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1. Introduction 1 

Globalisation has led to increases in trade volume, cargo size and the number of ships (Yang 2018). The 2 

shipping industry is subject to many short, medium and long-term risks and uncertainties arising from a 3 

range of factors including: technical faults, operational problems, finance, market conditions, competition 4 

and regulation (Thanopoulou and Strandenes 2017). The customers of shipping lines typically need door-5 

to-door transportation, which requires intermodal transportation. For them to be successful, it is necessary 6 

for them to achieve a high level performance in the management of their assets within the context of inland 7 

networks (Olivo, Di Francesco, and Zuddas 2013). The inland parts of container shipping networks involve 8 

complex distribution in a stochastic environment. The adoption of appropriate hinterland operations leads 9 

to higher efficiency and responsiveness which improves competitiveness (Yu, Fransoo, and Lee 2018). 10 

In this paper, we consider carrier haulage operations, where the containers are under the responsibility of 11 

shipping line throughout the whole process (Yu, Fransoo, and Lee 2018), which includes hinterland 12 

transportation and the storage of containers. Increasing container flows, driven by economic globalisation 13 

has given rise to the dry port concept as a joint seaport and hinterland approach (Crainic et al. 2015). The 14 

shipping line invests in establishing dry ports in the hinterland network in order to enhance the mentioned 15 

container operations. A dry port differs from traditional inland depots by providing more services including: 16 

the storage and consolidation of laden containers; depot-storage of empty containers; maintenance and the 17 

repair of containers; and customs clearance. The significant advantage of a dry port is the provision of high 18 

capacity for different transportation modes with direct connection to seaports, which enables customers to 19 

drop off/pick up their containers using dry ports rather than directly using seaports (Roso, Woxenius, and 20 

Lumsden 2009).  21 

In order for a dry port to be competitive it needs to have enough volume and the operating costs need to be 22 

no more than a direct connection to the port (Lättilä, Henttu, and Hilmola 2013). The economic feasibility 23 

of an intermodal system may be evaluated in terms of the breakeven distance, which is the distance at which 24 

intermodal transport costs equal truck transport costs (Kim and Van Wee 2011). Therefore, the shipping 25 

line should identify the location of dry ports optimally in a container shipping network taking into account 26 

the trade-offs between the costs and savings. In this context, it is important to optimise networks by making 27 

appropriate strategic and tactical decisions including: the number and location of new dry ports, the 28 

allocation of customers to dry ports, the transportation modes for moving containers, as well as empty 29 

container inventory and leasing decisions. 30 

Several studies have considered the dry port location problem. Roso, Woxenius, and Lumsden (2009) 31 

studied the concept of dry ports and categorised them according to their distance from seaports. Ambrosino 32 
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and Sciomachen (2014) proposed a hub location model for identifying the best site for mid-range dry ports 1 

(normally located midway between the maritime terminals and the inland nodes) that took into account the 2 

flow of containers arriving by sea and moving to their final destination using road or rail. The model allowed 3 

demand to be split by modality or between hubs. However, direct flows between seaports and inland 4 

customer nodes were neglected. . Wang, Chen, and Huang (2018) developed a mathematical model that 5 

minimised the sum of transportation and fixed costs associated with opening and closing dry ports. They 6 

applied a sensitivity analysis of model parameters. However, this post-optimality approach was a reactive 7 

way to investigate uncertainties and it could not yield robust solutions proactively. These studies also 8 

neglected the effect of operational decisions and uncertainties associated with the location problem.  9 

In addition to providing transhipment services, dry ports offer a range of other services including: 10 

consolidation;  the storage of laden and empty containers; maintenance and repair of containers; and 11 

customs clearance (Roso, Woxenius, and Lumsden 2009, p.341). The provision of storage helps shipping 12 

line companies handle the Empty Container Repositioning (ECR) problem. In the literature the ECR 13 

problem has been considered independently from the dry port location problem. Since the ECR problem is 14 

mainly due to international trade imbalances, most studies have applied network flow optimisation models 15 

(see for example, Brouer, Pisinger, and Spoorendonk 2011; Song and Dong 2012)  to address the problem. 16 

Jula, Chassiakos, and Ioannou (2006), Deidda et al. (2008), and Furió et al. (2013) analysed different 17 

policies for hinterland empty container repositioning within a deterministic environment. Erera, Morales, 18 

and Savelsbergh (2009) developed a robust optimisation framework for dynamic ECR that was modelled 19 

by time-space networks. Nonetheless, their approach was limited to the repositioning of empty containers 20 

without considering the strategic location decisions of ports or dry ports. In reality, in a containerised cargo 21 

transport chain the demand for empty containers is driven by laden container flows. In addition, both laden 22 

and empty containers flows should occur in the same network (Song and Dong 2015). This implies that the 23 

flow of laden and empty containers should be integrated into the network design problem to capture real-24 

life practice. Xie et al. (2017) and Vojdani, Lootz, and Rösner (2013) studied the repositioning of empty 25 

containers in hinterland intermodal networks. Although the collaboration of different carriers was studied 26 

by Vojdani, Lootz, and Rösner (2013), their model was restricted to a deterministic environment. The flows 27 

of laden containers were assumed to be fixed parameters rather than decision variables. This ignored the 28 

necessity to simultaneously consider decisions relating to the flow of the laden and empty containers in the 29 

optimisation model. In summary, all the studies relating to ECR tried to address the problem within the 30 

container shipping context without considering the strategic decision of facility location. The models were 31 

mostly deterministic although uncertainty and fluctuations in container demand are key characteristics of 32 

the industry (Lee and Song 2017).  33 
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Strategic dry port location decisions should consider the impact of strategic and operational decisions since 1 

the deployment of dry ports, intermodal transportation planning and ECR are interdependent decisions (Lee 2 

and Song 2017). For instance, empty container repositioning decisions invole empty containers’ waiting 3 

time, the amount of movement, as well as destinations (e.g. a manufacturer or a seaport). However, ECR 4 

decisions depend on the number and location of dry ports which determines the inbound and outbound 5 

transportation times and storage capacity utilisation. There is a temporal hierarchical structure and 6 

periodicity between strategic and tactical/operational decisions  (Amiri-Aref, Klibi, and Babai 2018). It is 7 

therefore important to integrate strategic level decisions with the tactical and operational level decisions in 8 

containerised transport chain and distribution network models. This is addressed by this paper. 9 

Table 1 summarises the literature related to container shipping, which is classified according to: the 10 

modelling approach; the structure and periodicity; mode of transport; decision level; and model decisions.  11 

Finally, this work is positioned relative to the gap in the academic literature. In contrast to earlier studies 12 

on container shipping network design, this work considers dry port location, which is a strategic decision, 13 

together with the operational decisions relating to the intermodal container flow management in a dynamic 14 

and stochastic environment. 15 

The rest of this paper is organised as follows. Section 2 defines the problem and presents the proposed 16 

mathematical model in detail. Section 3 explains the solution procedure that includes the sample average 17 

approximation (SAA) approach, the robust counterpart of the SAA problem and the Benders decomposition 18 

algorithm that is used to address the computational challenges of two-stage stochastic programming model. 19 

Section 4 outlines the key performance indicators and provides practical insights. In section 5, 20 

comprehensive numerical experiments are presented that verify the practicability of the proposed model, 21 

as well as the efficiency of solution procedures. Finally, section 6 presents some conclusions and 22 

suggestions for possible future research. 23 
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Table 1 . A classification of relevant papers in the literature. 

References 
Modelling 

approach 

Parameters features Mode of 

transport 

Decisions Level Model Decisions 

Structure Periodicity Strategic Tactical/Operational Location Transportation Inventory ECR 

Jula, Chassiakos, and 

Ioannou (2006) 
LP Deterministic Multiple Single modal - ✓ - ✓ - ✓ 

Shintani et al. (2007) LP Deterministic Single Single modal ✓ ✓ - ✓ - ✓ 

Deidda et al. (2008) IP Deterministic Single Single modal - ✓ - ✓ - ✓ 

Erera, Morales, and 

Savelsbergh (2009) 
IP Stochastic Multiple Single modal - ✓ - ✓ ✓ ✓ 

Zhang, Yun, and Moon 

(2009) 
MILP Deterministic Single Single modal - ✓ - ✓ - ✓ 

Brouer, Pisinger, and 

Spoorendonk (2011) 
LP Deterministic Single Single modal ✓ - - ✓ - ✓ 

Song and Dong (2012) IP Deterministic Multiple Single modal - ✓ - ✓ ✓ ✓ 

Meng, Wang, and Liu 

(2012) 
MIP Deterministic Single Intermodal - ✓ - ✓ - ✓ 

Furió et al. (2013) IP Deterministic Multiple Single modal - ✓ - ✓ ✓ ✓ 

Vojdani, Lootz, and Rösner 

(2013) 
IP Deterministic Single Intermodal ✓ - - - ✓ ✓ 

Bell et al. (2013) LP Deterministic Single Single modal - ✓ - ✓ - ✓ 

Di Francesco, Lai, and 

Zuddas (2013) 
SP Stochastic Single Single modal - ✓ - ✓ - ✓ 

Ambrosino and 

Sciomachen (2014) 
MILP Deterministic Single Intermodal ✓ - ✓ ✓ - - 

Chang, Notteboom, and Lu 

(2015) 
LP Deterministic Single Intermodal ✓ - ✓ - ✓ - 

Xie et al. (2017) GM Stochastic Multiple Intermodal ✓ - - - ✓ ✓ 

Wang, Chen, and Huang 

(2018) 
IP Deterministic Single Intermodal ✓ - ✓ ✓ - - 

Yu, Fransoo, and Lee 

(2018) 
GM Deterministic Single Intermodal - ✓ - - ✓ ✓ 

Current Study SP Stochastic Multiple Intermodal ✓ ✓ ✓ ✓ ✓ ✓ 

LP: Linear Programming; MILP: Mixed-integer Linear Programming; IP: Integer Programming; MIP: Mixed Integer Programming; SP: Stochastic programming; GM: Game 

model
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2. Problem definition and formulation 1 

2.1. Problem description 2 

We propose a model for designing a container shipping network that includes the hierarchical decisions 3 

relating to dry port location and allocation and creation of arcs (links) between nodes in the network at the 4 

strategic level. At the operational level the model considers the intermodal transportation (flow) of laden 5 

and empty containers, as well as empty container repositioning and inventory planning. The model 6 

considers the uncertainties associated with containers’ demand. It also establishes a hierarchy between 7 

different decision levels that uses a robust two-stage stochastic programming model in a multi-period 8 

setting. The purpose of the proposed model is to: optimise the location and allocation decisions relating to 9 

dry ports at the strategic level; and to minimise the costs associated with the container flow and empty 10 

container inventory at the operational level. This integrated approach will enhance the quality of the design 11 

and operation of hinterland container shipping networks. Figure 1 illustrates a typical hinterland container 12 

transport network. Figure 1a represents a traditional road and rail network that transports imported and 13 

exported raw materials, goods and empty containers between seaports and customers. A customer could be 14 

a producer of raw materials, a manufacturer, a distribution centre, freight forwarder, warehouse or retailer. 15 

An alternative is to add dry ports to the network as shown in Figure 1b. With this configuration there can 16 

still be direct flows to the seaport. The dry port can also be used to store empty containers. Hinterland empty 17 

container repositioning aims to satisfy the demand for empty containers whilst preventing unnecessary 18 

movements (Yu, Fransoo, and Lee 2018).  19 
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a. Traditional inland container network b. Inland container network using dry ports 

