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Statistical and sequence learning 
lead to persistent memory 
in children after a one‑year offline 
period
Eszter Tóth‑Fáber1,2,3, Karolina Janacsek2,3,4,6 & Dezső Németh2,3,5,6*

Extraction of environmental patterns underlies human learning throughout the lifespan and plays 
a crucial role not only in cognitive but also perceptual, motor, and social skills. At least two types 
of regularities contribute to acquiring skills: (1) statistical, probability‑based regularities, and (2) 
serial order‑based regularities. Memory performance of probability‑based and/or serial order‑based 
regularities over short periods (from minutes to weeks) has been widely investigated across the 
lifespan. However, long‑term (months or year‑long) memory performance of such knowledge has 
received relatively less attention and has not been assessed in children yet. Here, we aimed to test 
the long‑term memory performance of probability‑based and serial order‑based regularities over a 
1‑year offline period in neurotypical children between the age of 9 and 15. Participants performed a 
visuomotor four‑choice reaction time task designed to measure the acquisition of probability‑based 
and serial order‑based regularities simultaneously. Short‑term consolidation effects were controlled 
by retesting their performance after a 5‑h delay. They were then retested on the same task 1 year later 
without any practice between the sessions. Participants successfully acquired both probability‑based 
and serial order‑based regularities and retained both types of knowledge over the 1‑year period. The 
successful retention was independent of age. Our study demonstrates that the representation of 
probability‑based and serial order‑based regularities remains stable over a long period of time. These 
findings offer indirect evidence for the developmental invariance model of skill consolidation.

Detecting and extracting various kinds of regularities embedded in our environment is a fundamental component 
underlying human learning in all ages, enabling us to adapt to our surroundings and to predict future  events1–4. 
Extraction of regularities is argued to be the basis of several motor and cognitive skills, including  language3,5–9. 
The initially unstable representations of the detected and extracted regularities are converted into a more stable 
form via consolidation, allowing information to be preserved and retained  later10. Several studies investigated 
the consolidation of regularities and skills with a 1-min, 1-h, 4-h, 12-h, 24-h or 1-week  delay11–19. Although 
everyday experiences suggest that the representation of the acquired regularities and skills is persistent even for 
a more extended period (months or years), it has been rarely tested empirically, especially from a developmen-
tal perspective. In the present study, we aim to investigate the long-term (1-year) consolidation of two types of 
regularities in neurotypical children.

Behaviorally, consolidation is measured by contrasting memory performance at the end of the learning ses-
sion with performance at the beginning of a subsequent testing session, without additional practice between the 
two sessions (i.e., during the offline periods). Consolidation can be expressed by successfully retained knowl-
edge after the offline period (no forgetting, i.e., performance is similar in the learning and testing sessions) or 
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by learning-dependent, delayed performance gains after the offline period, termed offline learning (i.e., per-
formance is better in the testing session than in the learning session)20. The present study follows this well-
established behavioral test protocol to assess long-term memory performance and implements a 1-year offline 
period between the sessions.

The available information in our environment, which can be detected, extracted, and consolidated is diverse; 
thus, our brain has to process several information streams simultaneously during both learning and consolida-
tion. Learning of regularities is not a monolithic process. Previous empirical studies suggested that the acquisi-
tion of at least two types of regularities can be differentiated: (1) statistical, probability-based regularities, and 
(2) serial order-based  regularities17,21–23. Therefore, it has been proposed that humans organize the regularities 
embedded in the environment in separate hypothesis  spaces3,24; one such hypothesis space is based on prob-
abilities, while another is based on deterministic rules (i.e., serial order-based regularities). While on the level of 
transitional probabilities, these learning processes may seem highly similar, where the former can be viewed as 
the acquisition of transitional probabilities that are less than one and the latter as the acquisition of transitional 
probabilities that equal one, differences between them have been shown both on the behavioral and neural levels, 
providing support for their  distinction17,21,22. Probability-based regularities are picked up rapidly, while learning 
of serial order-based information follows a more gradual  trajectory17,21; they also manifest differently on the level 
of event-related  potentials22,23 and show different neural oscillations during  consolidation17,25.

The consolidation of probability-based and/or serial order-based regularities has been studied previously. 
Retained knowledge has been found after 1-h, 12-h, 24-h, or even 1-week offline period in healthy  adults13–17,19. 
Long-term consolidation has received less attention, with only a few studies investigating the effect of month- or 
year-long offline periods: Romano, et al. 26 and Kóbor, et al. 27 both showed persistent representation of regulari-
ties after a 1-year offline period in healthy adults. However, both studies employed a  task26,27, which, although 
measures both probability-based and serial order-based information, is not well-suited to dissect these regu-
larities in the same time window. To the best of our knowledge, only two studies investigated the consolidation 
differences between probability-based and serial order-based regularities, but they administered a 1-h offline 
period  only17,25. Both Simor et al.17 and Zavecz et al.25 found retained statistical and serial-order knowledge 
after the offline period. Altogether, prior studies typically incorporated only short-term (from minutes to week) 
offline periods in their design; therefore, the long-term consolidation of probability-based and serial order-
based information is not well understood yet. Here, we aimed to fill this gap by investigating the simultaneous 
consolidation of these regularities over a 1-year period.

