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Abstract
The Wallacea biogeographic region of Sulawesi, the Moluccas and Lesser Sunda is globally
renowned for exceptional endemism, but is currently emerging as a development frontier in
Indonesia. We assessed patterns and drivers of forest loss and fragmentation across the region, and
used dynamic deforestation models to project future deforestation to 2053. Up to 10 231 km2 was
deforested between 2000 and 2018, and a further 49 570 km2 is expected to be lost by 2053, with
annual deforestation rates ranging between 0.09% and 2.17% in different sub-regions (average:
1.23%). Key biodiversity areas (priority sites for endemic and threatened biodiversity) are
particularly vulnerable to deforestation if they are small, coastal and unprotected. Sub-regional
variation in deforestation patterns and drivers must be acknowledged if conservation interventions
are to be targeted and effective. We provide a valuable baseline from which to monitor Wallacea’s
new development course, as Indonesia undergoes profound policy changes that will provide both
challenges and opportunities for environmental governance and conservation.

1. Introduction

Deforestation drives biodiversity declines in trop-
ical countries (Alroy 2017), with acute impacts in
regions of high endemism (Brooks et al 2002, Barlow
et al 2018). Indonesia, as one of the world’s most
diverse archipelagos, has experienced some of the
highest deforestation rates in the world; more than
60 000 km2 deforested between 2000 and 2012
(Margono et al 2014). Previous analyses of forest
data across the country revealed substantial regional

variation in deforestation rates and drivers (Aus-
tin et al 2019). The highest rates of deforestation
occurred on Sumatra and Borneo, mainly as a con-
sequence of the expansion of industrial oil palm
and timber plantations (Curtis et al 2018). Together
with infrastructural development, these sectors more
recently appear to be having a similar role in deforest-
ation in Papua, Eastern Indonesia (e.g. Gaveau et al
2021), but far less attention has been paid to cent-
ral Indonesia and the Wallacea biodiversity hotspot
(Burung Indonesia 2014, Supriatna et al 2020).

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac15cd
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac15cd&domain=pdf&date_stamp=2021-9-7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2894-7031
https://orcid.org/0000-0001-9850-8395
https://orcid.org/0000-0003-1299-2126
https://orcid.org/0000-0003-4102-612X
https://orcid.org/0000-0001-8826-4868
https://orcid.org/0000-0001-8257-1963
https://orcid.org/0000-0002-3125-9467
https://orcid.org/0000-0002-6934-1132
https://orcid.org/0000-0002-1018-4873
https://orcid.org/0000-0002-1535-7075
https://orcid.org/0000-0001-6343-3805
https://orcid.org/0000-0003-1620-4086
https://orcid.org/0000-0003-3924-6342
https://orcid.org/0000-0003-0767-1467
https://orcid.org/0000-0003-2058-8502
mailto:m.voigt@kent.ac.uk
https://www.doi.org/10.1088/1748-9326/ac15cd


Environ. Res. Lett. 16 (2021) 094048 M Voigt et al

Despite comprising one-fifth of Indonesia’s land
surface, Wallacea, including the islands of Sulawesi,
Maluku (the Molluccas) and Nusa Tenggara (Lesser
Sundas), supports more than half the country’s spe-
cies listed as threatened on the IUCN Red List (CEPF
2014, Supriatna et al 2020). The archipelago’s rich
biogeographic history resulted in levels of endemism
that are among the highest worldwide, making the
region a global priority for conservation (Brooks et al
2006), ecosystem service provision (Turner et al 2012)
and restoration (Strassburg et al 2020). The main
threats to the region’s biodiversity are reported to be
similar to other parts of Indonesia—primarily defor-
estation and forest degradation driven by agricul-
ture, mining, and infrastructure development (CEPF
2014). However, unlike the islands of western Indone-
sia, crop production in Wallacea is currently domin-
ated by smallholders producing coconut and cocoa
(Sulawesi), cashew and coffee (Nusa Tenggara) and
nutmeg (Maluku) (Directorate General of Estate
Crops Indonesia 2019). It is therefore likely that the
patterns and drivers of deforestation are somewhat
different to those experienced in other more heav-
ily studied regions. As land-use trajectories are little
studied in Wallacea, predicting future environmental
change remains challenging (Kelley et al 2017), mak-
ing it difficult to comprehend the future impacts
on biodiversity. This is especially concerning given
that the archipelago is emerging as a new develop-
ment frontier to support Indonesia’s extractive indus-
tries, food and fuel security, and infrastructure, with
the potential to considerably increase existing threats
(Sutherland et al 2019, Supriatna et al 2020).

