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Abstract: High-throughput sequencing (HTS) technologies have become indispensable tools assisting
plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample
without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis
of the huge amount of generated sequences, it is of utmost importance that researchers can rely
on efficient and reliable bioinformatic tools and can understand the principles, advantages, and
disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as
employed for plant virus detection and virome characterization. We start from sample preparation
and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic
data analysis requirements, an extensive overview of the in-depth data processing options, and
taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a
detailed overview of the consecutive steps that can be used to implement a well-structured HTS data
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analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists
engaging in HTS plant virome projects.

Keywords: plant virus; high-throughput sequencing; bioinformatics; detection; discovery

1. Introduction

High-throughput sequencing (HTS) technologies have become an integral part of
research and diagnostics toolbox in life sciences, including phytopathology and plant
virology [1]. HTS enables the untargeted acquisition of extremely large amounts of se-
quence data from diverse sample types and thus represents an ideal and unique solution
for the generic detection of highly diverse viruses. In the past decade, sequencing prices
have significantly decreased, and the technology has become accessible to many more
research and diagnostic labs. From the first uses of HTS for detection of plant viruses in
2009 [2–5], the use of this technology for detection of known and new plant viruses and the
characterization of viromes in different plant species has intensified dramatically. Many
different bioinformatics tools have been developed and different pipelines have been used
to detect and identify plant viruses represented in HTS datasets. The variation in results
associated with the use of different pipelines in different labs has highlighted the signif-
icance of understanding different approaches [6]. Arguably, one of the main challenges
for less experienced users of HTS is to understand, select, and properly use tools for the
analysis of HTS data intended for detection and identification of plant virus sequences. In
this review, we aim to present the different and often complementary approaches used for
analysis of HTS data for the detection of plant viruses. We provide a short introduction to
the laboratory work required and then describe the possible steps in data processing for the
detection of plant viruses, including quality control and trimming of the sequences, de novo
assembly, sequence similarity searches, and taxonomic classification of the identified viral
sequences. By including a short glossary (Figure 1), checklists, and comparison tables, we
aim to present the topic to the widest possible audience and thus encourage the use of HTS
technologies by researchers with limited experience in the field.
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Figure 1. Glossary of terms commonly used in bioinformatics analysis of high-throughput sequencing (HTS) data for plant 
virus detection. 
Figure 1. Glossary of terms commonly used in bioinformatics analysis of high-throughput sequencing (HTS) data for plant
virus detection.
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2. What Should I Anticipate and How Should I Prepare?

Modern sequencing platforms can generate massive amounts of data, and not all
laboratories wishing to use HTS in their projects have the necessary infrastructure and
bioinformatics expertise, which, for example, is one of the main challenges identified for the
adoption of these technologies in diagnostic laboratories [7]. The cost of the bioinformatics
analysis in a HTS project was estimated to be around 15% of the total cost of a program (an
example for whole genome analysis in cancer research), and it includes the salary of the
bioinformatician and cost of data storage [8].

Some commercial sequence analysis software is able to handle HTS data (see Section 4.3.8),
with dedicated modules for common operations (e.g., mapping and assembly). These
software solutions are usually easy to use, regardless of the user’s bioinformatics skill,
but they are also quite expensive and might be limited for some analyses (specific ap-
plications). Furthermore, some “all in 1” viral-detection focused pipelines are available
(see Section 4.3.8), which require only limited bioinformatics knowledge or only the help
of a skilled computer scientist at the installation stage.

However, for in-depth analysis of plant virus sequence data that goes beyond detection
and species classification, the use of dedicated bioinformatics software, without an easy-to-
use graphical user interface, is often needed to optimize time and efforts. These programs
have in a large part been developed and optimized for the Linux platform; they can be
used in the command line only and so require specific computing skills. Considering
the number of steps with the average HTS analysis pipeline and the number of samples
studied, automation quickly becomes a priority. This can be achieved by writing scripts as
well as grouping and ordering all the steps of the analysis, which also require expertise in
programing languages (e.g., shell, Python, R). Finally, for the interpretation of the analysis
results, skills beyond pure bioinformatics are needed. A close collaboration between a
bioinformatician and a plant virologist (or a plant virologist trained in bioinformatics) is
needed to achieve a meaningful interpretation of the results.

Beyond the skills of users, IT resources must also be addressed. The amount of data
generated by each project must be anticipated in order to have raw data storage space
available beforehand and to ensure that data is safely stored at least for several years after
the end of projects. Depending on the sequencing platform, the total size of the raw data
can become very large. For example, the Illumina NextSeq platform can generate from
120 to ≈300 Gbases (Gb) per run, leading to file sizes varying between 39 and 170 Gb
depending on the read length. A stable and fast internet connection is often needed to
facilitate the efficient transfer of large data files. The computing resources also need to
be anticipated. For time-efficient analysis, it is often necessary to have a more powerful
machine than an average workstation to run the various parts of pipelines, regardless of
the software used. An alternative to the acquisition of a powerful computer is making
use of online bioinformatics platforms and cloud computing solutions. These platforms
generally have a structure adapted to the use of software making high demands on system
resources (e.g., computing clusters). Many research centers or universities host a Galaxy
instance, which represents a very good alternative to the Linux platforms, in a more “user
friendly” interface.

3. Starting the Project: How Do I Prepare Samples and Sequence Nucleic Acids?

Sampling, nucleic acids extraction, viral enrichment, and sequencing library prepara-
tion are essential steps before HTS itself. Since these steps can influence the sequencing
results, we briefly summarize here the most important considerations for some of these
processes. An extensive description of how to control all of these steps is in prepara-
tion in forthcoming international guidelines for the use of HTS tests for the diagnostic
of plant pests [9]. After obtaining the nucleic acids suitable for further analysis using
HTS, the approximate amount of sequence data required per each sample should be esti-
mated according to the goals of the study. If an external sequencing provider will perform
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HTS, this number, together with some general characteristics of the samples, should be
communicated with the provider.

3.1. Input Material and Nucleic Acids Preparation

The extraction step separates the nucleic acids (including viral nucleic acids) from
other cellular components. There are many methods that can be used to obtain high-quality
nucleic acids intended for HTS [10–13]. The efficiency of an extraction method is evaluated
by the quantity of nucleic acids obtained, their integrity, and the absence of contaminants
that inhibit the enzymatic activities involved in the preparation of sequencing libraries.
Irrespective of the chosen nucleic acid extraction procedure and library preparation method-
ology, it is recommended to collect several samples per plant or that tissue from distributed
locations on a plant is combined into a single sample to overcome the uneven distribution
of viruses, especially in the case of low titer viruses. Different types of nucleic acids can be
used as inputs for HTS, which can be combined with different viral enrichment methods.
No method is universal [11,14]; each favors certain viral families or certain experimental
objectives [15]. For example, total RNA or small RNA sequencing might be most straight-
forward and universal to use for single samples. On the other hand, for sequencing of
pools of many samples, or to optimize the detection of viruses with a low titer, methods
that allow the enrichment of viral nucleic acids such as Virion-Associated Nucleic Acids
extraction (VANA) or the purification of double-stranded RNA might be preferred. The
choice for one of the approaches should be based on the research question and study design.
The purpose of the following sections is to help make the most appropriate choices for
sample preparation.