The consolidation of probability-based or serial order-based information is even less understood in children. 
An ideal avenue to achieve a deeper understanding of cognitive processes and functions is to examine them from 
a developmental  perspective28. Studies on typical and atypical development can pave the way towards grasping 
underlying processes of learning and memory consolidation. Learning of probability-based regularities might 
be age-variant with better performance in children up to the age of  1221,29,30, whereas learning of serial order-
based regularities might be comparable in children and  adults21. Most of the studies examining the consolida-
tion of these regularities in children either focused on solely probability-based31 or solely serial order-based 
 regularities32,33 or used paradigms that intermix  them34–37. Retained information (i.e., no forgetting) has been 
found in neurotypical children following 11-h31, 16-h35,37, 24-h32 and 3-day34 offline periods. Hedenius et al.36 
showed offline learning after a 24-h delay and Desmottes et al.33 found offline learning following 24-h and 1-week 
offline periods. To the best of our knowledge, the long-term (1-year) consolidation of probability-based or serial 
order-based information has not yet been investigated in children. Age-variant learning of probability-based 
regularities and successful 1-year retention in healthy  adults26,27 raises the question of whether long-term con-
solidation is successful in children as well.

To sum up, in child population, the long-term (1-year) consolidation of probability-based and serial order-
based information has not been assessed yet. In the present study, we used the cued version of the Alternat-
ing Serial Reaction Time  task21,38 which enables us to simultaneously measure these two regularities. In this 
framework, statistical learning refers to the acquisition of short-range, temporally distributed probability-based 
information between visual stimuli. Sequence learning refers to the acquisition of serial order-based information, 
where participants are exposed to stimuli that repeatedly occur in the same deterministic order, incorporated with 
random stimuli (hence, creating an alternating sequence structure). Our study aims to examine 1-year consolida-
tion of probability-based and serial order-based regularities in children between the age of 9 and 15 with a task 
designed to measure the acquisition of these regularities simultaneously. This particular age range was chosen in 
order to examine consolidation both in childhood and adolescence, hence, participants from pre-adolescence, 
early- and mid-adolescence were included. Based on the previous studies, we expect successful retention of both 
probability-based and serial order-based information following a 1-year offline period.

Methods
Participants. Seventy-eight children between the age of 9 and 15 participated in our study from local 
schools. Three participant had missing data on the ASRT task due to technical difficulties; three children’s car-
egiver reported psychiatric condition; one child did not have corrected-to-normal vision during one session of 
the assessments; and one children showed extremely low average accuracy according to  Tukey39 criterion (more 
than 3 times the interquartile range  from the quartiles) consistently throughout the ASRT task. These eight 
participants were excluded from the analyses. The final sample consisted of 70 participants  (Mage = 11.99 years, 
 SDage = 1.61 years; 37 boys, 33 girls).

Participants performed in the normal range on standard neuropsychological tests (Wisconsin Card Sorting 
 Task40,41 [WCST, percentage of perseverative errors]: M = 14.12%, SD = 5.90%; Counting Span  task42,43: M = 3.17, 
SD = 0.78). Due to technical problems, data of three participants on the WCST and data of one participant 
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on the WCST and Counting Span task is missing. Handedness was measured by the Edinburgh Handedness 
 Inventory44 (EHI). Due to a technical error, EHI of one participant is missing. The Laterality Quotient (LQ) of 
the sample varied between -100 and 100 (where -100 means compete left-handedness and 100 means complete 
right-handedness) with a mean of 76.21 (SD = 36.50).

Furthermore, caregivers of participants completed a parental questionnaire regarding socioeconomic status 
(SES) and health-related questions (i.e., whether the child has any neurological, psychiatric, or neurodevelop-
mental disorder). Caregivers of one participant did not provide information about their socioeconomic status 
(SES), therefore, data of one participant is missing. SES was determined by how many years the caregivers spent 
in formal education. We calculated the caregivers’ average formal education based on both parents’ education. 
In case of five participants, we only had information about one caregiver. The range of formal education of car-
egivers was between 9.5 and 27 years, with a mean of 16.61 years (SD = 3.85 years). Caregivers were also asked 
to fill in the Strength and Difficulties  Questionnaire45 (SDQ) which measures hyperactivity, conduct problems, 
emotional problems, and difficulties in peer relationships. SDQ of six participants is missing. Total problem score 
measured in our sample was 7.94 (SD = 5.38), which is well in the normal range of typically developing  children46. 
All participants in the final sample had normal or corrected-to-normal vision, and none of the children had any 
neurological, psychiatric, or neurodevelopmental disorders according to parental reports.

Caregivers of all participants provided informed written consent, and children provided informed verbal 
consent to participate in the study before enrollment. The study was approved by the research ethics commit-
tee of Eötvös Loránd University, Budapest, Hungary (2018/239), and was conducted in accordance with the 
Declaration of Helsinki.

