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Highlights: 

 

 Spatial variability of carbon stocks is overlooked by global datasets.  

 Integration of local data is needed to obtain adequate assessment of carbon stocks.  

 Care is needed when carbon stocks mapping is used to inform decision-making. 

 Global datasets can be used to rank and prioritise areas for restoration purposes.  
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ABSTRACT 18 

Land degradation leads to ecosystem degradation, reducing ecosystem functioning and 19 

depleting ecosystems' resilience. The majority of factors linked to land degradation are 20 

closely related with the depletion of below- and above-ground stocks of organic carbon. 21 
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Organic carbon stock is important for climate change mitigation and for restoring soil 22 

functions such as those crucial to support food security. In this study, we mapped carbon 23 

stocks to infer land degradation in a small area in the Ethiopian Great Rift Valley. The 24 

study aimed to assess carbon stock status and to identify limitations and advantages of 25 

using global data in mapping at local scale relative to using local data. Two different 26 

datasets were developed; i) a “global dataset” characterised by data from datasets with 27 

global coverage data, and ii) a “hybrid dataset” that coupled data from global datasets and 28 

soil data derived from a local survey and land cover data derived from a supervised 29 

classification of satellite images. The results showed that i) global datasets introduced 30 

inaccuracy that must be taken into account for advocating interventions at a local scale, 31 

and ii) global datasets could be used at a small catchment level for decision-making, if a 32 

simple rank of values is sufficient, but they might provide an optimistic picture of land 33 

degradation because they overestimate stocks. 34 

 35 

Keywords: carbon stocks modelling, land degradation, Ethiopia, soil organic carbon, 36 

global datasets 37 

 38 

1. INTRODUCTION 39 

An increasing proportion of global agricultural land is affected by land degradation 40 

(UNCCD, 2014). Land degradation leads to ecosystem services (ESS) depletion because it 41 

negatively affects and reduces a range of ecosystem functions including soil functions 42 

(e.g. sediment retention, carbon sequestration, nutrient cycling, water retention, biomass 43 

production, delivery of important goods) (Bronick and Lal, 2005; Daily et al., 1997; Lal, 44 
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2015). It also threaten the economic resilience of the populations who depend on 45 

ecosystem functioning (Lal, 1997; MEA, 2005; Reed and Stringer, 2015; Sutton et al., 46 

2016).  47 

African countries, and especially sub-Saharan countries, are greatly affected by land 48 

degradation (ELD Initiative & UNEP, 2015; Nkonya et al., 2016). Ethiopia (where this 49 

study is set) is one of the countries most affected by this problem. It is particularly 50 

vulnerable to land degradation because of the very rugged terrain. Its people are 51 

vulnerable to the consequences of land degradation because the agricultural sector 52 

provides livelihoods for more than 85% of the population and accounts for more than 50% 53 

of the Ethiopian GDP (Berry, 2003; Shiferaw and Holden, 1999).  54 

In Ethiopia, different studies assessed the total organic carbon stock (above- and below-55 

ground organic carbon) (Bajigo et al., 2015; Belay et al., 2018a; Betemariyam et al., 2020; 56 

De Beenhouwer et al., 2016; Girmay et al., 2008; Lehtonen et al., 2020; Vanderhaegen et 57 

al., 2015; Yirga et al., 2020) stored in the ecosystem. Furthermore, several studies 58 

attempted to quantify the carbon stored in the aboveground biomass in different areas of 59 

Ethiopia, especially in forests, plantations or agroforestry systems (Amsalu and Mengaw, 60 

2014; Denu et al., 2016; Moges et al., 2010; Solomon et al., 2017). 61 

The majority of causes of land degradation (e.g. soil erosion, overgrazing, deforestation) 62 

are crucial factors in depleting organic carbon stocks (Lal, 2004a, 1997). In this context, 63 

organic carbon represents a crucial indicator of land degradation. More specifically, the 64 

total carbon stock of an area is the total amount of organic carbon stored in an ecosystem 65 

of that area (kg C ha-1), and is usually partitioned in different pools/stocks (i.e. soil 66 

(including organic matter and belowground, dead or alive, biomass such as roots, dead 67 

wood and litter) and aboveground biomass) (Ravindranath and Ostwald, 2008). Above- 68 
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and below-ground carbon stocks represent good indicators of land degradation (UNCCD 69 

et al., 2016), because they affect several ecosystem functions including soil functions 70 

(Baldock et al., 2009; Lal, 2015; Stockmann et al., 2015; Vågen et al., 2013; Wiesmeier et 71 

al., 2019). More specifically, the soil organic carbon stock is often used as an indicator of 72 

soil and land degradation because of its important role in many soil functions and soil 73 

ecosystem services provision (Lorenz et al., 2019). Therefore, the Soil Organic Carbon 74 

(SOC) stock was identified as one of the global indicators to monitor Land Degradation 75 

Neutrality (LDN) (Cowie et al., 2018; Lorenz et al., 2019; Sims et al., 2019) and to report 76 

on progress towards the Sustainable Development Goal (SDG) 15.3 (together with land 77 

cover and land productivity).  78 

Conserving SOC and promoting its restoration is very important to compensate carbon 79 

emissions (Lal, 2006), improve nutrient cycling and water retention, and promote higher 80 

crop yields (Jobbágy and Jackson, 2000; Lal, 2015, 2004b, 2004a; Rawls et al., 2003). To 81 

make conservation and restoration operational, however, in the presence of limited 82 

resources, priority areas for interventions need to be identified with sufficient accuracy for 83 

the decision-making considered (Pandeya et al., 2016; Vihervaara et al., 2012).  84 

The SOC modelling and mapping (together with the total organic carbon stocks 85 

assessment) is a valuable means to identify such areas, allowing decision-makers to 86 

intervene making their measures more spatially targeted and therefore more effective. This 87 

is key considering the challenges of making interventions operational in the presence of 88 

limited resources, and the need for actions to promote the important role of carbon 89 

sequestration in the global carbon cycle, climate change mitigation, land degradation 90 

alleviation, and sustaining agricultural productivity (Lal, 2004a; Scharlemann et al., 2014).  91 
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In this respect, lack of locally detailed data is a limiting factor for environmental 92 

modelling and mapping, and derived decision-making for local management; this lack is 93 

common especially in Africa (Eggen et al., 2016; Hurni et al., 2015). While, global 94 

maps/products (e.g. MODIS, ISRIC) are a potential solution and are often used, it is 95 

unclear if and when the scale, resolution, support factor of these products are adequate for 96 

local purposes. The scale and resolution dependency in modelling environmental variables 97 

has been highlighted by previous studies that found how data scale and resolution, as well 98 

as the extent and the support factor (i.e. the area over which a prediction or observation is 99 

made) affect the accuracy of the digital soil mapping (Cavazzi et al., 2013), ecosystem 100 

services modelling (Grêt-Regamey et al., 2014), and species richness and distribution 101 

mapping (e.g. Cavazzi et al., 2013; García-Callejas and Araújo, 2016; Grunwald et al., 102 