3.1.1. Total RNA/DNA

Extraction of total RNA and/or, to a lesser extent, DNA is a widely used approach
for HTS analysis of plant tissues infected with viruses. Simple and robust, the method
can be carried out according to several standard extraction protocols in solid phase or
in liquid phase or using commercial kits (mostly based on silica-membrane or magnetic
bead purification). The extraction and sequencing of total DNA can be sometimes used
specifically for the detection of DNA viruses, while sequencing of total RNA is a very
generic approach and can be used for detection of all types of DNA and RNA viruses and
viroids [15]. The high abundance of nucleic acids from the host plant co-extracted with
viral nucleic acids can greatly limit the sequencing sensitivity. The relative proportion
of viral sequences in the total extracted RNA can be increased by the depletion of the
plant ribosomal RNA [16,17] and the proportion of sequences of circular DNA viruses in
extracted DNA can be enriched by rolling circle amplification [18–20].

3.1.2. Small RNA (sRNA)

The plant immune system responds to the presence of viruses by activating a defense
response that leads to the cleavage of double-stranded forms of viral RNA into small RNAs
(sRNA) of 21 and 22 nucleotides (nt) as well as, more marginally, of 24 nt [21]. The analysis
of sRNAs facilitates the reconstruction of the complete genomes of infecting RNA and
DNA viruses or viroids, as well as those of integrated endogenous viral elements (EVEs) if
they are transcribed [2,15,22,23]. Since sRNAs are more stable than longer RNA molecules,
the method is promising for use in old or even ancient plant samples [24], and since only
very short reads are needed to sequence sRNAs, the method is relatively cost efficient.
On the other hand, de novo assembly from short sequences might not work very well for
targets present at a very low titer [15] and might lead to chimeric sequences in case of
multiple infections with different virus strains [25]. For the same reason, pooled samples
used in metagenomic studies including a large number of plants are not recommended to
be analyzed with sRNA sequencing. Due to their short lengths, analyses of recombination
events on a read level are also not feasible with sRNA [22].
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3.1.3. Virion-Associated Nucleic Acids (VANA)

The extraction of Virion-Associated Nucleic Acids (VANA) enriches the samples in nu-
cleic acids of viral origin by semi-purifying the viral particles by ultracentrifugation. Viral
particles are separated from most of the organelles and plant debris by one or two differen-
tial ultracentrifugation cycles depending on the viral family and the plant material. After
purification of the particles and a nuclease treatment to degrade non-protected nucleic acids,
the viral nucleic acids are extracted according to a standard extraction protocol also used for
the extraction of total RNA/DNA. Initially developed for the biochemical characterization
of viral particles in the 1970s, VANA was used in pioneering studies of prospecting for
viral diversity in wild asymptomatic plants before the advent of HTS [26,27]. Then, the
approach was extended to the preparation of nucleic acids intended for HTS [28,29]. It
achieves balanced enrichment in high-quality viral RNA and DNA and allows the use of
up to several hundred grams of starting material. However, it is based on the stability
of the viral particles mainly determined by the pH and the concentration of salts in the
extraction buffer. Unsuitable for high throughput, and relying on numerous laboratory
operations, the approach only identifies the encapsidated viral nucleic acids as well as
the viruses of the Endornaviridae family, which are devoid of capsids but encapsulated in
membranous vesicles [28,30]. Moreover, certain viral families are difficult to purify, and
VANA is also not the method of choice for the extraction of viruses from plants with high
content of phenolic and polysaccharide compounds [31].

3.1.4. Double-Stranded RNA

The majority of plant viruses have RNA genomes, accounting for 75% of the total
number of viruses reported [32]. While plants do not produce large quantities of double-
stranded (ds)RNAs, RNA viruses generate high molecular weight dsRNA structures during
replication, so their enrichment is a popular strategy used for virus diagnostics [10,13,33,34].
The extraction of dsRNA purifies nucleic acids from double-stranded RNA viruses but also
from most single-stranded RNA viruses, viroids as well as from some DNA viruses [35–38].
This approach allows the detection of a very wide range of RNA virus species [30,39].
Sequencing of dsRNA is likely not the most effective method for the detection of negative
sense single-stranded RNA viruses [37]. It is also a laborious approach, even if a number
of modified protocols have been developed to overcome this limitation [13,34,40–42].

3.2. Library Preparation and Sequencing

Following nucleic acid extraction, different methods have been developed for library
preparation using commercially available kits and automated systems. As inputs, the
extracted and possibly virus-enriched nucleic acids described in the previous sections
can be used. The type of the library preparation and exact protocol is dependent on
the input nucleic acids (e.g., total RNA or DNA, sRNA, dsRNA). Specific libraries are
prepared for different HTS platforms. The library preparation step usually consists of
fragmenting the nucleic acids and the ligation of short oligonucleotides (adaptors) at one
or both extremities of the fragments in order to allow the sequencing. There are two main
groups of HTS platforms: (i) short read HTS (also termed next-generation sequencing—
NGS), producing reads up to several hundred nucleotides, and (ii) long read HTS (also
termed single molecule sequencing—SMS), producing reads up to hundreds of kilobases
(kb). Currently, the most commonly used sequencing platform is Illumina (short read HTS),
and, for long read HTS, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies.
Nanopore sequencing is rapidly developing and is expected to be more widely used in the
future [43]. Most of the available protocols recommend assessing the quality and quantity
of the nucleic acids before library preparation. The integrity and purity of the nucleic
acids can be assessed using spectrophotometric and fluorescence-based assays. For some
enrichment approaches (e.g., VANA, dsRNA extraction), the concentrations of the obtained
nucleic acids can be below the input required for library preparation so that a random
amplification step may be required prior to library construction [13].
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Several samples can be pooled and sequenced in the same sequencing run (mul-
tiplexing). In this case, the oligonucleotides ligated to the nucleic acids during library
preparation also include unique barcode sequences that are specific for each sample. After
sequencing, the reads are allocated to the appropriate sample according to the barcode
used. Most commonly, the raw sequencing read data output is converted to a fastq file
format. The fastq files represent an input for the bioinformatics analysis described in the
following paragraphs.

Important consideration, when preparing samples for sequencing, is also, how many
samples to pool in the same sequencing run/lane, i.e., how many reads (or nucleotides) are
needed for the sensitive detection of different possible viruses in the plant sample. The
answer is not straightforward, and it might depend on the sequencing approach, type of
the matrix (host plant species, different parts of the plant), present virus(es), and other
variables [15,17,38], such as, e.g., season, but also the sensitivity of the bioinformatics
pipeline used (e.g., reads vs. contigs analysis) [6]. Some starting general recommendations
regarding this problem are given in this primer; however, these need to be adjusted after
performing a pilot study on a specific system, considering employed sample preparation,
sequencing, and analysis approach.

3.3. Contamination

Contamination is common in all sensitive molecular diagnostic methods and has been
reported in HTS diagnostics [44,45]. Contamination has been shown to enter sequencing
systems in diverse ways, from sample cross-contamination [46] to external contamina-
tion of consumables [47]. Whilst some of the most commonly used HTS platforms from
Illumina were subjected to significant hardware and procedural changes as a result of
within-instrument DNA carry over, contamination can still be a significant issue in sensi-
tive molecular diagnostics applications. The fundamentals of contamination control for
diagnostics remain consistent. Key to achieving this is the separation of procedures into dif-
ferent locations, operating a one-way system (from clean reagents to DNA samples) within
those locations and using negative controls at various stages to identify contamination.
Sample-to-sample and reagent contamination are common in any molecular technique.
Physically separating steps involving samples, purified DNA, and clean reagents is the best
approach to preserve the integrity of future experiments. Known healthy control samples
(not blanks), included from NA-extraction through to sequencing should be included
in each run to identify incidences of contamination but are frequently excluded due to
cost constraints.