Task. The detection and extraction of probability-based and serial order-based regularities was measured 
by the cued version of the Alternating Serial Reaction Time (ASRT)  task21,38. In this task, four equally spaced, 
horizontally arranged empty circles were presented on the screen, and a stimulus (either a dog’s head or a pen-
guin) appeared in one of the possible locations (i.e., in the empty circles) (Fig. 1a). The task was bimanual and 
participants were asked to press the corresponding key as accurately and as fast as they could using the index 
and middle fingers of both hands. After the response of the participant, the next target appeared 120 ms later.

The presentation of the stimuli followed an eight-element alternating sequence within which pattern and 
random elements alternated with each other (e.g., 1-r-2-r-4-r-3-r, where numbers indicate the locations from 
left to right and ‘r’ indicates a randomly selected location out of the four possible ones). In the cued ASRT task, 
pattern and random elements are marked by different visual stimuli, where pattern elements are denoted by the 
dog’s head, and random elements are indicated by the penguins. Participants were informed about the presence 
of the sequence and about the fact that the appearance of dogs always follows a predetermined pattern, while 
penguins always appear in random order. They were not informed about the exact sequence; they were instructed 
to find the pattern of the dogs’ appearance to improve their performance. The alternating sequence makes six 
different sequence variations: 1-r-2-r-3-r-4-r, 1-r-2-r-4-r-3-r, 1-r-3-r-2-r-4-r, 1-r-3-r-4-r-2-r, 1-r-4-r-2-r-3-r, and 
1-r-4-r-3-r-2-r. These permutations can start at any location (e.g., 1-r-2-r-3-r-4-r and 2-r-3-r-4-r-1-r are identical 
sequence permutations). One of the permutations was selected for each participant in a counterbalanced fashion 
across participants. For a given participant, the permutation remained the same through all sessions. The stimuli 
were presented in blocks, each block consisting of 85 trials. Each block started with five random trials for practice, 
then one of the eight-element alternating sequence was presented ten times.

In the task, three successive trials are referred to as triplets. Due to the alternating sequence in the task, some 
triplets are more probable than others. Each trial is categorized as the last element of a triplet in a moving window 
manner, which means that a given trial is characterized as the first element of a given triplet, as the second ele-
ment of the following triplet and also as the last element of the next triplet, irrespective of whether it is a pattern 
or random trial. In the example sequence of Fig. 1b, 2-r-4-r-3-r-1-r (numbers indicate the locations from left to 
right and ‘r’ indicates a randomly selected location out of the four possible ones), 2-X-4, 4-X-3, 3-X-1 and 1-X-2 
(where X represents the middle element of the triplet) appeared with a higher probability because their third 
element could have been either pattern or random. Note that here, we use X to indicate the middle element of 
the triplet because for example 4-X-3 can appear both as 4-2-3 (Pattern–random–Pattern) where the first and 
last elements are part of the predetermined pattern and as 4-2-3 (random–Pattern–random) where the first 
and last elements are random, and the middle element is part of the predetermined pattern (see also Fig. 1b,c). 
In contrast, triplets such as 4-2-1 or 4-2-2 occurred with a lower probability because their third element could 
have been only random (that is, random–Pattern–random structure). The former triplet types are called “high-
probability” triplets, while the latter types are labeled as “low-probability”  triplets38.

Besides probability, another important aspect of the elements is their structure, meaning whether they are 
pattern or random elements. High-probability triplets can be differentiated based on their last element being a 
pattern element or a random element. The third element of low-probability triplets can only be random since 
pattern elements always appear with high probability. Importantly, performance is not operationalized on the 
level of triplets; instead, performance (i.e., accuracy or reaction time) is always calculated only on the last element 
of a triplet. Each element (i.e., trial) was categorized as the third element of either a high-probability or a low-
probability triplet and also either as pattern or random elements (note that they are also visually distinguishable).

There are 64 unique triplets in the task, including all Pattern–random–Pattern (50%) and random–Pat-
tern–random (50%) triplets; 16 triplets are high-probability triplets, and 48 triplets are low-probability ones. 
Regarding high-probability triplets, there are four possible combinations in regard to the first and third ele-
ments of the triplet (for the example sequence: 2-r-4-r-3-r-1-r, 2-X-4, 4-X-3, 3-X-1 and 1-X-2) with four pos-
sible locations for the middle element. In detail, the high-probability triplet of 4-X-3 can be 4-1-3, 4-2-3, 4-3-3 
and 4-4-3. Since high-probability triplets can occur as Pattern–random–Pattern (50%) and by 1/4 chance as 
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random–Pattern–random (12.5%), these triplets constitute 62.5% of all trials (Fig. 1c). As for low-probability 
triplets, the first and the second element of the triplet can appear on any of the four locations, whereas the last 
element has three possible locations as the fourth one corresponds to a high-probability triplet. Thus, low-
probability triplets constitute 37.5% of all trials. As noted above, all low-probability triplets have a random–Pat-
tern–random structure. On the level of unique triplets, high-probability triplets are five times more probable 
than the low-probability ones (4% [62.5%/16] vs. 0.8% [37.5%/48]).

Altogether, three trial types can be distinguished: (1) trials that belong to the predetermined sequence and 
are the last element of a high-probability triplet labeled as pattern trials (such as 4-2-3 in Fig. 1b,c marked with 
orange); (2) random elements that are the last element of a high-probability triplet called random high trials (such 
as 4-2-3 in Fig. 1b,c marked with blue); and (3) random elements that are the last element of a low-probability 
triplet labeled as random low trials (such as 4-2-1 in Fig. 1b,c marked with green).

