
Cognition xxx (xxxx) xxx

Please cite this article as: Hanna Marno, Cognition, https://doi.org/10.1016/j.cognition.2021.104784

0010-0277/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Prompting teaching modulates children’s encoding of novel information by 
facilitating higher-level structure learning and hindering lower-level 
statistical learning☆ 
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A B S T R A C T   

Young children are not only prepared to learn from teaching, but they also start to spontaneously teach others, indicating that teaching is a natural instinct of the 
humankind. During childhood, teaching seems to precede the emergence of several cognitive abilities, so the question arises: how does teaching affect the devel-
opment of later emerging cognitive skills? Since teaching requires explicit, accessible representations of the knowledge of the teacher, we hypothesized that the 
motivation to teach might impact the way children encode novel information, by biasing them towards a model-based encoding, which can help them to structure the 
incoming information in a more abstract and explicitly accessible way. In our study, 7–10-year-old children were presented with a well-established probabilistic 
sequence learning task on two consecutive days, after receiving an instruction that on the second day, they would have to teach a peer about the task. During the task, 
we could simultaneously measure two different types of learning: model-free learning of local (lower-level) statistical correlations and model-based learning of the 
global (higher-level) statistical structures of the sequences. We predicted that in case the motivation to teach facilitates model-based encoding, children who received 
the instruction to teach would perform better in learning the higher-level statistical structures than children in the control group, who did not receive an instruction 
to teach. Furthermore, since previous studies showed competition between the two types of encoding processes during development, we also predicted that facil-
itating children’s model-based learning will impair their model-free learning of the lower-level statistical correlations. Our results confirmed both predictions, 
showing an improved model-based higher-level structure learning and an impaired model-free lower-level statistical correlation learning in the Teaching Group, 
compared to the controls. Thus, prompting teaching affects children’s encoding of the novel information, by biasing them to learn in a model-based way, which can 
help to build more abstract and explicitly accessible representations that could be shared with others.   

1. Introduction 

Teaching, defined as ‘an intentional activity that is pursued in order 
to increase the knowledge (or understanding) of another who lacks 
knowledge, has partial knowledge or possesses a false belief’ (Strauss, 
Ziv, & Stein, 2002, p.3.), is fundamental to the existence of cumulative 
culture, which is one of the main characteristics of our species. Without 
teaching, it would be impossible to transmit information and accumu-
late knowledge through generations (Strauss et al., 2002; Strauss, 

Calero, & Sigman, 2014; Strauss & Ziv, 2012). Indeed, humans seem to 
be innately motivated to share their knowledge and teach new genera-
tions (Calero, Zylberberg, Ais, Semelman, & Sigman, 2015; Csibra & 
Gergely, 2009; Gergely & Csibra, 2006; Kruger & Tomasello, 1996; 
Strauss et al., 2014; Tomasello & Moll, 2010). Recent research brought 
extensive evidence that already from birth, humans are prepared to 
learn from each other, and that young infants are biased to acquire 
generic information in a fast and efficient way in the context of 
ostensive-communicative cues such as eye-contact, motherese or calling 
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their name (Csibra & Gergely, 2009; Gergely & Csibra, 2006). However, 
besides having the innate predisposition to learn from social partners via 
communication, humans also seem to have the natural cognitive ability 
to teach (Strauss & Ziv, 2012), and young children start to teach as a 
‘natural instinct’ already before they would have a fully-fledged theory 
of mind (Calero, Goldin, & Sigman, 2018). For example, 12-month-old 
infants would spontaneously inform an adult about the location of an 
object the adult is looking for and was moved without the adult knowing 
(Liszkowski, Carpenter, Striano, & Tomasello, 2006; Liszkowski, Car-
penter, & Tomasello, 2008), which can be considered as an example of 
‘proto-teaching’ (Calero et al., 2018). Later, around the age of 3–4 while 
they already start to become more ostensive in pedagogically relevant 
moments, their early teaching mainly consists of demonstrations and 
non-verbal communication (Calero et al., 2015). Studies on children’s 
spontaneous teaching during their toddlerhood observed an increase in 
their use of ostensive cues and gestures, providing evidence that the 
capacity to teach emerges automatically and effortlessly during devel-
opment (Calero et al., 2015). For example, at the age of 5 rather than 
using demonstrations, children’s dominant teaching strategy is to 
explicitly explain the rules of a game to an ignorant interlocutor (Ben-
salah, Olivier, & Stefaniak, 2012; Davis-Unger & Carlson, 2008a, 2008b; 
Strauss et al., 2002), and by the age of 6–8, they can already combine 
ostension, referential cues, and speech during teaching (Calero et al., 
2018). 

Thus, young children seem to be genuinely biased both to teach and 
to learn from others, which raises a further question: how can teaching 
potentially contribute to the development of later emerging cognitive 
skills during childhood? According to some studies, between the age of 3 
and 6 years, children’s executive functioning is a significant predictor of 
their teaching efficacy, but at the same time, teaching seems to precede 
their theory of mind capacities (Davis-Unger & Carlson, 2008a). Indeed, 
numerous studies found a correlation between the development of 
teaching abilities and performance on theory of mind tasks in pre-
schoolers (Bensalah et al., 2012; Davis-Unger & Carlson, 2008a, 2008b; 
Strauss et al., 2002). Thus, it might be that teaching precedes the 
development of many mental capacities, and in fact, teaching could be a 
driving force of later emerging cognitive skills (Csibra & Gergely, 2006, 
2009, 2011). For example, during teaching, the teacher must have some 
self-awareness of the information s/he is about to convey, which means 
that the content of her/his knowledge needs to become accessible, 
therefore to some degree explicit (Calero et al., 2018). 