2011). Grêt-Regamey et al. (2014) and Cerretelli et al. (2018) assessed the effect of 103 

resolution on ecosystem services mapping and found substantial differences between the 104 

results of fine and coarse resolution analyses, both aggregated to similar coarse resolution, 105 

especially when local heterogeneity was not negligible. Other studies highlighted the 106 

impact of data resolution and extent on modelling environmental factors important for 107 

understanding land degradation, such as soil erosion (de Vente and Poesen, 2005; Tan et 108 

al., 2017). A previous study (Cerretelli et al., 2018) highlighted the importance of accurate 109 

data especially for the modelling of nutrient export and retention where land cover 110 

classification was used to define nutrient loading pattern. This was not the case of the soil 111 

export (erosion) and retention modelling were global data proved to be good enough. 112 

These results showed that different outcomes or implications can rise when assessing 113 

different ecosystem services using global data. Despite these studies, there is still an 114 

important gap in knowledge regarding the impact of scale, resolution and support on the 115 

accuracy of mapping the organic carbon stock. In this paper we present a case study 116 
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concentrating on how the use of different sets of data (global or local) affects local carbon 117 

estimates and related decision-making. Restoration of carbon stocks can be promoted by 118 

improved management (terracing, avoiding collection of crop residue, restrained grazing) 119 

(Gelaw et al., 2014; Rimhanen et al., 2016), as well as supporting afforestation programs 120 

and agroforestry practices (Betemariyam et al., 2020; Lehtonen et al., 2020). However, 121 

different estimates of carbon stocks could lead to different decision-making processes that 122 

might fail to support the right activities or overlook some important areas for restoration 123 

purposes.  124 

We mapped the organic carbon stocks (i.e. amount of organic carbon stored in i) the soil 125 

(SOC), ii) the biomass (aboveground and belowground), and iii) the dead organic matter) 126 

using different data sources, with different resolutions and extents. The first dataset was 127 

constituted just with data from global coverage database (e.g.: ISRIC SoilGrids, Landsat, 128 

MODIS, Global Land Cover Network), while the second dataset coupled data from global 129 

database (Landsat and MODIS), local soil data, and a supervised land cover classification. 130 

We then compared the obtained estimates of organic carbon stocks, including their 131 

accuracies, and assessed the possible consequences of the observed differences for 132 

decision-making.  133 

The study took place in south-western Ethiopia, in the context of a project aimed at 134 

improving food security and alleviating poverty of local communities (ALTER, UK ESPA 135 

initiative). Land degradation in the study area is very severe. Mapping carbon stocks, and 136 

in particular SOC, is essential to target priority areas for restoration, and identify feasible 137 

measures to increase carbon stocks to reduce land degradation. This study assessed if 138 

global data are a good enough solution for this purpose. 139 

 140 
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2. STUDY AREA AND DATASETS 141 

2.1. Study area 142 

The study area consists of a hydrological subset of several sub-basins of the Bilate River, 143 

in the Ethiopian Great Rift Valley in the Halaba special woreda (province) with the centre 144 

located at 78° 17′N and 38° 06′E. The area has a size of approximately 480 km2 and 145 

contains three kebeles (counties); Andegna Choroko, Laygnaw Arsho and Asore where the 146 

local survey was conducted (Fig 1; Cerretelli et al., 2018). The elevation ranges from 1650 147 

to 2644 m a.s.l.. The average annual rainfall ranges from 1024 to 1243 mm yr-1 and the 148 

average annual temperature varies from 15 to 20 ⁰C (WorldClim dataset 1970-2000; Fick 149 

and Hijmans (2017)).  150 

Subsistence agriculture represents the main activity in the area. The study area is highly 151 

degraded due to intense deforestation mainly cause by population growth and by a shift 152 

from livestock to crop-based agriculture  (Byg et al., 2017). Therefore, in the last decade, 153 

numerous restoration and exclosure areas were established (Byg et al., 2017), where free 154 

grazing is forbidden and biomass harvesting is controlled to restore highly degraded sites 155 

(Aerts et al., 2009).  156 
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 157 

Figure 1. Study area in the Halaba special woreda. The polygons show the kebeles where 158 

the main survey was conducted.  159 

 160 

2.2. Data sources 161 

In this study, two datasets were used (a “global dataset” and a “hybrid dataset”) each 162 

including data from different sources on soil organic carbon and land cover categories 163 

(Table 1). The “global dataset” included data (maps) just from readily available data with 164 

global coverage, and the “hybrid dataset” included global data integrated with local data 165 

(maps) on SOC, derived from interpolation of data from a local survey carried out during 166 

2015, and on land cover derived from a locally supervised land cover classification. 167 

Global data on SOC stock is readily available from SoilGrids and the version of Hengl et 168 

al. (2017) was downloaded in May 2017 from the ISRIC (International Soil Reference and 169 

Information Centre) database (https://soilgrids.org/) and included in the “global dataset”. 170 

Remote sensing datasets were used to assess and calculate biomass and to derive data for 171 

the land cover classification and interpolation of local soil properties. Remote sensing data 172 
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were derived from Landsat, MODIS (Moderate Resolution Imaging Spectroradiometer), 173 

Sentinel 1, and Sentinel 2 sensors, and SRTM (Shuttle Radar Topography Mission). For 174 

further details on the global datasets used see Supplementary Information A, Section 1. 175 

Table 1. Description of global and hybrid datasets. In brackets are reported the units of the 176 

input variables and their resolution and the date of observation in global and hybrid 177 

datasets. NDVI: Normalised Difference Vegetation Index; NPP: Net Primary Productivity; 178 

GLNC: Global Land Cover Network. 179 

 Input variables Global dataset Hybrid dataset 

Carbon stocks 

SOC stock (t ha-1) 

for a soil depth 

interval of 0-20 cm 

- SOC stock map 

downloaded from 

ISRIC SoilGrids (250 

m resolution; year of 

sampling: 1950-2014) 

- SOC stock 

calculated from 

local data on bulk 

density, organic 

matter content and 

coarse fragment 

content, and 

mapped at 25 m 

spatial resolution; 

year of sampling: 

2015) 

Organic carbon 

from above- and 

below- ground 

biomass (t ha-1) 

- Landsat NDVI (30 

m; years: 2013-2015) 

- Land cover 

categories from 

GLNC (300 m; year: 

- Landsat NDVI (30 

m; years: 2013-

2015) 

- Land cover 

categories from 
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2008) supervised 

classification (30 m 

year: 2016) 

Organic carbon 

from dead organic 

matter (t ha-1) 

- MODIS; NPP (~1 

km; years: 2000-

2015) 

- MODIS; NPP (~1 

km; years: 2000-

2015) 

 180 

2.2.1. Land cover maps 181 

The land cover map was used together with the NDVI to infer and map the carbon stored 182 

in aboveground and belowground biomass. For this purpose, two different land cover 183 

maps were used: a land cover from a global dataset, and a land cover from a local 184 

classification. For further details on how the carbon stored in the aboveground and 185 

belowground biomass was calculated see Section 3.2.2. 186 

Land cover map from the global database 187 

The FAO Land Cover map of Ethiopia was derived from the Global Land Cover Network 188 

