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Abstract: Microalgae have become an attractive natural source of a diverse range of biomolecules,
including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable pro-
duction of such compounds from microalgae biomass is still challenging. The main hurdles are: (a)
increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost-
effective downstream processing (extraction and purification); (d) optimal storage of post-processed
antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic
antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, indus-
trial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells,
and the opportunities and limitations of current technologies for antioxidant enzymes production
from microalgae biomass as an alternative to common microbial sources.

Keywords: Dunaliella; antioxidant enzymes; cultivation conditions; post-harvest processing

1. Introduction

Microalgae are singled celled micro-bio-factories capable of producing a wide variety
of high-value compounds (carbohydrates, proteins, lipids, carotenoids, phycobiliproteins,
phenolic, polyunsaturated fatty acids and antioxidants) used in the pharmaceutical, nu-
traceutical, cosmetic, and food processing industries [1–10]. Microalgal biomass can be
added directly as a nutrient enhancer in animal feeds; as an enhancer for improving the
quality of food; and as a stabiliser for maintaining the colour and flavour of food prod-
ucts [3,11–14]. The global microalgae market has gradually expanded, and worldwide
sales are expected to exceed US $3.2 billion by the end of 2030 [15]. Recent studies have
demonstrated the potential of microalgae to produce antioxidant molecules [16–19]. The
antioxidant capacity and antioxidant activity of small molecules (β-carotene, astaxanthin,
and phenolic compounds) have also been explored extensively [10,20,21]. Nevertheless,
antioxidant enzymes have received little attention.

The green halotolerant microalgae Dunaliella can grow in a wide range of salt con-
centrations, from 0.05 M to 5.5 M NaCl [22,23]. Currently, 28 species of Dunaliella have
been identified, of which 23 species live in saline environments, and 5 are rare species that
inhabit freshwater [22]. Commercially, Dunaliella is cultivated in several countries, such
as Australia, China, Israel, and India, with pilot-scale projects in Chile, Spain, Iran and
Portugal [24–26] and considered one of the best sources of β carotene. Dunaliella has also
been suggested as a sustainable source for industrial bioprocessing for the production of
protein [27], biodiesel [4,28,29], colouring agent [30], and antioxidants [31].

Currently, antioxidant enzymes are sourced from microbial and animal sources [32,33].
Though there is no commercial production of antioxidant enzymes from Dunaliella, several
reports have shown that Dunaliella can increase its levels of enzymatic (mainly catalase,
peroxidase and superoxide dismutase) and non-enzymatic (carotenoids, phenolic, ascor-
bate and glutathione) antioxidants to mitigate stress induced by exogenous abiotic fac-
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tors [31,34–39]. Its high adaptability to exogenous stressors (oxidative and osmosis) and the
lack of a rigid cell wall [40] could make Dunaliella an ideal natural source for antioxidant
production. Dunaliella can efficiently and sustainably produce large volumes of biomass
without competing for cultivable land and fresh water [25].

2. Antioxidants

Extensive research on the effect of ROS in humans has demonstrated a substantial link
between free radicals and more than sixty different health conditions, including ageing,
cancer, diabetes, Alzheimer’s disease, strokes, heart attacks and atherosclerosis [41,42].
Consumption of higher levels of dietary antioxidant enzymes, as well as antioxidant
molecules-enriched food or antioxidant supplements, has been found to reduce the risk of
free radical-related health issues [41].

2.1. Classification of Antioxidants

Antioxidants (enzymatic or non-enzymatic) are classified depending on their mode
of activity as primary antioxidants (hydrogen or electrons donors) or secondary antioxi-
dants (oxygen scavengers or chelating agents) [43,44]. Antioxidants can also be grouped
according to size, solubility, mode of action or structure, Figure 1. Abundant enzymatic
antioxidants in microalgae are superoxide dismutase (SOD), catalase (CAT), ascorbate
peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione
transferase (GST). Non-enzymatic antioxidants consist of compounds such as Vitamin C
(ascorbate), glutathione, carotenoid, phenolic compounds, proline, glycine, polyamine,
PUFA, and some metals (Cu, Zu) [45–47]. Most enzymatic antioxidants and some non-
enzymatic antioxidants (glutathione, ascorbate) are hydrophilic and mainly present in
the cellular fluids (cytosol or cytoplasmic matrix), whereas the hydrophobic antioxidants
(carotenoid, tocopherol) are primary located in the cell membranes [48].
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2.2. Antioxidant Enzymes

Antioxidant enzymes prevent or delay the oxidation of other molecules by neutralising
reactive oxygen species (ROS) [48]. These enzymes eliminate ROS by reducing the energy
of free radicals or by donating electrons to free radicals [42], and as such, constitute the first
level of defence in the cells antioxidant network. Some molecules are not involved directly
in the scavenging of free radicals but rather enhance other antioxidant molecules’ activity
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and may also be classified as antioxidants [41]. The majority of antioxidant enzymes are
metalloenzymes and contain a metal ion in their catalytic site [45].

2.3. Commercial Applications of Antioxidant Enzymes

Antioxidants, or antioxidant-enriched extracts, are commercially used to prevent
oxidative processes and to maintain the flavor, texture, and colour of food during storage.
They also find uses as refining, bleaching, deodorising agents in the food processing
industries [51–55], in extending the shelf life of lubricating oil and reducing vehicular
emissions [56] and in stabilisation of synthetic fibre, rubber, thermoplastic, and adhesives
by stopping autocatalytic reactions [57]. In cosmeceutical products, antioxidant compounds
are used to prevent skin ageing and UV-induced skin damage, and treat the appearance of
wrinkles and erythema due to inflammation [58–61]. Industrial applications of antioxidants
are listed in Table 1. Global demand for antioxidants was valued at ~USD 2.25 billion
in 2014 and grew at a CAGR (compounds annual growth rate) of ~5.5% between 2015
and 2020 [62]. This increasing global demand is driving the search for synthetic and
natural-derived antioxidants.

Table 1. Commercial uses of enzymatic and non-enzymatic antioxidant.