4. How Do I Analyze the Data?

Figure 2 outlines typical steps that can be followed once the fastq file has been obtained.
The first is a quality control (QC) check. This is followed by pre-processing steps, including
trimming low-quality bases, removing adapter sequences, and discarding very short and
low-quality reads, followed by further QC filtering (Section 4.1). Then, reads passing QC
are ready for analysis either directly or after assembly into contigs (Section 4.2). Reads
or contigs can optionally be mapped to a host reference genome, and, in this way, host
sequences can be removed (Section 4.3.3). Then, reads or contigs are used to query a
database of known viral sequences or motifs (Sections 4.3.2–4.3.5). Results need to be
carefully inspected for correct taxonomic classification (Section 4.3.7). The described steps
can be performed using the tools indicated in the flow chart (Figure 2) or other available
tools. Finally, the same analyses can also be performed using user-friendly free software
with graphical user interfaces (GUI) available online or using commercial software as
described in Section 4.3.8.
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steps. As an example, a non-exhaustive list of possible analysis tools is added in the square brackets at each of the analysis
steps. Tools designated with * are intended for use with long-read or, specifically, nanopore sequencing data. Pointing
hands lead to the text sections (or figures) with more detailed description of the corresponding steps.

4.1. Demultiplexing, Quality Control, and Trimming

Each sequencing platform produces a series of quality metrics associated with the
data produced from each sequencing run. A discussion of the metrics with the sequencing
data provider is important before accepting any sequencing data.

If the run was successful, the first step is the demultiplexing of barcoded samples,
which is usually carried out using the sequencing platform software or performed by the
sequencing data provider. In the event that data has not been demultiplexed, third-party
tools such as Cutadapt [48] can be used to demultiplex the Illumina data by looking for
specific barcode sequences present in the samples. Alternatively, demultiplexing tools
developed by the sequencing platform provider are frequently accessible as stand-alone
tools, such as Illumina’s bcl2fastq software [49], or Oxford Nanopore Technologies’ guppy
scripts [50].

Barcode misassignments, also termed index hopping/cross-talk/bleeding, can occur
due to the technical reasons during each sequencing run and result into erroneous assign-



Microorganisms 2021, 9, 841 9 of 31

ment of a small fraction of reads from one sample to another one [51]. This represents a
problem when using HTS for detection purposes, since it might often be difficult to distin-
guish index hopping from, e.g., very low titer virus infection in the sample. The amount of
index hopping differs between different sequencing platforms, but it was, e.g., shown to
be higher for newer Illumina sequencing devices using nonpatterned flow cells [52]. To
mitigate this problem, it is advised to know the identity of all the samples sequenced in
the same sequencing run or/and to use dedicated controls of the procedure. For example,
including a control sample containing a known virus (which is not expected to be present
in other samples in the run) could help estimate the amount of the crosstalk from the
control sample to other samples, and vice versa. In addition, using unique double indexes
in sequencing library preparation can largely reduce the amount of the index hopping [53].

Adapter sequences introduced during the library preparation process need to be re-
moved. Tools such as Cutadapt [48], Trimmomatic [54], and Porechop [55] or NanoFilt [56]
can be used to carry out this process, with the latter two working specifically for data
generated using nanopore sequencers. At this step, contaminant filtering for synthetic
molecules and/or spike-in is also recommended.

Sequencing data are usually provided in the fastq format, which consists of four lines
per sequence [57], including a sequence identifier, raw nucleotide sequence, a separator
line (containing + sign), and sequence quality values.

Nucleotides with a low-quality score should be removed to ensure that only high-
accuracy bases remain. With Illumina data, values such as Q20 (1% error) and Q30 (0.1%
error) are often used when trimming data, but this value depends on the application and
the sequencing platform used. If accuracy is of the utmost importance (e.g., for detection
of SNPs), selecting a higher quality score will be beneficial. If accuracy is less important
(e.g., for detection of virus), then relaxing constraints on quality when trimming will allow
more data to be available for downstream applications.

Quality control reports can be generated by tools such as FastQC [58], MultiQC [59],
or, specifically for nanopore sequencing data, Poretools [60] or NanoStat [56]. This allows
for the visual inspection of metrics such as per base sequence quality, sequence length
distribution, and GC (guanine–cytosine) content. These reports can be generated both
before and after trimming, to assess the impact of trimming on different quality parameters.
A number of tools exist to trim sequencing reads based on quality scores, sequence length,
or other metrics. These include but are not limited to Sickle [61], Trimmomatic [54], Cu-
tadapt [48], BBDuk (https://sourceforge.net/projects/bbmap/, accessed on 13 April 2021)
and NanoFilt for nanopore sequencing data [56]. Illumina data, particularly longer MiSeq
reads, suffer from lower quality toward the 3′ end of the read. Many trimming strategies
start at the 3′ end of such reads and determine the position at which the quality (or the
average quality in a region) is high enough to keep.

The order in which these processes are carried out can vary, and some tools can be
used to carry out multiple steps at the same time. The final output should be a series of
demultiplexed samples with reads that have an acceptable sequence quality and no longer
contain sequences added during the sequencing process (e.g., adapters, barcodes).

4.2. De Novo Assembly

HTS technologies provide us with shorter (e.g., Illumina) or longer (e.g., Oxford
Nanopore Technologies, PacBio) sequence reads, which usually need to be assembled
in silico to reconstruct complete or near-complete genomes. Compared to bacteria or
eukaryotes, most viral genomes are very small. Nevertheless, high mutation rates and the
great diversity of some viral populations [62] can represent a challenge for in silico genome
reconstruction. Assembling a genome is similar to solving a “Jigsaw puzzle”. Similar to a
puzzle, there could be pieces fitting together (overlapping reads), missing pieces (regions
with low coverage, sequencing bias), and damaged parts (sequencing errors). The process
for which individual reads are combined to form longer contiguous sequences is named

https://sourceforge.net/projects/bbmap/
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de novo sequence assembly, and the nucleotide fragments obtained through this process are
called contigs [63].

The intrinsic features of short vs. long read output, from the computational point of
view, has led to the development of two major groups of assembly algorithms: (i) de Bruijn
graph (DBG) and (ii) the overlap-layout-consensus (OLC) methods. In the first case, DBGs
are constructed using k-mers, which are substring of the reads of length k; whereas for
OLC, the overlap graphs are constructed directly from reads, eliminating the redundant
ones. The use of k-mers is more widely applied for the assembly of short reads, whilst the
OLC approach is most appropriate for long read data [63,64].

For short HTS reads, many de Bruijn graph assemblers are available, such as SOAPden-
ovo2 [65], ALLPATHS-LG [66], ABySS [67], Velvet [68], IDBA-UI [69], and (rna)SPAdes [70–72].
One of the first and most widely used and cited assemblers [73] in viral metagenomics [6]
is the open-source software Velvet, which is followed by the more user-friendly and
commercially-available CLC Genomics Workbench (https://digitalinsights.qiagen.com,
accessed on 13 April 2021) and Geneious Prime (https://www.geneious.com, accessed
on 13 April 2021). The latter has the advantage of providing a graphical interface for
command-line assembly programs such as Velvet and Spades.