(GLNC), a global cover archive of 300 m spatial resolution (Arino et al., 2010, 2008) with 189 

few adaptations to the legend. For this study, the Ethiopian GlobCover version was 190 

downloaded from the FAO GeoNetwork database 191 

(http://www.fao.org/geonetwork/srv/en/main.home). Table 2 shows the global land cover 192 

classes occurring in the study area with a description and an approximate correspondence 193 

with the local land cover classification map classes. See the Supplementary Information A 194 

for a figure of the global land cover.  195 

Local land cover classification 196 
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A two-step supervised classification was used to generate a local land cover dataset that 197 

was used in the hybrid dataset. 670 GPS points were selected and classified using local 198 

expertise and the support of Google Earth images. The 670 points represented different 199 

land cover categories such as degraded land, woodland, riverine areas, cropland, 200 

rangeland, forest, settlement and urban area. The points were equally distributed among 201 

the different land cover classes (approximately 85 points per land cover class). A first 202 

approximation of the local land cover classification was obtained using a classification 203 

and regression trees approach (Random Forest; Breiman (2001)) with the points and 204 

several covariates, derived from elevation, Landsat datasets and Sentinel 2 scenes.  205 

The derived land cover classification was subsequently verified and manually modified 206 

using Google Earth images as background. Several classified polygons categories were 207 

changed, based on local knowledge of the area, to differentiate between land cover classes 208 

that in the automated classification were confused (e.g. degraded land, restoration land and 209 

croplands) due to their similar reflectance spectrum. Polygons derived from the 210 

classification and characterised by mixed semi-natural vegetation and agroforestry were 211 

differentiated from the forested areas. Areas characterised by small settlements and 212 

cropland alongside them were also individuated and differentiated from Halaba urban area 213 

or farmland areas. The resulted classification was visually validated by local experts. 214 

Table 2 shows the local land cover classes’ description and an approximate 215 

correspondence with the global land cover classes (see Section 2 of Supplementary 216 

Information A for further details and the figure of the derived land cover classification 217 

map).  218 

Table 2. Description of “global” land cover (LC) classes derived from the FAO 219 

GlobCover of Ethiopia, and description of local land cover classes obtained through a 220 

supervised land cover classification. 221 
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Global 

LC 

class 

 Description 

Percentage 

of study 

area (%) 

Corresponding 

local LC class 

14   rainfed cropland 54.6 5 

20   

mosaic cropland (50-70%)/vegetation 

(grassland/shrubland/forest) (20-50%) 

17.1 3 

30   

mosaic vegetation 

(grassland/shrubland/forest) (50-

70%)/ cropland (20-50%) 

7.7 2 

60   

open (15-40%) broadleaved deciduous 

forest/woodland (>5m) 

0.1 1 

110  

mosaic forest or shrubland (50-

70%)/grassland (20-50%) 

0.9 NA 

130  closed to open (15%) shrubland (<5m) 19.6 NA 

150  

sparse (<15%) vegetation-sparse 

woody vegetation/herbaceous sparse 

vegetation. 

0.2 NA 

Class 

Local 

LC 

 Description 

Percentage 

of study 

area (%) 

Corresponding 

global LC 

class 

1  

Forests and exclosures in the 

riverplain 

2.5 60 

2  

Forests and farmland in hilly area 

(mixed semi-natural and agricultural 

areas) 

13.4 30 



13 
 

3  

Settlements and farmland alongside 

settlements 

18.7 20 

4  Degraded land 9.5 NA 

5  Farmland 53.0 14 

6  

Halaba, bigger villages and paved 

streets 

1.5 NA 

7  Riverine areas 0.6 NA 

9  Grassland, graze land 0.8 NA 

 222 

2.3. Local survey 223 

Local soil data were derived from 354 soil samples (for 0-20 cm of soil depth) collected 224 

during a local survey carried out in the study area in 2015, in areas with different land 225 

cover types and management strategies. The samples were collected from: i) different 226 

fields of 75 households in the three kebeles (selected from a household survey to represent 227 

three wealth categories); ii) 108 semi-natural sites and farmland sites, and iii) 6 restoration 228 

sites of different ages. 201 samples were collected in farmland areas, while 153 were 229 

collected in semi-natural, restoration, and exclosure sites. The farmland samples were 230 

collected from home garden, nearby field and far field of the 75 selected households to 231 

infer different management and input strategies. Non-agricultural areas were selected 232 

using a random probabilistic approach weighted by semi-natural area (previously 233 

identified using morphological features and land cover classes). The soil survey covered 234 

an area of about 400 km2.  235 

The SOC amount (stock) was derived from data on soil organic matter (SOM) content, 236 

bulk density, and volume of coarse fragments of the 354 samples collected (see Section 237 
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3.2.1). The soil depth interval of 0-20 cm was chosen to match it with the AfSIS Technical 238 

Specifications for Soil Health Surveillance (http://africasoils.net) that were used in the 239 

Ethiopian Soil Information Service (EthioSIS), an Ethiopian initiative to gather and 240 

analyse soil samples at a national level to develop extensive soil fertility maps. The 0-20 241 

cm depth interval was a pragmatic choice because the local soil survey did not have bulk 242 

density data for the second soil depth interval (20-50 cm as defined by the soil survey 243 

protocol). A soil depth interval of 0-20 cm was therefore chosen for this study. The soil 244 

depth interval considered the mineral soil (as in the SoilGrids, where the organic layers on 245 

top of mineral soils were removed) since the O horizon was absence in our soil samples. A 246 

bulk density corer was used to collect soil cores used to determine bulk density. An 247 

Edelman auger was used to collect composite samples of 500 g used to determine organic 248 

matter and soil texture. For the composite sample a “W” sampling design was used.  249 

 250 

3. METHODS 251 

The procedure used to assess carbon stocks and analyse the obtained results was 252 

characterised by three main steps: i) data collection to derive the “global” and the “hybrid” 253 

datasets; ii) mapping of organic carbon stocks by calculating the three carbon pools 254 

(carbon from total living biomass, carbon from dead organic matter, and SOC); iii) 255 

statistical analysis for comparing the two sets of results (global and hybrid). The 256 

methodology was similar to that used by Cerretelli et al. (2018).  257 

 258 

3.1. Local soil property maps 259 
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Local soil properties maps, in particular SOM percentage and bulk density, were obtained 260 

through an interpolation process using an extension of the scorpan-kriging approach 261 

(McBratney et al., 2003). More in detail, a hybrid geostatistical Generalized Additive 262 

Models (GAM; Wood (2006)), combining GAM with kriging (Poggio and Gimona, 2017, 263 

2014) was used. Several covariates (17) mainly based on remote sensing data (DEM, 264 

Landsat, Sentinel 1, and Sentinel 2 derived maps) were used. A prediction grid of 25 m x 265 

25 m resolution for the first 20 cm of soil depth was obtained (see Supplementary 266 

Information A for further details). 267 

 268 

3.2 Carbon stocks assessment 269 

Three different organic carbon pools were considered to assess the total organic carbon 270 

stock: 271 

i) soil organic carbon; 272 

ii) carbon from total living biomass (aboveground and belowground biomass); 273 

iii) carbon from dead organic matter.  274 

The next sections provide details about assessing each of the three pools. 275 

 276 

3.2.1. Soil organic carbon 277 

Global soil organic carbon stock data 278 

The SOC stock data, expressed in t ha-1 for six depth intervals (0-5 cm, 5-15 cm, 15-30 279 

cm, 30-60 cm, 60-100 cm, 100-200 cm), was downloaded from the SoilGrids 250m 280 
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availed by ISRIC – World Soil Information (International Soil Reference and Information 281 

Centre) (https://soilgrids.org/) (Hengl et al., 2017). The SoilGrids dataset is a collection of 282 

soil property maps at 250 m spatial resolution. It was produced using digital soil mapping 283 

techniques based on machine learning algorithms (Hengl et al., 2017). The SOC stock for 284 