Antioxidants Applications Ref

Natural
antioxidants

SOD

Added to cosmetic products to protect against skin damage

[49,52,60,63,64]
Protect against lipid peroxidation, heat, and cold stress in poultry production

As a therapeutic agent for treatment of inflammatory disorders

Normal cells protector during radiotherapy for cancer patients

CAT

Eliminate excessive H2O2 in the textile industry, pulp, and paper industry
used for bleaching fibres and pulp, and as a bactericidal disinfectant in food

processing and in the pharmaceutical industry
[51,57,65]

In aesthetics (mask treatment) to increase cellular oxygenation in the upper
layers of facial epidermis

Reducing the risk of diabetes mellitus

GPX Immune system booster [42,66]

GST
Protective role against neurogenerative diseases

[66,67]
Decreases the risk of tumours of the head and neck, oral, cavity and colon

Glutathione Anti-wrinkle formation, and as a modifier of skin smoothness [68]

Vitamins
As a food preservative and bread improver, protective activity against heart

diseases, reduced the risk of colorectal adenomas and prostate cancer,
reduction of thyroid hormone levels

[69–73]

Flavonoids As cancer preventive agents, protection against type 2 diabetes Functional
food additive [74–77]

Carotenoid Anticancer agents, additive to cosmetics and multivitamin preparation
Food colouring agent, pro-vitamin A in food and animal feed [29,38,78]

PUFA Prevention of heart and inflammatory diseases [79,80]

Synthetic
Antioxidants

BHA Extending the shelf life of vegetable oil, frying oil, animal feed, cereals,
chewing gum, potato flakes and cosmetic products [81–83]

BHT Increasing the shelf life of animal fats, chewing gum, animal feed,
vegetable oils [82,83]

TBHQ
Used as preservative for enhancing storage stability of vegetable oils,
margarine, fish oil, fried foods, essential oils, nuts, edible animal fats,

butterfat, and packed fried foods
[82]

Propyl gallate As an antioxidant agent in foods and vegetable oil [82]

BHA = butylated hydroxyl anisole; TBHQ = tert-butylhydroquinone; BHT = butylated hydroxyl toluene

Commercially, synthetic antioxidants such as butylated hydroxyl anisole (BHA), buty-
lated hydroxyl toluene (BHT), α-tocopherol and propyl gallate are used in foods, food
packaging, cosmetics and pharmaceutical products [82,84]. However, the physical prop-
erties of BHT and BHA (high volatility and instability at elevated temperature), strict
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legislation on the use of synthetic food additives, and the carcinogenic nature of some syn-
thetic antioxidants [85–88] have shifted the attention to finding antioxidants from natural
sources that are pharmacologically potent and have low or no toxicity.

2.4. Generation and Detoxification of ROS

ROS is a collective term for oxygen-derived products (free radicals and non-radicals
reactive derivatives of oxygen). They are produced in cellular compartments either ex-
ogenously (in response to environmental stress such as UV radiation or xenobiotics) or
endogenously (from the intracellular metabolic pathway, enzymatic activities, mitochon-
drial respiration, or photosynthesis) [66]. Accumulation of ROS leads to oxidative stress in
cells and causes damage to cellular macromolecules, including proteins, lipids, carbohy-
drates and DNA [89]. Various sources of ROS and corresponding modes of biochemical
metabolism are summarised in Table 2.

Table 2. Production of ROS in cells during biological metabolism and their corresponding neutralising antioxidants.

ROS Reaction Life Span Function Sources of ROS Scavenging
Antioxidants

Singlet (1O2)
First excited

electronic state of
O2

Chlorophyll triplet
state (Chl) is

generated sue to
insufficient energy
dissipation during

photosynthesis
Chl + 3O2 → 1O2

Reduction of
transition metal

(Fe3+)
O2
•− + Fe3+ →

1O2 + Fe2+

3 µs (appx.)
4 µs in H2O

100 µs in polar
solvents

Gene
up-regulation,

molecular defense
against

photo-oxidative
stress

Chloroplast

β-carotene,
lycopene,

tocopherol, ASc,
plastoquinone, and

proline

Superoxide radical
(O2
•−)

One electron
reduction of 3O2

Reduction of
oxygen (3O2)

during electron
transport during

the photosynthesis
process in

chloroplasts or
during oxidative

phosphorylation in
the mitochondria
3O2 + e− → O2

•−
3O2 + Xanthine

(Xanthine oxidase)→
O2
•− + uric acid

3O2 + NADPH
(NADPH oxidase)→
O2
•− + NADP+ +

H+

2–4 µs

Triggering the
formation of more
ROS which further

participates in
membrane lipid

peroxidation

PSI in Chloroplast
oxidative

phosphorylation in
mitochondria
Peroxisomes

Plasma membrane

SOD, ASc,
glutathione (GSH),

flavonoids, Cu

H2O2
Two electron

reduction of 3O2 or
univalent

reduction of O2
•−

Protonation
reaction (acidic

conditions)
O2
•− + H+ + HO2

•
→H2O2 + 2O2
Glycolate + O2

(Glycolate oxidase)→
H2O2 + Glyoxylate

Fatty acids
(β−oxidation)→

Acetyl coenzyme +
H2O2

1 ms

Act as a signaling
molecule (low

concentration of
H2O2), at high

concentration of
H2O2 triggers

tolerance to
various stress, as a

regulator of
physiological

processes
(photorespiration

and
photosynthesis)

Chloroplast,
Mitochondria, and

Peroxisome

CAT, POD (GPX
and APX),

peroxiredoxin, ASc,
tocopherol, GSH,
β-carotene, Se

flavonoids, lipoic
acid,
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Table 2. Cont.

ROS Reaction Life Span Function Sources of ROS Scavenging
Antioxidants

HO2•
Protonation of

superoxide ions
O2
•− + H+ →

HO2
•

Attacks PUFA in
the negatively

charged membrane
surface

Mitochondria,
microsomes and

peroxisomes

HO• (Three
electron reduction

of 3O2)

Fenton reaction:
H2O2 + Fe2+ →

HO• + HO− + Fe3+

Haber-Weiss
reactions:

O2
•− + H2O2 →

HO• + HO− + O2

1 ps
Attack unsaturated

fatty acids in
membranes

Mitochondria
ASc, GSH,

flavonoids, lipoic
acid, proline

Nitric oxide (NO•)
L-arginine + O2

Nitric oxide synthase

→ NO• +
Citrulline

Intercellular
messenger, the

quencher of O2
•−,

defense against
various protozoa,

fungi, and
mycobacteria

Peroxisome,
cytosol GSH

Peroxynitrite
(ONOO−)

NO• + O2
•− →

ONOO−

React with amino
acids residues in
enzymes causing

inactivation

Peroxiredoxin,
Uric acid

Lipid
hydroperoxide Oxidation of PUFA Tissue injuries and

diseases
Mitochondrial

membrane PUFA

The majority of ROS are generated when electrons leak from the chloroplastic electron
transport systems during photosynthesis, from the mitochondrial electron transport chain
during photorespiration, and from the peroxisomal membrane electron transport chain
(Figure 2) [90]. In plant cells, 1–2% of O2 consumption leads to the formation of superoxide
(O2
•−), and 1–5% of mitochondrial O2 consumption leads to the generation of H2O2 [45].