Figure 1.  The cued Alternating Serial Reaction Time (ASRT) task and experimental procedure. (a) Pattern 
and random trials were presented in an alternating fashion. Pattern trials were marked by a picture of a dog’s 
head, and random trials were marked by a picture of a penguin. (b) An example of the sequence structure. 
Numbers indicate pattern trials, and ‘r’ indicates a randomly selected location out of the four possible ones. 
The alternating sequence makes some runs of three consecutive trials (labeled as triplets) more probable than 
others, called high-probability and low-probability triplets, respectively. Among high-probability triplets, the last 
element of the triplet can be either pattern or random. Based on this, we could determine pattern triplets that are 
always of high probability (orange shading in panel B and orange font in panel C) and random high-probability 
triplets (blue shading in panel B and blue font in panel C). Among low-probability triplets, only random 
low-probability triplets can occur (green shading in panel B and green font in panel C). (c) The underlying 
learning processes measured by the task. Statistical learning is calculated by contrasting the accuracies or RTs 
on the random high and random low trials (blue vs. green, the right column of the table). Sequence learning 
is quantified by contrasting the accuracies or RTs on the pattern and random high trials (orange vs. blue, the 
top row of the table). The table presents the calculation of learning processes on RT data. (d) The design of the 
experiment. The experiment was composed of three sessions. The Learning Phase consisted of four epochs (one 
epoch contained 5 blocks, and each block consisted of 85 stimuli), followed by a 5-h offline period then the two-
epoch-long Testing Phase on the same day. The Retesting Phase with four epochs was administered ca. one year 
later. Figure 1A, 1B, and 1C are adapted from Nemeth, et al. 21, Fig. 1D is adapted from Kóbor, et al. 27.
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Prior studies have demonstrated that participants show gradually faster responses to high-probability triplets 
than low-probability ones as the task progresses (i.e., triplet learning in the original, uncued version of the ASRT 
task). However, as high-probability triplets consist of both pattern and random triplets, serial-order knowledge 
cannot be measured by comparing merely the high- and low-probability triplets. It is important to note that in 
the uncued ASRT task, the underlying structure is identical to the one in the cued ASRT task, however, pattern 
and random stimuli are not visually  distinguishable38. Due to the identical underlying structure, the dissection of 
probability-based and serial-order based regularities is possible in the uncued ASRT task, but excessive training 
(i.e., 4-day-long training) is needed for the acquisition of serial-order  knowledge38,47. The visual distinction of 
pattern and random trials ensures that the acquisition of both probability-based and serial-order based regulari-
ties—also referred to as statistical and sequence learning,  respectively21,38—can be measured within the same 
time frame.

Statistical learning is quantified by the difference in accuracy or reaction times (RTs) between random high- 
and random low-probability trials. These trials share the same sequence properties as they are both random but 
differ in statistical properties as, on the level of unique triplets, the former ones are more probable than the latter 
ones (see details above). Sequence learning is measured by the difference in accuracy or RTs between pattern 
and random high-probability trials. The statistical properties of these trials are identical as they are both highly 
probable, while their sequence properties differ as pattern trials are part of the predetermined sequence. In 
conclusion, statistical learning refers to the acquisition of purely probability-based information, while sequence 
learning captures the acquisition of serial order-based information (Fig. 1c).

Procedure. The experiment was composed of three sessions. The first two sessions were administered 
on the same day with a 5-h delay between them, while the third session was administered ca. one year later 
(Mdelay = 53.08 weeks, SDdelay = 2.39 weeks, between 47.95 and 60.24 weeks, Fig. 1d). The ASRT task was admin-
istered in all three sessions. In the Learning Phase, participants completed 20 blocks, which, during the statisti-
cal analyses, were collapsed into epochs, each containing five blocks. The Testing Phase consisted of 10 blocks 
(i.e., two epochs), while the Retesting Phase contained 20 blocks (i.e., four epochs) (Fig. 1d). Participants were 
assessed in a quiet room in their school. During the 5-h offline period on the first day, they continued with their 
school activities such as classes and extracurricular activities. At the end of the first day (i.e., after the Learning 
and Testing Phases), participants were not informed that they would perform the task 1 year later.

Statistical analyses. Statistical analyses were carried out by SPSS version 25.0 software (SPSS, IBM) and 
by JASP 0.11.1.0.  software48. Based on previous studies using the ASRT  task17,21,22, we firstly collapsed the blocks 
of the task into epochs, with each epoch consisting of five blocks. This way, the Learning Phase contained four 
epochs, the Testing Phase contained two epochs, while the Retesting Phase consisted of four epochs. Epochs 
are labeled consecutively (from 1 to 10, Fig. 1d). From the analysis, two types of low-probability triplets were 
excluded: repetitions (e.g., 111, 222) and trills (e.g., 121, 242), as participants often show pre-existing tendencies 
to them 13,49. As described above in the task description, each trial was determined as the last trial of a pattern, 
random high, or random low triplet. Mean accuracy (ratio of correct responses) and median RT (for correct 
responses) were calculated for each participant and each epoch, separately for the three types of trials (i.e., pat-
tern, random high and random low trials). Based on the three trial types, statistical and sequence learning can 
be assessed by the cued ASRT  task21 (for further details, see the task’s description above). Analyses and results 
concerning accuracy are presented in the Supplementary Material; here, we focus on RT data.