20 cm depth was derived by summing the stock of the two first SoilGrids layers of 0-5 cm 285 

and 5-15 cm, and just the stock of the first 5 cm (one third of the total depth interval) of 286 

the third layer (15-30 cm), assuming a constant SOC stock throughout the layer. This 287 

weighted average calculation was suggested by the trapezoidal formula indicated by Hengl 288 

et al. (2017). Accordingly, the total amount for the 0-20 cm depth interval was obtained as 289 

follow: 290 

 
 

(1) 

where: 291 

SOCstock = soil organic carbon stock (t ha-1) 292 

SOCd1-d3 = soil organic carbon at 0-5 cm (SOCd1), 5-15 cm (SOCd2), and 15-30 cm (SOCd3) 293 

depth interval.  294 

Local soil organic carbon stock 295 

The SOC stock for the hybrid dataset was calculated using the following equations, based 296 

on the assumption that the carbon content of SOM is 58% (Van Bemmelen, 1890). This 297 

proportion has been largely used in literature for obtaining SOC content from the SOM 298 

content because it provides a reasonable estimate for most purposes (Baldock and Nelson, 299 

2000; Stockmann et al., 2013).  300 
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  (2) 

  (3) 

where: 301 

SOC% = soil organic carbon content (%) 302 

OM = organic matter content (%)  303 

SOC = amount (stock) of soil organic carbon for a certain depth (t ha-1) 304 

BD = bulk density (g cm-3) 305 

VS = volume of stones – coarse fragments (%) 306 

SDT = soil depth thickness (cm) 307 

 308 

3.2.2. Carbon from total living biomass 309 

Equations that estimate plant biomass from NDVI index were used for calculating the total 310 

living biomass of four different vegetation types to characterise the land cover classes 311 

mapped in the study areas; grassland: Devineau et al. (1986), forest: Gizachew et al. 312 

(2016), shrubland: Pereira et al. (1995), and cropland: Thenkabail et al. (2002). The 313 

coefficient of correlation of the four equations ranges from 0.50 to 0.98. Table 3 314 

summarises the equations used. In Table 3 we reported the biomass in different conditions 315 

(wet weight aboveground biomass – wAGB, and dry weight aboveground biomass - AGB) 316 

because the different equations estimate either wet weight aboveground biomass (for 317 

cropland), or dry weight aboveground biomass (for grassland and shrubland). The wAGB 318 

represents the sum of AGB and moisture content. Moreover, the equation used for the 319 
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forest estimates directly the total living biomass (sum of dry weight of aboveground and 320 

belowground biomass). 321 

Table 3. Equations used to calculate the biomass. wAGB = wet aboveground biomass (t 322 

ha-1). AGB = dry aboveground biomass (t ha-1). BGB = dry belowground biomass (t ha-1) 323 

calculated as in Kuyah et al. (2012) (R2 = 0.95). TLB = total living biomass (above- and 324 

below-ground biomass) (t ha-1). The symbol “-” identifies the unused equations for each 325 

vegetation type (e.g. for the forests we applied only the TLB equation). 326 

 wAGB 

(t ha-1) 

AGB 

(t ha-1) 

BGB 

(t ha-1) 

TLB 

(t ha-1) 

Forest - - - 
 

(Gizachew et al., 2016) 

Grassland -  

(Devineau et al., 1986) 

 

(Kuyah et al., 2012)  

Shrubland - 
 

(Pereira et al., 1995)  
 

Cropland 
 

(Thenkabail et al., 2002)  
 

 

 327 

To obtain the dry weight of the aboveground cropland biomass, the moisture content 328 

(9.5%) was removed (Table 3). This moisture content was obtained through a literature 329 

review on moisture content in cropland residues (Ben-Iwo et al., 2016; Frear et al., 2005; 330 

Guo et al., 2016; Lam et al., 2007; Mani et al., 2004; McKendry, 2002). Even though 331 

different crops could differ in the moisture content, we assumed that 9.5% represents a 332 

good average proportion for all cropland types, based on literature review.  333 
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The total living biomass (t ha-1) was calculated for the four different vegetation types (e.g. 334 

grassland, forest, shrubland, and cropland). The four values were applied in different 335 

proportions to characterise the biomass of each global and local land cover class (Table 4). 336 

This was necessary because the land cover classes represent a mosaic of different land 337 

cover categories, due to the high heterogeneity of the Ethiopian landscape, and to the 338 

difficulties of distinguishing between different categories such as cropland and degraded 339 

land, forest and cropland around settlements. The estimation of the proportion of each 340 

vegetation type in the land cover classes was based on visual inspection of high-resolution 341 

satellite images (Google Earth) and supported by local expertise and local vegetation 342 

surveys. Table 4 illustrates different proportions of total living biomass previously 343 

obtained using the four regression equations reported above (Table 3), applied for each 344 

land cover class. For example, for the areas classified as forest classes (global land cover 345 

class 60 and hybrid land cover class 1), we derived the biomass by adding at the biomass 346 

obtained using the equation for forest environment (Gizachew et al., 2016) 30% of the 347 

biomass obtained using the equation for grassland environment (Devineau et al., 1986), 348 

based on the assumption that grassland biomass is also present in the forests, as supported 349 

by local expertise of the study area and local vegetation surveys.  350 

For the class representing the settlements and the croplands (local class 3 and global land 351 

cover class 30), we assumed the presence of biomass from cropland (60%), grassland 352 

(29.5%) and forest (15%), because the class is characterised by a mosaic of mixed 353 

vegetation and crops. We derived the proportions based on the heterogeneity of the class; 354 

they were then justified by local expertise, satellite images investigation and local surveys. 355 

Refer to Tables 2 for the characterisation of the land cover classes.  356 

 357 
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Table 4. Proportions of total living biomass obtained through the four regression 358 

equations reported in Table 3, applied in each land cover class. 359 

  

Short LC class 

description 

Eq. 

forest 

Eq. 

grassland 

Eq. 

shrubland 

Eq. 

cropland 

G
lo

b
al

 l
an

d
 c

o
v
er

 c
la

ss
es

 

14 Farmland - 15% - 85% 

20 

Cropland and semi-

natural vegetation 

15% 29.5% - 60% 

30 

Semi-natural vegetation 

and cropland 

45% 28.5% - 40% 

60 Forest 100% 30% - - 

110 Shrubland and grassland 30% 58% 30% - 

130 Shrubland - 30% 100% - 

150 Sparse vegetation 30% 79% - - 

L
o
ca

l 
la

n
d
 c

o
v

er
 c

la
ss

es
 

1 Forest 100% 30% - - 

2 

Semi-natural vegetation 

and cropland 

45% 18.5% - 40% 

3 

Cropland, settlements, 

and semi-natural 

vegetation 

15% 29.5% - 60% 

4 Degraded land 20% 60% - 20% 

5 Farmland - 15% - 85% 

6 Cities and paved streets - 50% - - 

7 Riverine areas - 50% - - 

9 Grassland 10% 93% - - 

 360 
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Finally, the dry weight of the total living biomass (t ha-1) was multiplied by 0.475 to 361 

obtain the carbon content stored in the total living biomass (IPCC, 2006; Magnussen and 362 

Reed, 2004). This conversion factor is considered a reasonable estimate of carbon stored 363 

in above- and below-ground living biomass. It is an assumption largely used in literature 364 

in case there is not data from a survey (Cañellas et al., 2017; Magnussen and Reed, 2004; 365 