But would this happen at the time of the retrieval of the information 
(during the act of teaching), or already at the time of the encoding (so 
that the information could be shared later)? While both of these possi-
bilities may lead to some kind of representational changes in the content 
of the child’s knowledge, the second possibility would probably have 
stronger implications regarding the proposal that teaching might be a 
driving force of later emerging cognitive capacities of the child. If we 
assume that already young children are ready to share their knowledge, 
it is possible that the motivation to teach could already have an impact 
on how they encode novel information they encounter, i.e., by biasing 
them towards a more abstract encoding of the novel information, which 
can result in more explicit and accessible representations. 

To test this possibility, we decided to implement a version of the 
Alternating Serial Reaction Time (ASRT) task (Howard Jr & Howard, 
1997), which was designed to measure two types of learning simulta-
neously: model-free learning of local (lower-level) statistical regularities 
and model-based learning of global (higher-level) structures (Kóbor 
et al., 2018; Simor et al., 2019). While model-free learning refers to the 
encoding of raw occurrence probabilities that are experienced momen-
tarily through the sensory input, during model-based learning the 
encoding of the information also relies on an internally stored structured 
model of the world that emerges based on past experience (Daw, Niv, & 
Dayan, 2005). By using such model-based encoding processes, it be-
comes possible to acquire highly complex knowledge of the world in an 
easier manner, compared to relying on solely model-free learning of the 

sensory input (Nemeth, Janacsek, & Fiser, 2013). Thus, encoding new 
information through model-based learning is also more likely to result in 
more abstract and explicitly accessible representations of the informa-
tion (Nemeth et al., 2013). 

However, it is important to note that greater reliance on model-based 
learning processes that are related to internal models emerges only late 
in development, around the age of 12 (Janacsek, Fiser, & Nemeth, 
2012). Moreover, according to some proposals the emerging function-
ality of model-based encoding around this age also signals a shift when 
learning processes adapt efficiently to more complex aspects of the 
world by relying more on internal model-based interpretations, while at 
the same time to some extent neglecting the raw probabilities of the 
sensory input, thus, relying less on model-free learning processes 
(Janacsek et al., 2012). 

Indeed, a study of Nemeth et al. (2013) confirmed this proposal, by 
providing evidence that triggering model-based encoding processes in 
children at the age of 12 can lead to the impairment of their model-free 
learning of simple statistical properties of the sensory input. In their 
study, subjects of different age groups were instructed to complete the 
cued version of the ASRT task (Howard Jr & Howard, 1997) by 
responding to stimuli, which appeared according to a probabilistic 
sequence structure (e.g., 2r1r3r4r, where numbers represent four spe-
cific locations on the screen determined by the sequence, and r represent 
randomly selected location out of the four possible ones). Because of this 
probabilistic structure of the stimuli, two types of statistical regularities 
could be learned: local or lower-order statistical correlations and global 
or higher-level statistical structures. Furthermore, while encoding the 
lower-level statistical correlations could easily occur in a model-free 
learning manner, the acquisition of the global statistical structures 
become easier if the learning relies on model-based encoding processses, 
potentially resulting in also more explicitly accessible representations of 
the structure. In the study of Nemeth et al. (2013) subjects were either 
explicitly instructed to try to detect the global statistical structures of the 
sequences, or just performed the task without receiving such instruction. 
Results showed that the explicit instruction significantly helped all age 
groups in the detection of the higher-level statistical structures. Inter-
estingly, however, while the explicit instruction to focus on the higher- 
level statistical structures also led to a slight improvement in the 
encoding of the lower-level statistical correlations in the older age 
groups, it had the opposite effect in the younger age groups, resulting in 
a lower performance in the encoding of the lower-level statistical cor-
relations. Thus, when younger children were asked to focus on higher- 
level structures, this attentional switch impaired the way they enco-
ded lower-level statistical correlations, potentially reflecting a compe-
tition between model-based and model-free encoding processes during 
development (Decker, Otto, Daw, & Hartley, 2016; Janacsek et al., 
2012). 

In the study of Nemeth et al. (2013) the crucial manipulation trig-
gering a switch from model-free encoding processes to a model-based 
learning was the explicit instruction to try to detect the higher-level 
statistical structures of the stimuli sequences. However, if our hypoth-
esis is correct, and the motivation to teach might facilitate children’s 
encoding of the incoming information in a more abstract and explicitly 
accessible manner, it is possible that - without giving them the explicit 
instruction to try to detect the global structures of the sequences - solely 
by instructing them to teach an ignorant interlocutor to perform the 
same task later might trigger a similar switch from model-free learning 
to a more model-based learning of the stimuli. Finding this effect, we 
would have the opportunity to directly witness how eliciting an early 
functioning motivation to teach can contribute to the development of 
children’s cognitive skills by biasing them towards using model-based 
encoding processes that only becomes fully-fledged later in life. 
Furthermore, from a methodological point of view, obtaining a similar 
dissociation in the learning performance that was found in the study of 
Nemeth et al. (2013) would also provide evidence that the instruction to 
teach does not only lead to a generally better performance due to 
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enhanced attention during the task, but it may potentially modify the 
encoding processes of young children. 