Here we examine the patterns and drivers of
deforestation in Wallacea, revealing the emerging
pressures threatening the region’s key biodiversity
areas (KBAs; globally recognised sites that support
threatened or irreplaceable species) (IUCN 2016).We
use this information to parameterise deforestation
models and predict the extent of future deforesta-
tion to understand how this could exacerbate threats
to KBAs. We apply a spatially-explicit and dynamic
deforestation modelling approach that internalises
estimating both rate and location of land-cover
change based on historical dynamics and a random-
ised process.

Further to deforestation, we also assess the effects
of fragmentation, leading to pervasive impacts on
forests and biodiversity globally (Haddad et al 2015),
by capturing past and projected fragmentation rates
and estimating the vulnerability of the KBA network
to both.

As KBAs typically extend beyond protected
areas, and are based on population viability require-
ments for range-restricted and threatened species,
our assessment highlights where to target limited
conservation resources to protect vulnerable areas
that have the greatest value for endemic taxa. In
the context of land-use planning, deforestation risk

information could also be useful to ensure develop-
ment targets are met.

2. Methods

2.1. Study system
Wallacea encompasses approximately 1680 islands
(Lohman et al 2011), covering 338 000 km2 (figure 1).
Across this diverse region there are 227 terrestrial
KBAs (BirdLife International 2020). To capture
potential geographic variation in land-cover change
patterns and drivers, we divided Wallacea into nine
sub-regions following historical provincial boundar-
ies and island groups: Gorontalo and North Sulawesi;
Central Sulawesi; West and South Sulawesi; South-
east Sulawesi; North Maluku; Central Maluku; South
Maluku; West Nusa Tenggara; and East Nusa Teng-
gara (figure 1, supporting information S1 (available
online at stacks.iop.org/ERL/16/094048/mmedia)).

Forest was defined according to Margono et al
(2014) as stands >5 ha with a natural composition
and structure that had not been cleared in recent his-
tory (before the year 2000) and having>70% tree can-
opy cover at the Landsat pixel (30 m resolution) scale
(supporting information S2). This definition corres-
ponds with primary and secondary forest categories
used by the Indonesian Ministry of Forestry in the
year 2018). Mangrove forests were added using maps
from Giri et al (2011). We acquired annual forest
loss data between 2001 and 2018 from the Global
Forest Change repository (v1.6; Hansen et al 2013),
and applied it to forest cover data from 2000 (data
available from Voigt et al 2021).

The Global Forest Change dataset includes both
forest loss from permanent conversion, as well as
temporary forest loss from different natural and
anthropogenic sources. We sought to minimise the
inclusion of temporary loss events by choosing a
conservative definition of forest, which excluded tree
cover loss within plantations, agro-forests, mixed gar-
dens, regrowth or scrubland. Since most wildfires in
Indonesia are associated with anthropogenic causes
and lead to forest loss in highly degraded rather than
primary areas, we are confident that most of the
mapped changes in forest we refer to are anthro-
pogenic and permanent, rather than temporary. We
therefore use the terms deforestation and forest loss
interchangeably.

We selected potential deforestation predictors
based on those known to be important in the tropics
and, more specifically, Indonesia (table 1; supporting
information S2, Austin et al 2019). All layers were
converted to the Asia South Albers Equal Area Conic
projection and resampled to the same extent and
origin at 180× 180 m pixel size (bilinear for continu-
ous predictors, and nearest-neighbour resampling
for categorical predictors) to facilitate computational
processes. All spatial manipulations were performed
in Python (Python Software Foundation 2019),
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Figure 1. The Wallacea region in Southeast Asia (top panel) and forest cover for the nine sub-regions (bottom panel) subject to
deforestation projections. The dashed lines in the top panel represent the biogeographic boundaries of Wallacea. Forest cover in
the bottom panel (light green) is extracted for the year 2000 from Hansen et al (2013), Margono et al (2014) and Giri et al (2011).

and data aggregated, analysed and visualised in
Python, R (R Core Team 2020) and ArcGIS Pro
(Esri 2020).