Propastin and Kappas, 2010; Rieger et al., 2015). 366 

 367 

3.2.3. Carbon from dead organic matter 368 

The amount of carbon from dead organic matter was derived from the Net Primary 369 

Productivity map downloaded from the MODIS database, which considers a period range 370 

of 2000-2015, assuming that the system was in equilibrium (MOD17A3, 371 

https://lpdaac.usgs.gov/products/mod17a3v055/). This method derives from the 372 

fundamental implicit assumption that, when the living biomass per unit surface in an 373 

ecosystem is stationary, i.e. it reaches a growth plateau, to each gram of new organic 374 

carbon incorporated by production corresponds a gram of biomass shed as dead matter, 375 

thus resulting in a dynamic equilibrium (Hogarth, 2015; Ohtsuka et al., 2005; Schlesinger 376 

and Bernhardt, 2013; Woodwell and Whittaker, 1968). 377 

 378 

3.3. Statistical analysis and software used 379 

The estimates obtained with the “global” and the “hybrid” datasets were compared to 380 

highlight possible implications in mapping carbon stocks using data at different spatial 381 

and temporal resolutions, and obtained from radically different sampling and modelling 382 

approaches. 383 
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The following steps were performed in the analysis: 384 

 since the resolution of the global and hybrid results (e.g. carbon stocks estimates) 385 

were 250 m and 30 m, respectively, to compare the two sets of results, the maps 386 

obtained using the hybrid dataset were resampled at 250 m resolution using the 387 

nearest neighbour resampling algorithm; 388 

 zonal statistics (mean, median, and sum) at land cover and sub-catchment level 389 

were obtained (see Supplementary Information A on how the sub-catchment map 390 

was derived). The sub-catchment represents a useful geographical unit for 391 

conservation or management strategies implementation at a local decision-making 392 

process because hydrologically self-contained; 393 

 side by side comparison of mapped estimates; 394 

 statistical comparison between “global” and “hybrid” results: 395 

o linear regressions were run at pixel and at sub-catchment level to identify 396 

the correlation among the two sets of results (“global” and “hybrid” 397 

results);  398 

o Kendall correlation coefficient (rank correlation analysis) was used to 399 

identify the association between paired samples;  400 

o qq-plot (quantile-quantile plot; a graph where the quantiles of two 401 

distributions (e.g. global and hybrid results) are plotted against each other). 402 

If both sets of quantiles came from the same distribution, the qq-plot will 403 

show a set of points forming an approximately straight line; 404 

As an indicator of land degradation, the SOC of the two different datasets (global and 405 

hybrid) were compared to identify possible implications of using SOC estimates as proxy 406 

for land degradation. Zonal statistics were calculated to estimates the SOC at land cover 407 

level. The local land cover classification was used because of the major level of detail and 408 
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accuracy (as compared to the global land cover classification), and also because it 409 

contained a land cover class defined as degraded land.  410 

Moreover, the root-mean-square error (RMSE) was calculated between the SOC data 411 

measured at the sampled points and the SOC maps resulting from the global dataset 412 

(SoilGrids prediction) and the hybrid dataset (local predictions).  413 

Carbon stocks was calculated using QGIS (version 3.0.0) and GRASS GIS (version 7.4.0) 414 

software (GRASS Development Team, 2017; QGIS Development Team, 2017). R 415 

software (version 3.4.0) (R Core Team, 2017) was used for the statistical analysis. The 416 

packages used were: “raster” (Hijmans, 2015), “rgrass7” (Bivand, 2015), “rasterVis” 417 

(Perpiñán-Lamigueiro and Hijmans, 2013). 418 

 419 

4. RESULTS  420 

4.1. Carbon stocks assessments 421 

The calculated total organic carbon stocks ranged from 56 to 134 t ha-1 with both mean 422 

and median of 76 t ha-1 in the global case, and from 4 to 118 t ha-1 with a mean of 46 t ha-1 423 

and a median of 44 t ha-1 in the hybrid case. In the global case, in the three pools, the 424 

carbon stocks ranged from 50 to 92 t ha-1 (mean 63 t ha-1), from 0 to 53 t ha-1 (mean 7 t ha-425 

1), and from 4 to 10 t ha-1 (mean 6 t ha-1) in the soil, biomass, and dead organic matter, 426 

respectively. While in the hybrid case, the carbon stocks ranged from 0 to 84 t ha-1 (mean 427 

31 t ha-1), from 0 to 68 t ha-1 (mean 9 t ha-1), and from 4 to 10 t ha-1 (mean 6 t ha-1) in the 428 

soil, biomass, and dead organic matter, respectively, thus with the vast majority in the soil. 429 

In the global case, the relative contribution to the total carbon stocks was 82.9%, 9.2%, 430 

and 7.9% in the soil, living biomass, and dead organic matter pools, respectively. In the 431 
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hybrid case, the relative contribution was 67.4%, 19.6%, and 13.0% in the soil, biomass, 432 

and dead organic matter pools, respectively. The linear regression models between the two 433 

distributions of organic carbon stocks (obtained using the global dataset or the hybrid 434 

dataset) showed good correlation at sub-catchment level (tons per sub-catchment) with R2 435 

of 0.96, while a R2 of 0.40 at pixel level. The R2 between the two sets of results was 0.52 436 

if the means per sub-catchment in t ha-1 are correlated.  437 

Furthermore, the two sets of results showed fair rank correlation at pixel level with a rank 438 

correlation coefficient of 0.42. The coefficient was 0.43 if the median amounts of carbon 439 

stocks per sub-catchment (t ha-1) are correlated.  440 

The maps in Fig. 2 (a and b) show the spatial distribution of carbon stocks obtained using 441 

the global dataset (Fig. 2a), and the hybrid dataset (Fig. 2b). The latter results (obtained 442 

with the hybrid dataset) showed more spatial variability, and lower carbon stocks (t ha-1) 443 

in the whole area compared to the first results (obtained with the global dataset). This 444 

aspect is quite clear from the density plot and the scatter plot in Fig. 2c and 2d; the two 445 

graphs show how the spatial distribution of the two results (global and hybrid) differed in 446 

the estimates range and in the variability. The distribution of the estimates of the global 447 

dataset (in blue) showed overall higher estimated and lower variability as compared to the 448 

distribution of the hybrid results (in red) (Fig. 2c). This aspect is also shown by the scatter 449 

plot in Fig. 2d.  450 

The lower estimates of carbon stocks with the hybrid dataset are shown also in the qq-451 

plots in Fig. 3 both at pixel resolution (Fig. 3a), and at sub-catchment resolution (Fig. 3b). 452 

At pixel resolution (Fig. 3a), the difference between the quantile of the distribution of the 453 

estimates of the hybrid and the global datasets was high especially at lower estimates. The 454 

difference between the quantiles of the distribution decreased at higher estimates, showing 455 
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better agreement at high estimates. Moreover, also at higher quantiles, the qq-plot at pixel 456 

level (Fig. 3a) shows that the global dataset obtained higher values of carbon stocks. At 457 

sub-catchment resolution (Fig. 3b) the difference remained constant throughout the 458 

quantiles, with lower estimates using the hybrid dataset. 459 

 460 

 461 

Figure 2. Carbon stocks (t ha-1) obtained using the global dataset (Fig. 2a) and the hybrid 462 

dataset (Fig. 2b) (the black polygons show the kebeles where the survey was 463 

concentrated). Fig. 2c shows the density plot of the global (blue) and the hybrid (red) 464 

results (carbon stocks estimates at pixel level). Fig. 2d shows the scatter plot of global 465 

against hybrid results (at pixel level).  466 
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 467 