Thus, in our study, we asked 7–10-year-old children to participate in 
the same cued version of the ASRT task that was used in the study of 
Nemeth et al. (2013). However, while one group of participants (i.e., the 
‘Teaching Group’) was informed before the task that the next day they 
would have to teach everything they learned about the task to another 
person (who is known to be ignorant to the task), the other group did 
only receive the instruction to try to perform on the task as well as they 
could (the ‘Control Group’). Participants’ learning performance was 
measured twice: first during the training period, and then 24 h after the 
training. In addition, we also measured the explicit awareness of the 
sequences by asking them to explicitly report about the sequences after 
completing each block. We predicted that in case the motivation to teach 
would trigger a model-based encoding, resulting in potentially more 
explicitly accessible representations of the global structures of the task, 
participants in the Teaching Group would perform better in the detec-
tion of the higher-level statistical structures of the sequences, and also in 
the explicit awareness reports, than participants in the Control Group. 
However, since they are still in that stage of their development when 
their model-based encoding processes are not fully developed yet 
(Janacsek et al., 2012; Nemeth et al., 2013), the improvement of the 
model-based encoding of the stimuli triggered by the teaching instruc-
tion might impair their model-free encoding of the lower-level statistical 
correlations. Therefore our second prediction was that subjects in the 
Teaching Group would perform worse in learning the lower-level sta-
tistical correlations compared to the Control Group. We aimed to test 
these hypotheses after a 24-h consolidation period as well because 
previous studies showed that group differences can be better detected 
after consolidation due to the stabilization of the acquired knowledge 
(Ambrus et al., 2020; Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015; 
Vékony et al., 2020). 

Finally, since we hypothesized that the effect would be there already 
at the time of encoding of the new information and not only at the time 
of the retrieval, we predicted that we would find a difference between 
the Teaching and the Control Group even if they would not perform any 
actual teaching (which would reflect an effect of the actual retrieval), 
but they would only need to keep in mind that later they would need to 
teach (which can affect the way of encoding of the information).2 

2. Materials and methods 

2.1. Participants 

Sixty children between the age of 7 and 10 participated in the 
experiment (Mage = 102.32 ± 7.19 months). Participants were randomly 
assigned to the Teaching or Control Group. The mean age of the par-
ticipants in the two groups was equal (Mteaching = 101.44 ± 7.77 months, 
Mcontrol = 103.18 ± 6.63 months). Five participants were excluded from 
the analysis because their mean accuracy or reaction times (RTs) were ±
2 standard deviations above or below the average of the full sample; 
thus, they were considered not to follow the instructions properly. The 
final sample contained data of 55 participants (Nteaching = 27, Ncontrol =

28). None of the children suffered from any developmental, psychiatric, 
or neurological disorders. Parents gave informed consent and received 
no financial compensation for participation. The study was approved by 
the National Psychological Ethical Committee of Hungary (Ref. No.: 
2017/61). 

2.2. Tasks 

2.2.1. Alternating Serial Reaction Time task (ASRT) 
Learning was measured by the cued version of the Alternating Serial 

Reaction Time task (ASRT; Song, Howard, & Howard, 2007; Nemeth 
et al., 2013). In the task, a target stimulus (a drawing of a dog or a 
penguin) appeared in one of four horizontally arranged empty circles. 
From left to right, the Z, C, B, and M keys of a QWERTY keyboard cor-
responded to the four positions (all the remaining keycaps were 
removed). The participants had to press the key corresponding to the 
position of the target stimulus as fast and as accurately as they could 
(Fig. 1A). The target stimulus remained on the screen until the first 
correct keypress, and the next stimulus appeared after a 120 ms-long 
response-to-stimulus interval. 

The task was divided into blocks of 85 stimuli: the first five stimuli 
appeared at a randomly selected position (for practice purposes), then 
an 8-element alternating sequence repeated ten times (e.g., 2r4r3r1r, 
where numbers represent the four circles on the screen from left to right 
and r represents a randomly selected circle). The regularity was marked 
by different stimuli for predefined (pattern) and random elements. In 
order to maintain the attention and motivation of the children, we used 
pictures of animals to indicate predefined/pattern (a dog’s head) and 
random elements (a penguin - for the random elements of the sequence 
and the first five stimuli). Participants were informed that appearance of 
the dog heads follow a predetermined pattern, while no information 
about the penguins were shared with them. 

As a result of this alternating structure, some runs of three consec-
utive elements (henceforth referred to as triplets) occur with higher 
probability than others (Fig. 1B). For example, if the sequence was 
2r1r3r4r, 2 × 1, 4 × 2, 3 × 4, and 1 × 3 triplets („X" indicates the middle 
element of the triplet) occur with higher probability since their third 
elements could either be predefined or random. However, e.g., 2 × 3 and 
4 × 1 triplets occur with lower probability since their third elements 
could only be random. The former triplet types are labeled as “high- 
probability triplets” (62.5% of all trials), while the latter types as “low- 
probability triplets” (37.5% of all trials). 

Each trial can be categorized according to two aspects: 1) whether it 
was a pattern or random trial, and 2) whether it was the final element of 
a high- or low-probability triplet. Three different types of trials could be 
differentiated: pattern high-probability trials, random high-probability 
trials, and random low-probability trials (Fig. 1C). Because of the 
alternating sequence structure, all predefined (pattern) trials (50%) and 
by chance, one-fourth of random trials (12.5%) form high-probability 
triplets (62.5% in total), and the rest of the random trials form low- 
probability triplets (37.5%). For more details on the ASRT sequence 
structure, see „More details on the ASRT sequence-structure” subsection 
in the Supplementary Materials. 

Based on the three different trial types, two types of learning can be 
differentiated. The difference in responses between random high- 
probability and random low-probability trials indicates the learning of 
lower-level statistical correlations. In this case, the stimuli’ sequence 
properties are controlled (because only random trials are analyzed). The 
only difference between the two stimulus types lies in the statistical 
probabilities (high- vs. low-probability). The difference in responses 
between pattern high-probability and random high-probability trials 
indicates the learning of higher-level statistical structures. Here, the sta-
tistical properties of the stimuli are controlled (both types of trials have a 
high probability of occurrence), and the only difference between the 
trials lies in their sequence properties (pattern vs. random trials). 