2.2. Future deforestation projections
We adapted a dynamic and spatially-explicit mod-
elling framework developed by Rosa et al (2013)
to project future deforestation in each of the nine
sub-regions (supporting information S3). The model

is a data-driven probabilistic model that uses past
deforestation, a spatial autocorrelation effect of the
neighbourhood of deforested pixels and predictors
of deforestation as inputs to capture three import-
ant aspects of deforestation: uncertainty, emergence,
and contagion. In contrast to other models (e.g.
Soares-Filho et al 2002, Verburg et al 2002) it
internalises estimating both rate and location of forest
loss based on historical dynamics and randomised

3



Environ. Res. Lett. 16 (2021) 094048 M Voigt et al

Table 1. Predictors used in deforestation modelling, including their description, source and year (supporting information S2).

Name Description Source Year

Forest cover
and loss

Forest cover and loss previous
to the calibration period
(2001–2013) and in the
calibration period (2014–2018)

Giri et al (2011), Hansen et al
(2013), Margono et al (2014)

2000,
2001–2013,
2014–2018

Slope Slope in 2000 derived from the
digital elevation model (30 m)

Farr et al (2007) 2000

Fire activity The average number of active
fires per year (Moderate Res-
olution Imaging Spectrora-
diometer (MODIS) and the Vis-
ible Infrared Imaging Radiometer
Suite (VIIRS)) as a proxy for
fire proneness and agricultural
activity.

MODIS Collection 6 NRT
(2018), VIIRS 375m NRT
(2018)

2000–2018,
2012–2018

Accessibility Accessibility from settlements,
considering roads, slope and
landcover (Weiss et al 2018,
Deere et al 2020)

Populated places (World
Resources Insitute (WRI)),
Landcover (Ministry of
Environment and Forestry,
Republic Indonesia 2013),
Roads (WRI), Slope (Farr et al
2007)

1990–2011

Human population
pressure

Local population pressure
(Σ= 1)

This publication, Rose et al
(2018)

1990–2017

Main commodity Distance to an Indonesian
village (Desa) (includes human
settlements and surrounding
land mapped by the Indonesian
Bureau of Statistics) which
derives income from staple
food agricultural, plantation
agriculture, non-agricultural or
fisheries commodities

Indonesian Bureau of Statistics
(2018)

2014

Transmigrant
settlements

Distance to settlements with an
ethnic majority from outside of
Wallacea

Indonesian Bureau of Statistics
(2011), Indonesian Ministry
of Environment and Forestry
(2013)

2011

Mining Exploration and production
mining concessions (absence of
mining concessions as reference)

WRI 2017

Land-use Non-forest areas (APL),
production forests (HP, HPK),
and limited production forests
(HPT). Protected forests
(CA, HSAW, KSPA, SM,
TN, TAHURA, TNL, TWA,
TWA/HW, TWAL, TB) as
reference areas

Ministry of Forestry (2010) 2010

processes (Rosa et al 2013). The model has been
applied in different contexts for Latin America (e.g.
Ochoa-Quintero et al 2015, Bradley et al 2017, Guerra
et al 2020), but less so in other tropical regions.

The model dynamically updates past deforest-
ation for each projection step based on the out-
come of the previous step. Remaining predict-
ors are static either because they are unlikely to
change within the calibration or projection time-
frame (e.g. slope), change slightly but unpredictably
over long time-scales (e.g. accessibility, human pres-
sure, the presence of transmigrant settlements) or

are poorly documented or difficult to reliably pre-
dict (e.g. main commodity produced in villages, land-
use allocation). An exception is fire, which although
included as a static predictor, integrates 18 years of
past fire alerts and thus reflects the spatial footprint of
proneness to fire and high levels of agricultural activ-
ities involving burning. It represents likely future fire
dynamics, as previously burnt areas aremore suscept-
ible to burning in the future (Hoscilo et al 2011).