 468 

Figure 3. Quantile-quantile plots (qq-plots) between global and hybrid results of carbon 469 

stocks at pixel (a) and sub-catchment (b) level.  470 

 471 

When aggregated by land cover classes different estimates were obtained with different 472 

datasets (e.g. global and hybrid datasets). The bar plots in Fig. 4 show the mean value of 473 

carbon stocks (t ha-1) summarised by global (Fig. 4a) and local (Fig. 4b) land cover 474 

classes. The results obtained from the global dataset are shown in blue colour and the 475 

results obtained from the hybrid dataset are shown in green colour. The higher estimates 476 

obtained by the global dataset at pixel level (Fig. 3) were also confirmed at land cover 477 

level; in fact, the blue bars are in all land cover classes higher compared to the green bars. 478 

The mean value of carbon stocks (t ha-1) per local land cover class (Fig. 4b) was higher in 479 

the class 2 in both estimates of the global and the hybrid dataset. Class 2 of the local land 480 

cover corresponds to cultivated area with semi-natural vegetation and agroforestry 481 

practices in the western hilly areas. Its mean carbon stocks was also higher compared to 482 
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the mean carbon stocks estimated for the class 1 (forests and exclosures located especially 483 

in the proximity of the river, that underwent restoration activities in the past years).  484 

Apart from class 60 (open (15-40%) broadleaved deciduous forest/woodland (>5m)), 485 

which is represented by a very small area (~0.1% of the whole area), there was lower 486 

variability of estimates of carbon stocks among land cover classes if global dataset was 487 

used, as compared to the estimates by the hybrid dataset (Fig. 4).  488 

Among mean estimates of the global and local land cover classes that can be compared, 489 

differences in the range of 12%-48% were found, with higher values in all cases in the 490 

global estimates (Table 5). For details on the corresponding land cover classes refer to 491 

Table 2.  492 

 493 

Figure 4. Bar plots of mean carbon stocks (t ha-1) per global (a) and local (b) land cover 494 

classes. In blue the results obtained using the “global” dataset and in green the results 495 

obtained using the “hybrid” dataset.  496 
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 497 

Table 5. Mean values per corresponding global and local land cover classes obtained 498 

using the global and the hybrid datasets, respectively. The last column shows the 499 

percentage difference obtained using the two datasets if the corresponding global and local 500 

LC classes are considered. 501 

Brief LC description 

Global LC  Local LC 

% 

difference Class 

Mean 

(~ha t-1) 

 

Class 

Mean 

(~ha t-1) 

Farmlands 14 73  5 42 42% 

Farmlands and mixed 

semi-natural vegetation 

20 78 

 

3 49 37% 

Mixed croplands and 

vegetation 

30 81 

 

2 71 12% 

Forests  60 122  1 63 48% 

 502 

4.2. Soil organic carbon in the two datasets 503 

In the whole area, the SOC stock ranged from 49.7 to 91.7 t ha-1 (mean = 62.9, median = 504 

62.9, standard deviation = 4.37, variance = 19.1, coefficient of variation = 7.0%) for the 505 

global dataset, and from 0 to 84.4 t ha-1 (mean = 31.2, median = 31.1, standard deviation = 506 

8.36, variance = 69.9, coefficient of variation = 26.8%) for the hybrid dataset. Fig. 5 507 

shows the maps of SOC stock used in the global dataset (Fig. 5a), and the one produced 508 

using the local data (Fig. 5b), the difference between the global and hybrid SOC (Fig. 5c), 509 

and the qq-plot between global and hybrid SOC (Fig. 5d). Fig. 5c shows that, in the whole 510 

area, the SOC stock of the global dataset was higher than the SOC stock of the hybrid 511 
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dataset. Fig. 5d also shows that the difference between the quantile of the distribution of 512 

the global and hybrid SOC was high for the whole distribution. In Fig. 6 the bar plots 513 

show the minimum (Fig. 6a), and median (Fig. 6b) values of SOC (t ha-1) summarised by 514 

local land cover classes. In all classes, the SOC of the global datasets was higher than the 515 

SOC of the hybrid dataset, for the minimum, and median values. In particular, in the local 516 

land cover class 4 (degraded land) the SOC minimum, median, and maximum values were 517 

49.7, 59.3, and 77 t ha-1 in the global dataset, and 0, 21.1, and 49.7 t ha-1 in the hybrid 518 

dataset. Ultimately, the bar plots suggest that the spatial variability was lower in the global 519 

SOC estimates compared to the hybrid SOC estimates.  520 

 521 
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Figure 5. Soil organic carbon (t ha-1) of the global dataset (a) and the hybrid dataset (b), 522 

the difference between soil organic carbon (t ha-1) of the global and the hybrid dataset (c), 523 

and quantile-quantile plot (qq-plot) between global and hybrid SOC (d).  524 

 525 

 526 

Figure 6. Bar plots of minimum (a), and median (b) values of SOC (t ha-1) per local land 527 

cover classes. In blue the SOC value of the “global” dataset and in green the SOC value of 528 

the “hybrid” dataset.  529 

 530 

The R2 between the observed SOC values and the SOC predictions of the interpolation 531 

used in the hybrid dataset was 0.88. The R2 decreased to 0.33 if the same map resampled 532 

to 250 m was used. A R2 of 0.08 was found between the observed values and the SOC 533 

derived from the SoilGrids (used in the global dataset).  534 

The RMSE calculated between the observed values and the SOC predictions of the 535 

interpolation used in the hybrid dataset was 4.1 t ha-1 (if the map of 25 m resolution was 536 
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used in the analysis). The RMSE increased to 9.6 t ha-1 if the same map resampled to 250 537 

m resolution was used. The RMSE calculated between the observed values of SOC and 538 

the SOC predictions in the global dataset was instead 31.9 t ha-1. This, as expected, 539 

demonstrated that local estimates were much closer to the observed values. 540 

 541 

5. DISCUSSION 542 

While it should be borne in mind that the carbon stocks mapping used in our study is not 543 

dynamic and is simplistic, this limitation does not affect the validity of the comparison of 544 

the results obtained using different datasets being studied here.  545 

The data used clearly produced a difference in estimates. The fair correlation at pixel level 546 

and the difference in the estimates of carbon stocks using global and hybrid datasets were 547 

mainly due to i) the difference in soil datasets (SOC stock was considerably lower when 548 

calculated from local data compared to the global data), and to ii) the difference in land 549 

cover datasets (organic carbon in biomass was lower when calculated from the local land 550 

cover map compared to when calculated from the global land cover map). Besides, the 551 

difference in the time scale of the local land cover classification (obtained using data of 552 

2015) and the Ethiopia GlobCover database (obtained using data of 2005) likely affected 553 

the estimations of the carbon from biomass in the two models. Keeping in mind that land 554 

cover changes over ten years might affect the estimations, we think that a land cover map 555 

of 300 m resolution is not adequate to infer land cover changes in a small area.  556 

A similar discrepancy was also present for the SOC, since the hybrid dataset used data 557 

from 2015, while the data used in the global SoilGrids prediction were collected from 558 