2.2.2. Post-block explicit sequence report task 
After each block of ASRT, the explicit knowledge about the sequence 

was measured. Participants were instructed to indicate the order of 
appearance of the dog heads (pattern stimuli) by pressing the corre-
sponding response keys. This procedure lasted until participants gave 12 
consecutive responses, then the ASRT task continued with the next 

2 Even though we did not assess participants’ teaching performance in our 
experiment, based on previous studies we know that children already after the 
age of 3 years can understand the instruction to teach, they usually positively 
react to it and also they manage to successfully teach a confederate (e.g. Davis- 
Unger & Carlson, 2008a, 2008b; Howe & Recchia, 2005; Strauss et al., 2002). 
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block. Ideally, participants reported the four repeating pattern elements 
of the sequence three times: if the sequence was 2r1r3r4r (where r in-
dicates a random element), the entirely correct response was 
213421342134. However, the sequence report was also considered 
entirely correct if only the starting point was different (for example, the 
sequences 2r1r3r4r and 1r3r4r2r result in the same triplet probabilities 
and are indistinguishable from each other). 

2.3. Procedure 

The experiment consisted of two sessions on two consecutive days. 
On the first day, participants completed 20 blocks of ASRT. Prior to 
learning, we told the members of the Teaching Group that they would 
play a game, and on the second day of the experiment, they will have to 
teach another child (who is ignorant to the task) everything they know 
about the game. The Control Group did not receive such instruction; 
they were asked to try to play the game as well as they could, and also 
that they would get later rewarded based on their performance. On the 
second day, participants completed five more blocks of ASRT with the 
same design. After completing the task on the second day, children in the 
Teaching Group were told that the ‘ignorant’ peer, in the end, could not 
come; therefore, there was no need to teach about the task. 

2.4. Statistical analysis 

2.4.1. Alternating Serial Reaction Time task 
For the analysis of the ASRT task, we categorized each stimulus as 

either the third element of a high- or a low-probability triplet 
(depending on the positions of the n-1 and n-2 trials), and determined 
the reaction time (RT) of the response to this stimulus. As learning 
performance is mainly determined by RTs in ASRT studies, e.g., Janac-
sek, Borbély-Ipkovich, Nemeth, & Gonda, 2018; Virag et al., 2015; 
Howard Jr, Howard, Dennis, Yankovich, & Vaidya, 2004; Song et al., 

2007; Vékony et al., 2020), we report here the RTs only. However, all 
the analyses presented were performed on accuracy data, and results can 
be found in the Supplementary Materials. Only correct responses were 
considered for the analysis. Trills (e.g., 1–2-1, 4–3-4) and repetitions (e. 
g., 1–1-1, 4–4-4) were also eliminated as participants often show pre- 
existing response tendencies to them (Howard Jr et al., 2004). 

Five consecutive blocks were analyzed instead of single blocks to 
facilitate data analysis and improve statistical power. The units of 
analysis are referred to as Day 1 B1-B5, Day 1 B6-B10, Day 1 B11-B15, 
Day 1 B16-B20, indicating the blocks on the first day, and Day 2 B1-B5 
indicates the blocks on the second day. We calculated median RTs for 
correct responses for each participant and each unit of five blocks, 
separately for pattern high-probability, random high-probability, and 
random low-probability trials. The median RTs were submitted to 
mixed-design ANOVAs to evaluate learning and the consolidation of 
knowledge for the two types of learning (lower-order vs. higher-order 
statistical structure). Greenhouse-Geisser epsilon (ε) correction was 
used when necessary. Original df values and corrected p values (if 
applicable) are reported with partial eta-squared (ηp

2) as the measure of 
effect size. Bonferroni correction was used for pairwise comparisons. 

2.4.2. Post-block explicit sequence report task 
To evaluate the participants’ performance on the post-block explicit 

sequence report task, we computed two indices. For the first index, we 
calculated the accuracy of the sequence report after each block (per-
centage score of explicit knowledge). To this aim, we scored each keypress 
as a correct or incorrect keypress relative to the position of the first 
keypress to check if the participants could accurately report the 
sequence. We then calculated the percentage of the correct keypresses 
after each block. Here, the possible values ranged from 0% to 100% after 
each block (0% meant that no keypress was correct after the first key-
press; 100% performance meant that all keypresses were correct after 
the first keypress, that is, the series of keypresses accurately reflected the 

Fig. 1. The structure of the ASRT task. (A) Drawings of a dog’s head or a penguin appeared on one of the four possible positions. The participants’ task was to press 
the corresponding button as fast and as accurately as they could. (B) The ASRT task consisted of two types of stimuli: every first stimulus is a pattern element (P) and 
every second stimulus is a random (r) element. As a result of this structure, some triplets occur with higher probability than other triplets (high vs. low-probability 
triplets). (C) The high-probability triplets can be formed from two pattern elements and one random element in the middle (pattern high-probability triplets); 
however, high-probability triplets can be formed from two random and one pattern element (random high-probability triplets) too. Low-probability triplets can be 
formed from one pattern and two random elements. (Please note that each trial is categorized as one of the three trial types; that is, using a sliding window, each trial 
is defined as the third element of a pattern or random high-probability or a random low-probability triplet.) Higher-level statistical structure is defined by the 
difference between random high-probability and pattern high-probability triplets, and lower-level statistical correlations are defined by the difference between 
random high- and low-probability trials. 
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sequence embedded in the ASRT task). The average of the 20 percentage 
scores (one percentage score after each block, and we had 20 blocks) was 
calculated for each participant. Henceforth, this index is referred to as 
the percentage score of explicit knowledge. Here, the higher explicit 
knowledge percentage score indicates more stable explicit knowledge 
about the sequence structure. 