O2
•− is generated during oxidisation of unsaturated fatty acids [91], from the activity

of cytochrome P450 [92] and the cytochrome b5 family members [93,94]. Also, O2
•− is

produced in the peroxisome where xanthine oxidases catalyse the oxidation of xanthine
and hypoxanthine to uric acid [45], and in the plasma membrane due to the reduction of
O2 by NADPH oxidases [49].
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in microalgae (FD; ferredoxin, FNR; ferredoxin-NADP+ oxidoreductase; PSI-Photosystem I; PSII-
Photosystem II, PC-plastocyanin [90,95]).

Superoxide ions (O2
•−) are converted into hydrogen peroxide (H2O2) by the catalytic

activity of SOD. H2O2 is also produced in peroxisomes when glycolate from the photorespi-
ration is recycled. In addition, H2O2 can be formed by D-amino acid oxidase, urate oxidase,
flavin oxidase, L-α-hydroxy acid oxidase, and fatty acyl-CoA oxidase, and by cell wall
peroxidases. Reactive OH• is produced from the reaction of O2

•− and H2O2 at neutral
pH and ambient temperature (Haber–Weiss reaction) or from H2O2 during the Fenton
reaction [96]. In contrast, the addition of a proton (H+) to O2

•− generates perhyroxyl
radicals (HO2

•). In some cases, intracellular ROS could also form during auto-oxidation
of small molecules (epinephrine, flavins, and hydroquinones) [97,98]. The singlet oxygen
(1O2) is generated from the reaction of oxygen (3O2) with the triplet state of chlorophyll
produced by the dissipation of insufficient energy during photosynthesis [45].

Under normal physiological conditions, ROS is neutralised by the cells’ antioxidant
systems where antioxidant enzymes and antioxidant molecules maintain the delicate
intracellular redox balance and mitigate undesirable cellular damage caused by ROS,
Table 2 [48,50].

Different isozymes of SOD exist (Mn-SOD in mitochondria and peroxisome, Fe-SOD in
the chloroplast, and Cu/Zn-SOD isozyme in cytosol) but they all participate in scavenging
of O2

•−. In addition to SOD, some antioxidants molecules (Vitamin C, glutathione, etc.)
also eliminate O2

•− [45]. Further, the individual or cumulative catalytic activity of catalase
or peroxidases decompose H2O2 into H2O and O2. CAT, peroxidases (GPX, APX) and SOD
show a synergistic effect in the scavenging of O2

•−. In addition to eliminating H2O2, GPX
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can protect cells by preventing intracellular lipid peroxidation [48]. APX may be more
efficient compared to CAT or GPX in detoxification of H2O2 due to its higher affinity for
H2O2. APX reduces H2O2 into H2O in chloroplasts, cytosol, mitochondria and peroxisomes,
and in the apoplastic space using Ascorbic acid (ASc) as an electron donor [99].

Algal cells accumulate ASc with 30–40% remaining in the chloroplast. Ascorbic acid is
water-soluble and acts as a potent antioxidant because of its ability to donate electrons in
enzymatic and non-enzymatic reactions [100]. It protects cells by directly scavenging O2

•−,
HO2

•− and regenerating the tocopherol from tocopheroxyl radicals [101]. All intracellular
compartments generate the reduced form of glutathione, which plays a role as an excellent
scavenger of many ROS such as O2

•−, HO•, O3, NO2, lipid hydroperoxides [50] due to the
redox-active thiol group that becomes oxidised when GSH reduces ROS [102]. Carotenoid
also protects cells from light-induced oxidative stress by quenching 1O2 or dissipating
excess heat (excitation energy) or scavenging peroxy radicals [45,48].

As the accumulation of enzymatic and non-enzymatic antioxidants in the cell de-
pends on the external environment, manipulating cultivation conditions could enhance the
intracellular antioxidant levels.

3. Cultivation Conditions

In addition to carbon, light energy, and water, Dunaliella requires certain mineral
nutrients for growth. A suitable medium can be prepared from natural or artificial seawater
enriched with nutrients (carbon, nitrogen, phosphorous, sulphur, iron, and magnesium),
trace metals, and vitamins [40]. Carbon dioxide (CO2), inorganic carbon (e.g., NaHCO3,
Na2CO3), and organic carbon (e.g., sodium acetate, glucose, glycerol) can be used as
carbon sources. Nitrate, ammonia, and urea are commonly used as nitrogen sources for the
synthesis of amino acids, nucleotides, chlorophylls and phycobilins [103]. Phosphorous is
needed for several metabolic processes (ATP, DNA, RNA, and phospholipids). Iron acts as a
cofactor for many enzymes (e.g., ferredoxins, catalases, nitrogenases, nitrates), and sulphur
is needed for the biosynthesis of specific amino acids (cysteine, methionine). Magnesium
is required for t chlorophyll biosynthesis, and other trace minerals serve as cofactors for
various enzymes. Dunaliella needs light and temperature to assimilate carbon during
photosynthesis and enhance biomass productivity and growth [104]. Growth conditions
can be classified into three types based on energy and carbon sources (Table 3).

Table 3. Characteristics of microalgae growth modes [105,106].

Characteristics Photo-Autotrophic Heterotrophic Mixotrophic

Carbon assimilation process Photosynthesis Aerobic respiration Photosynthesis and aerobic
respiration

Energy sources Light (solar or artificial)
Organic carbon (e.g., glucose,

acetic acid glycerol,
wastewaters)

Light and organic carbon

Carbon sources Inorganic carbon
(CO2, NaHCO3) Organic carbon Inorganic and organic

Light energy Mandatory Not required Not essential

Photo-inhibition effect High No effect Low

Growth-limiting factor Light Oxygen Light and oxygen

Photo-oxidative damage risk High Very low Protected by accumulating
oxygen

Types of bioreactors Photo-bioreactors and open
ponds Fermenters Photo-bioreactors, open ponds

Availability of bioreactor’s
vessels Photo-bioreactor Commercially

available Bioreactor
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Table 3. Cont.