Different factors can positively influence the quality of the de novo assembly, e.g., a
preliminary filtering step to eliminate the genomic host plant reads [23] or the selection
of appropriate k-mer values based on the read length [6]. Moreover, approaches in which
de novo assemblies using different k-mer values are generated and then reassembled can
generally improve the completeness of de novo genome assemblies, but this can be a
laborious and computationally lengthy process. Usually, higher sequencing depth and
a higher fraction of viral reads in the dataset will positively affect the completeness of
assembled viral genomes; however, extremely high coverage might have a negative effect
on the completeness of the assembly when using some assemblers; thus, in such cases, the
assembly of subsampled data might give better results [15]. Since reads of some viruses
can be present in a very low number, it is important not to set too low cut-offs for contig
length [6], e.g., a number around or slightly above the 2× length of an average read length
is recommended. Finally, the use of an additional scaffolding step when using paired-
end data can sometimes further increase the length of a contig. Nevertheless, despite
improvements in de novo assembly algorithms, 3’ and 5´ ends of viral genomes usually
cannot be obtained in full through de novo assembly.

Although long-read HTS platforms can produce reads close to full-length viral genomes,
a major issue that could affect the de novo assembly step is the higher error rate (5–15%)
of these technologies [74]. Long-read assemblers can algorithmically correct base errors
before/when building contigs. PBcR [75], Canu [76], Falcon [77], and Pomoxis [78] are
some of the OLC-based de novo assemblers available. Long read nanopore sequencing has
recently been successfully applied to virus discovery, detection, and reconstruction of virus
genomes; in these studies, Canu is the most cited assembler [79–82].

Contigs generated by de novo assembly can be used in subsequent similarity searches,
and finally, viral contigs can be used for phylogenetic or recombination analysis. If this is so,
it is important to check the quality of the contig by mapping the trimmed reads (explained
in Section 4.3) to the viral contig followed by visual inspection of the mapping and to check
the completeness of expected open reading frames contained in such contigs. For contigs
generated by de novo assembly of nanopore sequencing reads, additional quality checking
steps might be needed such as assembly polishing [81] or correction of the consensus
sequences using quality data of mapping reads [82].

When the presence of specific viruses is already known, viral genomes can be recon-
structed by mapping the reads (explained in Section 4.3) to the closest reference sequences
obtained from sequence databases (after initial similarity searches, Section 4.3). Then, this
is followed by the extraction of new consensus sequence from the mapping, which is an
approach known as reference guided assembly. Sometimes, parts of the viral genomes

https://digitalinsights.qiagen.com
https://www.geneious.com
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are obtained by de novo assembly and other parts are obtained through reference guided
assembly; such an approach is also known as combined assembly.

4.3. How Do I Find and Classify Viral Sequences in My Data?

Identification of viral reads/contigs in massive HTS datasets is most frequently per-
formed by comparing sequences against known and annotated sequences in databases.
This can be done on the level of reads or contigs de novo assembled from the reads. Since
longer sequences in almost all cases improve the ability to identify similarities regardless of
the method or databases used, an assembly of quality checked raw reads is generally recom-
mended prior to similarity searches. At the same time, a prior assembly will also generally
reduce the computing time needed for the similarity search steps, as up to millions of reads
can be assembled in a single contig. The annotation of HTS reads, or contigs, on the basis
of similarity with known viral sequences can be performed using three main strategies:
homology searches with tools such as Basic Local Alignment Search Tool - BLAST [83],
read/contig mapping against reference viral genomes using tools such as BWA [84], and
the search for encoded, conserved protein motifs using tools based on Hidden Markov
Models (HMMs) such as HMMER [85]. Each of these approaches and, in turn, each of
the specific programs used to perform them, has advantages and drawbacks. In many
cases, they should be seen as complementary rather than mutually exclusive possibilities.
Several additional alternatives have also been proposed. For example, the use of e-probes
(short unique pathogen-specific reference sequences) [86] or the analysis of the frequency
of specific k-mer sequences (see Section 4.3.5). A summary of tools commonly used for
similarity searches is presented in Table 1.

Table 1. Summary of the most commonly used similarity search strategies with advantages and limitations for each of
the strategies.

Tool Name Advantages Limits and Considerations Important Thresholds

BLASTx or BLASTn High sensitivity Slow, intensive use of
computing power if a large
database is used, BLASTx
needed for the detection of
divergent novel viruses,
BLASTn needed for the
detection of viroids and
noncoding regions of viral
genomes or satellites;
performance improved by
prior assembly of contigs.

Minimum percentage of
identity; length of identified
region of similarity; minimal
e-value, bit-score.

MegaBLAST Faster than BLASTn,
handles longer sequences

Less sensitive than BLASTn,
only useful for detection of
nucleotide sequences very
similar to the ones in the used
database; performance
improved by prior assembly
of contigs.

Minimum percentage of
identity; length of identified
region of similarity; minimal
e-value, bit-score.

BLASTp High sensitivity Slow, need to translate
nucleotide sequences to
proteins first; performance
improved by prior assembly
of contigs; not applicable for
viroids or noncoding regions
of viral genomes or satellites.

Minimum percentage of
identity; length of identified
region of similarity; minimal
e-value, bit-score.
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Table 1. Cont.

Tool Name Advantages Limits and Considerations Important Thresholds

DIAMOND Faster than BLASTx Less sensitive, annotation less
accurate than BLAST;
performance improved by
prior assembly of contigs; only
available for searches against
protein databases; not
applicable for viroids or
noncoding regions of viral
genomes or satellites.

Minimum percentage of
identity; length of identified
region of similarity; minimal
e-value, bit-score; use
sensitive mode.

Burrows-Wheeler
transform-based mapping
algorithms (e.g., BWA or
Bowtie2)

Does not require prior
assembly of contigs, high
sensitivity for short sequences

Only allows detection of
known agents. Difficult to
adjust mapping stringency to
(1) allow detection of
divergent isolates while (2)
avoiding cross-mapping
between related agents; prior
assembly of contigs reduces
cross-mapping between
related agents.

Mapping stringency (e.g.,
mismatch penalties, gap
open/extension penalties,
percent of read length
matching reference, minimum
percentage of identity)

HMMER or HMMScan High efficiency for detection
of distant homologs

Annotation more complex for
protein families shared
between cellular organisms
and viruses; not applicable for
viroids or noncoding regions
of viral genomes or satellites.

Minimal e-value.

K-mer based classification
algorithms (Kraken or
Taxonomer)

Fast Requires large computer
memory; accuracy may be
limited for the shorter
genomes of plant viruses; the
confidence scoring of the
results is not straight forward.

C/Q ratio for Kraken (advise
the manual).

4.3.1. Databases

The database(s) against which sequences are compared is/are of utmost importance
for the efficiency and completeness of the annotation process. The more complete the
collection of viral sequences, the greater the likelihood of detecting and identifying the
presence of a virus. For BLAST and BLAST-like approaches, the most used databases are
the non-redundant nucleotide database (nr/nt, named also just nt) hosted by the NCBI, the
non-redundant GenBank protein database (nr) or the viral RefSeq database. The GenBank
non-redundant nucleotide and protein databases are the most comprehensive and most
frequently updated public databases, limiting the time from discovery of a novel virus
to its availability for comparisons (provided the local version of these databases is also
regularly updated). However, the size of these databases has the drawback of increasing
the computing time/power needed to perform a comparison. The reduced viral RefSeq
database has the benefit of a better annotation/curation at the expense of the number of
included sequences and of less frequent updates. For read mapping approaches, smaller
dedicated databases are generally used, such as a subset of all viral sequences from the
NCBI nt database, viral RefSeq, or a smaller, locally developed and curated database
(for example, one or several isolates of every virus known to infect the crop of interest).
For conserved protein motifs searches, the most common databases are PFAM [87] and
CDD [88]. The identification of viral sequences is critically dependent upon the quality of
the database(s) used. For example, some plant-derived proteins might also be misidentified
as viral if only a virus sequence database is used for similarity searches, because some viral
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proteins are related to plant encoded proteins. Typical examples are heat shock proteins (i.e.,
Hsp70h) found in closteroviruses [89] or reverse transcriptase proteins of Caulimoviridae
that have homologs among retrotransposons. Wrongly annotated sequences in the public
databases can also lead to erroneous annotations.