For the second index – number of accurate responders -, after each 
block, we assessed whether the participant reported the sequence with 
100% accuracy (all keypresses were accurate). We then counted the 
number of blocks in which the given participant reported the sequence 
with 100% accuracy. Here, for each participant, the possible scores 
could have ranged from 0 (meaning the participant did not respond with 
100% accuracy in any of the blocks) to 20 (meaning that the participants 
responded with 100% accuracy in all blocks). For each group, we 
counted the number of participants who performed the sequence report 
task with 100% accuracy at least ten out of the 20 blocks. Henceforth, 
this index is referred to as the number of accurate responders. Here, the 
higher number of participants in one of the two groups indicates more 
stable group-level explicit knowledge. 

The explicit knowledge of the sequence was evaluated with an in-
dependent samples t-test to compare the percentage score of explicit 
knowledge between the two groups. The number of accurate responders 
in the two groups was compared with a chi-squared test. 

3. Results 

3.1. Learning of lower-level statistical correlations on Day 1 

To compare the learning of lower-level statistical correlations of the 
two groups in the first session, we performed a mixed-design ANOVA 
with the within-subject factor of Blocks (Day 1 B1-B5 vs. B6-B10 vs. B11- 
B15 vs. B16-B20) and Triplet (random high-probability vs. random low- 
probability trials) and the between-subject factor of Group (Teaching 
Group vs. Control Group). The ANOVA revealed a significant main effect 
of Block, F3,159 = 75.62, p < .001, ηp

2 = 0.59, indicating that the RTs on 

average became smaller over the course of learning. The main effect of 
Group was not significant, F1,53 = 0.23, p = .64, ηp

2 = 0.004, indicating 
that, irrespective of stimulus type, average RTs of the two groups were 
similar. The interaction between Block and Group was not significant 
either, F3,159 = 0.35, p = .75, ηp

2 = 0.007. It indicates that there was no 
statisically significant difference between groups in how the average RTs 
changed throughout the task (that is, no difference in their general skill 
learning). 

The main effect of Triplet was significant, F1,53 = 112.145, p < .001, 
ηp

2 = 0.68, revealing that participants were faster on random high- 
probability trials (M = 597.52 ms ± 12.12 ms) than on random low- 
probability trials (M = 627.77 ms ± 12.42 ms); thus, learning of 
lower-level statistical correlations occurred. The interaction of Block 
and Triplet factors was also not significant, F3,159 = 0.96, p = .41, ηp

2 =

0.02, indicating that the degree of learning of lower-level statistical 
correlations did not change throughout the task. More importantly, the 
interaction of Group and Triplet was also not significant, F1,53 = 0.79, p 
= .38, ηp

2 = 0.02, indicating that the two groups did not differ in terms of 
their knowledge of lower-level statistical correlations in the first session. 
The non-significant interaction of the Group, Triplet, and Block factors 
reveals that this pattern did not change over the course of the first ses-
sion, F3,159 = 0.31, p = .82, ηp

2 = 0.006 (Fig. 2). 

3.2. Learning of higher-level statistical structures on Day 1 

To compare the performance in terms of learning of higher-level 
statistical structures, we performed a mixed-design ANOVA with the 
within-subject factor of Blocks of Day 1 (B1-B5 vs. B6-B10 vs. B11-B15 
vs. B16-B20) and Triplet (pattern high-probability vs. random high- 
probability trials), and the between-subject factor of Group (Teaching 
Group vs. Control Group). We found a significant main effect of Block, 
F3,159 = 90.09, p < .001, ηp

2 = 0.63, indicating again that the RTs on 
average became smaller over the course of learning. The main effect of 
Group was not significant, F1,53 = 0.092, p = .76, ηp

2 = 0.002, indicating 
that, irrespective of stimulus type, the average RTs of the two groups 

Fig. 2. Learning of lower-level statistical correlations (A) and learning of higher-level statistical structures (B) in the Teaching and Control Group. The vertical axis 
indicates the reaction times in milliseconds, and the horizontal axis the blocks of ASRT in Day 1 and Day 2. In learning of lower-level statistical correlations, no 
difference was found between groups. In learning of higher-level statistical structures, the Teaching Group showed marginally significant advantage in differentiating 
between random and pattern high-probability triplets compared to the Control Group. The error bars represent the standard error of the mean (SEM). 
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were similar. The interaction between Block and Group was not signif-
icant either, F3,159 = 0.30, p = .77, ηp

2 = 0.006, suggesting the lack of 
statistically significant difference between the groups in how the 
average RTs changed throughout the task. 

The main effect of Triplet was not significant, F1,53 = 2.55, p = .116, 
ηp

2 = 0.05, revealing that, overall, participants did not exhibit learning of 
higher-level statistical structures in the first session. The interaction of 
Block and Triplet was not significant either, F3,159 = 0.51, p = .68, ηp

2 =

0.01, indicating that the degree of the (lack) of learning of higher-level 
statistical structures did not change over the course of the task. How-
ever, the interaction of Group and Triplet was marginally significant, 
F1,53 = 3.85, p = .055, ηp

2 = 0.07 (difference MTeaching = 12.26 ± 4.91 vs. 
MControl = 1.25 ± 4.82). The non-significant interaction of the Triplet, 
Block, and Group factors showed that degree of knowledge of higher- 
level statistical structures did not change over time between the two 
groups, F3,159 = 0.63, p = .59, ηp

2 = 0.01 (Fig. 2). 