Prior developmental studies showed that age has a large effect on average RTs, with younger children showing 
slower RTs [e.g.,29,30,50]. To test this, we first calculated average RTs over the 10 epochs (i.e., RT data were calcu-
lated on all correct trials, irrespective of trial types). We then correlated the average RTs with age: the analysis 
revealed significant negative correlation (r(68) = −0.54, p < 0.001), showing that younger children were slower 
on the task. To control for the effect of average RT differences related to age on learning and consolidation of 
knowledge, we transformed the data in the following way. We divided each participants’ raw RT values of each 
trial type and each epoch by their own average performance (i.e., average RT) in the first epoch of the task [for 
a similar approach,  see51,52]. Participants’ performance was around 1 at the beginning of the task and changed as 
the task progressed. Values above 1 meant that responses were slower on a given trial type than average RTs in 
the very first epoch of the task, while values below 1 indicated faster responses on a given trial type compared 
to average RTs in the first epoch. We conducted all analyses on standardized RT data.

Statistical learning score in the Learning Phase and memory scores in the Testing and Retesting Phases were 
quantified as the difference between random high and random low trial types in RT (RT for random low minus 
RT for random high trials). The learning and memory scores of sequence learning were calculated as the dif-
ference between pattern and random high trial types in RT (RT for random high minus RT for pattern trials; 
Fig. 1c). Higher scores indicate larger statistical or sequence learning/memory. To assess learning and the reten-
tion of knowledge, repeated-measures ANOVAs and paired-samples t-tests were conducted on standardized RT 
data, separately for statistical and sequence learning. The Greenhouse–Geisser epsilon (ε) correction was used 
when necessary. Original df values and corrected p values (if applicable) are reported with partial eta-squared 
(η2

p) as a measure of effect size. For correlation analyses, in case of normal distribution, Pearson’s correlation 
was employed. When the assumption of normal distribution was violated, Spearman correlation was used for 
frequentist statistics and Kendall’s Tau-b correlation was used for Bayesian statistics.

In conjunction with the frequentist analyses, we performed Bayesian paired-samples t-tests and calculated 
the Bayes Factor (BF) for the relevant comparisons as well. The BF is an excellent tool that helps to conclude 
whether the collected data supports the null-hypothesis  (H0) or the alternative hypothesis  (H1)53. BFs can be 
particularly relevant in consolidation studies where memory retention is reflected by evidence supporting the 
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 H0 rather than  H1
54. In this case,  H0 states the lack of difference between the mean of the memory scores before 

and after the offline period, while  H1 states that the mean of the memory scores differ. Here, we report  BF01 
values, which were calculated using the JASP software [version 0.11.1.0.48]. According to Wagenmakers, et al.53 
 BF01 values between 1 and 3 indicate anecdotal evidence, values between 3 and 10 suggest substantial evidence 
and values larger than 10 indicate strong evidence for  H0. Values between 1 and 1/3 suggest anecdotal evidence, 
values between 1/3 and 1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for 
 H1. Values around 1 do not support either hypothesis.

Results
Prerequisite of memory consolidation. To assess memory consolidation, significant learning has to 
occur preceding the offline period. Therefore, as a first step, we conducted repeated-measures ANOVAs on the 
Learning Phase to confirm that significant learning has occurred concerning both statistical and sequence learn-
ing. ANOVAs were conducted on standardized RT data, separately for statistical and sequence learning.

Statistical learning during the Learning Phase was tested with a two-way repeated-measures ANOVA on RT 
with PROBABILITY (random high vs random low) and EPOCH (1–4) as within-subject factors. The ANOVA 
showed significant statistical learning (main effect of PROBABILITY, F(1, 69) = 128.65, p < 0.001, η2

p = 0.65; 
Fig. 2a), participants showed faster responses to random high (M = 0.93) compared to random low trials 
(M = 0.98). RTs gradually decreased as the task progressed, irrespective of trial types (main effect of EPOCH, 
F(3, 207) = 50.29, p < 0.001, η2

p = 0.42). The RT difference between random high and random low trials did not 
change throughout the task (non-significant PROBABILITY × EPOCH interaction, F(3, 207) = 2.25, p = 0.084).