Intermodal flow of laden containers from customers 

Intermodal flow of laden containers from seaports 

Intermodal flow of empty containers 

Figure 1. Hinterland container transport network 

Our paper considers decisions associated with the transportation of empty containers throughout the 1 

network. The intermodal transportation of empty containers between the seaports, dry ports and customers 2 

are integrated with decisions related to the movement of laden containers throughout the network over the 3 

planning periods. The approach determines the optimal inventory levels of empty containers at the storage 4 

facilities located at the seaport, dry ports and customers for multiple periods. At the strategic level the model 5 

aims to determine the optimal location of dry ports from a given set of possible sites and decide the 6 

allocation of customers to dry ports. At the operational level it optimises: the intermodal transportation of 7 

laden and empty containers; and the inventory level of empty containers throughout the network. The model 8 

takes into account the uncertainties associated with the demand of containers.  9 

2.2. Modelling approach 10 

In this section, we propose a robust two-stage stochastic programming model to cope with the hierarchal 11 

decision-making structure. Let ℕ = 𝕆 ∪ 𝕀 ∪ 𝕁 denote the complete set of nodes in the network, where 𝕆 12 

represents the set of seaports, 𝕀  represents the set of candidate dry ports, and 𝕁  represents the set of 13 
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customers. The available capacity for storing empty containers at each node is given by 𝐶𝑎𝑝𝓃, where 𝓃 ∈1 

ℕ. 𝒜 = {(𝓅, 𝓆): 𝓅, 𝓆 ∈ ℕ} represents the set of all arcs (links) in the network, where 𝓅, 𝓆 represent a pair 2 

of nodes.  3 

The model includes the abovementioned strategic decisions in the first stage and considers uncertainties in 4 

the second stage. We denote the associated decision for the location of dry ports by the binary variable 𝑋𝓅 5 

with a fixed opening cost of 𝑓𝓅, where 𝓅 ∈ 𝕀. We define the binary variable 𝑌𝓅𝓆, where (𝓅, 𝓆) ∈ 𝒜, as the 6 

decision associated with the allocation of node 𝓅 to node 𝓆 in the considered network with a cost of 𝑑𝓅𝓆. 7 

Similarly, 𝑌𝓅𝓆 is the binary variable related to the allocation of node 𝓆 to node 𝓅. It should be noted that 𝓅 8 

and 𝓆 are used as indices to denote the nodes throughout the network (𝑖. 𝑒. 𝓃 ∈ ℕ = 𝕆 ∪ 𝕀 ∪ 𝕁). 9 

Uncertainty stems from the lack of, or poor coordination between demand and supply, which are subject to 10 

high variability and volatility over the planning horizon. We characterise the uncertainty in the model by a 11 

set of plausible scenarios, denoted by 𝜔, where each scenario 𝜔 ∈ 𝛺 can occur with a probability of 𝜋(𝜔). 12 

Let 𝐗 = (𝑋𝓅, 𝑌𝓅𝓆) be the vector of all first-stage binary design variables relating to the network structure. 13 

The first-stage model optimises the strategic location-allocation decisions. The second-stage model 14 

optimises the expected operational planning costs. The first-stage objective function and constraints can be 15 

formulated as follows: 16 

min
𝐗

{ ∑ 𝜋(𝜔)

𝜔∈Ω

q(𝐗, 𝜔) + ∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

} (1) 

𝑌𝓅𝓆 ≤ 𝑋𝓅,                                  ∀𝓅 ∈ 𝕀, ∀𝓆 ∈ 𝕁    (2) 

∑ 𝑌𝓆𝓅

𝓆∈𝕆

≥ 𝑋𝓅,                            ∀𝓅 ∈ 𝕀  (3) 

∑ 𝑌𝓅𝓆

𝓅∈𝕆

+ ∑ 𝑌𝓅𝓆

𝓅∈𝕀

≥ 1,           ∀𝓆 ∈ 𝕁  (4) 

𝑋𝓅, 𝑌𝓅𝓆  ∈ {0,1},                         ∀𝓅, 𝓆 ∈  ℕ = 𝕆 ∪ 𝕀 ∪ 𝕁    (5) 

The objective function (1) includes three terms. The first term is the total expected operational costs of 17 

𝑞(𝑿, 𝜔) which are optimized at the second stage. The second term is the fixed cost of opening a dry port at 18 

a candidate location ∀𝓅 ∈ 𝕀 . The third term indicates the relevant transportation cost relating to the 19 

allocation of node 𝓅 to node 𝓆 in the network, where (𝓅, 𝓆) ∈ 𝒜. Constraint (2) ensures that the customers 20 

are allocated to opened dry ports. Constraint (3) ensures that when a dry port location is chosen, it should 21 

be allocated to at least one seaport. Constraint (4) ensures that each customer is connected to at least one 22 
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seaport or one dry port. This constraint also ensures that a given customer can be supplied by both seaports 1 

and dry ports. Constraint (5) represent first-stage binary variables.  2 

It should be noted that the location and allocation strategic decisions that determine the configuration of the 3 

container shipping network, have a significant impact on the second-stage operational decisions. In this 4 

study, the operational decisions relating to the flow of empty and laden containers and the inventory levels 5 

of empty containers throughout the network are made/revisited on a periodic basis 𝑡 ∈ 𝑇 . The set of 6 

containers are denoted by 𝐾 = {ℓ, ℯ}, where ℓ and ℯ are associated with laden and empty containers of 7 

Twenty Equivalent Unit (TEU) size, respectively. A FEU is considered as two TEUs (Song & Dong, 2012). 8 

All links which connect node 𝓅 to node 𝓆 can utilise transportation mode 𝑚 ∈ 𝑀, where 𝑀 is the set of 9 

available transportation modes.  10 

Let 𝑐𝓅𝓆𝑚
𝑘  be the unit cost for transporting container type 𝑘 ∈ 𝐾 on arc (𝓅, 𝓆) ∈ 𝒜 when transportation 11 

mode 𝑚 is used. Note that the loading, unloading and operational costs of containers at each node are also 12 

included in 𝑐𝓅𝓆𝑚
𝑘 . The unit cost of holding an empty container at each node is denoted by ℎ𝓃, for all 𝓃 ∈13 

ℕ. Decisions relating to the leasing of empty containers is also considered as a part of inventory planning. 14 

If the inventory level of empty containers at a dry-port is not enough to satisfy the demand in a specific 15 

period, the shipping line can lease empty containers from lessors or other companies with the cost of 𝑔𝓃
+, 16 

where 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, per unit of container. The shipping line returns the leased containers with a 17 

returning cost of 𝑔𝓃
−, where 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, per unit of container. In addition, if the shipping line has a 18 

deficiency of empty containers at a given seaport, it could import its own empty containers from overseas 19 

seaports with the unit cost of 𝑣𝓃
+, where 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}.  Accordingly, 𝑣𝓃

− shows the unit cost of returning 20 

(exporting) imported containers, where 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}. A unit backorder cost per container 𝑏𝓆 is applied 21 

for backordered incoming or outgoing demand at a given customer 𝓆 ∈ 𝕁. In addition, 𝜈 denotes the unit 22 

cost per container for rejected incoming or outgoing demand from customers. We denote the transportation 23 

lead-time by 𝜏𝓅𝓆𝑚 , where (𝓅, 𝓆) ∈ 𝒜  and 𝑚 ∈ 𝑀. Moreover, 𝜃  denotes the container processing time 24 

associated with loading and unloading of finished goods/raw materials at customers sites. 25 

We define 𝐷𝓆𝑡
ℓ (𝜔) and 𝑆𝓆𝑡

ℓ (𝜔) as the realisation of the demand for incoming and outgoing laden containers 26 

at customer 𝓆 in period 𝑡 under scenario 𝜔. Hereafter, we refer to the demand for outgoing laden containers 27 

(i.e. 𝑆𝓆𝑡
ℓ (𝜔)) as “supply” for convenience. Let 𝐹𝓅𝓆𝑡𝑚

𝑘 (𝜔) be the decision variable denoting the flow of 28 

container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 in period 𝑡 using transportation mode 𝑚 under scenario 𝜔. Let 𝐼𝓃𝑡
ℯ (𝜔) 29 

denote the inventory level of empty containers at a given node 𝓃 in period 𝑡 under scenario 𝜔. Furthermore, 30 

let 𝐿𝓃𝑡
ℯ+(𝜔) and 𝐿𝓃𝑡

ℯ−(𝜔) be the number of leased and returned empty containers, respectively, at 𝓃 ∈ ℕ ∖31 

{𝕆 ∪ 𝕁} in period 𝑡 under scenario 𝜔. Due to the periodicity of decisions related to empty container leasing, 32 
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it is important to consider the cost relating to the net number of leased containers at each period. Let us 1 

denote the net stock of leased empty containers by 𝐿𝓃𝑡
ℯ (𝜔) = 𝐿𝓃,𝑡−1

ℯ (𝜔) + 𝐿𝓃𝑡
ℯ+(𝜔) − 𝐿𝓃𝑡

ℯ−(𝜔),  with the 2 

corresponding cost of 𝑔𝓃, where 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}. Note that 𝑔𝓃
+ denotes the fixed leasing cost per container 3 

which is incurred only once when containers are leased, while 𝑔𝓃 is the variable leasing cost per container 4 

per period for the net stock of leased empty containers remain in the network. Let 𝐻𝓃𝑡
ℯ+(𝜔) and 𝐻𝓃𝑡

ℯ−(𝜔) 5 

denote the number of empty containers of the shipping line which are imported and exported, respectively, 6 

at the seaport 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}  in period 𝑡  under scenario 𝜔 . The backordered incoming and outgoing 7 

demand at a customer 𝓆 ∈ 𝕁 in period 𝑡 under scenario 𝜔 is denoted by 𝑈𝓆𝑡
ℓ (𝜔) and 𝐵𝓆𝑡

ℓ (𝜔), respectively. 8 

Finally, γ𝓆𝑡
ℓ (𝜔) and δ𝓆𝑡

ℓ (𝜔) represent the rejected incoming and outgoing demand at a customer 𝓆 ∈ 𝕁 in 9 

period 𝑡 under scenario 𝜔, respectively. The sets, parameters, and decision variables used in the proposed 10 

model are summarized in Table 2. 11 

Table 2. Notation of sets, parameters and decision variables  
Sets 
ℕ Set of nodes indexed by 𝓃. 

𝕆 Set of seaports indexed by 𝓅, 𝓆. 

𝕀 Set of candidate dry port locations indexed by 𝓅, 𝓆. 

𝕁 Set of customers indexed by 𝓅, 𝓆. 

𝒜 Set of arcs. 

Ω Set of scenarios indexed by 𝜔. 

𝑇 Set of periods indexed by 𝑡. 

𝐾 Set of containers indexed by 𝑘, ℓ, ℯ. 

𝑀 Set of available transportation modes indexed by 𝑚. 

Parameters 

𝐶𝑎𝑝𝓃  The storage capacity of node 𝓃 ∈ ℕ 

 𝑓𝓅 The fixed cost for opening a dry port at node 𝓅 ∈ 𝕀. 

𝑑𝓅𝓆 The fixed cost for allocating node 𝓅 to node 𝓆. 

𝑐𝓅𝓆𝑚
𝑘  The unit cost of transporting container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 using mode 𝑚 . 