3.3. Changes in knowledge of lower-level statistical correlations from Day 
1 to Day 2 

To reveal how knowledge of lower-level statistical correlations 
consolidated in the two groups, we ran a mixed-design ANOVA with the 
within-subject factor of Block (Day 1 B16-B20 vs. Day 2 B1-B5) and 
Triplet (random high-probability vs. random low-probability triplets), 
and the between-subject factor of Group (Teaching Group vs. Control 
Group). Please note that the comparisons including the Triplet factor, 
reveals changes in knowledge of lower-level statistical correlations. In 
contrast, the comparisons excluding the Triplet factor indicate changes 
in the offline general skill improvements. The main effect of Block was 
significant, F1,53 = 38.24, p < .001, ηp

2 = 0.42, indicating that, irre-
spective of the stimulus type, participants became faster between ses-
sions. The interaction of Block and Group was marginally significant, 
F1,53 = 3.64, p = .062, ηp

2 = 0.06, revealing that, on trend-level, the 
Control Group became faster from Day 1 to Day 2 (Mdifference: − 18.27 ms 
± 22.43 ms) to a greater extent than the Teaching Group (Mdifference: 
− 7.31 ms ± 24.05 ms). 

The main effect of Triplet was significant, F1,53 = 44.13, p < .001, ηp
2 

= 0.45: participants were faster on random high-probability trials 
compared to random low-probability trials, indicating knowledge of 
lower-level statistical correlations. The interaction of Triplet and Block 
was not significant, F1,53 = 1.77, p = .19, ηp

2 = 0.03, indicating that, on 
average, learning of lower-level statistical correlations did not change 
over the offline period. The interaction of Triplet and Group was not 
significant, F1,53 = 0.82, p = .37, ηp

2 = 0.02, indicating that, overall, 
knowledge of lower-level statistical correlations did not differ between 
the two groups. More importantly, the three-way interaction of Triplet, 
Block, and Group was significant, F1,53 = 4.31, p = .04, ηp

2 = 0.08, 
indicating that the degree of knowledge of lower-level statistical cor-
relations changed differently over the offline period in the two groups. 
The pairwise comparisons revealed that, in the Teaching Group, 
knowledge of lower-level statistical correlations was detectable in Day 1 
B15-B20 (random high vs. random low-probability trials: M = 35.26 ms 
± 8.96, p < .001), and it became smaller in Day 2 B1-B5 (M = 11.46 ms 
± 6.07, p = .065). However, in the Control Group, knowledge of lower- 
level statistical correlations was revealed at both time-points (Day 1: M 
= 28.13 ms ± 8.80, p = .002; Day 1: M = 33.32 ms ± 5.96, p < .001). 

As a follow-up of the significant three-way interaction, we subtracted 
the RTs for random high-probability trials from the RTs for random low- 
probability trials. We repeated the analysis with this learning score as 
the dependent variable. The ANOVA revealed that the learning of lower- 
level statistical correlations score significantly changed from Day 1 to 
Day 2 in the Teaching Group (p = .02), but not in the Control Group (p =
.60) (Fig. 3). 

3.4. Changes in knowledge of higher-level statistical structures from Day 1 
to Day 2 

A mixed-design ANOVA was performed to reveal how knowledge of 
higher-level statistical structures consolidated in the two groups: a 2 
(Block: Day 1 B16-B20 vs. Day 2 B1-B5) × 2 (Triplet: pattern high- 
probability vs. random high-probability trials) × 2 (Group: Teaching 
Group vs. Control Group) ANOVA was performed. Please note that 
contrary to the analysis for lower-level statistical correlations, the 
Triplet factor contained the pattern of high-probability vs. random high- 
probability triplets. Again, the comparisons including the Triplet factors 
reveal changes in learning the higher-level statistical structures, while 
the comparisons excluding the Triplet factors indicate changes in the 
offline general skill improvements. The main effect of Block was sig-
nificant, F1,53 = 50.75, p < .001, ηp

2 = 0.49, indicating that irrespective 
of the stimulus type, participants were faster on Day 2 than on Day 1. 
The interaction of Block and Group was marginally significant, F1,53 =

3.68, p = .060, ηp
2 = 0.07, indicating that, on trend-level, the Control 

Group became faster from Day 1 to Day 2 (Mdifference: − 55.13 ms ± 8.55 
ms) to a greater extent than the Teaching Group (Mdifference: − 31.74 ms 
± 8.70 ms). 

The main effect of Triplet was not significant, F1,53 = 0.22, p = .88, 
ηp

2 < 0.01: thus, overall, no evidence was found for learning of higher- 
level statistical structures. The interaction of Triplet and Block was 
significant, F1,53 = 5.75, p = .02, ηp

2 = 0.10: on average, participants 
improved more for pattern than for random high-probability trials over 
the two days. The interaction of Triplet and Group was not significant, 
F1,53 = 0.001, p = .98, ηp

2 < 0.02, indicating that, overall, knowledge of 
higher-level statistical structures did not differ between the two groups. 
Importantly, the three-way interaction of Triplet, Block, and Group was 
also significant, F1,53 = 9.08, p = .004, ηp

2 = 0.15, indicating that the 
degree of knowledge of higher-level statistical structures changed 
differently in the two groups over offline period. The pairwise com-
parisons revealed that in the Teaching Group, knowledge of higher-level 
statistical structures was detectable in Day 2 B1-B5 (random high- vs. 
pattern high-probability trials: M = 14.43 ms ± 6.88, p = .04) but not in 
the Day 1 B15-B20 (M = − 15.54 ms ± 8.12, p = .06). However, in the 
Control Group, knowledge of higher-level statistical structures was 
detected at neither time-points (Day 1: M = 0.93 ms ± 7.98, p = .91; Day 
2: M = − 2.48 ms ± 6.76, p = .72) (Fig. 2). 