To test sequence learning during the Learning Phase, a similar two-way repeated-measures ANOVA on RT 
with ORDER (pattern vs random high) and EPOCH (1–4) as within-subject factors were conducted. The ANOVA 
confirmed significant sequence learning (main effect of ORDER, F(1, 69) = 6.09, p = 0.02, η2

p = 0.08; Fig. 2b). Pair-
wise comparisons showed faster RTs to pattern (M = 0.90) than to random high trials (M = 0.93). RTs gradually 
decreased as the task progressed, irrespective of trial types (main effect of EPOCH, F(3, 207) = 86.85, p < 0.001, 
η2

p = 0.56). Moreover, participants were increasingly faster on pattern trials than on random high trials as the 
task progressed (revealed by the significant ORDER × EPOCH interaction, F(3, 207) = 4.43, p = 0.02, η2

p = 0.06).
Furthermore, to investigate whether individual differences influence the learning on the task, we correlated 

statistical and sequence learning scores with working memory capacity, with percentage of perseverative errors 
on the WCST task, with socioeconomic status, and with total problem score on the SDQ. To control for multi-
ple comparisons, we employed False Discovery Rate correction. None of the correlations were significant (all 
ps > 0.064). We also rerun the ANOVAs on the sample without left-handed participants to control for handedness. 
The results were identical to the ones on the whole sample.

Do children retain regularities after a 1‑year offline period? To test 1-year consolidation of statisti-
cal knowledge, we conducted a two-way repeated-measures ANOVA on RT with PROBABILITY (random high 

Figure 2.  Temporal dynamics of (a) statistical and (b) sequence learning across epochs and sessions. 
Standardized RT values as a function of the epoch (1–10) and trial types (random high vs random low for 
statistical learning and pattern vs random high for sequence learning) are presented. Blue lines with triangle 
symbols indicate standardized RT values on the random high trials, green lines with square symbols indicate 
standardized RT values on the random low trials and orange lines with circle symbols indicate standardized RT 
values on the pattern trials. (a) Statistical learning is quantified by the gap between blue and green lines and (b) 
sequence learning is quantified by the gap between orange and blue lines. In both cases, greater gap between the 
lines represents better learning. Error bars denote standard error of mean.
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vs random low) and EPOCH (6 vs. 7) as within-subject factors. Overall, irrespective of epochs, participants 
were faster on random high (M = 0.84) than on random low trials (M = 0.89) (main effect of PROBABILITY, F(1, 
69) = 159.11, p < 0.001, η2

p = 0.70). Average RTs (i.e., RTs irrespective of trial types) differed in the two epochs 
(main effect of EPOCH, F(1, 69) = 3.92, p = 0.05, η2

p = 0.05), participants showed faster RTs in the  7th epoch 
(M = 0.86) compared to the  6th epoch (M = 0.88). Crucially, the ANOVA revealed evidence for retained statistical 
memory after the 1-year delay (non-significant PROBABILITY × EPOCH interaction, F(1, 69) = 0.03, p = 0.86, 
 BF01 = 7.50; Fig. 3a), with similar memory scores in the  6th (M = 0.049) and in the  7th (M = 0.048) epochs. Fur-
thermore, as the delay has some variability in terms of weeks (Mdelay = 53.08 weeks, SDdelay = 2.39 weeks, between 
47.95 and 60.24 weeks), we examined whether it has any relation to the long-term memory performance. First, 
we calculated an offline change score for statistical knowledge by subtracting the standardized memory score 
in Epoch 6 from the standardized memory score in Epoch 7. This way, negative scores indicate forgetting and 
positive scores indicate offline learning. Offline change score did not show correlation with the length of the 
long-term delay (rs(68) = 0.07, p = 0.56;  BF01 = 5.12).

To investigate 1-year consolidation of serial-order knowledge, we also run a two-way repeated-measures 
ANOVA on RT with ORDER (pattern vs random high) and EPOCH (6 vs. 7) as within-subject factors. Over-
all, participants showed faster RTs on pattern (M = 0.80) than on random high trials (M = 0.84) (main effect of 
ORDER, F(1, 69) = 5.88, p = 0.02, η2

p = 0.08). Average RTs were similar in the two epochs (main effect of EPOCH, 
F(1, 69) = 3.33, p = 0.07). Importantly, the ANOVA revealed retained serial-order knowledge (non-significant 
ORDER × EPOCH interaction, F(1, 69) = 0.18, p = 0.67,  BF01 = 6.97; Fig. 3b), memory scores were similar in the 
 6th (M = 0.05) and in the  7th epoch (M = 0.045). Similarly to statistical knowledge, we also correlated the offline 
change score of serial-order knowledge and the length of the long-term delay. One participant had to be excluded 
from the analysis as they showed extremely low offline change score according to  Tukey39 criterion (more than 
1.5 times the interquartile range from the quartiles). Offline change scores did not correlate with the length of 
the delay (rs(67) = −0.09, p = 0.49;  BF01 = 5.01).

Moreover, similarly for the learning scores, to investigate whether individual differences influence the con-
solidation of statistical or serial-order knowledge, we correlated the offline change scores with working memory 
capacity, with percentage of perseverative errors on the WCST task, with socioeconomic status, and with total 
problem score on the SDQ. To control for multiple comparisons, we employed False Discovery Rate correction. 
None of the correlations reached significance (all ps > 0.277). We also rerun the ANOVAs on the sample without 
left-handed participants to control for handedness. The results were identical to the ones on the whole sample.

