rate of 

3000 frames per second (fps) to record the whole sequence of events at resolution of 640× 512 pixels, under 

a visible light background illumination supplied by a GS Vitec Multi LED flash lamp. Figure 1 shows the 

high speed imaging setup used for capturing the crystal breakdown under the ultrasonic horn. The 

acoustically induced crystal break-up sequence was repeated with at least five such separate single crystals 

to check the consistency of results.  

Further, post-mortem microscopic analysis of the fragmented crystals obtained after ultrasonic 

treatment for 3 s, 6 s, and 9 s was conducted using SEM. After each treatment duration, the fragmented 

crystals were separated from the sonicated liquid using a 2.5 μm filter paper. The crystal fragments were 

then dried in ambient air and preserved for SEM examination.   

 

 

Figure 1. Schematic representation of an in-situ high-speed imaging experimental setup. 
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3. Results and discussion 

3.1. Observation of crystal fragmentation 

Figure 2 shows the fragmentation sequence of a free-floating crystal obtained using in-situ imaging. Figure 

2a shows a free-floating single intermetallic crystal with dimension as given in section 2 at t = 0 ms. The 

introduction of ultrasonic waves into the liquid drives the crystal towards the vibrating source as shown 

in Figure 2b due to developed recirculating acoustic flow [12]. As soon as the crystal enters the cavitation 

zone, it seemingly instantaneously breaks into several small pieces and the fragments are pushed away 

into the bulk liquid by acoustic streaming (Figure 2c). Acoustic streaming then causes the fragments to 

recirculate along the marked route as illustrated in Figure 2d. For instance, the fragmented crystal encircled 

in the black dotted circle can be seen moving back into the intense cavitation zone near the sonotrode in 

the next frame (Figure 2e). Some of the broken crystals subsequently re-fragment when coming in close 

proximity of the vibrating probe, where the emitted shock waves are strongest thus causing the fragments 

to recirculate in a repetitive pattern. The recirculating path varies depending on the momentum acquired 

by the fragmented crystals (marked in Figure 2f) from the ultrasonic source as shown in Figure 2g. This 

process then keeps on repeating and the crystal continues to disintegrate via layer-by layer erosion and 

fragmentation as will be discussed in section 3.2. It is evident from these observations that acoustic 

streaming is the driver inducing the localised flow causing the crystal that to feed back into the cavitation 

zone expediting the treatment process. In a real Al melt environment, assuming the acoustic streaming 

patterns resemble those of the water experiment [6], it is expected that breakdown of these floating primary 

crystals will be much faster owing to the strong dynamic behaviour of cavitation environment, about 4 

times more intense than in water [13], and the aggressiveness of the cavitating field [14,15]. On the other 

hand, the higher density of the liquid Al will prevent rapid sedimentation of intermetallics and may further 

facilitate the fragmentation. However, this reasoning is based on preliminary results and is the subject of 

further research. It has been shown that these crystal fragments will then act as a heterogeneous nucleating 

sites for Al dendrites ultimately inducing grain refinement in the solidified metallic alloy as will be 

discussed in the next section [16].  

 

Figure 2. Series of in-situ high-speed images (3000 fps) of ultrasonically induced free-floating crystal breakdown. 

3.2. SEM examination of disintegrated primary crystals 

Figure 3 shows the morphology of the fragmented intermetallic particles after exposure to the ultrasonic 

cavitating environment for 3 s, 6 s and 9 s. As shown by our previous research, fragmentation is a result of 

multiple interactions of shock waves [10] and liquid jets [17] caused by the collapsing bubbles. After 3 s of 
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treatment, the crystal surface starts to delaminate along the formed crack network structure with crack 

sizes ranging from 10 to 100 μm as shown in Figure 3a (marked with arrows). It is interesting to note that 

these fragmented particles show the formation of micron sized crack network along the edges of pre-

existing micro crack present on the uppermost layer of the crystal as shown in Figure 3b. Additionally, the 

fragmented crystals also exhibit various small round shaped blisters projecting out of the surface as evident 

in Figure 3c. After 6 s, the fragmented crystal undergoes severe cavitation erosion of its upper layer with 

relatively finer crack network spreading across the whole surface resembling the profile of cracked dried 

land (Figure 3d). In addition, delamination of the upper layer at specific regions along the surface can be 

clearly seen in Figure 3e. Furthermore, there is decrease in the density of formed upper layer projections as 

the majority erode away revealing a crater underneath (Figure 3f). With further increase in the ultrasound 

exposure i.e. to 9 sec, the crack network becomes even more dense and finer with grid sizes going down to 

1-10 μm (Figure 3g). There are almost no visible projections with longer treatment times since the majority 

must have eroded from the upper layer exposing a large part of the layer beneath (Figure 3h). The top layer 

is then completely chipped off exposing the layer underneath for further breakdown and disintegration 

(Figure 3i). As observed from Figure 3, it is obvious that fragmentation of crystal is expedited as exposure 

time increases. Longer treatment times cause the intermetallic crystal to disintegrate into numerous small 

fragments in the range of a few microns ideal for promotingheterogeneous nucleation substrates in a real 

melt [6].  