Although this is generally not implemented at the moment, comparing the identified
viral sequences with databases of retrotransposons [90] or to databases created from the
systematic screening of plant genomes for integrated viral sequences [91–93] may provide
an efficient strategy to differentiate transcripts derived from integrated viral elements from
autonomously replicating viruses.

4.3.2. BLAST and BLAST-Like Approaches

BLAST programs are the most widely used and among the most accurate in detecting
sequence similarity [94]. The BLAST suite [95] comprises different algorithms, each with
its own use:

1. BLASTn can be used to compare a nucleotide sequence with a nucleotide database. It
is less computationally intensive than BLASTx, but because of the higher divergence
rate of nucleotide sequences, it is less efficient for the annotation of novel viruses not
represented in the database used.

2. BLASTp can be used to compare a protein sequence with a database of protein
sequences.

3. BLASTx can be used to compare a nucleotide sequence translated in all six reading
frames with a database of protein sequences. While computationally intensive, it is
the most efficient BLAST program for the annotation of novel viruses.

4. tBLASTn can be used to compare a protein sequence with all six possible reading
frames of a nucleotide database and is often used to identify proteins in new, unanno-
tated genomes.

5. tBLASTx can be used to compare all six reading frames of a nucleotide sequence with
all six reading frames of a nucleotide database. It is the costliest in computation time.

6. MegaBLAST can be used to compare nucleotide sequences expected to be already
present or closely related to those in a nucleotide database. It can be much faster than
BLASTn and is able to handle much longer sequences but deals less efficiently with
very divergent sequences.

Short sequences may lead to false positives in BLAST searches, and for this reason,
other approaches should be preferred for very short reads or contigs. All BLAST programs
return a table of results, which contain several parameters, among which some are particu-
larly important to check: the identity threshold (threshold for the percentage of identical
nucleotides between the query sequence and a hit in a database), e-value (expected number
of random hits in the used database for a given query sequence), and query coverage
(percentage of the query sequence covered by the database hit). It is very important to
consider that some of these values depend on the size of the database used and that the
use of too stringent parameters (e.g., identity threshold >85% and e-value smaller than
10−10) may lead to a failure to detect some divergent viruses [6]. BLAST is very widely
used, but it remains, in the case of millions/billions of reads analyses, a time-consuming
algorithm. Restricting the database used to specific taxa (e.g., viruses) can speed up BLAST
searches, but care should be taken, as this frequently leads to the identification of viral
reads that on closer examination, using complete databases, are in fact host sequences
(e.g., plant sequences). An extremely fast but considerably less sensitive alternative to
BLAST is BLAT (BLAST-Like Alignment Tool) [96]. Another faster alternative to BLASTx
is DIAMOND [97], which runs at 500–20,000× the speed of BLAST while maintaining a
high level of sensitivity, especially if using the sensitive mode. However, the DIAMOND
annotations have been observed to be less optimal in virus species identification than
BLAST ones (ML and TC personal observations).
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4.3.3. Mapping Reads (or Contigs) to Reference Database

Mapping tools are commonly used as a filtering step to remove host genome sequences
or as a complement to similarity searches on short nucleotide sequences. Reads originating
from the host genome can be partially removed by mapping the complete dataset to
reference genomic sequences of corresponding host (if available) and then using only
unmapped reads for further analyses. A reference genome sequence of the host must be
chosen carefully, since it can affect the analysis. Choosing divergent variety/genotype of
the host might reduce the efficiency of the host reads removal. Furthermore, reference host
genomes might contain contaminating or genome-integrated viral sequences; thus, some
viral reads can be lost in this step.

Mapping tools can be also used to perform the alignment of reads or contigs against a
reference viral database (e.g., NCBI Viral RefSeq database or a custom developed database
containing one or more complete or partial viral genomes). In comparison to BLAST
programs, most of the mapping tools such as Bowtie2 [98] or BWA [84] build an index
for the reference genome or the reads, increasing the speed of the analysis if used against
a limited, virus-specific database. The mapping strategy is potentially more sensitive to
detect viruses with low number of reads in analyzed datasets [6], in particular when using
21–24 nt sRNA sequences. Consequently, it is also sensitive to cross-sample contamination
due to index-hopping, which may require the development of strategies to set a positivity
threshold. On the other hand, mapping strategies are inefficient at detecting novel viruses
or viroids that are absent from the database used. Mapping stringency parameters (see
Table 1) critically affect the outcome of the analyses and should be optimized keeping in
mind the objective of the experiment. Too stringent parameters may result in the failure
to detect divergent viral isolates. Too relaxed parameters may also give rise to erroneous
results through the mapping of related host genes on a viral genome or through cross-
mapping the reads of a virus on the genome of a related virus. These problems can be
minimized by first mapping all HTS reads against the reference viral database. Then, any
reads that map to a virus are remapped against the host genome sequence. If the mapping
score is higher for the host genome, the read is discarded. Tools such as Pathoscope [99]
can help with cross-mapping between virus species by weighting reads that map to more
than one viral sequence. An efficient strategy, besides counting the number of mapped
reads on a particular reference genome, considers the portion of this genome covered by
the mapped reads and depth of coverage, the percent similarity between mapped reads,
and the reference or other similar indicators to eliminate potential false positive results.
Including suitable reference samples as controls during sample preparation and sequencing
can help to eliminate such errors [9]. Similar to reads, contigs generated by de novo assembly,
can also be mapped to the reference databases. The longer the contig, the fewer erroneous
mapping results are expected. However, the same recommendations for careful inspection
of mapping results apply.

4.3.4. Protein Domain Searches

Searching for known viral domains by matching translated amino acid sequences of
reads/contigs with Hidden Markov Models (HMMs) of known protein domains using
programs such as HMMER [100] or HMMScan is a popular alternative to BLASTx. With
this method, sequences are first translated in all possible reading frames, and the translated
protein sequences are compared to a database of conserved protein motifs such as Protein
Families database—PFAM [87], viral profile HMMs—vFAM [101], and Conserved Domains
Database—CDD [88]. These approaches are faster than BLAST-based homology searches
and more effective than mapping or BLAST searches for the detection of very distant
homologs [102] and therefore possibly for the detection of novel, very divergent viruses.
Similar to BLAST, a significance e-value is calculated, allowing the evaluation of the
significance of a match. This e-value can be used to filter results, striking a balance between
low values and the reporting of false-positives, and high values and the failure to detect a
divergent virus.



Microorganisms 2021, 9, 841 15 of 31

4.3.5. K-mer Approaches and Machine Learning-Based Approaches

Nucleotide k-mer-based approaches can be used to annotate sequences based on the
presence and frequency of specific k-mers. Comparing these frequencies is computation-
ally less demanding and faster than sequence alignment but requires a lot of computer
memory. Even if most of the k-mer-based classification tools, such as Kraken [103,104],
Kaiju [105], or Taxonomer [106], are not dedicated toward the detection of plant viruses,
they can be used for such purpose. Kodoja [107] uses a combination of such tools for the
taxonomic classification of plant viruses in metagenomic data. Most of the tools are not
very user friendly, and the use of k-mer tools for plant virus detection is fairly new; thus,
some questions remain to be answered, e.g., the usability of k-mer tools on small RNA
datasets [107].