Characteristics Photo-Autotrophic Heterotrophic Mixotrophic

Bioreactor’s surface tovolume
ratio (m2/m3) High Low High

Sterility Usually sanitised Sterility required Not required

Contamination risk Low High Medium

Harvesting cost High due to the low density of
biomass

Low due to high biomass
concentration

Low due to high biomass
concentration

Bioreactor set up cost (per unit
of volume) High Low High

Bioreactor operation cost (per
kg of biomass) Low Medium High

Scale-up Design optimisation required Easy Design optimisation required

Efficiency in wastewater
treatment Low High High

Growth rate Low Medium High

Biomass density (g L−1) Low Medium High

Lipids (%) Low High High

Proteins (%) High Low Medium

Carbohydrates (%) Low High Low

Chlorophyll and β-carotene
(%) High Low Medium

Lutein (%) Medium High High

Photoautotrophic culturing is the most common strategy for growing Dunaliella
biomass. However, in large cultures, cell-shading becomes an issue, limiting light penetra-
tion into the culture, leading to lower amounts of biomass [107]. In mixotrophic cultivation,
the microalgae use CO2 and organic carbon (acetate, glucose) simultaneously along with
light energy; respiratory and photosynthetic metabolism operates concurrently [105]. This
increases biomass sproduction and results in a higher lipid production compared to that
observed in photoautotrophic cultures [107–128], though at increased cultivation costs.

Although heterotrophic cultivation of algae [106] eliminates the requirements for light
and facilitates biomass production in the dark, attempts to grow D. para heterotrophically
were unsuccessful [110]. However, some Dunaliella strains can grow heterotrophically using
organic carbon (such as tryptone, yeast extract, and urea, etc.) as an energy source, together
with nutrients [128–133]. No studies have been published supporting the heterotrophic
growth of Dunaliella strains at a commercial scale.

Dunaliella can grow phototrophically at temperatures ranging between 10 ◦C and
30 ◦C and in a wide variety of media, where the maximum cells density range between
0.3 × 106 cells mL−1 and 24 × 106 cells mL−1 [25]. In addition, these species are halotoler-
ant and can grow in a high saline medium (0.5–4.0 M NaCl) [111]. Dunaliella strains can
adapt to grow under quite different nutrients conditions, which demonstrates the diversity
of these strains [112–115]. The essential photoautotrophic growth parameters of microalgae
(Dunaliella) are shown in Figure 3.
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Using available technologies, Dunaliella biomass production costs are approximately
US $4.92 kg−1, which, for biodiesel production, is exceptionally high. Production costs
could be reduced (US $3.05 kg−1) if biomass was produced using waste water as a nu-
trient source [116]. A biomass production costs of US$ 4.92 kg−1 would be acceptable if
biomass was used for the production of high-value products (processed biomass value, US
$123 kg−1) [117]; β-carotene (from Dunaliella spp.) and astaxanthin (from Haematococcus
spp.) command a market value of $100–1000 kg−1 [117]. Moreover, the demand for astax-
anthin, β-carotene and lutein is now emerging in the market. The global carotenoid market
was valued at €1.3 billion in 2017 and is projected to reach €1.8 billion by 2022 [7]. Other
high-value compounds such as antioxidant enzymes could make Dunaliella biotechnolo-
gies economically profitable. The current biomass productivity of D. salina lies between
0.75 g m−2 d−1 and 3.0 g m−2 d−1 (ash-free dry weight, AFDW) [118], depending on
seasonality and other cultivation factors.

Variation of growth parameters disturbs intracellular metabolism via photosynthesis
and photorespiration, which results in an imbalance between the generation and detoxifi-
cation of ROS, ultimately stimulating enzymatic and non-enzymatic antioxidant responses.
Therefore, modifications of cultivation factors may enhance antioxidants levels, making
Dunaliella a competitive candidate for antioxidant (enzyme and non-enzyme) production.

4. Tuning Antioxidant Enzyme Activity in Dunaliella

There are two ways of inducing stress in Dunaliella during growth: biotic and abiotic
manipulation [119]. Due to a lack of control over biotic stress, abiotic stress strategies are
more sustainable. Abiotic stress conditions are classified as the nutrimental and physical
conditions [105,120,121], which are introduced either during the inoculation of cells or
during cell growth. Nutrimental factors include:

i. Concentration and source nutrients (e.g., carbon, nitrogen, phosphorus, iron)
ii. Concentration of trace elements (e.g., Zn2+, Cu2+)
iii. Chemicals (e.g., phenol, H2O2)
iv. Heavy metals (e.g., Hg2+, Cd2+)

Physical factors include:

i. Irradiation level
ii. Types of light (direct sunlight, artificial light sources (white, red, blue))
iii. Temperature
iv. pH
v. Salinity



Appl. Sci. 2021, 11, 3959 10 of 24

vi. Size of inoculation

4.1. Salinity

Salinity induces osmotic stress, which has been found to affect antioxidant enzyme
activity in Dunaliella species. Osmotic stress is divided into two types based on the salinity
of the medium: hyposaline (salinity < 0.5 M) and hypersaline (salinity > 0.5 M).

CAT and APX activities were found to be highest when the cells were grown at a low
salinity level (>0.5 M), with the activity decreasing with increased salinity. In contrast, SOD
activity increased twofold at 1 M and threefold at 2 M compared to the activity at 0.5 M
NaCl [122]. However, above 2 M NaCl, a decrease in the SOD activity was observed [122].
Above 2 M NaCl, accumulation of glycerol acts as an osmolyte for balancing high salinity-
induced osmotic stress [123], which may be the reason for reduced enzymatic antioxidant
activity. Similarly, CAT, APX, and GPX activity were found to decrease in D. tertiolecta
concurrently with an increase in salt concentrations [124], perhaps due to the participation
of glutathione (GSH) and ascorbate in the scavenging of H2O2 [124,125]. A higher GR
activity in Dunaliella species (salina and tertiolecta) was observed at a low salt concentration
(0.1 M NaCl) [124] which would increase the ratio of NADP +/NADPH, thereby ensuring
the availability of NADP + to accept electrons resulting in a reduced flow of electrons to
O2 for generation of ROS [126].