 

Figure 3. SEM images of fragmented crystal after exposure to ultrasonic cavitation for 3 s (a,b,c), 6 s (d,e,f), and 9 s 

(g,h,i). 

4. Conclusions 

Cavitation erosion behaviour of a freely floating single Al3Zr crystal was qualitatively discussed based on 

the microstructural examination of the fragmented crystals exposed to different treatment times and in-

situ imaging of the entire crystal disintegration dynamics. Exposure to ultrasound first leads to generation 

of a micron sized hierarchal crack network followed by delamination and fracture in a layer-by-layer 

manner. Chipped off and protruding fragments are of the size preferable for heterogeneous nucleation in 

real melts.  



CAV2021 
11th International Symposium on Cavitation 

May 10-13, 2021, Daejon, Korea 
 

* Corresponding Author: Abhinav Priyadarshi, abhinav.priyadarshi-2018@brookes.ac.uk 

Acknowledgments: This research work has been funded by the UK Engineering and Physical Sciences Research 

Council (EPSRC) under the project UltraMelt2 (grant EP/R011001/1, EP/R011095/1 and EP/R011044/1). 

References 

1.  Ramirez A, Qian M, Davis B, Wilks T, StJohn DH. Potency of high-intensity ultrasonic treatment for grain 

refinement of magnesium alloys. Scr Mater. 2008, 59(1),19–22.  

2.  Stjohn DH, Qian M, Easton MA, Cao P. The Interdependence Theory: The relationship between grain 

formation and nucleant selection. Acta Mater. 2011,59(12),4907–21.  

3.  Eskin GI, Eskin DG. Production of natural and synthesized aluminum-based composite materials with the aid 

of ultrasonic (cavitation) treatment of the melt. Ultrason Sonochem. 2003,10(4–5),297–301.  

4.  Taghavi F, Saghafian H, Kharrazi YHK. Study on the ability of mechanical vibration for the production of 

thixotropic microstructure in A356 aluminum alloy. Mater Des. 2009,30(1),115–21.  

5.  Metan V, Eigenfeld K, Räbiger D, Leonhardt M, Eckert S. Grain size control in Al-Si alloys by grain refinement 

and electromagnetic stirring. J Alloys Compd. 2009,487(1–2),163–72.  

6.  Eskin DG, Tzanakis I, Wang F, Lebon GSB, Subroto T, Pericleous K, et al. Fundamental studies of ultrasonic 

melt processing. Ultrason Sonochem. 2019,52,455–67.  

7.  Qian M, Ramirez A, Das A, Stjohn DH. The effect of solute on ultrasonic grain refinement of magnesium 

alloys. J Cryst Growth. 2010,312(15),2267–72.  

8.  Tzanakis I, Xu WW, Eskin DG, Lee PD, Kotsovinos N. In situ observation and analysis of ultrasonic capillary 

effect in molten aluminium. Ultrason Sonochem. 2015,27,72–80.  

9.  Wang F, Eskin D, Mi J, Wang C, Koe B, King A, et al. A synchrotron X-radiography study of the fragmentation 

and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing., 

Acta Materialia. 2017, Vol. 141,142–53.  

10.  Priyadarshi A, Khavari M, Subroto T, Conte M, Prentice P, Pericleous K, et al. On the governing fragmentation 

mechanism of primary intermetallics by induced cavitation. Ultrason Sonochem. 2021,70,105260-75.  

11.  Swallowe GM, Field JE, Rees CS, Duckworth A. A photographic study of the effect of ultrasound on 

solidification. Acta Metall. 1989,37(3),961–7.  

12.  Lebon GSB, Tzanakis I, Pericleous K, Eskin D, Grant PS. Ultrasonic liquid metal processing: The essential role 

of cavitation bubbles in controlling acoustic streaming. Ultrason Sonochem. 2019,55,243–55.  

13.  Tzanakis I, Lebon GSB, Eskin DG, Pericleous K. Comparison of cavitation intensity in water and in molten 

aluminium using a high-temperature cavitometer. J Phys Conf Ser. 2015,656(1).  

14.  Tzanakis I, Lebon GSB, Eskin DG, Pericleous KA. Characterisation of the ultrasonic acoustic spectrum and 

pressure field in aluminium melt with an advanced cavitometer. J Mater Process Technol. 2016,229,582–6.  

15. Lebon GSB, Tzanakis I, Pericleous K, Eskin D. Experimental and numerical investigation of acoustic pressures 

in different liquids. Ultrasonics Sonochemistry. Vol. 42, 2018,411–21.  

16.  Atamanenko TV, Eskin DG, Zhang L, Katgerman L. Criteria of Grain Refinement Induced by Ultrasonic Melt 

Treatment of Aluminum Alloys Containing Zr and Ti. Metall Mater Trans A [Internet]. 2010,41(8),2056–66. 

17.  Wang F, Tzanakis I, Eskin D, Mi J, Connolley T. In situ observation of ultrasonic cavitation-induced 

fragmentation of the primary crystals formed in Al alloys. Ultrason Sonochem. 2017,39,66–76. 

 