ℎ𝓃 The unit cost of holding an empty container at node 𝓃 ∈ ℕ. 

𝑔𝓃
+/𝑔𝓃

− The unit cost of leasing/returning an empty container at node 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}.  

𝑔𝓃 The unit cost of leased empty containers’ net stock per container per period at node 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}.  

𝑣𝓃
+/𝑣𝓃

− The unit importing/exporting cost of an empty container at node 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}. 

𝑏𝓆  The unit backorder cost per container at customer 𝓆 ∈ 𝕁. 

𝜈 The unit cost of rejected demand per container at customer 𝓆 ∈ 𝕁 

𝜏𝓅𝓆𝑚  The transportation lead-time on arc (𝓅, 𝓆) ∈ 𝒜 using mode 𝑚 ∈ 𝑀. 
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𝜃 
The containers processing time associate with the loading and unloading of finished goods/raw materials 

at customers. 

𝜋(𝜔) The occurrence probability of scenario 𝜔. 

𝐷𝓆𝑡
ℓ (𝜔) The demand for incoming laden containers at customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝑆𝓆𝑡
ℓ (𝜔) The demand for outgoing laden containers at customer 𝓆 in period 𝑡 under scenario 𝜔. 

First-stage Decision Variables 

 𝑋𝓅  Binary variable associated with location of dry port 𝓅. 

 𝑌𝓅𝓆  Binary variable associated with the demand allocation of an arc from node 𝓅 to 𝓆. 

Second Stage Decision Variables 

𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔) The flow of container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 in period 𝑡 using mode 𝑚 under scenario 𝜔. 

𝐼𝓃𝑡
ℯ (𝜔) The inventory level of empty containers at node 𝓃 ∈ ℕ in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ (𝜔) The net stock of leased empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ+(𝜔) The number of leased empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ−(𝜔) The number of returned empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐻𝓃𝑡
ℯ+(𝜔) The number of imported empty containers at node 𝓃 ∈ 𝕆 in period 𝑡 under scenario 𝜔. 

𝐻𝓃𝑡
ℯ−(𝜔) The number of exported empty containers at node 𝓃 ∈ 𝕆 in period 𝑡 under scenario 𝜔. 

𝑈𝓆𝑡
ℓ (𝜔) The backordered incoming demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝐵𝓆𝑡
ℓ (𝜔) The backordered outgoing demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

γ𝓆𝑡
ℓ (𝜔)  The rejected incoming demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

δ𝓆𝑡
ℓ (𝜔) The rejected outgoing demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

 1 

Below we present the second-stage model in which 𝐂(𝜔) = {𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔), 𝐼𝓃𝑡

ℯ (𝜔), 𝐿𝓃𝑡
ℯ (𝜔), 𝐿𝓃𝑡

ℯ+(𝜔), 𝐿𝓃𝑡
ℯ−(𝜔),2 

𝐻𝓃𝑡
ℯ+(𝜔), 𝐻𝓃𝑡

ℯ−(𝜔), 𝑈𝓆𝑡
ℓ (𝜔), 𝐵𝓆𝑡

ℓ (𝜔), γ𝓆𝑡
ℓ (𝜔), δ𝓆𝑡

ℓ (𝜔)} denotes the vector of all continuous variables for each 3 

scenario 𝜔. This model is applied after the strategic decisions from the first-stage model have been made 4 

and the uncertainty in demand is revealed. Therefore, the second-stage model is a collection of deterministic 5 

programming models over all possible scenarios. The objective function of the second-stage model for a 6 

single scenario 𝜔 ∈ Ω  is associated with all incurred operational costs, and can be formulated as (6.1) – 7 

(6.5): 8 

min
𝐂

 q(𝐗, 𝜔) =  ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚
𝑘 𝐹𝓅𝓆𝑡𝑚

𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

 
(6.1) 

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇

 (6.2) 
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+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

 
(6.3) 

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

 
(6.4)  

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁𝑡∈𝑇

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔)) + 𝜈 ∑ ∑ (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))

𝓆∈𝕁𝑡∈𝑇

 
(6.5) 

Expression (6.1) evaluates the total cost of intermodal transportation of laden and empty containers over 1 

all arcs involved in the considered network. This expression includes the transportation cost between dry 2 

ports and customers, between seaports and dry ports, and between seaports and customers, over all periods. 3 

Expression (6.2) represents the total holding cost of empty containers throughout all nodes in the network 4 

over all periods. Expression (6.3) evaluates the total cost associated with empty containers leasing 5 

operations, which include the cost of leases, returned containers, and net stock of leased empty containers 6 

over the planning periods within the network. Expression (6.4) refers to the total cost of importing/exporting 7 

empty containers at seaports over all periods. Finally, expression (6.5) indicates the total cost of 8 

backordered as well as rejected demand of incoming and outgoing containers at customers over the planning 9 

horizon. In the second stage of the model, the following constraints need to be followed. 10 

• Containers demand constraints 11 

Constraint (7) represents the flow of incoming laden containers from all possible dry ports and the set of 12 

seaports to a given customer during each period to fulfil its current uncertain demand. The possible 13 

backordered demand accumulated from previous periods as well as rejected demand are considered by this 14 

constraint. Note that 𝑡 − 𝜏𝓅𝓆𝑚 represents the time when the containers are dispatched using transportation 15 

mode 𝑚 to be delivered to a given customer in period 𝑡. 16 

∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

+ γ𝓆𝑡
ℓ (𝜔) = 𝐷𝓆𝑡

ℓ (𝜔) + 𝑈𝓆,𝑡−1
ℓ (𝜔) − 𝑈𝓆𝑡

ℓ (𝜔) 17 

        ∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (7) 

Constraint (8) refers to the flow of outgoing laden containers, which should be dispatched from a given 18 

customer to all possible dry ports and seaports. This constraint aims to meet the current uncertain demand 19 

of outgoing (supply) containers from customer 𝓆 and their accumulated backordered units from previous 20 

periods. The possible rejected demand of outgoing containers is also included here. It should be noted that 21 
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the customer’s outgoing demand in period 𝑡 would be satisfied, as soon as laden containers are dispatched 1 

from the customer in period 𝑡. That is why the lead time is excluded from this constraint.     2 

∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

+ δ𝓆𝑡
ℓ (𝜔) = 𝑆𝓆𝑡

ℓ (𝜔) + 𝐵𝓆,𝑡−1
ℓ (𝜔) − 𝐵𝓆𝑡

ℓ (𝜔) 3 

        ∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (8) 

• Container flow conservation constraints 4 

The flow conservation of laden containers at any possible dry port for raw materials and finished goods are 5 

ensured by constraints (9) and (10), respectively. More specifically, constraint (9) specifies that the inward 6 

containers from all seaports to a given dry port should be equal to the outflow of those containers from the 7 

given dry port to all customers. It should be noted that this constraint corresponds to the forward flow of 8 

containers. Constraint (10) relates to the outgoing flow from customers to a given dry port, which is equal 9 

to the flow of those containers from the given dry port to all seaports. This constraint reflects the backward 10 

flow of containers in the network considered here. Constraints (9) and (10) consider the time lag between 11 

the decisions to deploy the containers, i.e. 𝜏𝓅𝓆𝑚. 12 

∑ ∑  𝐹𝓆𝓅,𝑡−𝜏𝓆𝓅𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕆

= ∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕁

,           ∀𝓅 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω           (9) 13 

∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕆

= ∑ ∑  𝐹𝓆𝓅,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕁

,            ∀𝓅 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω         (10) 14 

 15 

• Container handling constraints 16 

Container handling constraints determine the inventory level of empty containers which are held in each 17 

period. This constraint is applied for each node of the network, including all seaports, dry ports, and 18 

customers, in (11), (12), and (13), respectively.  19 

Constraint (11) quantifies the inventory level of available empty containers at a given customer at the end 20 

of each period. This is calculated by considering the accumulated inventory of empty containers from the 21 

previous periods as well as the inflow and outflow of laden and empty containers in the network. More 22 

specifically, the second (third) term of the right-hand side of this constraint includes: i) the inflow of laden 23 

and empty containers which are transported from all seaports (dry ports) to a given customer in periods 𝑡 −24 

𝜏𝓅𝓆𝑚 − 𝜃 and 𝑡 − 𝜏𝓅𝓆𝑚, respectively; as well as ii) the outflow of laden and empty containers which are 25 

transported from a given customer to all seaports (dry ports) in periods 𝑡 + 𝜃 and 𝑡, respectively. The 26 
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arriving laden containers are emptied within a specific processing time 𝜃 at the given customer and then 1 

counted as empty containers for period 𝑡. Moreover, the inventory level of empty containers at a given 2 

customer is reduced when they are loaded with goods with a specific processing time of 𝜃 in order to be 3 

sent-out to the dry ports and seaports. 4 

𝐼𝓆𝑡
ℯ (𝜔)5 

= 𝐼𝓆,𝑡−1
ℯ (𝜔) + ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚−𝜃,𝑚

ℓ (𝜔) + 𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅,𝑡+𝜃,𝑚

ℓ (𝜔) − 𝐹𝓆𝓅𝑡𝑚
ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕆

6 

+ ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚−𝜃,𝑚
ℓ (𝜔) + 𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℯ (𝜔) − 𝐹𝓆𝓅,𝑡+𝜃,𝑚
ℓ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕀

, ∀𝓆 ∈ 𝕁, 𝑡7 

∈ 𝑇, 𝜔 ∈ Ω         (11) 8 

Constraint (12) represents the inventory level of available empty containers at each dry port in each period.  9 

This is equal to the accumulated inventories from previous periods as well as the inflow and outflow of 10 

empty containers in the network. The second (third) term of the right-hand side of this constraint considers 11 

the inflow of empty containers which are transported from the seaports (customers) to dry ports and the 12 

outflow of empty containers which are transported from the dry ports to the seaports. Note that, we also 13 

take the number of leased and returned empty containers into consideration at each dry port in each period. 14 

𝐼𝓆𝑡
ℯ (𝜔)15 

= 𝐼𝓆,𝑡−1
ℯ (𝜔) + ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚
ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕆

16 

+ ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕁

+ 𝐿𝓆𝑡
ℯ+(𝜔) − 𝐿𝓆𝑡

ℯ−(𝜔) ,    ∀𝓆 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω         (12) 17 

Constraint (13) specifies the inventory level of available empty containers at the seaport. It takes into 18 

account the accumulated inventories from the previous periods as well as the inflow and outflow of empty 19 

containers. The second (third) term of the right-hand side of this constraint is associated with the inflow of 20 

empty containers which are transported from the dry ports (customers) to the seaports and the outflow of 21 

empty containers which are transported from the seaports to the dry ports (customers). At each seaport, if 22 

the inventory level of empty containers is insufficient to meet the demand, empty containers can be 23 

imported from other seaports. The returned and exported empty containers are also considered in this 24 

constraint.  25 
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𝐼𝓆𝑡
ℯ (𝜔)1 

= 𝐼𝓆,𝑡−1
ℯ (𝜔) + ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚
ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕀

2 

+ ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕁

+ 𝐻𝓆𝑡
𝑒+(𝜔) − 𝐻𝓆𝑡

𝑒−(𝜔) ,    ∀𝓆 ∈ 𝕆, 𝑡 ∈ 𝑇, 𝜔3 

∈ Ω         (13) 4 

• Container inter-balancing constraints 5 

Container inter-balancing constraints imply that the total outflow of containers at each node of the network, 6 

including all seaports, dry ports, and customers, should not exceed the available inventory level of empty 7 

containers, which are represented by (14), (15), and (16), respectively.  8 

Constraint (14) ensures that the total outflow of containers from each customer cannot exceed its in-stock 9 

empty containers in period 𝑡. More specifically, the first term of the left-hand side refers to the total outflow 10 

of empty containers in period 𝑡 and the number of empty containers which will be laden in 𝑡 + 1 from a 11 

given customer to all possible dry ports. Similarly, the total outflow of empty containers in period 𝑡 and the 12 

number of empty containers which will be laden in 𝑡 + 1 from the customers to seaports is shown in the 13 

second term of the left-hand side of constraint (14). The inter-balancing constraints give a derived demand 14 

for empty containers. The flow of empty containers is driven by the flow of laden containers and determined 15 

internally by the shipping lines themselves rather than by external demand. 16 

∑ ∑ ( 𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔) +  𝐹𝓅𝓆,𝑡+1,𝑚

ℓ (𝜔))

𝑚∈𝑀𝓆∈𝕀

+ ∑ ∑ ( 𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔) +  𝐹𝓅𝓆,𝑡+1,𝑚

ℓ (𝜔))

𝑚∈𝑀𝓆∈𝕆

≤ 𝐼𝓅𝑡
ℯ (𝜔),        17 

∀𝓅 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω               (14) 18 

Constraint (15) ensures that the net outflow of empty containers from a given dry port to all seaports and 19 

customers in each period cannot exceed the available inventory level of empty containers at the given dry 20 

port. Correspondingly, constraint (16) represents that the net outflow of empty containers from a given 21 

seaport to all dry ports and customers should be equal or less than the available inventory level of empty 22 

containers at the given seaport.  23 

∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕆

+ ∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕁

≤ 𝐼𝓅𝑡
ℯ (𝜔),                                 ∀𝓅 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω               (15) 24 

∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕀

+ ∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕁

≤ 𝐼𝓅𝑡
ℯ (𝜔),                                 ∀𝓅 ∈ 𝕆, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω               (16) 25 

• Empty containers exchange constraints 26 

The empty containers exchange constraints guarantee equilibrium between the surplus and deficit of empty 27 

containers at the nodes of the network. More specifically, the net empty containers associated with the 28 
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leased and returned decisions at each seaport and each dry port is given by (17). In addition, constraint (18) 1 

verifies that the total number of returned empty containers at each corresponding node (i.e. each seaport 2 

and each dry port) is equal or less than the total number of leased empty containers over the planning 3 

horizon. Constraint (19) ensures that at a given seaport, the total number of exported empty containers is 4 

equal or less than the total number of imported empty containers over the planning horizon.  5 

𝐿𝓃𝑡
ℯ (𝜔) = 𝐿𝓃,𝑡−1

ℯ (𝜔) + 𝐿𝓃𝑡
ℯ+(𝜔) − 𝐿𝓃𝑡

ℯ−(𝜔)                                       ∀𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω        (17) 6 

∑ 𝐿𝓃𝑡
ℯ−(𝜔)

𝑡∈𝑇

≤ ∑ 𝐿𝓃𝑡
ℯ+(𝜔)

𝑡∈𝑇

                                                                               ∀𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, 𝜔 ∈ Ω         (18) 7 

∑ 𝐻𝓃𝑡
ℯ−(𝜔)

𝑡∈𝑇

≤ ∑ 𝐻𝓃𝑡
ℯ+(𝜔)

𝑡∈𝑇

                                                                            ∀𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}, 𝜔 ∈ Ω           (19) 8 

• Capacity constraints 9 

Constraints (20) and (21) represent the limited capacity for storing empty containers at each node involved 10 

in the network in each period. 11 

𝐼𝓆𝑡
ℯ (𝜔) ≤  𝐶𝑎𝑝𝓆𝑋𝓆                                                                                 ∀𝓆 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω                               (20) 12 

 

𝐼𝓃𝑡
ℯ (𝜔) ≤  𝐶𝑎𝑝𝓃                                                                            ∀𝓃 ∈ ℕ ∖ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω                               (21) 13 

 

• Standard constraints 14 

The flow of containers throughout the whole network is planned based on the allocation decisions which 15 

are made by the first-stage model. This is shown by constraint (22), where ℳ is a sufficiently big number. 16 

 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔) ≤ ℳ. 𝑌𝓅𝓆                                                       (𝓅, 𝓆) ∈ 𝒜, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω              (22)  17 

Constraint (23) indicates the standard nonnegative continuous variables of the model. 18 

 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔), 𝐼𝓅𝑡

ℯ (𝜔), 𝐿𝓅𝑡
ℯ (𝜔), 𝐿𝓅𝑡

ℯ+(𝜔), 𝐿𝓅𝑡
ℯ−(𝜔), 𝐻𝓅𝑡

ℯ+(𝜔), 𝐻𝓅𝑡
ℯ−(𝜔), 𝑈𝓅𝑡

ℓ (𝜔), 𝐵𝓅𝑡
ℓ (𝜔), γ𝓆𝑡

ℓ (𝜔), δ𝓆𝑡
ℓ (𝜔) ≥ 0 19 

∀𝓅, 𝓆 ∈ ℕ, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω          (23)    20 

 

 

 

3. Solution Procedure 21 

Solving the proposed two-stage stochastic programming model is difficult. The main reason for this 22 

difficulty is evaluating the expected value of the objective function for the ‘true’ model. For discrete 23 

distributions, the evaluation of expectation involves solving a large number of linear programming models 24 

for each scenario that corresponds to an uncertain parameter realisation. We cope with this difficulty using 25 
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the Sample Average Approximation (SAA) approach (Santoso et al. 2005; Kleywegt, Shapiro, and Homem-1 

De-Mello 2002). The solutions from the SAA approach converge to the optimal ‘true’ objective function 2 

value as the scenario sample size increases (Shapiro, Dentcheva, and Ruszczynski 2009). The set of sample 3 

scenarios are generated outside of the optimisation procedure using the Monte-Carlo sampling method 4 

(Shapiro 2003). The quality of the solutions obtained by SAA is evaluated through a validation analysis 5 

with respect to the sample size and the number of samples. This is conducted by calculating the optimality 6 

gap between the optimal ‘true’ solution for the problem and the SAA model solution from a given sample 7 

of scenarios. Moreover, the Benders decomposition (Benders 1962) is applied to enhance the computational 8 

performance of the developed SAA model. We also employ several acceleration methods within the 9 

Benders decomposition method to improve the computational time.  10 

3.1. Robust SAA model 11 

In the SAA approach, a set of 𝑁 scenarios, denoted by 𝛺𝑁 = {𝜔1, 𝜔2, … , 𝜔𝑁} , relating to the realisation 12 

of uncertain parameters, i.e. incoming and outgoing demand of customers, is randomly generated using the 13 

Monte-Carlo sampling method (Shapiro 2003). The expected value of the ‘true’ objective function is 14 

estimated by the average over objective values q(𝑿, 𝜔), where 𝜔 ∈ 𝛺𝑁 and 𝑁 is the number of scenarios 15 

randomly generated in an equiprobable manner. Therefore, the expected value of the ‘true’ objective 16 

function can be represented by ∑ 𝜋(𝜔)𝜔∈Ω𝑁 q(𝐗, 𝜔), with 𝜋(𝜔) = 1
𝑁⁄ . Given the original two-stage 17 

stochastic problem (1) – (23), the equivalent deterministic linear programming model is constructed as 18 

follows:  19 

min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

20 

+ 1
𝑁⁄ ∑ ( ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚

𝑘 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇𝜔∈Ω𝑁

21 

+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

22 

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁𝑡∈𝑇

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔)))},                                                                                             (24) 23 
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subject to constraint sets (2) – (5), and constraint sets (7) – (23), where the first two terms in (24) represent 1 

the first-stage objective function and the third term represents the expected objective function of the second-2 

stage problem. 3 

The SAA method is applicable when a feasible solution exists and the problem has a finite objective value 4 

(Shapiro 2003). However, in the context considered here, the customers’ uncertain incoming and outgoing 5 

demand may not have an identical distribution function or known distribution parameters. Hence, the SAA 6 

method is likely to obtain sub-optimal solutions in at least one scenario. To tackle this challenge, we present 7 

a robust counterpart problem for the mentioned SAA method to address solution robustness using an 8 

approach proposed by Mulvey, Vanderbei, and Zenios (1995). 9 

In order to present the robust counterpart problem, we apply the modelling approach proposed by Yu and 10 

Li (2000) which is an extension to the work of Mulvey, Vanderbei, and Zenios (1995). This approach aims 11 

to achieve solution and model robustness. The former is aims to find solutions which are optimal for all 12 

possible scenario realisations of the uncertain parameters; the latter is aims to guarantee the feasibility of 13 

the obtained solutions over scenario realisations by considering a penalty function (see Mulvey et al. 1995). 14 

Below we discuss this robust modelling approach. 15 

The solution robustness of the SAA model, denoted by Φ(𝜔), is built using the absolute deviation of the 16 

second-stage objective values over the number of scenarios, as follows: 17 

Φ(𝐗, 𝜔) = |q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω\{𝜔}

|.                ∀𝜔 ∈ Ω                                                                (25) 18 

Expression (25), which computes the solution robustness, should be included in the objective function of 19 

the SAA model. However, this makes the SAA model non-linear due to the presence of absolute function. 20 

Hence, we apply a linearization method to ensure the solution space convexity. 21 

Proposition 1. As the minimisation objective function of the proposed robust SAA model contains the 22 

expression (25), we can substitute it by the following expressions: 23 

Υ(𝐗, 𝜔) = q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω−{𝜔}

+ 2𝜌(𝜔),              ∀∈ Ω𝑁                                                       (26) 24 

where, 25 

q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω−{𝜔}

+ 𝜌(𝜔) ≥ 0,                                ∀𝜔 ∈ Ω𝑁                                               (27) 26 

𝜌(𝜔) ≥ 0.                       ∀𝜔 ∈ Ω𝑁                                                                                                                             (28)                                                                                                              27 

 28 
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Below, we verify two possible cases of the proposition.  1 

Case 1 is where q(𝐗, ω) − ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} ≥ 0, then it is clear that ρ(ω) = 0, when minimizing 2 

expression (26). In this case, Υ(𝐗, 𝜔) = q(𝐗, ω) − ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} = Φ(𝐗, 𝜔).  3 

Case 2 is where q(𝐗, ω) − ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} < 0. Considering the minimisation of Υ(𝐗, 𝜔), we 4 

then have ρ(ω) = ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} − q(𝐗, ω)  which results in Υ(𝐗, 𝜔) =5 

∑ π(ω′)q(𝐗, ω′) − q(𝐗, ω)ω′∈Ω−{ω} = Φ(𝐗, 𝜔). For more information regarding this linearisation method, 6 

refer to Yu and Li (2000).  7 

The stochastic programming model is very likely to return infeasible solutions due to high variability of 8 

scenario realisations (Birge and Louveaux 2011). However, there is no constraint violation in our proposed 9 

model as it possesses complete recourse. More specifically, the incorporation of decisions regarding to 10 

backordered and rejected demand in constraints (7) and (8) prevents the model from being infeasible. The 11 

problem formulation considering solution robustness is addressed by the following equations: 12 

min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

13 

+ 1
𝑁⁄ ∑ ( ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚

𝑘 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇𝜔∈Ω𝑁

14 

+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

15 

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁𝑡∈𝑇

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔)) + 𝜈 ∑ ∑ (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))