We used a forward step-wise regression to fit
models that describe forest loss as a function of
predictors for each region by successively adding
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all potential non-correlated predictors (Pearson’s
correlation coefficient <0.7). The models were
fitted using ‘Filzbach’, a freely available library
(https://github.com/predictionmachines/Filzbach),
which uses a Markov chain Monte Carlo (MCMC)
sampling method. Starting with all models with
a single predictor, we selected and retained the
predictors with the most predictive power employing
a cross-validation technique (Rosa et al 2013). For
the cross-validation, we trained the models with a
random subset of 50% pixels, and then calculated a
goodness of fit likelihood between the model projec-
tion and the observations with the other 50% pixels.
The predictor yielding the model with the highest
likelihood was kept and the remaining predictors
added individually until all were tested. Out of the
complete set of models, ranging between 56 and 79
for each sub-region depending on the total number of
predictors, we then used the best performing model
(table S2) for each sub-region to estimate the probab-
ility of deforestation for the 5 year calibration period
(2014–2018) and subsequent 5 year periods up until
2053.

This estimation of the probability of deforestation
was done using a slightly different set of predictor val-
ues at each iteration, thereby incorporating parameter
uncertainty. These predictor values were drawn from
a Gaussian distribution resulting from the MCMC
fitting, and the estimated mean and standard devi-
ation for each. The updated probability of loss per
pixel was then converted into loss or no loss by draw-
ing a random number from a uniform distribution
between 0 and 1. We then classified the pixel as lost if
the number was less than the probability of deforesta-
tion. This procedure was runmultiple times (n= 100
iterations) to assess the uncertainty in model pro-
jections over time. The binary maps of forest loss
and resulting forest cover were used to validate the
projections, to calculate deforestation and estimate
fragmentation across the study region and for each
KBA.

We validated the projected forest by calculating
the perfect match, commission and omission errors
for the calibration period (2014–2018).We also valid-
ated the match of the projected deforestation (i.e. the
modelled change) of a pixel, within a 1, 2 and 10 pixel
neighbourhood, against observed deforestation data
following Rosa et al (2013, 2014).

The probability of deforestation, includingmodel
uncertainty, was visualised by aggregating the binary
map iterations into the summed probability of defor-
estation (i.e. if a pixel was deemed to be deforested in
50 of 100 iterations, it was assigned a summed defor-
estation probability of 50%).

2.3. Forest fragmentation
We quantified past and future forest fragmentation
in each sub-region for the years 2000, 2018, 2033

and 2053. We estimated the size and number of frag-
ments, and the percentage forest within fragments
that were ⩽2 km2 (the minimum size reported to be
ecologically viable based on datasets from neighbour-
ing Borneo; Lucey et al 2017) by converting observed
or binary projected forest loss maps into individual
polygons, and calculating the area of each using
Python Geospatial Data Abstraction Library (GDAL)
and OGR Simple Features Library (2020). We then
quantified the change in fragmentation between the
different years, compared to the baseline in 2000.

2.4. Deforestation and fragmentation in key
biodiversity areas
We intersected the KBA and forest layers to quantify
forest loss and fragmentation in each KBA in 2018,
2033 and 2053, relative to the 2000 baseline. We con-
sidered the 227 non-nested terrestrial KBAs delin-
eated by Burung Indonesia (BirdLife International
2020), each having an area between 0.6 and 4 644 km2.
Within the sub-regions, the KBA network covers
between 18% (West and South Sulawesi) and 39%
(South Maluku) of the terrestrial area. We used offi-
cial land-use maps (Ministry of Forestry 2010) to
identify the overlap of KBAs with protected forests.
Out of the 227 KBAs, 102 had most of their area
protected (⩾50% protection; 14 of which were fully
protected), 84mostly unprotected (<50%protection)
and 41 entirely unprotected.

The vulnerability of KBAs to future land-cover
changes was assessed by ranking them according to
the percentage of projected forest loss (median across
the 100 model iterations) within their boundaries,
and the percentage of forest in small fragments, by
2053. Only KBAs that were in the top 20% for both
measures in all iterations (200 out of 200) were con-
sidered and the rank order was defined by the per-
centage forest loss as all highly ranked KBAs had
100% forest in fragments ⩽2 km2. Since KBAs were
developed as a network of sites that support endemic
or highly threatened species, losing a large propor-
tion of habitat in smaller KBAs has a disproportion-
ately adverse impact on endemic species than in larger
ones. However, we also ranked KBAs by the total area
lost or fragmented as an alternative prioritisation of
threat.