On the contrary, a study using D. tertiolecta demonstrated that CAT, SOD, DHAR, and
GTX activity were unaltered under a wide range (0.05–3.00 M NaCl) of salinities, whilst
APX activity increased by 200%, and MDHAR activity by 300% relative to the optimal
growth salinity (0.5 M NaCl) [125]. Increased level of enzymatic activity in hypersaline
condition may be due to the increase in the formation of ROS (peroxides) or increases in
ATP synthesis via the Mehler-peroxidase reaction (which generates ATP by substituting
dioxygen for carbon as the electron acceptor) [127]. Also, Dunaliella can retain a higher
level of Mehler-peroxidase reaction at higher saline conditions [125].

The data above indicates that high salinity-induced osmotic stress is not an effective
way to activate all antioxidant enzymes in Dunaliella strains. The above investigations
also suggest that different Dunaliella strains, when exposed to external salinity, show
different antioxidant enzyme activity due to differences in resistance and response. Hence,
consideration of strain selection must be given if this approach is chosen.

4.2. Light Irradiation

D. salina exposed to UV-B irradiation enhanced CAT, SOD, POD activities, reach-
ing maximum levels within three days after they levelled off [128], suggesting that CAT,
SOD, POD activity could be part of the cell’s short-term adaptation against UV-B irra-
diation. Micosporine-like amino acids (shinorine, porphyra, and palythinol) could act
as part of a supportive antioxidants network to protect cells against UV-B irradiation or
ROS [129]. The synthesis of these compounds could be the reason for the levelling off
enzymatic antioxidant response after three days of growth [128]. D. tertiolecta exposed
to static and fluctuating natural UV radiation (400–700 nm) for short-term (1–3 days)
or long-term (4–7 days) showed that only short-term irradiation significantly increased
SOD and GR activity compared to non-UV irradiated cells. Glutathione content was
reduced under both short and long-term irradiation, whilst APX activity did not sig-
nificantly change, indicating that natural UV radiation-induced O2

.− was mitigated by
SOD, and that H2O2 was detoxified by the consumption of glutathione [130]. In con-
trast, D. salina treated with UV-B irradiation (irradiated cultures for 4 h) and cultured
for 15 days increased its CAT, POD, and SOD activity compared to untreated cells [34].
Moreover, APX activity (140 µmol ascorbate mg−1 protein h−1) was found to increase in
D. bardawil cells exposed to UV-A radiation as an addition to cultivation under high light
energy (150 µmol photons m−2 s−1) compared to cells cultivated at low light intensities
(35 µmol photons m−2 s−1). Increased APX activation under high light with UV-A radi-
ation may be due to the direct effect of UV-A irradiance on the photosynthetic reactions
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that produce increased ROS within the chloroplast and leads to the increased enzymatic
activity [131].

Exposing D. salina to extremely high light intensities (1000 µmol photons m−2 s−1)
causes excess electron flow in electron transport chains of the photosystem, which leak
electrons onto O2, thereby generating superoxide ion (O2

•−) and results in enhancing SOD
enzyme activity as the expression level of the antioxidant genes (SOD gene, Fe-SOD) in-
creases [132]. No study has yet shown the effect of high light (>920 µmol photons m−2 s−1)
on CAT activity in Dunaliella strains. Perhaps CAT is not involved in mitigating oxida-
tive stress generated during acclimation of Dunaliella under high light intensities. Rather,
peroxidases or other small antioxidant molecules (carotenoid) have been suggested to
participate in the detoxification of ROS, as β-carotene content was found to increase when
the algal was cultivated under increasing light intensities [133]. Therefore, CAT, POD,
SOD and APX activity in Dunaliella can be improved by growing cells under UV radiation
combined with a wide range of light irradiation (150–920 µmol photons m−2 s−1). How-
ever, further studies are needed to evaluate the effect of extreme high light-induced (e.g.,
1500 µmol photons m−2 s−1) oxidative stress on antioxidant enzyme response.

4.3. Temperature

Temperature affects the microalgal growth rate and the biochemical compositions as
the cells’ ability to assimilate nutrients are reduced [134], which can cause intracellular
stress.

Cultivation at low temperature (13 ◦C) together with low light irradiation (20 µmol
photons m−2 s−1) was found to enhance SOD, APX, MDHAR, DHAR activity in D. salina
compared to the unstressed controls [135], whilst cultivation at a very low temperature
(5 ◦C) decreased CAT activity [136]. Less carotenoid and ascorbate contents was also
observed when the cells were cultivated at extremely low temperatures [135]. D. salina
exposed to low temperature and cultivated under a high light intensity (100–1200 µmol
photons m−2 s−1) was found to increase SOD, MDHAR, GR, APX and POD activity
relative to unstressed cells. High light intensities provide saturated CO2, absorption and
the low temperature decreased the rate of CO2 absorption, which induced photo-oxidative
stress and resulted in increased enzymatic activity [35]. SOD, APX, DHAR, activity were
increased in D. salina (IR-1) when cells were grown for 2 days under high temperature
(28 ◦C) under light irradiation ranging between 100–1200 µmol photons m−2 s−1 compared
to a different strain (Gh-U) [35]. The different oxidative stress responses between two
strains could result from variations in resistance to low temperature and high light. Only
a few studies describe the effect of temperature on antioxidant enzyme responses in
Dunaliella, and further investigations are required to explore the effect of temperature on
antioxidant enzyme activity.

4.4. Nutrients

Deprivation of nitrogen, sulphur, or phosphorous in the culture medium was found
to enhance CAT, SOD, and APX activity compared to unstressed Dunaliella cells [37,137].
Deprivation of nitrogen reduces chlorophyll content and the synthesis of chloroplastic
proteins, whereas deprivation of sulphur decreased the generation of carotenoid and
increased ROS levels, which further increased antioxidant enzyme activity. Deprivation
of Mn, Zn, Fe was also found to produce an oxidative stress response in D. salina with
overexpressed SOD isoenzymes [36]. Nitrogen limitation in the growth medium elevated
CAT, SOD, and APX levels in D. salina [138], indicating that depletion (limitation) of
nitrogen also can play a pivotal role as an oxidative stressor for improving antioxidant
enzyme activity. Research has also demonstrated that the deprivation of any single nutrient
was more effective in enhancing antioxidant enzyme activity relative to combined nutrients
deprivation conditions [137].
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4.5. Metals

Heavy metals can induce oxidative stress in microalgae, by generating ROS by auto-
oxidation, blocking essential functional groups in biomolecules, or substituting essential
metal ions [139]. When D. tertiolecta was cultured with silver nanoparticle (AgNPs), CAT,
SOD, and POD activity increased initially and then decreased over time [140], which
indicate that antioxidant enzymes act as a first line of defence to protect the cells by
mitigating metal-induced oxidative stress. Nonetheless, antioxidant enzyme activity could
not eliminate the metal toxicity during prolonged exposure of cells [140].