𝓆∈𝕁𝑡∈𝑇

+ 𝜆Υ(𝜔))},                  (29) 16 

subject to constraints (2) – (5), (7) – (23), and (26) – (28), where 𝜆 is the cost of solution robustness. More 17 

precisely, 𝜆  refers to the weighting scale to measure the trade-off between the cost and dispersion 18 

minimization of second-stage objective values over all scenarios. 19 

3.2. The SAA algorithm 20 

In the previous subsection, we have obtained the robust counterpart problem formulation for the SAA 21 

model. Hereafter we refer to this model as the “robust SAA problem”. In this section, a validation analysis 22 

is presented that estimates the optimality gap between the objective value associated with the robust SAA 23 

problem, and the expected value of the ‘true’ problem (1) – (23). 24 
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Let 𝒵𝑁
∗ (𝐗𝑁

∗ , 𝐂𝑁
∗ ) be the optimal objective value of the robust SAA model with scenario sample size N, where 1 

𝐗𝑁
∗  and 𝐂𝑁

∗  denote the optimal solution vector of the first-stage and the second-stage model, respectively. 2 

When the sample size N increases towards infinity, it leads 𝒵𝑁
∗ (𝐗𝑁

∗ , 𝐂𝑁
∗ ) to converge to the optimal value 3 

for the ‘true’ solution. However, obtaining the optimal value of the true problem, 𝒵∗(𝐗∗, 𝐂∗), involves 4 

solving the problem for an enormously large number of scenarios. Therefore, we provide statistical 5 

confidence intervals that estimate lower and upper bounds on the quality of the approximate solutions based 6 

on the work of Shapiro, Dentcheva, and Ruszczynski (2009). We estimate the statistical lower bound and 7 

the statistical upper bound for the true optimal objective by averaging and sampling procedures, 8 

respectively. We finally calculate the optimality gap of the objective values. Below we represent these 9 

procedures. 10 

3.2.1. Averaging procedure 11 

In this procedure, a valid lower bound for the optimal value 𝒵∗(𝐗∗, 𝐂∗) for the ‘true’ problem is estimated. 12 

In order to do that, R independent samples with the size of 𝑁 scenarios are generated. Let 𝒵𝑁
𝑟 (𝐗𝑁

𝑟  , 𝐂𝑁
𝑟 ) be 13 

the optimal objective value of sample 𝑟 = 1, … , 𝑅, of the robust SAA model with 𝑁 scenarios, and (𝐗𝑁
𝑟 , 𝐂𝑁

𝑟 ) 14 

be the corresponding solution vectors. We compute the average of the 𝑅 replications of the robust SAA 15 

model as follows: 16 

�̅�𝑁
𝑅(𝐗𝑁

𝑅  , 𝐂𝑁
𝑅 ) =

1

𝑅
∑ 𝒵𝑁

𝑟 (𝐗𝑁
𝑟  , 𝐂𝑁

𝑟 )𝑅
𝑟=1                                                                                                                 (30)                                        17 

which is an unbiased estimator of the lower bound for the expectation of optimal value 𝒵∗(𝐗∗, 𝐂∗). Since 18 

the generated samples are independent and have identical distribution, the standard deviation of this 19 

estimator can be computed as follows: 20 

�̂�𝑁
𝑅 =  √

1

(𝑅−1)𝑅
∑ (𝒵𝑁

𝑟 (𝐗𝑁
𝑟  , 𝐂𝑁

𝑟 ) − �̅�𝑁
𝑅(𝐗𝑁

𝑅  , 𝐂𝑁
𝑅 ))

2𝑅
𝑟=1                                                                                  (31)             21 

We can apply an approximate 100(1-α) % confidence lower bound for the expectation of optimal 22 

𝒵∗(𝐗∗, 𝐂∗) using the average and standard deviation of 𝑅 SAA programs as follows: 23 

ℒ𝑁,1−𝛼
𝑅 =  �̅�𝑁

𝑅(𝐗𝑁
𝑅  , 𝐂𝑁

𝑅 ) − 𝐭𝛼,𝑅−1�̂�𝑁
𝑅                                                                                                                  (32)  24 

Here 𝐭𝛼,𝑅−1 is the 𝛼-critical value of the t-distribution with 𝑅 − 1 degrees of freedom. 25 

3.2.2. Sampling Procedure  26 

The valid estimate of an upper bound on the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) can be computed by 27 

sampling. This can be obtained by solving the second-stage of the robust SAA model for a large enough 28 
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sample of 𝑁′ scenarios (𝜔 ∈ Ω𝑁′
⊂ Ω) generated independently, where 𝑁′ ≫ 𝑁. Let �̅�𝑁 denote the first-1 

stage solution of the initial robust SAA model with sample size 𝑁. In this case, we use the best computed 2 

�̅�𝑁 among R replications as an input. We denote by �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) the optimal objective value of the robust 3 

SAA model with sample size 𝑁′. As a result, we have �̂�𝑁′(�̅�𝑁 , �̂�𝑁′)  > 𝒵∗(𝐗∗, 𝐂∗) since �̅�𝑁 is a feasible 4 

solution of the true problem. Therefore, �̂�𝑁′(�̅�𝑁 , �̂�𝑁′)  is an estimation of an upper bound of 𝒵∗(𝐗∗, 𝐂∗). 5 

It should be clear that �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) involves solving 𝑁′ second-stage models which produces an optimal 6 

objective value per scenario denoted by �̂�𝜔(�̅�𝑁 , �̂�𝜔), where �̂�𝜔 is the solution of the robust SAA second-7 

stage model of scenario 𝜔 ∈ Ω𝑁′
⊂ Ω.  Obtaining �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) involves solving the second-stage model 8 

per scenario at a time, 𝜔 ∈ Ω𝑁′
⊂ Ω. This is much easier to solve these problems for one scenario at a time. 9 

Additionally, since an independent and identical distribution is used to generate the sample 𝑁′, we can 10 

estimate the variance of this upper bound as given in (33): 11 

𝜎𝑁′
2 (�̅�) =

1

(𝑁′−1)𝑁′
∑ (�̂�𝜔(�̅�𝑁  , �̂�𝜔) − �̂�𝑁′(�̅�𝑁, �̂�𝑁′))2𝑁′

𝜔=1                                                                              (33)     12 

Using the above mean and variance, an approximate 100 (1-α) % confidence upper bound for the 13 

expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) is given as: 14 

𝒰𝑁′,1−𝛼 = �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) + 𝐳𝛼 𝜎𝑁′(�̅�)                                                                                                              (34) 15 

where 𝐳𝛼  is the standard normal critical value with a 100(1-α)% confidence level. Consequently, an 16 

approximate 100(1-α)% confidence interval for the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗)  is obtained by 17 

(ℒ𝑁,1−𝛼
𝑅  , 𝒰𝑁′,1−𝛼). Then, the statistical optimality gap and the statistical optimality gap percentage can be 18 

calculated by (35) and (36), respectively: 19 

 𝑔𝑎𝑝𝑁,𝑅,𝑁′ = 𝒰𝑁′,1−𝛼 − ℒ𝑁,1−𝛼
𝑅                                                                                                                              (35) 20 

𝑔𝑎𝑝𝑁,𝑅,𝑁′% =
𝑔𝑎𝑝𝑁,𝑅,𝑁′

𝒰𝑁′,1−𝛼
× 100%                                                                                                                         (36) 21 

The SAA algorithm corresponding to the objective function (29) subject to constraints (2) – (5), (7) – (23), 22 

and (26) – (28) is summarized in Procedure 1.23 

Inputs: 𝑁, 𝑁′, 𝑅 ∈ 𝒩, 𝛼 ∈ [0,1], where 𝒩 represents the set of Natural numbers. 

1. Pre-processing  

For sample 𝑟 = 1 … 𝑅 

Run the Monte-Carlo sampling method to generate random numbers for demand of raw 

materials’ containers with the given distribution function. 
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2. Averaging procedure (𝑁, 𝑅, 𝛼) 

a. For sample 𝑟 = 1 … 𝑅 

Solve the robust SAA model (29) s.t. (2) – (5), (7) – (23), and (26) – (28), and obtain the 

objective value 𝒵𝑁
𝑟 (𝐗𝑁

𝑟  , 𝐂𝑁
𝑟 ) and solution (𝐗𝑁

𝑟 ,𝐂𝑁
𝑟 ). 

b. Calculate the average and variance of the objective functions of 𝑅 robust SAA models using 

(30) and (31), respectively. 

c. Compute an approximate 100(1-α) % confidence lower bound using (32). 

d. Calculate 𝒵𝑁
𝑅 = min

𝑟
{𝒵𝑁

𝑟 (𝐗𝑁
𝑟  , 𝐂𝑁

𝑟 )} and �̅�𝑁 = argmin{𝒵𝑁
𝑅}, which the latter corresponds to the 

best first-stage design solution found among 𝑅 samples of the robust SAA model with size 𝑁. 

3. Sampling procedure (�̅�𝑁, 𝑁′, 𝛼) 

a. For scenario 𝜔 = 1 to 𝑁′ 

Solve the robust SAA model (29) s.t. (2) – (5), (7) – (23), and (26) – (28) for 𝜔 with the 

obtained first-stage design solution �̅�𝑁 and get the optimal objective value �̂�𝜔(�̅�𝑁, �̂�𝜔). 

b. Compute the average of optimal objective values as �̂�𝑁′(�̅�𝑁, �̂�𝑁′) and its variance using (33). 

c. Compute an approximate 100(1-α) % confidence upper bound using (34). 

4. Optimality gap 

Calculate the statistical optimality gap percentage using (36). If this gap is acceptable, stop. 

Otherwise, increase 𝑁 and/or 𝑅 and return to step 1. 

Output: An approximate 100(1-α) % confidence interval for the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) 

and the associated robust solution (𝐗∗, 𝐂∗). 

Procedure 1. The SAA algorithm corresponding to the robust model. 