As a follow-up of the significant three-way interaction, we subtracted 
the RTs for pattern high-probability trials from the RTs for random high- 
probability trials. We repeated the analysis with this learning score as 
the dependent variable. The ANOVA revealed that the learning scores 
changed significantly from Day 1 to Day 2 in the Teaching Group (p <
.01) but not in the Control Group (p = .66) (Fig. 3). 

3.5. Reports of the explicit knowledge of the sequence 

We compared the number of accurate responders between the two 
groups. The chi-square test revealed that in the Teaching Group, more 
children (16 out of 27) were able to report the sequence with 100% 
accuracy in at least half of the blocks than in the Control Group (9 out of 
28), χ2 (1, N = 55) = 4.08, p = .04). 

Furthermore, to compare the awareness of the sequence structure 
between the two groups, we performed an independent samples t-test on 
the percentage score of explicit knowledge of the post-block sequence 
report task (for details, see the’Sequence report task’ subsection of the 
Methods section). The t-test revealed a trend-level advantage for the 
Teaching Group, t(53) = 1.728, p = .09 (MTeaching = 68.36% ± 28.52%, 
MControl = 55.37% ± 27.23%). 

4. Discussion 

By using a modified version of a well-established probabilistic 
sequence learning task, we tested the hypothesis that instructing young 
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children to teach an ignorant interlocutor can have an impact on the way 
they encode novel information. Specifically, we predicted that 
prompting teaching will facilitate model-based learning processes, while 
potentially hinder model-free encoding processes. To this end, we 
measured their learning performance for two types of information: local 
or lower-level statistical correlations and global or higher-level statis-
tical structures of stimuli sequences. 

On the first day in both groups children learned the lower-level 
statistical correlations of the seqeunces to the same extent. However, 
compared to the first day, learning performance for the lower-level 
statistical correlations became smaller on the second day in the Teach-
ing Group, while the Control Group showed similar level of knowledge 
between the two sessions. Regarding the learning of the higher-level 
statistical structures of the seqences, no significant difference emerged 
between the two groups on the first day. However, on the second day, 
the Teaching Group but not the Control Group revealed significant 
learning performance for the higher-level statistical structures of the 
sequences. Finally, when we asked children to report about the global 
structures of the sequence explicitly, we found that children in the 
Teaching Group showed better performance in the post-block sequence 
report task than the Control Group. In sum, while the Control Group did 
not show any intentional learning of the higher-order statistical struc-
ture information, the Teaching Group revealed significant improvement 
after a consolidation period and also managed to report better about the 
structures explicitly. Regarding the learning performance for the lower- 
level statistical correlations, however, the Teaching Group exhibited 
some forgetting by the second day, while The Control Group’s learning 
performance was continuous on both days. 

Although children were told that some stimuli follow a pre-
determined order, they were not explicitly instructed to use that infor-
mation to improve their performance, in contrast to the study of Nemeth 
et al. (2013). Thus, even though children in our study were not explicitly 
told to focus on the higher-level statistical structures of the sequences, 
the instruction to teach an ignorant interlocutor about the task resulted 

in a similar dissociation in their encoding processes that was observed in 
the Nemeth et al. study (Nemeth et al., 2013), leading to an enhanced 
model-based encoding of the higher-level statistical structures, at the 
expense of their model-free encoding of the lower-level statistical cor-
relations. Furthermore, it is important to note that this dissociation 
occurred even though children never actually performed any teaching; 
that is, they only knew that on the second day, they would have to 
teach.3 Hence, the effect could not be due to the retrieval of the infor-
mation, but it was already present during the time of encoding, and it 
became more expressed after a consolidation period (on the second day). 

The idea that teaching could be a driving force of later emerging 
cognitive capacities of the child has already been raised in the past 
(Bensalah et al., 2012; Calero et al., 2018; Csibra & Gergely, 2006, 2009, 
2011; Strauss et al., 2002), but studies so far mainly focused on corre-
lational relations between children’s teaching capacities and other 
cognitive skills, such as theory of mind or executive functions (Bensalah 
et al., 2012; Davis-Unger & Carlson, 2008a, 2008b; Strauss et al., 2002). 
Our study provided evidence that by triggering the motivation to teach, 
children start to encode novel information in a more abstract, model- 
based manner, which can lead to explicitly accessible representation 
of the information. Furthermore, even though this type of learning is 
usually not fully developed yet before the age of 12 years (Janacsek 
et al., 2012; Nemeth et al., 2013), the instruction to teach could facilitate 
model-based learning already in children between the age of 7 and 10 
years. Thus, we can conclude that the motivation to teach seems to have 
a direct impact on the development of the later emerging cognitive ca-
pacity to encode novel information in a more abstract, model-based 
manner. While it is a further question whether this type of encoding 
may contribute to the development of other cognitive capacities as well 
(for example theory of mind or metacognition, which are usually 
considered as necessary skills for fully-fledged teaching abilities), to our 
knowledge our study provides the first piece of evidence that children’s 
motivation to teach can have a direct impact on their cognitive 
development. 