3. Results

3.1. Model accuracy and predictors of deforestation
The model achieved high spatial agreement between
observed and projected forest maps: a median of
97% of pixels were perfectly matched between pro-
jections and the calibration data (2014–2018) across
Wallacea, and accuracy ranged between 96% and 99%
for the nine sub-regions (table S3). The overall pre-
valence of false positives (commission errors) was 2%
(<0.01%–4% for sub-regions), and the prevalence of
false negatives (omission errors) was 3% (1%–4%
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Figure 2. Influence of predictors on deforestation between 2000 and 2018 in modelling sub-regions of Wallacea. Predictor
coefficients are summarised across sub-regions (boxplot showing median and 25th and 75th quartiles). Coefficient values <0
(dashed line) decreased, while values >0 increased the probability of deforestation. The effect of mining concessions (exploration
and exploitation) is relative to the effect of not having a mining concession (∗). The effect of non-forest, production forest and
limited production forest is relative to the effect of protected forests (†) (supporting information S2). Combinations of predictors
were tested for each sub-region, and the combination resulting in the highest likelihood selected as the best model. The predictors
for each sub-regional model could therefore differ (table S2). Predictors for which all sub-regional coefficients were close to zero
(mean coefficient smaller than 0.05 and a spread smaller than 0.1) were excluded from the figure (accessibility, plantation,
non-agricultural and fisheries commodity production, transmigrant settlements). The 95% confidence intervals derived from the
100 model iterations around points are not shown, as they fall within the points.

for sub-regions) (table S3). Assessing the match of
observed deforestation versus modelled deforestation
as suggested by Rosa et al (2014) across the calib-
ration period, we found a median of 50% of the
observed deforestation events were in the immedi-
ate neighbourhood (within 180m) of projected forest
loss, 73% within 360 m and 99% within 1800 m
(figure S1).

Among the predictors considered in the defor-
estation models, high average fire incidence over
time (a proxy for fire proneness and agricultural
activity involving burning; median coefficient: 10.90)
and proximity to deforestation prior to the calibra-
tion period (4.84) contributed the largest increase in

deforestation probability overall across sub-regions
(figure 2; table S2).

Predictors relating to resource extraction (min-
ing, forestry) and conversion of forest also intensified
deforestation in most sub-regions.

3.2. Deforestation in the past and future
In the year 2000, forest cover in the sub-regions var-
ied from just 4% (East Nusa Tenggara) to 72% (North
Maluku) (figures 3 and 4; table S4). By 2018, overall
forest cover had decreased to 93% of that present in
2000 over all, at an annual deforestation rate of 0.39%.
Forest cover is then projected to decline to 60% by
2053, at an annual rate of 1.23%, equating to a loss
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Figure 3. Forest cover change and percentage loss for sub-regions inWallacea. Forest cover observed in 2000 and 2018 (dark green)
and median area projected for 5 year periods 2029–2033 and 2049–2053 (light green). Percentage loss between the forest cover in
2000 and 2053 is shown above bars. Sub-regions in Wallacea and respective colour codes in inlay map and underneath bars.

of 49 570 km2 across Wallacea. Compared to 2000,
the forest expected to remain in 2053 varies by sub-
region, from 95% in East Nusa Tenggara to 44% in
North Maluku (annual rates of future loss 0.1% and
2.17% respectively) (table S4).

3.3. Forest fragmentation
Across Wallacea, there were 34% more fragments in
2018 compared to the baseline in 2000, which grew
to 253% (3.5-fold) by 2053. The highest increase in
number of fragments is projected for North Maluku,
rising by 786% (nine-fold) in 2053. The percentage of
forest in fragments acrossWallacea rose 35% between
2000 and 2018, and up to 484% (5.8-fold) by 2053
(table S5). The sub-region with the greatest levels of
fragmentation is North Sulawesi and Gorontalo with
1030% (11 times) more of its forest as fragments in
2053 compared to 2000.

3.4. Vulnerability ofWallacea’s KBAs
Forest cover in Wallacea’s KBAs declined by 2%
between 2000 and 2018, and this trend was set to con-
tinue: 12% loss by 2033 and 26% by 2053. Over time,
KBAs in Central Sulawesi are projected to experi-
ence the greatest deforestation of any sub-region: 39%
loss between 2000 and 2053 (table S6). Meanwhile,
the deforestation expected for individual KBAs ranges
from 2% to 52% in East Nusa Tenggara and Central
Sulawesi respectively. KBAs across both East andWest
Nusa Tenggara as well as South Maluku are expected
to experience negligible future fragmentation. How-
ever, those in North Maluku will become highly frag-
mented, with a 2200% (23-fold) increase in the num-
ber of fragments and a 3420% (35-fold) rise in the
percentage of forest fragmented between 2000 and
2053.