 

3.3. Benders Decomposition Algorithm 1 

In this section, we improve the abovementioned SAA algorithm by employing the Benders decomposition 2 

(BD) method as well as several acceleration schemes. Step 2.a. of the outlined SAA algorithm in procedure 3 

1 requests to solve the robust SAA model repetitively. Although this model contains much fewer scenarios 4 

than the true problem (1)–(23), this two-stage stochastic model is an NP-hard problem which has the same 5 

NP-hardness property as a classical capacitated facility location problem (see Balinski, 1970; Gen and 6 

Cheng, 2000). Therefore, we propose a solution approach inspired by a method introduced by Van Slyke 7 

and Wets (1969), which is the stochastic version of classical Benders decomposition applied to two-stage 8 

stochastic programming problems. The effectiveness of the method for solving various large optimisation 9 

problems including SAA two-stage stochastic programming has been demonstrated in the previous studies, 10 
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e.g., Santoso et al (2005). In the following, we describe the Benders decomposition method applying to 1 

enhance the SAA algorithm corresponding to the robust model. 2 

In order to implement the Benders decomposition method, we need to separate the robust SAA problem 3 

into a master problem (MP) that involves first-stage decision variables, and Benders sub problems (BSP) 4 

to optimize the second stage decision variables. The BSP of the proposed model can be formulated by fixing 5 

the first-stage variables to the given values at iteration 𝑖𝑡. The objective function of the BSP is: 6 

 min {1
𝑁⁄ ∑ (∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚

𝑘 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔)𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜 + ∑ ∑ ℎ𝓃𝐼𝓃𝑡

ℯ (𝜔)𝓃∈ℕ𝑡∈𝑇 +𝜔∈Ω𝑁7 

∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇 + ∑ ∑ (𝑣𝓃

+𝐻𝓃𝑡
ℯ+(𝜔) + 𝑣𝓃

−𝐻𝓃𝑡
ℯ−(𝜔))𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇 +8 

∑ ∑ 𝑏𝓆𝓆∈𝕁𝑡∈𝑇 (𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔)) + 𝜈 ∑ ∑ (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))𝓆∈𝕁𝑡∈𝑇 + 𝜆Υ(𝜔))}                            (37) 9 

The objective function (37) is constructed from objective function (29) by excluding the binary terms, i.e. 10 

∑ 𝑓𝓅𝑋𝓅𝓅∈𝕀 + ∑ 𝑑𝓅𝓆𝑌𝓅𝓆(𝓅,𝓆)∈𝒜 . The constraints for the BSP are equations (7) – (23), and (26) – (28) in 11 

which the first-stage variables have been fixed to given values. The given values are updated at each 12 

iteration from solving the following MP. Before presenting the MP, it should be pointed out since our 13 

modelling approach possesses complete recourse, the BSP is feasible for the given values of first-stage 14 

variables, and an optimality cut can be deducted from an optimal solution to the dual of the sub-problem 15 

(DSP). 16 

Let 𝝌 be the vector of the DSP’s variables corresponding to constraints (7) – (23), and (26) – (28).   �̂� 17 

denotes an element in 𝝌 , and also the extreme points of the dual polyhedron obtained from solving the dual 18 

sub-problem (DSP). The superscripts associated with �̂�  indicate the corresponding constraint. For example, 19 

�̂�𝓆𝑡
20(𝜔) denotes the dual variable relating to constraint 20 for ∈ 𝕀, 𝑡 ∈  𝑇. The MP, which produces a lower 20 

bound (𝐿𝐵) for the objective function of original robust SAA model at each iteration 𝑖𝑡, can be formulated 21 

based on the defined DSP variables as follows: 22 

MP: min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ 𝛾} 

s.t. (2) – (5), 

(38) 
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𝛾 ≥  ∑ 1
𝑁⁄ (∑ [∑ ∑ ∑ 𝐷𝓆𝑡

ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚
7 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

+ ∑ ∑ ∑ 𝑆𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

8 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇𝜔∈Ω𝑁

− ∑ 𝐶𝑎𝑝𝓆𝑋𝓆,𝑖𝑡

𝓆∈𝕀 

�̂�𝓆𝑡
20(𝜔) − ∑ 𝐶𝑎𝑝𝓆

𝓆∈ ∀𝓃∈ℕ∖𝕀 

�̂�𝓆𝑡
21(𝜔)

− ∑ ∑ ∑ ℳ. 𝑌𝓅𝓆,𝑖𝑡  �̂�𝑘𝓅𝓆𝑡𝑚
22 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

]) 

(39) 

𝛾 ≥ 0 (40) 

Constraint (39) determines the optimality cut. At each iteration of BD, we first solve the MP to obtain the 1 

values of first-stage decisions. Then, these values are used to solve DSP to obtain an extreme point and a 2 

new optimality cut (39) is included in the MP. This procedure is conducted iteratively until the stopping 3 

criterion is met. The stopping criterion is established as a small percentage gap between the best upper and 4 

lower bounds. Although the described Benders decomposition method is a finite scheme, this algorithm 5 

may require a large number of iterations to converge for large optimization models (Santoso et al. 2005). 6 

In order to improve the slow convergence of outlined Benders decomposition method, we use a number of 7 

accelerating method in the follwing subsections. 8 

 

 

3.3.1. Multi-cut framework 9 

The number of iterations within Benders decomposition algorithm can be reduced significantly using the 10 

multi-cut framework since more dual information is provided for the MP as shown by (Birge and Louveaux 11 

1988). In the abovementioned BD method, only one cut is added at each iteration, which approximates the 12 

sample average of the second-stage objective value function at the current solution. Instead, we add 𝑁 cuts 13 

to the MP by decomposing the BSP into several independent BSPs in each iteration. These cuts approximate 14 

the independent second-stage objective functions corresponding to each of individual 𝑁 scnearios. Thus, 15 

we determine the cuts for each scenario and define the new MP as follows: 16 

min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ ∑ 𝛾(𝜔)

𝜔∈Ω𝑁

} 

s.t. (2) – (5), 

(41) 
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 𝛾(𝜔) ≥  ∑ [∑ ∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

7 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

+ ∑ ∑ ∑ 𝑆𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

8 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇

− ∑ 𝐶𝑎𝑝𝓆𝑋𝓆,𝑖𝑡

𝓆∈𝕀 

�̂�𝓆𝑡
20(𝜔) − ∑ 𝐶𝑎𝑝𝓆

𝓆∈ ∀𝓃∈ℕ∖𝕀 

�̂�𝓆𝑡
21(𝜔)

− ∑ ∑ ∑ ℳ. 𝑌𝓅𝓆,𝑖𝑡  �̂�𝑘𝓅𝓆𝑡𝑚
22 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

] 

(42) 

 𝛾(𝜔) ≥ 0,     𝜔 ∈ Ω𝑁 (43) 

 1 

Applying this multi-cut framework can provide a better approximation of the sample average of the second-2 

stage objective value functions due to the disaggregation of the optimulity cut. This accelerated method 3 

results in fewer number of BD iterations at the expense of a larger MP. 4 

3.3.2. Knapsack Inequalities 5 

Santoso et al (2005) showed that including knapsack inequalities together with optimality cut leads to an 6 

improved solution from the MP. They indicated that state-of-the-art solvers such as CPLEX can derive a 7 

variety of valid inequalities from the knapsack inequality, which accelerates the convergence of the Benders 8 

decomposition method. Let 𝑈𝐵∗  be the current best known upper bound. Since 𝑈𝐵∗ > ∑ 𝑓𝓅𝑋𝓅𝓅∈𝕀 +9 

∑ 𝑑𝓅𝓆𝑌𝓅𝓆(𝓅,𝓆)∈𝒜 + ∑ 𝛾𝜔𝜔∈Ω𝑁 , we can add the following valid knapsack inequality to the master problem 10 

in iteration 𝑖𝑡 + 1: 11 

∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

− ∑ 𝐶𝑎𝑝𝓆𝑋𝓆,𝑖𝑡

𝓆∈𝕀 

�̂�𝓆𝑡
20(𝜔) − ∑ ∑ ∑ ℳ. 𝑌𝓅𝓆,𝑖𝑡  �̂�𝑘𝓅𝓆𝑡𝑚

22 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

 

≤ 𝑈𝐵∗ − ∑ ∑ ∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

7 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇

− ∑ ∑ ∑ ∑ 𝑆𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

8 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇

+ ∑ ∑ 𝐶𝑎𝑝𝓆

𝓆∈ ∀𝓃∈ℕ∖𝕀 

�̂�𝓆𝑡
21(𝜔)

𝑡∈𝑇

 

(44) 

 12 

3.3.3. Pareto-optimal cuts generation scheme 13 

In this section, we use an acceleration procedure proposed by Magnanti and Wong (1981) to streghnthen 14 

the optimality cuts of Benders decomposition method by generating Pareto-optimal cuts. An optimality cut 15 

is called pareto-optimal if there is no other cut to make it redundant. Likewise, the optimal dual solution 16 

corresponding to the Pareto-optiml cut is reffered to as Pareto-optimal. In BSPs with network structure as 17 
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in our study, the DSP normally has multiple optimal solutions, among which the Pareto-optimal generates 1 

the strongest cut. To generate a Pareto-optimal cut, consider our robust two-stage stochastic model as the 2 

general problem 𝑀𝑖𝑛 𝑐1
𝑇𝑪 + 𝑐2

𝑇𝐗, s.t. 𝐴𝑪 + 𝐵𝐗 ≥ 𝑏, 𝑪 ≥ 0, 𝐗 ∈ {0,1}. Fixing integer variables 𝐗 = �̃�, we 3 

can write the general form of SP as 𝑀𝑖𝑛 𝑐1
𝑇𝑪,  s.t. 𝐴𝑪 ≥ 𝑏 − 𝐵 �̃� , 𝑪 ≥ 0  and then its DSP is 4 

𝑀𝑎𝑥 (𝑏 − 𝐵 �̃�)
𝑇

𝝌, s.t. 𝐴𝑇𝝌 ≤ 𝑐1
𝑇, 𝝌 ≥ 0. Let 𝐗𝑐 be a core point of the solution space of MP, and 𝝌∗ be 5 

the optimal solution of the DSP. A Pareto-optimal cut can be obtained by solving the following problem, 6 

which is reffered to as Magnati-Wong problem:  7 

𝑀𝑎𝑥 (𝑏 − 𝐵 𝐗𝑐  )𝑇𝝌, s.t. 𝐴𝑇𝝌 ≤ 𝑐1
𝑇, (𝑏 − 𝐵 �̃�)

𝑇
𝝌 ≤ (𝑏 − 𝐵 �̃�)

𝑇
𝝌∗, 𝝌 ≥ 0 (45) 

At each iteration, the challeng is to identify and update a core point which should be lie inside the relative 8 

interior of the convex hull of the sub-region defined by the MP variables. To combat this problem, 9 

Papadakos (2008) proved that instead of a core point 𝐗𝑐, one can use a convex combination of the current 10 

MP solution and the previously used core point to obtain a new core point at each iteration as 𝐗𝑖𝑡
𝑐 ←11 

𝜑𝐗𝑖𝑡−1
𝑐 + (1 − 𝜑)𝐗𝑖𝑡

𝑀𝑃 , 0 < 𝜑 < 1. It should be noted that for the first iteration, 𝐗0
𝑐  is set to the solution of 12 

MP. 13 

 

 

 

In the following we summarize the proposed accelerated Benders decomposition algorithm. In the first step, 14 

we generate initial feasible solutions for DSP and MP. In step 2, the MP with multi-cut framework and 15 

knapsack inequalities is generated and then solved to obtain a lower bound and the first-stage solutions. In 16 

the next step, we solve the DSP, generate the Pareto-optimal cut from the corresponding Magnati-Wong 17 

problem’s solutions, and update the upper bound. Finally, we add the Pareto-optimal cut to the MP and 18 

update the core point. The pseudo-code of the proposed accelerated Benders decomposition algorithm is 19 

illustrated in Procedure 2. 20 

Inputs: 𝑈𝐵0 = +∞,  𝐿𝐵0 = −∞, �̃�0, 𝜑, 𝜖 

1. Initialisation 

a. Solve the DSP corresponding to arbitrary feasible solutions of �̃�0 to obtain an initial dual 

feasible solution �̃�0   

b. Solve MP and set the core point equal to its solution 
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c. 𝑖𝑡 = 0 

While (𝑈𝐵𝑖𝑡 − 𝐿𝐵𝑖𝑡) > 𝜖 

2. Master problem (�̃�𝑖𝑡) 

Solve MP with multi-cut and knapsack inequalities, i.e. (41)– (44), using �̃�𝑖𝑡  

a. Update  𝐿𝐵𝑖𝑡 

b. Update �̃�𝑖𝑡 

3. Dual sub-problem (�̃�𝑖𝑡 , 𝜔 ∈ Ω𝑁) 

For each scenario 𝜔 ∈ Ω𝑁 solve DSPs using �̃�𝑖𝑡 

If solved to optimality 

a. Generate a Pareto-optimal cut 

b. Update �̃�𝑖𝑡 

c. Update 𝑈𝐵𝑖𝑡 

End if 

4. Update 

Add generated cuts to the MP 

a. 𝑖𝑡 = 𝑖𝑡 + 1 

b. Update the core point (𝐗𝑖𝑡
𝑐 ← 𝜑𝐗𝑖𝑡−1

𝑐 + (1 − 𝜑)𝐗𝑖𝑡
𝑀𝑃, 0 < 𝜑 < 1) 

End while 

Output: Return �̃�𝑖𝑡 as the optimal solution, and 𝑈𝐵𝑖𝑡 as the optimal objective value. 