Fig. 3. The change in learning scores from Day 1 to Day 2 in learning of lower-level statistical correlations (A) and learning of higher-level statistical structure (B). 
The vertical axes indicate the change in learning scores in milliseconds (for learning of lower-level statistical correlations: random low-probability minus random 
high-probability trials on Day 2 minus those on Day 1; for learning of higher-level statistical correlations: random high-probability trials minus pattern high- 
probability trials on Day 2 minus those on Day 1). Thus, bars greater than zero could indicate an increase in knowledge over the offline period, and bars smaller 
than zero could indicate a decrease in knowledge. The horizontal axes indicate the two groups. A decrease in learning scores for lower-level statistical correlations 
was observed in the Teaching Group with no change in the Control Group. In contrast, for learning of higher-level statistical structures, an increase in learning scores 
was observed in the Teaching Group, with no changes in the Control Group. The error bars represent SEM. * p < .05 

3 Since the primary aim of our study was to test whether children in the 
experimental group, simply by being aware that later they would need to teach 
would encode the sequence information differently from the control group, we 
did not assess their actual teaching performance. However, an interesting 
question for future studies could be whether children, who manage to encode 
the global structure information better would also be more successful at 
teaching this information to their peers later. 
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One could also speculate that the effect we found was not specifically 
due to the instruction to teach, but due to the mere fact that by 
instructing children to teach, they were prompted to encode the 
perceived information in a way that they could verbalize it, which led to 
a selective encoding of the global or higher-level structure information 
(which could be verbalized at least partially, in contrast to the lower- 
level statistical correlations). While we cannot exclude this possibility, 
we would like to point out that since the act of verbalization is a 
necessary and preferred mean to share information with others (and 
indeed, by the age of 5 children start to switch from providing demon-
strations to verbal explanations; Strauss & Ziv, 2012), the underlying 
motivation of verbalization is usually the same social motivation of the 
one of teaching: to share our knowledge with others. From this point of 
view, even if we assume that the perceived dissociation in the encoding 
of the novel information was directly related to the aim to be able to 
verbalize the information, we propose that the capacity to verbalize 
could originate from the motivation to be able to share the information 
with the other, which is also the underlying motivation of teaching. 

Studying the impact of teaching on the knowledge of the teacher has 
been a somewhat neglected field in the literature, but recently numerous 
studies have been conducted on a related question: the effect of expla-
nation on children’s causal learning and abstract reasoning (e.g., Legare 
& Lombrozo, 2014; Legare, Sobel, & Callanan, 2017; Walker, Lombrozo, 
Legare, & Gopnik, 2014; Williams & Lombrozo, 2010). In these studies, 
children are typically asked to provide explanations during solving 
certain tasks (for example, while they observe how different objects can 
activate a toy, they generate explanations regarding the causal affor-
dances of the objects). According to these experiments, the act of 
explanation leads children to a better understanding of the underlying 
causalities of the observed mechanism and also to a more efficient 
generalization of the causal role they learned. As the authors argue, 
explaining their observations seems to encourage children to focus on 
causal mechanisms and generalization, while it also helps them to avoid 
superficial, perceptually-bound judgments during making decisions 
about category membership (Walker et al., 2014). This is because, 
invoking mechanisms and broad generalizations are characteristics of 
good explanations (Legare & Lombrozo, 2014), and explanation can 
drive the discovery of regularities and generalize it to novel contexts, 
sometimes even resulting in overgeneralizations by hindering excep-
tions (Walker, Williams, Lombrozo, & Gopnik, 2012; Williams & Lom-
brozo, 2010, 2013; Williams, Lombrozo, & Rehder, 2013). Thus, as the 
authors conclude, explaining may be intimately related to learning new 
concepts and theories (Williams & Lombrozo, 2010). 

However, since the explanation is the common way of verbally 
conveying knowledge, it is possible that the facilitatory effect of 
explanation on children’s causal learning processes is also related to 
their social motivation to share their knowledge with others, that is, to 
teach. Therefore it might be that beyond helping the discovery of cau-
salities and promoting generalizations, explanation can contribute in 
general to the development of later emerging cognitive capacities of the 
child by facilitating the encoding of information in explicit, accessible 
representations and by promoting self-awareness regarding the knowl-
edge of the child. Indeed, children’s explanations seem to contribute not 
only to their causal reasoning about the physical world but also to their 
understanding of biological and social-conventional phenomena in 
general (Hickling & Wellman, 2001). Furthermore, the facilitatory effect 
of explanation on children’s causal reasoning seems to disappear when 
instead of providing explanations, children are simply asked to ‘think 
aloud’ about the observed events (Williams & Lombrozo, 2010). Thus, 
when the act of verbalizing lacks the social motivation to share the 
child’s knowledge with the other, children do not exhibit any 
improvement in their learning processes. This suggests that beyond 
merely verbally describing the novel information, children also need to 
address someone with the intention to convey their knowledge in order 
to achieve further representational changes. 

Since our study aimed to investigate a somewhat less examined 

question of the field, how teaching might have an impact on the 
knowledge of the ‘teacher’ and contribute to the development of further 
cognitive capacities, we are aware of the fact that our results should be 
interpreted in a cautious way. However, we hope that as a first step, we 
managed to provide evidence that prompting teaching does have an 
impact on children’s encoding of the novel information, in this case by 
triggering a model-based encoding that might result in more explicit, 
accessible representations that could be shared with others. A next step 
should be to investigate what are exactly the cognitive processes that 
contributed to a modified encoding of the information due to the in-
struction to teach, and also the implementation of further paradigms in 
order to validate the effect we found. 

In sum, we believe that these findings could be a good start for 
further investigations on how this change of information encoding and 
representation can contribute to the development of other cognitive 
capacities during childhood. 
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