Methods based on machine learning are being developed for the detection of viral
sequences in metagenomics datasets. Several tools have already been published, e.g.,
ViraMiner [108], DeepVirFinder [109], or Virnet [110] for human virus detection purpose.
Given a metagenome with known composition, machine learning approaches attempt to
find some meaningful patterns that allow differentiating the host from the virus. When the
unknown metagenome dataset is provided, the software should be able to discriminate
virus sequences from host sequences using the learnt pattern. Machine learning tools
are new in this field; thus, we still lack their in-depth comparison with the more known
approaches discussed above.

4.3.6. Which Analysis Approach Should I Choose?

The variety in similarity-based search approaches is striking. Choosing the most
relevant one will depend on criteria such as the aims of the study (diagnostic, metage-
nomics) and the time/computational power available. Whichever program/approach is
selected, it is important to consider its limitations and to properly set the key parameters
to avoid false-positive or false-negative results. Fast programs can be used as a filtering
step and then validated by slower approaches, or alternatively, two approaches can be
used to validate each other, or multiple approaches can be used in parallel, for example an
optimized approach for the detection of known viruses and a separate approach for novel
virus discovery. If computational time or power is not a serious limitation, combining
several approaches may enhance the ability to obtain an accurate annotation [111]. Here,
we provide a checklist, identifying the most important considerations, which should be
taken into account when analyzing HTS data (Figure 3).

Moreover, when analyzing the data obtained from long-read technologies, one should
pay special attention to using approaches that enable the efficient processing of such data.
Mapping algorithms have been developed for the processing of long read data with higher
error rates, such as Minimap2 [112]. For BLASTx-like similarity searches, algorithms that
can handle frame-shift mutations (caused by the relatively higher error rates), such as
DIAMOND [97], are preferred. Assembly and polishing of long read data can improve
further processing [113] and improve the chances for the correct identification of viral
sequences in the data.
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4.3.7. Taxonomic Classification

To assign viruses to taxonomic ranks, demarcation criteria specifically set for different
viral genera need to be followed. Often, identities <75% at the nucleotide or protein level are
indicative of a new viral species; however, the threshold might be also lower or higher, such
as at <91% for begomoviruses. Identities <60% might be indicative of a new viral genus;
however, the threshold might be also lower or higher, such as <45% within Betaflexiviridae
family. As noted, these criteria differ substantially between virus families and genera,
but up-to-date information is published by the International Committee on Taxonomy of
Viruses (ICTV) in the latest taxonomy reports [114,115] that can be found online (https:
//talk.ictvonline.org/taxonomy/, accessed on 13 April 2021). Once a sequence is identified
to a family or genus level, a pairwise sequence comparison (PASC) webtool [116] to

https://talk.ictvonline.org/taxonomy/
https://talk.ictvonline.org/taxonomy/
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support virus classification, hosted by NCBI (https://www.ncbi.nlm.nih.gov/sutils/pasc/,
accessed on 13 April 2021), can quickly provide an indication on how a new sequence
fits in that genus or family. In cases where virus sequence identity is near the limit of the
identity cut-off values for different species, additional information and/or justification
may be required for their definite classification. These could include biological information
such as host species, vector species, or symptom types, and if enough isolates have been
sequenced, population genomics approaches can also be employed [117].

Strains of viruses do not fall under official taxonomy. Rather, they are definitions
utilized by communities of practice around virus species and would thus require a review
of the literature concerning the specific virus species to be able to classify the sequence
to a particular strain or phylotype. This is a process that generally includes phylogenetic
analysis of the identified sequence with published virus (reference) sequences.

The approach described above can be rather straightforward if complete genomes of
viruses with a single genome segment have been assembled. However, things can become
more ambiguous in situations where a new virus has multiple genome segments or have
been incompletely assembled, resulting in several contigs corresponding to different parts
of a viral genome. The individual contigs for a novel virus may be equally distantly related
to several known viruses and can then show the highest level of similarity with different
viruses, which could lead to the erroneous interpretation that several new viruses are found
in the same sample. This issue will often manifest itself in the previous step of similarity
searches, and, to resolve this, the first recommended step is to identify the taxonomic
position of all the best hits identified for the different viral contigs. If several best hits
fall within the same genus or family, one could suspect they may correspond to the same
virus. The next step would be to investigate the general viral genome structures in the
identified genus or family from the ICTV reports and ascertain if the different best hits
correspond to the same or different genomic regions for that type of virus. If they are all
different, it is likely that a single new species is present; if the same region is covered by
multiple contigs that differ significantly from each other, then the scenario of multiple new
viruses belonging to a similar taxonomic group is more probable. A checklist in Figure 4
contains the most important points to keep in mind for the taxonomic classification of viral
sequences obtained by HTS.

Sequences of new viruses belonging to previously undescribed families and/or genera
can often only be reliably aligned by using the translated amino acid sequences of conserved
genes such as polymerases and coat proteins. In these cases, phylogenies generated with
viruses from related genera or families are needed to determine the exact taxonomic
position. Additional criteria, such as number of open reading frames and overall genomic
organization, need to be considered when classifying a virus as a member of a new genus
or family. When there is uncertainty, viruses can be categorized as unclassified new species
until new evidence arises that can support a definite classification.

Irrespective of the situation encountered, to become an officially recognized new
species, generally, a near complete genome sequence, including the complete coding
sequence information, is required by the ICTV to assign a “sequence only” virus to a
species level. If relevant supportive biological data are available, that rule is more relaxed
and will be determined by the relevant virus family study groups.

https://www.ncbi.nlm.nih.gov/sutils/pasc/
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4.3.8. “Quick Start” Methods

Depending on the computational background of the user, there are different ways
to approach the analysis. Many software solutions are available for detecting the pres-
ence of (plant) viruses in HTS datasets, which have been summarized recently by several
reviews [118,119]. For beginners or newcomers in the field, all these tools can be over-
whelming. The quick-start guide (Figure 5) might be handy to select an appropriate tool
or pipeline.
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Among these options, easy-to-use pipelines that do not require extensive computa-
tional expertise might be a good start. These pipelines present a user-friendly interface
on-line or directly on the computer. A first group of pipelines can be considered as “all
in one”: they automatically start on the raw data to deliver the final results as a list of
viruses detected. They may or may not allow the adaptation of parameters. A second
group corresponds to pipelines for which the different steps of the process have to be
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done separately and independently. This is the case when using commercial software such
as CLC Genomics Workbench or Geneious Prime, which both also enable the building
of customized “all-in-one” workflows. Table A1 summarizes the pros and cons of the
most common “easy-to-use” analysis solutions. Ease of use may generate a false sense
of confidence in the results and, as with all pipelines, understanding of the steps and
the parameters of the pipelines, as well as critical interpretation of the results is always
required.

4.4. What to Do When The Data Analysis Is Concluded?
4.4.1. Identity Confirmation by an Independent Technique

As for many other test methods, HTS may sometimes provide false-positive results.
Therefore, if consequential, it is important that HTS results are confirmed.

The need to confirm the identity of a pest depends on the context of the analysis
and on the type of organism identified (e.g., identification of a quarantine compared to
an endemic pest). The results must be confirmed in cases considered critical to national
or international plant protection programs. These are the detection of a pest in an area
where it is not known to occur or in a consignment originating from a country where it is
declared to be absent; and also, when a pest is identified by a laboratory for the first time
(EPPO PM 7/76, 2019). The identity of any uncharacterized pest with potential risks to
plant health should also be confirmed by another test. Whilst a virus in its common host
is unlikely to require confirmation (if not regulated), it may be useful if associated with
different symptoms (e.g., an emerging strain).