Does age affect the one‑year retention of statistical and serial‑order regularities? To check 
the possible association between age and retention, we conducted Pearson’s correlation between the offline 
change scores and age. Regarding statistical knowledge, offline change scores did not show correlation with 
age (r(68) = 0.06, p = 0.62,  BF01 = 5.92). Concerning serial-order knowledge, one participant had to be excluded 
from the analysis on RT data as they showed extremely low offline change score according to  Tukey39 criterion 
(more than 3 times the interquartile range from the quartiles). The correlation between the offline change score 
of serial-order knowledge represented by RT values and age was also not significant (r(67) = −0.06, p = 0.62, 
 BF01 = 5.91).

Figure 3.  Retention of (a) statistical and (b) serial-order knowledge. Memory scores measured by standardized 
RT values for the last epoch of the Testing Phase (Epoch 6) and the first epoch of the Retesting Phase (Epoch 7). 
Error bars denote the standard error of mean.
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Discussion
The present study aimed to investigate the 1-year consolidation of probability-based and serial order-based 
regularities in children aged 9–15 years. We have shown retained knowledge of both information after the 1-year 
offline period; participants successfully learnt and stabilized the regularities, and the acquired knowledge was 
resistant to forgetting over a long period of time. Additionally, successful retention was irrespective of age as 
we have not found association between the retention of probability-based or serial order-based regularities and 
age. Our results are supported by Bayesian statistics as well, further strengthening the evidence for successful 
1-year retention.

Both statistical and serial-order knowledge has been successfully retained after the 1-year offline period, 
which is in accordance with previous adult  studies26,27. However, Romano et al.26 and Kóbor et al.27 employed 
the original, uncued version of the ASRT task in which probability-based and serial order-based regularities 
are intermixed. Here, we went beyond these studies by employing the cued version of the ASRT task which is 
designed to disentangle these two types of regularities. This version dissects probability-based and serial order-
based regularities by marking pattern and random elements with different visual stimuli. This modification 
results in the possibility of measuring the acquisition of probability-based and serial order-based regularities 
(i.e., statistical and sequence learning, respectively) within the same experimental design and within the same 
time  window21. It is important to note that the dissection of probability-based and serial order-based regulari-
ties in the ASRT task is possible even in the original, uncued version of the task (i.e., where pattern and random 
stimuli are not visually distinguishable), however, excessive training (i.e., 4-day-long practice) is needed to reach 
that  aim38,47. By implementing the cued version of the ASRT task in our study design, we could simultaneously 
measure the encoding and consolidation of probability-based and serial order-based information, enabling us 
to compare the consolidation of these two processes. Although several empirical studies have shown the differ-
ences between statistical and sequence learning in encoding, to the best of our knowledge, only two studies have 
investigated the consolidation of these processes within the same experimental design. Simor et al.17 have found 
retained knowledge after a 1-h offline period with no difference on the behavioral level between statistical and 
serial-order knowledge. However, on the neural level, they discovered that slow frequency oscillations (high delta 
and theta power) during sleep predicted further improvements in sequence learning, while changes in statistical 
learning were not associated with spectral EEG power measures. Zavecz et al.25 also explored the brain activity 
underlying the consolidation of probability-based and serial order-based information. Although the consolida-
tion of probability-based and serial order-based information was comparable on the behavioral level showing 
successful retention of both types of knowledge, differences emerged on the neural level. Consolidation of sta-
tistical knowledge was in relation with learning-induced changes in delta frequency connectivity between local, 
short-range connections, while consolidation of serial-order knowledge was associated with learning-induced 
changes in alpha frequency connectivity over long-range centro-parietal networks. Taken together, the present 
study corroborates these findings as we also showed retention of statistical and serial-order knowledge after a 
1-year offline period on the behavioral level. Further studies are warranted to examine brain activity underlying 
long-term consolidation of probability-based and serial order-based information.

The findings of retained statistical and serial-order knowledge in children after a long period of time extends 
previous studies showing retention or even offline learning over the short or medium term. In more detail, Fis-
cher et al.31 showed retained statistical knowledge after an 11-h offline period spent awake; whereas Desmottes 
et al.33 investigated sequence-specific learning and found offline learning both after 24-h and 1-week delay, and 
Hedenius et al.32 found retained serial-order knowledge following a 24-h delay. Four  studies34–37 employed the 
uncued ASRT task (intermixing probability-based and serial order-based regularities). They found retained 
knowledge following a 16-h35,37 and 3-day34 offline period, and offline learning following a 24-h  delay36. Our 
results on RT data are consistent with these studies. Although here we focused on RT data, analyses on accuracy 
data also yielded similar results (see Supplementary Material). Altogether, our results corroborate and extend 
the previous ones with showing successful retention after a 1-year long offline period.