1950 to 2014 (Hengl et al., 2015). This likely led to different estimates of SOC due to the 559 
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dynamic nature of soil processes or possible land degradation exacerbation. The 560 

overestimation obtained using the global dataset might also be the result of a lack of data-561 

points in our study area. In fact, despite the utilisation of more than 1500 Ethiopian 562 

profiles for deriving the SoilGrids maps (Batjes et al., 2017), no soil profiles were located 563 

in our region of interest. The sparse data representativeness and the time difference of the 564 

samples used in the two predictions (global and local SOC) were the main driver of 565 

different estimates of SOC, and subsequently of carbon stocks. Furthermore, the 566 

discrepancies may also reflect differences in sampling and laboratory analysis (of organic 567 

carbon content, bulk density, and coarse fragments content) and even in the calculations of 568 

stocks. The SoilGrids version used in this study might generally overestimate soil organic 569 

carbon stocks due to the data used to map bulk density, including North American legacy 570 

data (especially from the USA), in which the bulk density was calculated without oven-571 

drying the soil samples. This issue is resolved in the current version (2.0) of SoilGrids (de 572 

Sousa et al., 2020). However, these factors did not affect the main objective of this study, 573 

which was to identify possible limitations and drawbacks or advantages of using global or 574 

local datasets to map carbon stocks. Furthermore, the global datasets, using legacy data, 575 

could overlook the presence of soil carbon restoration and rehabilitation measures. 576 

However, the restoration of SOC after rehabilitation activities is a long process (Mekuria 577 

et al., 2011) that a ten-year frame difference would not dramatically affect the results. 578 

Overall, the observed discrepancies between the organic carbon stocks assessed using the 579 

two different datasets may be because the global dataset is produced not using any data 580 

originating from the study area and/or reflects past times (Arino et al., 2008; Hengl et al., 581 

2015). Decision-making is influenced by such differences and it is recommended to 582 

collect and use local and up-to-date data where possible. Lesser accuracy (showed by the 583 

difference in RMSE of the carbon stored in the soil) is not necessarily a systematic 584 
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problem of global datasets compared to local datasets. It is also reasonable to assert that, 585 

in different areas, with different land cover conditions as well as biophysical factors, the 586 

same analysis and the same global datasets (e.g. SoilGrids) could provide local 587 

underestimates, instead of overestimates. Over larger areas this results in good estimates 588 

of the mean. However, the local estimates could still be affected by non-negligible errors, 589 

and it is important to understand the implications for decision-making. 590 

Our estimates of organic carbon stocks obtained using the hybrid dataset as well as the 591 

global dataset were lower than those found in other areas in Ethiopia. For example, 592 

Vanderhaegen et al. (2015) found total organic carbon stocks of ~70±12 t ha-1 in maize 593 

field systems, ~77±10 t ha-1 in grazing lands, and up to 337±121 t ha-1 in natural forest and 594 

coffee agroforestry areas. De Beenhouwer et al. (2016) estimated total organic carbon 595 

stocks ranging from 219±23 t ha-1 to 413±56 t ha-1 in an agroecosystem dominated by 596 

natural forest, coffee extensive cultivations, and more intensive agroecosystem and 597 

intensified shade plantation systems. Bajigo et al. (2015) reported total carbon organic 598 

stocks of 51±0.7 t ha-1, 86±20 t ha-1 and 448±43 t ha-1 in home gardens, parklands, and 599 

woodlots, respectively. The SoilGrids estimates for Ethiopia are probably the result of 600 

data available from Ethiopia exceeding our estimates for the study area. However, these 601 

quantitative comparisons should be taken carefully due to different techniques of biomass 602 

measurements, different modelling approaches as well as soil sampling depths. In fact, in 603 

our study, the SOC stock was calculated for 20 cm of soil depth, while in most of the other 604 

studies a standardised soil depth of 30 cm was used.  605 

In both datasets, there were also potential sources of underestimation of carbon stored in 606 

the living biomass because the NDVI (used to calculate the biomass) was derived from 607 

Landsat images of dry periods. Furthermore, the quality of the global land cover likely 608 

introduced possible errors in the biomass calculation. Hence, a remote sensing approach 609 
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that permits to classify the landscape should be used to derive a reliable and detailed land 610 

cover dataset. In fact, the better accuracy of the land cover mapderived from the 611 

supervised classification and used in the hybrid dataset likely led to more reliable results. 612 

This was also found in our previous study (Cerretelli et al., 2018), in which the results 613 

were mainly affected by the quality of the land cover classification used in the modelling. 614 

Moreover, the carbon derived from the total living biomass might have been 615 

underestimated because the equation used to calculate the belowground biomass (Kuyah et 616 

al., 2012) was derived from woody biomass, while our study comprehended also grassland 617 

or mixed vegetation areas. However, this extension did not affect the validity of the 618 

comparison between the different results obtained using different sets of data, because the 619 

same bias can be applied in both sets of results (global and hybrid results).  620 

The mean of the carbon stocks in the whole study area for hybrid results was ~40% 621 

smaller than the mean for global results. We found that lower carbon stocks values were 622 

more overestimated by the global dataset than higher carbon stocks values, if the results 623 

obtained using the hybrid dataset are used as reference. Therefore, if global datasets are 624 

used quantitatively, e.g. to compare thresholds, decision-makers might not focus on the 625 

best areas or might underestimate the carbon depletion. For example, areas having low 626 

carbon stocks (i.e. carbon stocks lower than 50 t ha-1) would be completely missed by the 627 

global dataset. The global dataset proved to be not adequate and spatially detailed also for 628 

selecting priority land cover classes for carbon stocks enhancement purposes, while the 629 

hybrid dataset could give better indications on where to intervene for increasing carbon 630 

stocks. However, the rank correlation analysis at sub-catchment resolution showed a fairly 631 

good correlation of the mean estimates (t ha-1) with a rank correlation of 0.43. Therefore, 632 

global datasets proved to be adequate for targeting or prioritising sub-catchments based on 633 

their rank distribution. Both models made point-support predictions. When aggregating 634 
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point-support data using different regions (e.g. sub-catchments or land cover classes) care 635 

should be taken because of the well-known modifiable areal unit problem (MAUP) 636 

(Jelinski and Wu, 1996; Openshaw and Taylor, 1979). Several studies highlighted the 637 

importance of the spatial scales, the extents and the support of estimates when modelling 638 

environmental properties (Cavazzi et al., 2013; Grunwald et al., 2011; Poggio et al., 639 

2010). Accordingly, care should be taken because aggregation in different areal units 640 

could lead to unreliable findings. This aspect was also highlighted by Grêt-Regamey et al. 641 

(2014) who found that ecosystem services mapping is affected by the mapping resolution. 642 