When confirmation is needed, it is recommended to use a test or a combination of tests
based on different biological principles (e.g., ELISA or targeted PCR instead of resequencing
the sample using the same protocol). If available, validated tests should be used and a
new sample extract obtained for analysis. The selection of confirmatory tests depends on
the performance characteristics required; the general characteristics of methods for plant
virology have been reviewed [120]. If no other tests are available to confirm the identity
of the pest (i.e., poorly characterized and uncharacterized organisms), primers should be
designed and tested, based on the HTS sequence data and available sequence information
in the sequence databases. Alternatively, generic primers that enable the amplification
of viruses within a genus or family, including the targeted one(s), followed by Sanger
sequencing of the amplicons could be used to confirm the identity.

4.4.2. Biological Characterization Post HTS Detection

Based on HTS, the list of thus far unknown or poorly characterized viruses for which
only genome data are available is rapidly increasing [121]. This presents a challenge for
the further steps necessary to determine the causative relationship to a disease and guide
phytosanitary diagnostic laboratories on data interpretation and recommendations. Viruses
for which only genome data are available can indeed be taxonomically assigned, but the
real challenge is to attribute biological meaning to their detection. The interpretation of the
biological relevance applies mainly to poorly characterized and uncharacterized or newly
discovered viruses. For example, the viral sequences detected may correspond to a bona
fide virus infecting other organisms associated with the sample, including bacteria, fungi,
or arthropods [122,123] or to viral sequences integrated into the plant genome [124,125].
As stated previously [125], relevant scientific expertise is essential for sound biological
interpretation of HTS results, in particular when identifying a target with a low titer, a
poorly characterized species, an uncharacterized organism, or sequences integrated in
the host genome [6,126]. In this latter case, careful phylogenetic analysis, including retro-
transposons and viruses reported only from integration events in plant genomes [91–93]
may provide critical information on whether the sequences identified correspond to an
autonomously replicating (episomal) virus or to cellular transcripts from integrated viral
elements. This may need to be validated by specific experiments to confirm or disprove an
episomal replication scenario.
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The extent to which additional biological characterization is performed depends
largely on the potential risk the organism(s) would pose to plant health, although the
acquisition of such data may take time or may not be possible (e.g., lack of human and/or
financial resources). The scaled and progressive scientific framework proposed by Mas-
sart et al. [125] is a useful tool for guiding the biological characterization and the risk
assessment of an uncharacterized or poorly characterized plant virus detected by HTS.

4.4.3. Sharing Data to Leverage Knowledge

After the detection of the virus in the laboratory, the researcher or diagnostician
faces an important dilemma: when and how to share data publicly. As shown by recent
examples [127–129], pre-publication data sharing between laboratories brings valuable
information to address the risks raised by a virus. Sharing data will give a more global
picture of its geographical repartition, its genetic diversity, its host range and symptomatol-
ogy, allowing a contextualized risk analysis and avoiding unnecessary regulatory action.
When shared, the genome information usefulness is leveraged. Data sharing must also
include metadata from the sample (e.g., origin, species, cultivar, time point, organ of sam-
pling). Nevertheless, data sharing is not always easy due to regulatory implications, and
for commercial work, laboratories may be bound by confidentiality agreements [7]. In
addition to sharing sequence data itself, sharing of analysis pipelines, protocols, and expe-
riences between labs can greatly contribute to the harmonization of the field and provide
useful resources for newcomers to the field. The recently established Plant Health Bioin-
formatics Network (PHBN) aims to foster this approach and provide protocols, pipelines
(https://gitlab.com/ilvo/phbn-wp2-training, accessed on 13 April 2021), and reference
datasets (https://gitlab.com/ilvo/VIROMOCKchallenge, accessed on 13 April 2021) [130]
that can be widely employed. It also aims to organize community efforts to advance certain
aspects of plant health bioinformatics (https://gitlab.com/ilvo/PHBN-WP4-RNAseq_
Community_Screening, accessed on 13 April 2021).

4.4.4. Recombination Analysis

Recombination is common in some genera of plant viruses, and the presence of recom-
bination events can have impacts on downstream analysis such as phylogenetics. Thus,
identification of recombination is a useful first step, prior to further genome analysis.
The most popular software solutions, which detect recombination patterns comparing
full or partial viral genomes and run on Windows, are RDP4 [131], SimPlot [132], and
TreeOrder Scan [133]. ViReMa (Viral Recombination Mapper) can be used for the detection
of recombination junctions, as well as insertion/substitution events and multiple recombi-
nations within single reads [134], and it has been successfully applied for the analysis of
recombination events in plant virus genomes [22,135,136].

4.4.5. Additional Bioinformatics Analyses

Further analyses, beyond viral detection and taxonomic classification, can be per-
formed on HTS data, depending on the goal of the study. For instance, the large amount of
sequence data generated by HTS allows a good resolution of the within-host genetic diver-
sity of the viral populations [22]. Assessing the genetic diversity within and among viral
populations can provide a better understanding of virus evolution and help to determine
population genetic parameters or epidemiological patterns [137,138]. This can be done
using single nucleotide polymorphism (SNP) calling algorithms, which need to allow the
detection of low-frequency variants expected in virus populations. Phylogenetic relation-
ships among the detected and previously known viruses can also be investigated using fast
neighbor-joining algorithms [139], more precise maximum likelihood approaches [140,141],
or Bayesian analysis approaches [142]. Freeware phylogenetic analysis suites, such as
MEGAN [143], or phylogenetic analysis algorithms integrated within commercial software,
such as CLC Genomics Workbench and Geneious Prime, can be used. Studying the time of
emergence of viral species and strains including the distribution of the genetic diversity

https://gitlab.com/ilvo/phbn-wp2-training
https://gitlab.com/ilvo/VIROMOCKchallenge
https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening
https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening
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across geographical sites can be done using software such as BEAST [144], TempEst [145]
and SPAGeDI [146].

5. Conclusions and Outlook

In this review, we aimed to provide an informative primer on the generation and
analysis of HTS data for the detection of plant viruses. Even though the field of HTS is
transforming rapidly and new platforms and analysis tools are being developed constantly,
the basic concepts of data analysis reviewed here will remain relevant in the future. In
the next few years, we expect a great increase in the use of the long-read HTS platforms.
New algorithms and pipelines for analysis of data will continually be developed, building
on some of the concepts described above. These developments are likely to focus on two
main areas. Firstly, the adoption of deep learning approaches will likely be more and more
integrated into the field of virus detection, on different levels, from similarity searches to
the estimation of detection confidence levels, to enable the more robust detection of virus
sequences that are more distantly related to those we currently recognize. Secondly, with
the further development of nanopore sequencing-based platforms, potentially facilitating
on-site HTS analysis of samples, we will need faster and more memory-efficient analysis
approaches to enable rapid data analysis, potentially away from centralized facilities.
Moreover, guidelines are being developed to enable the validation and verification of
HTS-based detection of plant pathogens in research and diagnostic settings, which also
include bioinformatics steps of the analysis [9]. These guidelines will provide detailed
information on how to use appropriate controls and which specific results parameters
to use to ensure the validity of the results, which is briefly covered in Figures 3 and 4 in
this text. Finally, we encourage the readers to use this guide as a starting point for the
selection of appropriate analysis approaches and to get further informed about the specifics
of the algorithms (Figure 5). By combining knowledge on the analysis approaches with a
sound plant virology background, we can maximize the potential of these technologies
and provide sound interpretation of the results.
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Appendix A

Table A1. List of selected easy-to-use analysis solutions for detection of plant viruses with their pros and cons.