Although unveiling lifespan differences in the consolidation of statistical and serial-order knowledge was 
not the goal of the present study, it is worth noting that our results are in line with the findings of Romano 
et al.26 and Kóbor et al.27, showing successful 1-year retention in adults. The development and lifespan trajectory 
of the acquisition of probability-based and serial order-based information underwent thorough investigation 
[e.g.,21,29,55,56]; however, no consensus emerged whether learning is age-dependent or not [for a review,  see50]. 
Nemeth et al.21 examined the acquisition of probability-based and serial order-based regularities employing both 
the uncued and the cued ASRT task in a population of neurotypicals between the age of 11 and 39. In the uncued 
condition, 11–13-year-old children showed higher extent of statistical learning compared to the other age groups. 
This falls in line with the ‘less is more’ model, which proposes age-dependent learning of regularities with a peak 
performance during childhood, up until the age of  1229,30. In contrast, statistical learning was age-invariant in 
the cued condition. Sequence learning was similar in all age groups in both the cued and uncued  conditions21, 
suggesting that the acquisition of serial order-based information is comparable from childhood to adulthood. 
Here, we went beyond the study of Nemeth et al.21 by investigating the consolidation of probability-based and 
serial order-based regularities. Importantly, not only learning but consolidation of statistical and serial-order 
knowledge could also differ during the lifespan [e.g.,31,57]. Fischer et al.31 showed age-dependent consolidation of 
statistical knowledge in the case of sleep-dependent consolidation. Adults benefited from sleep and showed better 
consolidation of statistical knowledge after sleep than wakefulness, while the exact opposite picture emerged in 
children [however, for the confounding effect of pre-sleep level performance,  see58]. As for the consolidation of 
serial-order knowledge, the results of Adi‐Japha et al.57 suggests a more nuanced picture: memory performance 
in childhood and adulthood on the behavioral level appeared similar, showing retention of knowledge in both 
age groups, however, children seemed to be less susceptible to subsequent interference than adults. In the present 
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study, we found long-lasting representation of statistical and serial-order knowledge, similarly to the studies of 
Romano et al.26 and Kóbor et al.27 that showed retained statistical knowledge following a 1-year offline period 
in adults. Thus, our study offers indirect evidence of comparable consolidation of probability-based and serial 
order-based information in childhood and adulthood, supporting developmental invariance in consolidation. 
The lack of association between retention and age in our sample also promotes the developmental invariance 
model. Nevertheless, as we did not directly contrast the performance of adult and children populations, further 
studies are warranted to examine the long-term memory performance of statistical and serial-order knowledge 
in adults and children within the same experimental design.

It is also worth looking at our results from a broader perspective of memory consolidation, namely the 
distinction between procedural and declarative processes. Statistical and serial-order regularities have been 
proposed to be two aspects of procedural memory, i.e., the system underlying the acquisition of skills and 
 habits21,38. Hence, our results, together with previous studies on adults, suggest that consolidation of proce-
dural knowledge is age-invariant and comparable from childhood to adulthood, both after short-term and 
long-term delay. The developmental differences of declarative memory, i.e., the system underlying the learning 
and remembering of facts and events, has also been investigated across the lifespan. While declarative memory 
abilities have been extensively shown to improve across childhood and adolescence, particularly memory for 
contextual details [e.g.,59–61], the developmental differences of declarative memory consolidation using relatively 
long offline periods (i.e., more than 24 h) have been tested only in a handful of studies. For example, Henderson 
et al.62 showed that children have retained knowledge of objects’ locations following a 1-week delay. Relatedly, 
in school-aged children, cued recall of previously learnt novel words was  maintained63 or even  improved62 after 
a 1-week offline period. Recognition of novel words was also maintained after a 1-week  delay62. Similarly, in 
neurotypical adults, Gaskell and  Dumay64 showed retained explicit recognition of priorly acquired novel words 
and Dumay et al.65 found increased free recall of novel words after a 1-week offline period. In sum, similarly to 
procedural memory, long-term consolidation of declarative memory (1-week delay in these examples) seems 
to be comparable between school-aged children and adults, at least considering the learning and recalling of 
novel words. Note that, to the best of our knowledge, no 1-year consolidation has been tested for this (or other) 
aspect of declarative memory in children that would allow greater comparability. Future studies are warranted 
to directly compare the developmental trajectory of the long-term consolidation of procedural and declarative 
memory within the same groups using a range of offline delays.

In the present study, we took into consideration several possible confounds of consolidation. Participants 
completed the task three times: (1) in the Learning Phase, (2) in the Testing Phase 5 h later on the same day 
and (3) in the Retesting Phase 1 year later, with no practice during the offline periods. By employing this study 
design, we controlled for the following possible confounds. First, by implementing a Testing Phase in the design, 
we controlled for the short-term (5-h) consolidation of information. Second, as participants were unaware of the 
fact that they will be tested with the same task later, any confounding effects of explicit strategy during acquisition 
or consolidation were minimized. Lastly, during the offline periods, there was no practice, which could have led 
to the reactivation of the acquired knowledge. Moreover, we took into account the possible confounding effect 
of individual differences on consolidation. We correlated consolidation performance with working memory 
capacity, executive functions, socioeconomic status, behavioral and emotional problems, and examined the 
role of handedness as well. We did not find any relation between these factors and consolidation performance; 
therefore, it is highly unlikely that individual differences confounded our results.

Taken together, the present study demonstrated that the representation of statistical and serial order-based 
regularities remains stable over a long period of time in neurotypical children and can be successfully retained 
after a 1-year offline period. We showed that the knowledge of statistical and serial order-based regularities is 
robust and resistant to forgetting over a 1-year offline period, with no difference between the two aspects of 
learning. Our study also offers indirect evidence for the developmental invariance of consolidation of statistical 
and serial-order knowledge.
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