Procedure 2. The accelerated Benders decomposition algorithm 

 1 

4. Key performance indicators 2 

In the robust SAA model presented above, we used a cost-based objective function for designing dry port 3 

container networks. In this section we define three further key performance indicators (KPIs): service level, 4 

fill rate, and inventory turnover, to provide further insights into the performance of network designs. The 5 

three KPIs are supplements to the cost-based objective function and can be calculated based on the optimal 6 

solution of the robust SAA model. 7 

Let denote �̂�𝓆𝑡
ℓ (𝜔) and �̂�𝓆𝑡

ℓ (𝜔) as the solution value of variables 𝑈𝓆𝑡
ℓ (𝜔) and 𝐵𝓆𝑡

ℓ (𝜔), respectively. We also 8 

denote service level, which corresponds to the demand of raw materials and the supply of finished goods 9 

for each scenario by 𝜂𝑟(𝜔) and 𝜂𝑠(𝜔), respectively. Let 𝜉𝑟(𝜔) and 𝜉𝑟(𝜔) be the fill rate corresponding to 10 

the demand of raw materials and the supply of finished goods for each scenario, respectively. The service 11 

level is defined as the fraction of customer demand that is met through available stock. We calculate the 12 

service level for the demand of raw materials (in TEUs) for each scenario over all periods and all customers 13 
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(manufacturers) as 𝜂𝑟(𝜔) = 1 −
∑ ∑ �̂�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

× 100%. We then estimate the expected value of 𝜂𝑟(𝜔) 1 

over all scenarios by: 2 

 �̅�𝑟 =
1

|Ω𝑁|
∑ 𝜂𝑟(𝜔)𝜔∈Ω𝑁                                                                           (46) 3 

Likewise, we calculate the service level corresponding to the supply of finished goods for each scenario 4 

over all periods and all customers (manufacturers) by 𝜂𝑠(𝜔) = 1 −
∑ ∑ �̂�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

× 100% , and its 5 

expected value over all scenarios by: 6 

�̅�𝑠 =
1

|Ω𝑁|
∑ 𝜂𝑠(𝜔)𝜔∈Ω𝑁                                                                           (47) 7 

The fill rate is defined as the percentage of demand orders which are satisfied on time and in full. We 8 

calculate the fill rate corresponding to the demand orders of raw materials for each scenario over all periods 9 

and all customers (manufacturers) by: 10 

 𝜉𝑟(𝜔) =
∑ ∑ �̃�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

|𝕁||𝑇|
× 100%                                                        (48)  11 

where �̃�𝓆𝑡
ℓ (𝜔) = 1 if �̂�𝓆𝑡

ℓ (𝓈) = 0 and zero, otherwise. We then compute the expected value of 𝜉𝑟(𝜔) over 12 

all scenarios by 𝜉�̅� =
1

|Ω𝑁|
∑ 𝜉𝑟(𝜔)𝜔∈Ω𝑁 . Likewise, we calculate the fill rate corresponding to the supply 13 

orders of finished goods by 𝜉𝑠(𝜔) =
∑ ∑ �̃�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

|𝕁||𝑇|
× 100%, where �̃�𝓆𝑡

ℓ (𝜔) = 1 if �̂�𝓆𝑡
ℓ (𝜔) = 0 and zero, 14 

otherwise, and its expected value by: 15 

𝜉�̅� =
1

|Ω𝑁|
∑ 𝜉𝑠(𝜔)𝜔∈Ω𝑁                                                                         (49) 16 

 17 

The inventory turnover of empty containers reflects the number of times that empty containers were 18 

replenished at all dry ports over the planning horizon. We denote the total throughput of empty containers 19 

from all dry ports for each scenario 𝜔 ∈ Ω𝑁  by 𝜓(𝜔) = ∑ ∑ ∑ (∑ �̂�𝓅𝓆𝑡𝑚
ℯ (𝜔)𝓆∈𝕆 +𝑚∈𝑀𝑡∈𝑇𝓅∈𝕀20 

∑ �̂�𝓅𝓆𝑡𝑚
ℯ (𝜔)𝓆∈𝕁 ), where �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) represents the solution of the flow of empty containers from dry port 21 

𝓅 ∈ 𝕀 to the seaport 𝓆 ∈ 𝕆 and manufacturer 𝓆 ∈ 𝕁.  We also denote the average inventory level of empty 22 

containers in each period by 𝜄(𝜔) =
1

|𝑇|
(∑ ∑ 𝐼𝓅𝑡

ℯ (𝜔) 𝑡∈𝑇𝓅∈𝕀 ) , where 𝐼𝓅𝑡
ℯ (𝜔)  represents the solution 23 

corresponding to the decision variable 𝐼𝓅𝑡
ℯ (𝜔). Therefore, we can indicate the inventory turnover of empty 24 

containers for each scenario by 𝜀(𝜔) =
𝜓(𝜔)

𝜄(𝜔)
 and its expected value by: 25 

𝜀̅ =
1

|Ω𝑁|
∑ 𝜀(𝜔)𝜔∈Ω𝑁                                                                          (50) 26 

5. Computational Study 27 
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In this section, we describe a hypothetical case of designing a hinterland container shipping network and 1 

present the results obtained by the proposed solution procedure. We also discuss performance indicators 2 

and a sensitivity analysis to provide further managerial insights of interest to shipping line companies. 3 

Finally, the performance experiments of proposed accelerated Benders decomposition algorithm are 4 

provided. 5 

5.1. Context for study 6 

The hypothetical case study is based in North Carolina State which includes a seaport at Wilmington and 7 

fifty manufacturers. A set of eight predesignated locations are selected as the candidate points for 8 

establishing dry ports in the state. These points are chosen from sites in cities with more than 70,000 9 

inhabitants. A one-year planning horizon (𝑇 = 12) is considered as the temporal scope of this study. Below 10 

we present the input data used in this study. 11 

An average fixed cost of $120 per TEU is considered for opening a dry port at each candidate location 12 

(Ambrosino and Sciomachen 2014). The available storage capacity at dry port candidate location 𝓅 ∈ 𝕀 is 13 

randomly generated within [2.0, 5.0]×104  TEUs. A storage capacity of 2000 TEUs is taken for each 14 

manufacturer and 10,000 TEUs for the seaport. According to Ballou (2004), the unit cost for transporting 15 

container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 follows a flat rate for each transportation mode, which is calculated as 16 

𝑐𝓅𝓆𝑚
𝑘 = 𝔱𝓅𝓆𝑚𝛽𝑚, where 𝔱𝓅𝓆𝑚 denotes the transportation time on arc (𝓅, 𝓆) ∈ 𝒜 using transportation mode 17 

𝑚, and 𝛽𝑚 denotes the transportation cost parameter of transportation mode 𝑚. The transportation time for 18 

mode 𝑚 on arc (𝓅, 𝓆) ∈ 𝒜 is estimated by 𝔱𝓅𝓆𝑚 =
∆𝓅𝓆

𝑉𝑚
, where ∆𝓅𝓆 denotes the travel distance from node 19 

𝓅 to node 𝓆, and 𝑉𝑚  represents the average speed of transportation mode 𝑚. The set of transportation 20 

modes include road and rail,  𝑀 = {1,2}. We set 𝛽𝑚 = $3.88 and 𝑉𝑚 = 60 mph for the road mode (𝑚 =21 

1) and 𝛽𝑚 = $0.05 and 𝑉𝑚 = 24 mph for the rail mode (𝑚 = 2) according to FAF3 dataset used in Ballou 22 

(2004). The unit cost of holding an empty container at the seaport, a dry port, and a manufacturer are set to 23 

$2, $4, and $8, respectively.  24 

The lognormal distribution is good for modelling economic variables such as demand (Kamath and Pakkala 25 

2002). Therefore, incoming demand follows 𝐷𝓆𝑡
ℓ (𝜔) ~ Lognormal (𝜇𝐷𝓆𝑡

ℓ , 𝜎𝐷𝓆𝑡
ℓ ), where 𝜇𝐷𝓆𝑡

ℓ  and 𝜎𝐷𝓆𝑡
ℓ  refer 26 

to the mean and standard deviation of lognormal probability distribution function, respectively. The supply 27 

of outgoing goods 𝑆𝓆𝑡
ℓ (𝜔) could be calculated accordingly since a linear proportional relationship between 28 

incoming and outgoing goods is considered. With regards to the lognormal distribution, the random value 29 

of incoming goods demand for a given customer 𝓆 ∈ 𝕁 over period 𝑡 ∈ 𝑇 are given as 𝜇𝐷𝓆𝑡
ℓ ∈ [6000,7000], 30 
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where the mean-variance ratio is set to 𝜇𝐷𝓆𝑡
ℓ 𝜎𝐷𝓆𝑡

ℓ⁄ = 10. Following the work of Ambrosino and Sciomachen 1 

(2014), we take into account different cost structures, with two levels of fixed cost for opening a dry port 2 

and two levels of empty container holding costs, as shown in Table 3. 3 

Table 3. Cost structure. 

Cost structures fixed cost for opening a dry port ($) cost of holding an empty container ($)* 

(a) [1.8,4.5]×106 [2, 4, 8]×10-1 

(b) [1.8,4.5]×106 [2, 4, 8]×10 

(c) [3.0;7.5]×106 [2, 4, 8]×10-1 

(d) [3.0;7.5]×106 [2, 4, 8]×10 

*  [ℎℴ , ℎ𝒾 , ℎ𝒿],   ∀ℴ ∈ 𝕆, 𝒾 ∈ 𝕀, 𝒿 ∈ 𝕁. 