In total, 21 KBAs comprise the top 20% most
adversely affected by percentage deforestation and
forest fragmentation (across all iterations). All of
these are projected to lose at least 74% forest cover

by 2053, and all remaining forest will be found
in fragments ⩽2 km2 in size. The most vulnerable
KBAs according to percentage loss criteria are typ-
ically small (median 57 km2 compared to 114 km2

for all KBAs) and located in coastal regions or small
islands, with 19 of the 21 found in the provinces
of Sulawesi or Central and North Maluku (figure 5;
table S7). When considering an area-criterion for
ranking vulnerable KBAs, 41 were in the top 20%
most affected by forest loss and fragmentation,
with at least 54 km2 reduction in forest cover and
13 km2 of forest in small fragments. These KBAs
are typically large (median 940 km2) (figure S2,
table S8).

4. Discussion

The Wallacea archipelago comprises 20% of Indone-
sia, with exceptionally high levels of endemism.
Development has been relatively slow compared to
that on the western islands of Sumatra, Java and
Kalimantan (Tolo 2019), which dominate the envir-
onmental literature (e.g. Supriatna et al 2017, Gaveau
et al 2018). However, in a bid to become a major
global economy by 2025, Indonesia is promoting
policies and foreign investment opportunities for
agriculture, resource extraction and infrastructure,
with a focus on previously underdeveloped regions
such as Wallacea (CEPF 2014, Song et al 2018,
Tolo 2019). While past development has resulted in
10 231 km2 of deforestation inWallacea between 2000
and 2018, our analysis suggests that an additional
49 570 km2 of forest could be lost by 2053 under cur-
rent trajectories. The resulting annual deforestation
rate of 1.23%would be higher than the global average
for tropical forests (0.49%) in the 1990s and 2000s, as
well as exceeding those experienced in the last 20 years
on neighbouring Borneo (Gaveau et al 2013, Achard
et al 2014).
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Figure 4. Observed and projected deforestation across Wallacea (A) and focal areas (1, Northern Sulawesi; 2, Southeast Sulawesi;
3, Halmahera; 4, Seram) over time (B)–(D). Probability of deforestation in panel (A), (C) and (D) (green, low; yellow, medium;
purple, high) is summed over 100 binary forest loss projections and accumulated from 2019 to 2033 (C), and 2019–2053
(A) and (D). Observed deforestation (light blue) from 2000 to 2018 and remaining forest cover (dark green) in focal areas
(B). Data available from Voigt et al (2021)
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Figure 5. Vulnerability of key biodiversity areas (KBAs) to percentage forest loss and fragmentation. (A) Map of KBAs with
bivariate colour coding of the percentage forest in KBAs in 2053 compared to 2000 (blues) and the percentage forest in fragments
(⩽2 km2; purples). KBAs that were ranked in highest 20% for both percentage forest loss and fragmentation are labelled with
their ranks (table S7). Label colour corresponds to bivariate colour code. An asterisk marks KBAs in which the majority of their
forest area are protected, KBAs without asterisk are mostly unprotected. (B) Percentage forest loss since 2000 and (C) percentage
area in fragments relative to 2000 for the sub-regions and years 2018, 2033 and 2053. Violin plots width in (B) and (C) were scaled
to 1. Boxplots show median and 25th and 75th quartiles.
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Increasing deforestation inWallacea is accompan-
ied by increased forest fragmentation, in line with
worldwide trends. Fragmentation of forest ecosys-
tems has pervasive impacts on biodiversity, degrading
key ecological processes and altering nutrient cycles
(Haddad et al 2015). Smaller, more isolated hab-
itat fragments support fewer species, often resulting
in a disproportionate loss of species of high con-
servation concern such as endemics and threatened
taxa (Crooks et al 2017). Fragmentation also intens-
ifies edge effects whereby habitat and biodiversity
becomemore susceptible to further deterioration due
to biophysical changes near habitat edges (Pfeifer et al
2017). Therefore, fragmentation not only increases
the potential for further habitat degradation in Wal-
lacean islands, but could also exacerbate the biod-
iversity losses already experienced through deforesta-
tion. The effects are likely to take some time to accrue,
and may be more adversely experienced by endemic
taxa.