These results are corroborated by Verhagen et al. (2016) who found that heterogeneity is 643 

often important when mapping different ecosystem services. This aspect was also true in 644 

our study which showed different agreements between the estimates of the global and the 645 

hybrid datasets, based on the different scales of aggregation used in the comparison 646 

analysis (pixel or sub-catchment level). The role of global datasets is prominent in 647 

countries with limited access to soil survey data. Our study suggested that these global 648 

datasets can be useful, provided their limitations and inaccuracies are understood, despite 649 

their potential for error in the numerical values of carbon stocks estimates. Such potential 650 

could lead to underestimation of the need for restoration in some regions, and mis-651 

targeting of conservation measures, if based on quantitative estimates, because of the 652 

lower accuracy of the carbon stocks maps derived when using only global datasets. This 653 

study agrees with Vihervaara et al. (2012) who stressed how ecosystem services mapping 654 

needs detailed datasets to estimate variation at local level that could be relevant at a 655 

decision-making perspective.  656 

More in detail, in our study, the mean value of carbon stocks (t ha-1) was lower in the 657 

forests and exclosures in the riverplain (land cover class 1) than in the cultivated area with 658 

semi-natural vegetation and agroforestry practices in the western hilly area (land cover 659 
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class 2). These results are in contrast with the expectation that forest areas store more 660 

carbon than semi-natural vegetation areas (Sisay et al., 2017; Solomon et al., 2017). 661 

However, this was mainly due to the characteristic of the land cover class 1, which 662 

embodies exclosures and plantations but not natural forests. These areas underwent 663 

intense grazing and exploitation before reafforestation programs were implemented (Byg 664 

et al., 2017; Yirdaw et al., 2014). Moreover, areas in proximity of the river (where land 665 

cover class 1 is mainly located) are highly prone and subjected to water-driven soil 666 

erosion (Cerretelli et al., 2018). Therefore, we think that land cover class 1 stores less 667 

carbon than land cover class 2 because of the high erosion rates and the long history of 668 

overgrazing and overexploitation. Only recently, these areas were subjected to 669 

afforestation programs and exclosure establishments (Yirdaw et al., 2014). Our study 670 

suggested that carbon stock restoration through afforestation programs takes time as 671 

already reported by many Ethiopian studies (Belay et al., 2018b; Mekuria et al., 2011). In 672 

addition, the exclosure areas, despite strict regulations, were subjected to uncontrolled and 673 

forbidden grazing and biomass harvesting (Byg et al., 2017; personal observation).  674 

In order to halt and reduce carbon depletion, especially in the cropland areas, some 675 

measures can be suggested: afforestation practices, terraces and contour strips to reduce 676 

erosion, reduced removal of crop residues, restrained grazing, reduced tillage, manure 677 

application, agroforestry practices (Betemariyam et al., 2020; Gelaw et al., 2014; Lal, 678 

2005; Lehtonen et al., 2020; Rimhanen et al., 2016). These practices and measures proved 679 

to be important to restore carbon stocks in other areas. We think that supporting and 680 

promoting such practices could contribute to increase carbon in the soil and biomass, and 681 

overall reduce land degradation (Betemariyam et al., 2020; Dagnachew et al., 2020; Gelaw 682 

et al., 2014; Lemenih et al., 2006; Rimhanen et al., 2016; Welemariam et al., 2018). 683 

Afforestation practices (such as exclosure establishment) should be implemented 684 
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especially in already degraded areas (e.g. local land cover class 4), where cultivation, as 685 

well as grazing, is not an option anymore.  686 

The need for attention when using global coverage datasets was also shown by the 687 

comparison between the SOC estimates of the global dataset and the SOC estimates 688 

derived from the local soil survey. In fact, the global SOC was about 50% higher than the 689 

hybrid SOC, if the mean value for the whole area is considered. This aspect could have 690 

implications at decision-making level, if SOC estimates are used as an indicator of land 691 

degradation to support and monitor land degradation neutrality and Sustainable 692 

Development Goal 15.3 (Lorenz et al., 2019; Sims et al., 2019). Furthermore, the analysis 693 

of the SOC stock per land cover map class showed that the global datasets failed to 694 

differentiate between different land cover classes. Our study showed that selecting certain 695 

areas for restoration purposes using the SOC as an indicator of land degradation (among 696 

other factors) would be difficult if based only on the absolute values of global datasets. 697 

These considerations are valid for our study area and for the global datasets considered. 698 

The same cannot be implied in other areas or if other global datasets are used. However, in 699 

the absence of dense sampling, this problem is expected to persist even if the size of the 700 

grid cell of global datasets is decreased.  701 

The SOC map obtained using the soil survey data (used in the hybrid dataset) showed low 702 

estimates in the degraded land. Therefore, our results confirmed that SOC stock can be 703 

used as an indicator and proxy for land degradation. However, almost no variability at 704 

landscape level (land cover class level) was shown by the global SOC, considering both 705 

the minimum and the median value per land cover class. Already degraded areas might 706 

remain overlooked if global datasets are used as decision-making for restoration or 707 

conservation programs. Although SOC can indicate land degradation, many other factors 708 

(e.g. land productivity, land use and land cover changes, socio-economic aspects) should 709 
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be included in the assessment to keep the complexity of land degradation drivers and 710 

factors into consideration (Lorenz et al., 2019). The integration of several factors that 711 

affect changes in SOC should be included in the soil and land degradation modelling in 712 

order to limit possible inaccuracies in the SOC estimates. Indeed, a major implication of 713 

these results, if confirmed elsewhere, is that global estimates of land degradation obtained 714 

with global datasets are likely to be optimistic compared to the actual situation on the 715 

ground. However, this will likely improve in Ethiopia when the EthioSIS dataset will be 716 

globally and easily available and will be used to distribute soil properties and resources 717 

maps. Nonetheless, global data can be extremely useful if properly utilised:  our results on 718 

carbon stocks indicate that, for national-level, and even regional-level prioritisation of 719 

areas to restore (e.g. within REDD+ or the 4 per mille initiative (Minasny et al., 2017)), 720 

“global” data are likely to suffice if ranked values or distribution quantiles are used. 721 

Instead, when the actual values are needed it is preferable to use locally produced models. 722 

Therefore, if watersheds with lower carbon stocks must be selected for restoration 723 

activities, the global datasets proved to be good enough. Nonetheless, within those areas, 724 

to benefit local communities, local data are likely to be needed to refine spatial 725 

prioritisation. This aspect is particularly important to support poverty eradication 726 

strategies that account for benefits and dis-benefits, as well as trade-offs between different 727 

ecosystem services and/or between groups of people (Byg et al., 2017).  728 

 729 

Conclusions 730 

To summarise, global datasets overall provided higher values of organic carbon stock in 731 

soil (e.g. SOC) and biomass, but the estimates were less accurate as compared to the 732 

values obtained from local surveys. The lower accuracy of the global dataset (mainly 733 
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concerning the soil organic carbon) was likely due to the use of legacy data and the lack of 734 

representative data points for the study area. Therefore, if there is a lack of representative 735 

data for a selected area or the global datasets are derived from old legacy data, we 736 

recommend the integration of global data with data from a local survey. Furthermore, 737 

global datasets provided estimates with lower spatial variability, making it difficult to 738 

select small areas, based on absolute values, for restoration prioritisation. These aspects 739 

should not be negligible if carbon stocks modelling or soil organic carbon are used as 740 

supports of decision-making processes. 741 

However, global estimates of organic carbon stocks could be used as one of the proxies 742 

for land degradation, at the level of relatively small areas, such as small sub-catchments. 743 

Therefore, global estimates could be appropriate when, rather than the numerical values, a 744 

simple rank of those estimated values per ha is sufficient.  745 

In conclusion, both the global and the hybrid carbon estimates were higher in the western 746 

hilly area that is characterised by a mix of agroforestry, woodland, and farmland patches. 747 

This suggests that further implementation of restoration and afforestation projects as well 748 

as agroforestry practices could be a key intervention to foster carbon sequestration.  749 
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