Short-term exposer of Hg2+ increased APX activity in D. tertiolecta compared to un-
stressed cells. Hg2+ binds to a sulfhydryl group and disturbs the protein functions leading
to stress conditions [141]. In contrast, long-term exposer to Hg2+ increased β-carotenoid
content in Dunaliella cells. β-carotenoid acts as a supportive antioxidant. Pre-treatment of
Dunaliella with Zn followed by cultivation in the presence of ROS generating agents (e.g.,
H2O2, paraquat) was found to decrease carotenoids level, CAT and APX activities [142],
as cells were unable to enhance antioxidants levels. Moreover, the enhanced growth rate
indicated that heavy metal toxicity in Zn-treated cells was detoxified by other antioxidants
systems (either chelation reactions (metal to PC) or by displacements of Zn from a PC-Zn
complex).

Small quantities of Cu2+ are essential for growing cells. During cultivation with Cu2+

(>5 µM CuCl2) oxidative stress was induced in Dunaliella cells [143]. D. salina and D.
tertiolecta exposed to Cu2+ in the growth medium had enhanced APX activity. A higher
enzymatic activity was measured in D. tertiolecta compared to D. salina, which could be
due to the generation of lower amounts of carotenoid in D. tertiolecta [143]. Metals such
as cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), magnesium (Mg), manganese (Mn),
molybdenum (Mo), nickel (Ni), selenium (Se), and zinc (Zn) are also essential micronu-
trients required for various biochemical and physiological functions during microalgae
growth [144]. However, non-essential heavy metals such as arsenic (As), cadmium (Cd),
chromium (Cr), lead (Pb), and mercury (Hg) are systematic toxicants [145]. Epidemiological
and experimental studies have shown that these metals have adverse effects on health in
humans, including cardiovascular diseases, developmental abnormalities, neurologic and
neurobehavioral disorders, diabetes, hearing loss, hematologic and immunologic disorders,
and various types of cancer, an association between exposure and cancer incidence in
humans and animals [146]. Using heavy metals enriched biomass in the food industry or as
a feed in the aquaculture industry is not a viable strategy to induce stress in algae cultures.

4.6. Chemicals

Chemicals modulate cellular metabolism and produce oxidative stress resulting in
higher antioxidant levels in cells [147]. Culturing D. bardawil with a mixture of two
surfactants (sodium dodecylbenzene sulfonate (SDBS) and cetyl trimethyl ammonium
chloride (CTAC)) induced oxidative stress, increasing CAT and SOD activity compared to
untreated cells [148].

The exposure of D. salina to 2-chlorophenol increased CAT, SOD, and GST activities
to mitigate oxidative stress, which was produced by protein carbonyls formation through
metal catalyzed oxidation reaction [149]. However, APX activity decreased when D. salina
was cultured with 2-chlorophenol. Increased level of GST activity may be due to the ability
of GST to catalyze the reduced glutathione in the presence of phenol [149]. Moreover, GST
can also reduce lipid hydroperoxides to the corresponding alcohols [150]. Investigation of
the effect of two pesticides on the antioxidant response in the culture of Dunaliella demon-
strated that both pollutants (trichlorfon and dimehypo) at a low concentration induced
oxidative stress that stimulated the activity of CAT compared to untreated cells [151]. CAT
activity in D. salina was improved when cells were grown with herbicides (methylene
blue and norflurazon) under low-temperature conditions [152]. Herbicides suppressed the
synthesis of chlorophyll and decreased the carotenoid biosynthesis leading to an increase
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in CAT activity. Therefore, phenolic compounds or herbicides as stressors during Dunaliella
culturing could be an effective strategy for enhancing enzyme activity.

4.7. Combination of Abiotic Factors on Antioxidant Enzyme Activity

Most research on antioxidant enzyme activity in Dunaliella focuses on only one factor,
with a few studies assessing the combined effect of two factors. The studies indicate that
a combination of factors is more effective in producing enzymatic antioxidant responses
in Dunaliella compared to exposure to a single stressor [37,103,137]. Factors that can be
combined to produce an antioxidant response include UV-B radiation + high salinity +
nitrogen deficiency (enhanced CAT, SOD, POD activities).

UV-B radiation combined with high salinity and nitrogen deficiency enhanced CAT,
SOD, POD activity relative to the non-radiated cells grown under normal growth condi-
tions [34]. The combined effect of UV-B irradiation and nitrogen starvation can produce
oxidative stress, which was eliminated by enhanced SOD, APX, and GPX activities relative
to untreated D. salina cells, whilst GR activity did not significantly change. However, the
combined effect on antioxidant enzyme activity was significantly lower relative to the effect
of either UV-B radiation or nitrogen deprivation [37]. Therefore, the combination of UV-B
irradiation and nitrogen deprivation may not be effective in enhancing antioxidant enzyme
activity in Dunaliella. Salinity (2–3 M NaCl) associated with propyl gallate can enhance CAT
and APX activity, whilst SOD activity was unaltered in D. salina compared to unstressed
cells [152] suggests that salinity associated with other chemical-induced stress may increase
in antioxidant enzyme activity in Dunaliella. There is a need for further research into this
are to develop a deeper understanding of the ‘tuning parameters’ for enhanced enzymatic
activity. The effects of abiotic factors on antioxidant enzyme activity are summarised in
Table 4.

Table 4. Antioxidant enzymatic response of Dunaliella exposed to different abiotic exogenous stress.

Stress
Conditions Strains

Optimum
Light (µmol
Photon m−2

s−1)

Salinity
(NaCl) (M)

Temperature
(◦C)

Antioxidant
Enzymatic
Response

References

Salinity

0.05–3.00 M
NaCl

D. tertiolecta
(UTEX999)

150
Continuous

light
0.1–0.5 26

No effect on SOD
and CAT, GTR
activities APX

increased (2-fold)
at high salinities

(0.2–3 M)

[125]

0.5–5.5 M
NaCl D. salina

150
Light: dark

cycle (12:12 h)
1.5 (25 ± 2)

CAT activity
decreases with

salinity
SOD increased
(0.5–2 M) and
then decrease

APX decreases
(0.5–2 M) and
then constant

[122]

0.05–4.0 M
NaCl

D. salina
and D.

tertiolecta

150
Light: dark

cycle (12:12 h)
1.25 (25 ± 2)

CAT and SOD
activities increase

at hypo saline
condition in D.

tertiolecta
APX activity in D.
tertiolecta higher
at hypo saline
and lower at
hyper saline

condition
GPX activity

decreased in D.
tertiolecta at

higher saline
condition
(>1.25 M)

[124]
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Table 4. Cont.