4.1. Variation in sub-regional patterns and drivers
of deforestation
Archipelago-wide patterns of deforestation, degrad-
ation and drivers can mask important regional
variation. For example, the islands of Nusa Tenggara
had the least forest cover in 2000 and, consequently,
will experience low rates of deforestation (<0.16% by
2053). In comparison, North Maluku is projected to
lose 56% forest cover by 2053 and Central Sulawesi is
projected to lose the greatest primary forest extent in
the archipelago (21 596 km2). The smallest and least
protected KBAs in these two regions tend to be most
vulnerable to loss and degradation of large propor-
tions of their forest, highlighting the need for local-
ised conservation interventions.

Mining and industrial agriculture were key
drivers of deforestation in Wallacea, as elsewhere
in Indonesia (Austin et al 2019, Gaveau et al 2021)
and worldwide (Curtis et al 2018). These drivers are
associated with above average economic growth in
Sulawesi and North Maluku provinces (Tolo 2019),
and are expected to lead to further expansion into
forests in the future. For example, most active mines
are currently located in Central and South Sulawesi
and North Maluku, but concessions to explore min-
ing potential are distributed across Wallacea (https:/
/geoportal.esdm.go.id/minerba/) and were linked to
higher deforestation probability in our model. Con-
version of forest to oil palm agriculture has been
less prevalent in central Indonesia compared to other
parts of the country, such as Sumatra and Kalimantan
or neighbouring Malaysia (Supriatna et al 2017,
Gaveau et al 2018). On Borneo, for example, plant-
ations expanded by 170% between 2001 and 2017
(Gaveau et al 2018). Instead, communities in Wal-
lacea have favoured small-scale farming for corn,
coffee, cacao, coconut and tobacco, although this also
leads to significant deforestation (Austin et al 2019).

For instance, in Gorontalo, corn cultivation was pro-
moted as a means to decrease poverty, but has res-
ulted in growing encroachment and deforestation in
protected areas (Supriatna et al 2020). However, in
recent years, the oil palm industry has expanded in
Central andWest Sulawesi, a trend that together with
expansion of resource extraction could lead to forest
loss above the baseline projections presented here.

4.2. Caveats, uncertainties and scenario
development
Like other modelling approaches, the accuracy of
the deforestation projections are dependent on the
assumptions made about what drives forest loss, the
spatial resolution of the data, and the temporal scale
at which models are calibrated. The scale of inter-
pretation is limited to the scale at which the model
was applied (180 m pixel resolution). The model is
not intended to identify small deforestation events
below the spatial resolution of the data, and projected
dynamics inevitably become increasingly uncertain in
the future. As with any such approach, being able to
detect deforestation events at landscape scale would
require refining models and incorporating finer-scale
deforestation source data as well as predictor data at
this higher resolution, which are not yet readily avail-
able at the scale of the Wallacea region.

We took a business-as-usual approach to our
projections in order to assess a baseline trajectory
against which subsequent trends, including possible
interventions, can be compared. Although forest loss
drivers and patterns in coming yearswill likely be sim-
ilar to the recent past, future dynamics are unlikely
to match the past perfectly. For example, future
deforestation could be affected by changes in polit-
ical leadership, agendas and development priorit-
ies (e.g. Ferrante and Fearnside 2019), variations in
commodity prices for agricultural products (Gaveau
et al 2018), changes in global climate and the socio-
economic impacts of shock events such environ-
mental catastrophes (earthquakes, tsunamis) or the
global COVID-19 pandemic (Brancalion et al 2020).

Such potential future changes and their impact
are impossible to anticipate and thus challenging to
include in models as the one presented here. How-
ever, more refined landscape scale scenarios could
be developed based on the presented baseline mod-
els, working with relevant stakeholders and bene-
ficiaries in the region. These scenarios could help
to explore the potential future developments that
influence deforestation and better understand the
uncertainties of our assumptions. Potential scenarios
include allocation of investment in infrastructure and
urban development projects, resource extraction such
as mines or further agricultural expansion on the
one hand, as well as the implementation and effect-
iveness of deforestation mitigation measures on the
other. The data necessary to develop these scen-
arios could be more easily compiled and assumptions
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co-developed at landscape scale, creating highly rel-
evant fine-scale projections of forest loss outcomes,
their potential impact on endemic and threatened
biodiversity and pathways to mitigate the impact.