Pipeline Brief Description Web Link/Publication Pros Cons

VirusDetect
Virus discovery using
sRNA and RNAseq
sequences

http:
//virusdetect.feilab.net,
accessed on 13 April 2021
[147]

• Easy to use: single
command to run one or
multiple datasets
simultaneously.

• Performs de novo assembly
and reference mapping in
parallel, including optional
host genome subtraction and
identified contigs through
BLASTn and BLASTx.

• Automatic results
organization and
presentation in html table
providing key metrics on
coverage, sequence depth,
virus and genus name, and
link to visual map and NCBI
GenBank reference
sequence.

• Options to modify key
assembly, mapping, and
reporting parameters.

• Windows version with
visual interface and
automatic quality control
and trimming to be released
in 2021.

• Available via user account
online.

• Uses complete NCBI
GenBank database for
viruses (divided along host
type) for reference mapping
and identity searches. NCBI
GenBank sequences are
poorly curated and may lead
to reports of wrong results.

• Creating and formatting
new custom or up-to-date
NCBI GenBank reference
library is not very
straightforward and ready
formatted updates are not
uploaded very regularly to
the VirusDetect webpage.

• Currently requires Linux
environment, which is an
impediment for many
diagnosticians.

• Default reporting cutoff
settings are optimized for
siRNA to minimize false
positives due to
index-hopping; however,
they may lead to the
non-reporting of low
concentration viruses.

Virtool

HTS sample manager
with virus detection,
discovery and
analysis workflows

www.virtool.ca, accessed on
13 April 2021
https://github.com/
virtool/virtool, accessed on
13 April 2021
[36]

• Open source modern
graphical optimized for
cloud computing.

• User and group control with
password protection, sample
data management, security,
and QA features.

• Support for multiple
workflows and versioned
databases for viral and
non-viral pathogens.

• Can process short and long
reads (Illumina).

• Result visualization,
filtering, and sorting.

• HTTP API for automation or
integration with other
services such as LIMS.

• Can also be controlled via
the command line for more
complex tasks.

• Requires some
computational skills for user
(or help of informatician) to
install as a local server on
Linux operating system.

• Limited ability to change
parameters within a
workflow.

virAnnot

Command-line tool
for virus detection
and viral diversity
estimation

[148]

• Wide options to modify
assembly, mapping,
annotation, and clustering
parameters.

• Performs parallel analysis of
samples from the same
dataset.

• Estimation of viral diversity
through Operational
Taxonomic Units (OTUs).

• Easy results visualization
with Krona and phylogenic
trees.

• Requires a Linux
environment, which is an
impediment for many
diagnosticians.

• Need a cluster access for the
annotation step.

• Requires a good knowledge
of command-line and Unix
packages installation.

http://virusdetect.feilab.net
http://virusdetect.feilab.net
www.virtool.ca
https://github.com/virtool/virtool
https://github.com/virtool/virtool
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Table A1. Cont.

Pipeline Brief Description Web Link/Publication Pros Cons

VirFind Online virus
discovery tool

http://virfind.org, accessed
on 13 April 2021
[149]

• Available via user account
online.

• Performs reference mapping,
de novo assembly, and
conserved domain searches
in parallel or subsequently.

• Analysis by online version
can take several days.

• Output only in text files:
experience needed for
further interpretation.

Angua Command-line tool
for virus detection

https://fred.fera.co.uk/
smcgreig/angua3, accessed
on 13 April 2021

• Simple: can be executed
with one command but has a
number of parameters/tools
that can be tweaked

• Uses full nt and nr GenBank
databases so is sensitive

• Manual inspection of results
with a local MEGAN
installation improves
accuracy

• Supports single and
paired-end analysis

• Supports BLASTn/MEGAN
parallelization

• Requires a Linux
environment, which is an
impediment for many
diagnosticians.

• Dependent on locally stored
nt and nr GenBank
databases.

• BLASTx stage can take a
long time.

• Manual inspection of results
with a local MEGAN
installation is required.

Kodoja
k-mer based
command-line tool for
virus detection

https://github.com/
abaizan/kodoja, accessed on
13 April 2021
[107]

• Available as Galaxy plug-in
or as command-line tool that
can be installed using conda.

• k-mer based rather than
assembly and mapping,
which makes it more
sensitive and
computationally less
intensive.

• Requires a Linux
environment for the
command-line tool, which is
an impediment for many
diagnosticians.

Truffle

Targeted virus
detection using
e-probes based
approach

[150]

• Results easy to interpret,
good sensitivity.

• Requires relatively low
computational resources.

• Undescribed virus or viral
strain will not be detectable
using this pipeline.

• Only grapevine and citrus
viruses are available;
however, e-probes for other
viruses can be designed.

• Requires a Linux
environment, which is an
impediment for many
diagnosticians.

Kaiju Online metagenomic
analysis tool

http://kaiju.binf.ku.dk/,
accessed on 13 April 2021
[105]

• Both standalone and web
server available.

• Quick analysis not requiring
any knowledge in
bioinformatics and data
analysis.

• Prepared downloadable
databases available.

• Not specifically made for
virus detection.

• Protein based, hence blind
for non-coding sequences
(viroids, satellites).

Galaxy
Workflow system for
computational
analyses

https://usegalaxy.org,
accessed on 13 April 2021
[151]

• Web-based platform.
• Open source.
• Vast choice of computational

biology tools.

• Limit in data upload, unless
if you establish own local
galaxy server.

• Not specifically made for
virus detection.

ID-Seq Online metagenomic
analysis tool

https://idseq.net/, accessed
on 13 April 2021
[152]

• Easy-to-use visual interface
of results.

• Quick analysis not requiring
any knowledge in
bioinformatics and data
analysis.

• Not possible to change
parameters of the workflow.

• Complementary software
needed for reads alignment.

• Not specifically made for
virus detection.

http://virfind.org
https://fred.fera.co.uk/smcgreig/angua3
https://fred.fera.co.uk/smcgreig/angua3
https://github.com/abaizan/kodoja
https://github.com/abaizan/kodoja
http://kaiju.binf.ku.dk/
https://usegalaxy.org
https://idseq.net/
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Table A1. Cont.

Pipeline Brief Description Web Link/Publication Pros Cons

Geneious
Prime

Software for
molecular biology and
sequence analysis

https:
//www.geneious.com,
accessed on 13 April 2021

• Graphical interface.
• Multiple plugins available,

including some frequently
used freeware assembly
algorithms.

• Automated, customizable
workflows.

• Constant release of updated
versions and customer
support.

• Nice and efficient
visualization tools.

• Free trial version available.

• Licensed, including license
fee;

• HTS data analysis requires
computational resources.

CLC
Genomics
Workbench

Comprehensive
software solution of
molecular biology
analysis tools

https://digitalinsights.
qiagen.com/products-
overview/discovery-
insights-portfolio/analysis-
and-visualization/qiagen-
clc-genomics-workbench/,
accessed on 13 April 2021

• Graphical interface.
• Automated, customizable

workflows.
• Constant release of updated

versions and customer
support.

• Nice and efficient
visualization tools.

• Free trial version available.

• Expensive ongoing licensing
fee.

• HTS data analysis requires
computational resources.
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