Stress
Conditions Strains

Optimum
Light (µmol
Photon m−2

s−1)

Salinity
(NaCl) (M)

Temperature
(◦C)

Antioxidant
Enzymatic
Response

References

1–4.0 M NaCl D. salina 54 (Continuous) 2 22
APX increase
(171%) at 4 M

compared to 2 M
[153]

Light

Outdoor with
natural UVR D. tertiolecta

250
Light: dark

cycle (12:12 h)
- 20

SOD activity
slightly changed

in short and
unaltered for long

term exposure
but no change in

APX and GTX
activity

[130]

UV-B for
6 days D. salina

60–80
Light: dark

cycle (12:12 h)
- 20

CAT activity
increased on 3rd

day
SOD activity

increased on 4th
day

POD activity
increased on 3rd

day

[128]

UV-B and
UV-C for 24 h

D. bardawil
and D. salina

150
UV-A - 26 APX increased by

UV -A [131]

UV-B for 4 h D. salina 920 - 25
CAT, SOD and
POD activity

increased
[34]

Nutrients

Depletion of
N, P, S, NP,
NS, NPS

D. salina 60 (Continuous) - 30 SOD and CAT
activity increased [137]

KNO3
(0.05, 0.5,

5 mM)
D. salina

150
Continuous

light
- 25

CAT, SOD and
APX activity

decreased with
increased
nitrogen

concentration

[138]

Light and
nutrients

Light
intensity and
depletion of

Mn, Zn, Fe, N

D. salina
70

Light: dark
cycle (16:8 h)

20 Mn-SOD
overexpressed [36]

UV-B
2 h day−1 for

3 days and
deprivation of

nitrogen

D. salina 85
Continuous

light
25±5 POD and APX

activity increased [37]

Light and
temperature

Low
temperature
and low light

for 24 h

D. salina
(Gh-U)

100
Light: dark

(16:8 h)
28 ± 0.5

SOD activity
increased

APX activity
increased at low

light level
GR, MDHAR

increased at low
temperature

[135]

Low
temperature
and medium
light for 24 h

D. salina
(IR-1 and

Gh-U)

100
Light: dark

(16:8 h)
28 ± 0.5

POD activity
increased, GTX

increased in
strain Gh-U but

not in IR-1 at low
temperature
GR, DHAR

activity increased
in Gh-U than IR-1

[35]

Metals

Cu2+

(1–20 µM) for
24–72 h

D. salina and
D. tertiolecta

54
Continuous

light
22 APX activity

increased [143]

Hg2+

(0–40 µM) for
48 h and
28 days

D. tertiolecta
54

(Continuous
light)

(22 ± 2) APX activity
increased [141]
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Table 4. Cont.

Stress
Conditions Strains

Optimum
Light (µmol
Photon m−2

s−1)

Salinity
(NaCl) (M)

Temperature
(◦C)

Antioxidant
Enzymatic
Response

References

Cd2+ (0–20 µg
L−1) for 24,
48,72, and

96 h

D. viridis 117 (Light:
dark) (12:12 h) (28 ± 2)

Pigment
production
decreased

[154]

Cr6+ (40 ppm)
for 24 h

D. salina and
D. tertiolecta

46
White

fluorescent light
25

SOD activity
decreased

Chlorophyll ‘a’
content decreased
with increase in

the exposure time

[155]

Silver
nanoparticles

(10, 50, 100
and

200 mg L−1

Ag-NPs) for
8 days

(D. tertiolecta)
100

Continuous
light

25

CAT activity
increased until

6 days then
decreased, SOD

activity increased
up to 4 days, POD
activity increased

until 6 days

[140]

Chemicals

Carbamazepine
(CBZ) (0–

200 mg L−1)
24, 48,72, and

96 h

D. tertiolecta
(CCAP19/6B)

58
Continuous (24 ± 1) Increased

carotenoid [156]

SDBS and
CTAC for 48 h D. bardawil 144 (Light:

dark) (14:10 h) 26
CAT and SOD

activity increased [148]

Trichlorfon
and

dimehypo
D. salina 54 (Light: dark)

(14:10 h) 26 CAT activity
increased [151]

2-
chlorophenol
for 24, 48, and

96 h

D. salina
100

(Continuous
daylight)

(25 ± 1) ◦C

SOD, CAT, GTX
activity increased

APX activity
decreased

[149]

Chemical and
salinity

(1, 2, 3 M
NaCl)

and PG
(propyl

gallate) for
48 h

D. salina
(UTEX 200)

70
Light: dark

(16:8 h)
25

Maximum CAT
activity at 2 M
NaCl and no

change in SOD
activity at 1 and

3 M NaCl
Minor increase in
APX activity at

3 M NaCl

[152]

Chemical and
temperature

10 ◦C and
5 ◦C,

Methylene
blue and

norflurazon

D. salina
(IPASS D-294)

73.6
White

fluorescent light
27

CAT activity
increased

Chlorophyll and
carotenoid

content decreased
with temperature

[136]

5. Culturing Systems

Commercially, large-scale microalgae biomass is produced in open ponds, raceway
ponds, enclosed photobioreactors (PBRs), or a combination of hybrid systems [157]. The
cultivation of Dunaliella also employs these various production systems [40,106,158–161]
depending on the location and the desired end-products.

The PBR is considered a suitable production method for microalgae (Dunaliella) culti-
vation to enhance antioxidant production with biomass productivity in a ‘monoculture’
and to maintain culturing reproducibility. This method is flexible, controllable, and able
to provide sustainable biomass production [105,162]. In open pond systems, the cell con-
centration is lower compared to that obtained during PBR cultivation as external factors
(light irradiation, temperature, evaporation, contamination, aeration) are difficult to control.
However, PBRs are not yet outperforming open pond systems in production volume and
costs [40]. To the best of knowledge, no studies so far have reported the use of specific
PBRs to culture Dunaliella strains to enhance enzymatic antioxidants and non-enzymatic
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antioxidants. The effect of the production system on antioxidants needs to be studied
further.