4.3. Conservation solutions forWallacea’s forests
Protected forests experience the lowest deforestation
acrossWallacea. KBAs that are predominately protec-
ted are predicted to suffer less deforestation by 2053
(median percentage loss: 21%) than those primar-
ily unprotected (median percentage loss: 37%). Out
of the 21 KBAs identified as the 20% most vulner-
able, only three are fully protected, and most con-
tained forests that were designated for conversion
to agriculture. However, protection status does not
prevent deforestation in every case. For example,
in the two KBAs with highest expected forest loss
by 2053 in terms of area (Pegunungan Tokalekaju
and Gunung Lumut in Central Sulawesi, table S8
and figure S2), deforestation is projected in protec-
ted areas and areas designated as limited production
forest, which cannot be legally converted to agricul-
ture or other land-uses. Overlapping land claims for
protection and resource extraction has led to substan-
tial illegal extraction, encroachment and deforesta-
tion across Indonesia (Gaveau et al 2017, Baja et al
2019), indicating that long-term investment in mon-
itoring and law enforcement is needed. Some of the
best examples of improvements to date involve local
communities, and have led to positive environmental
outcomes in some protected areas in Sumatra (Linkie
et al 2014, 2015).

Local community involvement in forest man-
agement has been the cornerstone of Indonesia’s
social forestry programme since 2015, and has been
promoted as a solution to alleviate development
pressures on forest while improving social welfare
(Kartodihardjo et al 2013, Meijaard et al 2020). By
allowing the land to be used formultiple purposes the
opportunity costs for conservation can be reduced,
although the success of these schemes in address-
ing deforestation and poverty alleviation has been
variable (Santika et al 2019), and the uptake of
social forestry has been low outside West Indone-
sia (Meijaard et al 2020). Using deforestation risk
maps such as the one presented here in combina-
tion with socio-economic information on what influ-
ences success of social forestry programmes, could
help optimise these schemes by implementing them
in areas in which high socio-economic gains coin-
cide spatially with positive outcomes for deforestation
reduction.

Other opportunities for bolstering forest pro-
tection arise from zero-deforestation pledges and
sustainability certification systems in forestry and
agricultural sectors. They could direct agricultural
expansion away from areas with high biodiversity
value and reduce pressure on primary forests. The
designation of high conservation areas in oil palm

plantations, for instance, can lead to positive out-
comes for at least some threatened species (Deere et al
2020), although certification appears to have mixed
outcomes for local communities (Santika et al 2020).
Involvement of these communities in sustainability
efforts is fundamental to reducing deforestation.

Large areas of Wallacea, particularly South
Sulawesi and Nusa Tenggara, already lost substan-
tial forest cover to urbanisation, farmland and min-
ing, but still hold potential value to biodiversity and
habitat connectivity. Restoration of mining sites and
expired logging leases is already required in Indone-
sia, but the costs to fully compensate for biodiversity
losses are extremely high (Budiharta et al 2018). This
reinforces the need for strategic planning and mitiga-
tion at an early development phase, aided by inform-
ation about potential future forest change such as the
one presented here.

The future of Wallacea’s forests and biodiversity
is at a crossroad, as Indonesia develops a new reg-
ulatory framework within which the natural envir-
onment is to be managed. With the introduction of
the Omnibus Law and a new mining law in 2020,
profound shifts in policy bring significant challenges
and opportunities for environmental governance and
conservation (Amatullah et al 2020, Sembiring et al
2020). Legislation for permit systems, environmental
impact assessment and foreign/national investment
in infrastructure and resource extraction projects
are all under review. While Indonesia’s decentralisa-
tion led to more permits for mining, logging and
large-scale agriculture, the upcoming ‘recentralisa-
tion’ could prove beneficial for strategic planning
that reduces the environmental impacts of operations
and curtails opportunities for corruption. However,
loosening of permit requirements and changes to
environmental impact assessments could also acceler-
ate forest loss. Thus, our assessment provides a valu-
able baseline from which the effects of Wallacea’s
new development plans can be evaluated, provid-
ing insights into how regional and localised interven-
tions can help improve prospects for the archipelago’s
highly threatened endemic biodiversity.
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