6. Post-Culture Downstream Processing

High-cost downstream processing is one of the major challenges to making microalgae
bio-refinery economically profitable [10,163]. Technological developments in harvesting,
post-harvest storage, cell disruption, extraction, and possibly fractionation are needed.
Harvesting the cells from the growth medium at the end of the culturing process is one of
the most critical and challenging steps in mass Dunaliella culture [164].

6.1. Harvesting

The selection of appropriate harvesting techniques is dependent on the characteristics
of the microalgae. Considerable challenges in harvesting Dunaliella cells are the lack of a
rigid cell wall, its small size (length 5–25 µm), the low cell density (0.1%) in the culture
medium, and the high salinity (2–3 M NaCl) of growth medium. Traditionally, harvesting
procedures to concentrate microalgae cells are filtration, sedimentation, flocculation, flota-
tion, centrifugation [163–165]. Several authors have extensively reviewed the harvesting
of microalgae, and in the following section, a few key points are made with particular
reference to Dunaliella [164,166–168].

6.2. Post-Harvesting Storage Processing

For Dunaliella to be a viable and sustainable natural antioxidant enzyme source, suit-
able drying and storage of biomass must be established. Optimized post-harvest storage
conditions can minimise the loss of antioxidant enzyme activity and increase these valuable
compounds’ shelf life. Cold storage is commonly used to preserve chemical, nutritional,
and sensory properties of post-harvest processed living cells as respiration and other
metabolic reactions are reduced at lower temperatures [169]. Biomass can be prepared for
cold storage via a dry or a wet route. In the dry route, Dunaliella biomass is freeze-dried or
air-dried, then stored at cold temperature. In contrast, in a wet route, biomass is preserved
at cold temperature straightway [25]. Several reports demonstrate that antioxidant stability
depends on the type of biomass, type of chemical components, length of storage time, stor-
age temperature, and drying method [170–173]. Roy et al., (2020) compared the storages
of both wet and freeze-dried algal biomass and suggested that CAT and SOD activity in
freeze-dried D. tertiolecta biomass can be retained for eight months when stored −20 ◦C,
whereas activities in wet biomass or crude extract remain unchanged for four months
when stored at −80 ◦C [173–175]. Therefore, using wet biomass, either fresh or frozen,
as feedstock may be an economically feasible method for antioxidant enzyme storage
compared to dried cell storage. Extraction procedure of antioxidants from algae biomass
depends on the desired products. For example, lipid-soluble antioxidants (e.g., carotenoids,
tocopherol, flavonoids, ascorbate) are extracted by organic solvents (e.g., hexane, heptane,
methyl tertiary burate, methanol, ethanol) with a mechanical treatment (e.g., ultrasonica-
tion, microwave, high pressure) [2,10,16,174]. Water-soluble antioxidants or antioxidant
enzymes are recovered from the algae biomass by aqueous solvent or buffer systems
together with mechanical assistance [37,128,138,175,176]. Recently, green solvents (e.g.,
cyclopentyl methyl ether (CPME), dimethyl carbonate (DMC)), ionic liquids (e.g., ethanol
containing 1-n-butyl-3-methylimidazolium) and supercritical CO2—based extraction have
been used for the recovery of carotenoids (e.g., β-carotene, astraxanthin) [7,177].

7. Challenges and Future Opportunities

Despite the potential of Dunaliella as a source for high-value compounds including
antioxidants, the main challenges are as follows:

i. Low growth rate and productivity of Dunaliella strain [4,28,174] relative to other
sources (such as fungus, yeast) [178–181] and selection of a suitable strain;

ii. Transferring lab-scale optimised abiotic stress strategies to a commercial scale;
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iii. Seasonal and environmental variation in biomass production, and the control of
competitors in open ponds cultivation systems;

iv. Engineering developments of sustainable large-scale technologies (open raceways
ponds and PBR) for Dunaliella and microalgae in general for efficient biomass and
enzymatic antioxidant production;

v. Developing sustainable downstream technologies (harvesting, extraction, and purifi-
cation) for antioxidant enzymes production at commercial scale;

vi. Establishing tools for proteomics, genomics, and metabolomics, and implement them
to develop strains for the accumulation of intracellular antioxidant enzymes;

vii. Stabilisation of antioxidant enzymes in food ingredients and extension of their shelf
life;

viii. Algae extracts can be used as taste enhances in foods; however, some strains are
associated with a bitter or astringent taste;

ix. Introducing a general platform to solve regulatory and labelling issues, as this varies
from country to country.

Based on the reviewed literature, emphasis has been on carotenoid production from
Dunaliella, limiting the exploration of Dunaliella biomass to produce other high-value com-
pounds such as antioxidant enzymes. The tolerance of Dunaliella to extreme environments
(such as high salinity and high light levels) makes these strains versatile. It enables them
to survive in stressful environments, providing opportunities to explore these strains as
natural antioxidant enzyme sources either as a main product or by-products. In addition,
there is an opportunity to improve technological developments in harvesting biomass by
employing cost-effective processes (such as flocculation or microbubbles techniques). Due
to the lack of a rigid cell wall, the extraction process is cheaper relative to other algae cells
or plants, which will reduce downstream processing costs. As antioxidant enzymes in
wet Dunaliella biomass can be retained for one month when stored at −20 ◦C [175]. The
development of an extraction procedure for antioxidant enzymes from wet biomass can
save the energy costs required for drying the biomass.

Techno-economic assessment can be conducted to assure the profitability of developed
cultivation and downstream processing systems to produce specific antioxidants enzymes
or biorefinery strategies. There is also an opportunity to explore novel applications of
Dunaliella-derived antioxidant enzymes in the pharmaceuticals, nutraceuticals, agricultural
and cosmetic industries. Growing end-user applications for antioxidant enzymes and
increasing end-user awareness may enhance the demand in the global market.

8. Conclusions

Dunaliella can accumulate a wide range of molecules, with a high value in the global
food, aquaculture, animal feed, pharmaceutical, and nutraceutical industry. Currently,
β-carotene production from D. salina is commercially cost-effective. High biomass pro-
duction costs; lack of optimal cultivation conditions and culturing systems; technical
difficulties in scaling–up; lack of cost-effective downstream processing technologies; and
instability of antioxidant enzymes at room temperature are the major constraints to the
commercialisation of Dunaliella-based antioxidant enzyme production. Tuning abiotic
stress factors during cultivation can activate different antioxidant systems in Dunaliella. A
multiple factors-based stress strategy is more effective relative to a single inducing stress
factor during growth in a photobioreactor (considered monoculture) system, giving design
flexibility and controllability.
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