As mentioned before, the quality of solutions in the SAA method is related to the sample size. We 4 

calibrated, tested and validated the SAA model. For this validation, three different samples of size 𝑁 = 20, 5 

𝑁 = 40, and 𝑁 = 50 and the four cost structures as shown in Table 3 were considered. This design gave 6 

rise to 12 instances which were used to estimate the statistical optimality gap. Table 4 shows the results 7 

obtained from the SAA model, where 𝑅 = 4 and 𝑁′ = 150 were used to calculate the statistical optimality 8 

gap percentage with a 95% confidence interval using equation (36). 9 

Table 4. Statistical optimality gap. 
 Sample size 
 𝑁 = 20 𝑁 = 40 𝑁 = 50 
Cost structure (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) 
Solution time 

(seconds) 
242.4 156.9 261.4 217.7 93.2 614.5 603.6 2621.0 973.8 799.8 1056.4 3506.3 

𝑔𝑎𝑝𝑁,𝑅,𝑁′% 1.08 1.07 1.08 1.08 1.03 1.02 1.03 1.02 1.01 1.00 1.01 1.00 

When 𝑁  scenarios were used in the proposed SAA model with a planning horizon of 12 periods; a 10 

combination of 12×𝑁 sample scenarios were included for solving each instance. The results show that the 11 

quality of the SAA model solutions increased; the percentage optimality gap decreased as the sample size 12 

𝑁 increased. This validation analysis demonstrates that with the maximum considered sample size, the SAA 13 

method generated satisfactory optimality gaps of approximately 1%. Accordingly, we used the sample size 14 

𝑁 = 50 for our numerical experiments.  15 

In order to attain comprehensive results, the problem was tested across different values of the solution 16 

robustness and rejected demand coefficients. Accordingly, a wide range of values of 𝜆 and 𝜈 were used for 17 

each problem instance which were 𝜆 = {10−3, 10−2, 10−1, 1} and𝜈 = {1000, 2000, 3000, 4000, 5000}. 18 

The combination of different values of these coefficients as well as the four cost structure levels shown in 19 

Table 3 yielded 80 problem instances. Furthermore, each problem instance included |𝕁| = 50 manufacturer 20 
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locations over a planning period of |𝑇| = 12 months, requiring the generation of 𝑁 .|𝕁|. |𝑇| = 30,000 1 

sample scenarios to represent the entire market demand.  2 

5.2. Numerical results and discussion 3 

In section 5.2.1, the solutions obtained from the 80 explained instances are analysed regarding to the 4 

network configuration, container flow decisions, and key performance indicators. In section 5.2.2, we 5 

discuss the performance of the robustness approach. Finally, 5.2.3, is dedicated to the computational 6 

efficiency of applied solution procedure employing the proposed accelerated Benders decomposition 7 

algorithm. 8 

5.2.1. Solution analysis 9 

• Network configuration   10 

We present dry ports location decisions for all the instances based on various cost structures and different 11 

values of 𝜆 shown in Figure 2. This illustrates the significant impact of operational costs on shipping 12 

network design. The horizontal axis represents the cost structures and the vertical axis shows the average 13 

number of dry ports to be opened over all instances. With low holding costs for keeping empty containers, 14 

i.e. cost structures (a) and (c), the shipping network tends to open more facilities (approximately 7 dry ports) 15 

in order to achieve more robust solutions. This outcome indicates that under these cost structures it is more 16 

cost-effective to decentralise the storage of empty containers by opening more dry ports across the region 17 

to cope with the existing uncertainty. On the other hand, centralisation of empty containers storage is 18 

recommended under cost structures (b) and (d) which aims to obtain more robust solutions with minimal 19 

cost.  20 

 21 
Figure 2. Location decisions on the number of opened dry ports. 22 

To have a better view of the network configuration, we choose one of the instances described above and 23 

plot the corresponding solutions. Figure 3 shows the location of dry ports and their allocation to 24 
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manufacturers. The location of the seaport, dry ports, and manufacturers are shown as orange, red, and blue 1 

icons, respectively. For this instance, our proposed model proposes two dry ports which are located fairly 2 

close to the seaport with a sufficient distance from/to all manufacturers. The distant manufacturers, located 3 

far away from the seaport, are mainly multiple-sourced by dry ports. The detailed network configuration 4 

results related to the location-allocation are provided in Tables A1-A4 of Appendix A. 5 

 6 

Figure 3. Geographical presentation of the network in North Carolina. 7 

 

Containers flow decisions  8 

Figure 4 summarises the flow of empty and laden containers in the network and the mode of transport 9 

applied. Figure 4(a) shows that the laden containers were mostly transported directly between the seaport 10 

and manufacturers, whilst the empty containers were mainly transported between these nodes through dry 11 

ports. Moreover, the results suggest that the backward flow of laden containers from manufacturers to the 12 

seaport contributed to a higher percentage of direct flow than the forward flow from the seaport to 13 

manufacturers. Figure 4(a) also shows that the usage of dry ports is more practical for empty container 14 

repositioning especially in the backward flow, i.e. from manufacturers to the seaport. This confirms the 15 

importance of deploying dry ports in the container shipping networks for the repositioning of empty 16 

containers. Figure 4(b) shows that a higher percentage of laden containers were transported by rail, whilst 17 

road was the main transportation mode for the flow of empty containers. Each transportation mode was 18 

used almost equally in the forward and backward laden containers flow. The results were similar for empty 19 

containers. The percentage flow using rail for laden containers was higher for empty containers, since the 20 

transportation costs were reduced by taking the advantage of the economies of scale for direct flows which 21 

involved longer distances than the indirect flows through dry ports.  22 
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Overall, rail was used more for the direct movement of laden containers, whilst road was employed more 1 

for the indirect flow of empty containers. The detailed results obtained for the flow of empty and laden 2 

containers using considered transportation modes for different cost structures are presented in Tables B1-3 

B4 of Appendix B. 4 

  
(a) Containers flow.  (b) Transportation modality. 

Figure 4. Transportation in the container shipping network. 

Key performance Indicators 5 

We summarise the results obtained from computing the KPIs in Figure 5, in order to underline the impact 6 

of different cost structures and solution robustness coefficient. In the first glance, one can observe in Figures 7 

5(a) and 5(b) that both �̅�𝑟 and �̅�𝑠, obtained from (46) and (47) respectively, were improved significantly as 8 

the solution robustness coefficient increased. Overall, the results show that increasing robustness led to 9 

higher service levels for the supply of finished goods compared to the one for the demand of raw materials. 10 

One also may argue that both 𝜉�̅� and 𝜉�̅�, obtained from (48) and (49) respectively, had almost equal growth 11 

with respect to increase in the value of 𝜆, as shown in Figures 5(c) and 5(d). This similarity in the value of 12 

fill rate is due to the linear proportional relationship between the demand and supply of containers at the 13 

manufacturers’ locations. In general, this result confirms the importance of the incorporation of robustness 14 

considerations into container shipping network design in order to achieve the maximal desired service level 15 

and fill rate.    16 

Moreover, Figures 5(a) and 5(b) show that when the fixed opening cost is relatively low, by increasing the 17 

holding cost of empty containers, both service levels �̅�𝑟 and �̅�𝑠 may decrease. This is because satisfying the 18 

demand and supply of laden containers is closely interrelated to the inventory level of empty containers 19 

across the shipping network. Figures 5(c) and 5(d) demonstrate a similar behaviour with regards to the cost 20 

structure.  21 



34 
 

  

(a) Service level for the demand of raw materials. (b) Service level for the supply of finished goods. 

  

(c) Fill rate for the demand of raw materials. (d) Fill rate for the supply of finished goods. 

Figure 5. Service level and fill rate in considered shipping network. 

 1 

We summarise the values of 𝜀 ̅obtained from (50) with regards to different cost structures and solution 2 

robustness coefficients in Figure 6.  3 

 4 

Figure 6. Average inventory turnover of empty containers. 5 

Overall, it can be seen that the expected value of inventory turnover 𝜀 ̅increased as the inventory holding 6 

cost of empty containers increased. This is due to the fact that when the inventory holding cost was high, a 7 
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lower inventory level of empty containers was preferred at dry ports, increasing the number of 1 

replenishments. Moreover, Figure 6 shows that lower inventory turnover occured when seeking to achieve 2 

higher solution robustness, which implies that higher inventory levels were needed in order to avoid the 3 

effect of uncertainty which lowers the inventory turnover indicator. It is worthwhile to mention that the 4 

inventory turnover for instances with high holding costs suggests a monthly replenishment policy with the 5 

case study data, since a twelve-month planning horizon was considered. For detailed outputs regarding 6 

KPIs over all instances, please refer to Tables C1-C4 in Appendix C. 7 

5.2.2. Performance of robustness 8 

The proposed modelling approach provides decision-makers with reliable and robust solutions related to 9 

target inventory levels, empty container repositioning and intermodal transportation of laden containers. In 10 

relation to robust optimisation, we measured the performance and reliability of solutions by computing the 11 

standard deviation-to-mean ratio, which is referred to as the coefficient of variation (Birge 1982). Table 5 12 

shows the minimum, mean, and maximum values over all instances. The results demonstrate that the 13 

minimum coefficient of variation (CV) for all of the operational decisions was less than 1%. However, the 14 

mean values of CV relating to the decision of empty containers inventory level at dry ports and direct flow 15 

of empty containers from seaports are 4.29% and 3.54% respectively. The former relatively high CV was 16 

due to the risk pooling effect relating to uncertain demand for empty containers at the dry ports. It implies 17 

that the uncertainty in laden container demand created high variability in decisions related to empty 18 

container repositioning, which emphasises the fact that the demand of empty and laden containers in the 19 

shipping network design were highly interrelated. The latter can be explained by the impact of network 20 

configuration on the variability of operational decisions. The repositioning of empty containers at the 21 

seaport which was coupled with importing and leasing operational decisions was another reason for this 22 

issue. 23 

Table 5. Coefficient of variation values (%). 
 𝐼𝓆𝑡

ℯ (𝜔) 𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔) 𝐹𝓅𝓆𝑡𝑚

ℯ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

Min 0.77 0.15 0.10 0.00 0.00 0.00 0.00 0.06 0.10 

Mean 4.29 0.24 0.14 0.08 0.15 1.42 3.54 0.17 0.15 

Max 5.58 0.52 0.38 0.16 0.98 2.80 19.61 0.38 0.19 

In addition, we analysed the average value of CVs over 𝜈 associated with each cost structure and different 24 

values of 𝜆. The corresponding value for the solution of variable 𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔), 𝓅 ∈ 𝕀, 𝓆 ∈ 𝕁 is illustrated in 25 

Figure 7, where the horizontal axis represents the four cost structures considered and the vertical axis shows 26 

the average of CVs as a percentage. This shows that the value of CVs had a decreasing trend with regards 27 

to the incremental weight assigned to the solution robustness for all cost structures. This reduction of CVs 28 
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was more significant when the cost of holding empty containers was relatively low, i.e. cost structures (a) 1 

and (c). 2 

 3 

Figure 7. Coefficient of variations of flow for different cost structures. 4 

We analysed the standard deviation-to-mean ratio for all decision variables for all instances (see Appendix 5 

D, Tables D1-D4). Overall, it can be concluded that the proposed robust modelling approach returned 6 

solutions with low variability.  7 

5.2.3. Computational efficiency of the SAA with accelerated Benders decomposition algorithm 8 

The computational efficienceis of the enhanced SAA procedure which is achieved by adding knapsack 9 

inequlities and utilizing Pareto-optimal custs are measured in terms of computational time. The accelerated 10 

BD algorithm is coded in CPLEX 12.8.0 and tested on a personal computer with a 3.2 gigahertz Intel Core 11 

5 processor and 16 gigabytes of RAM. 12 
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We conduct two sorts of experiment in order to assess the efficiency of proposed accelerated BD method. 1 

The first set of experiments focuses on the impact of network size on the computational efficiency. Table 2 

6 provides the characteristics of test sets for this experiment, and the effect of accleration methods on the 3 

computational times and the gap between the objective value obtained from Cplex and the one from the 4 

proposed accelerated BD. These experiments are conducted for 𝑁 = 20 sampled scenarios. The results 5 

indicate that the model for smaller networks such as tests 1 and 2 can be solved directly by Cplex with 6 

smaller computational time compared to the BD method and its accelerated version. However, as the 7 

network size grows by increasing the number of nodes, both standard BD and the proposed accelerated BD 8 

strategy outperform Cplex in terms of computational time. The computational times given in Table 6 show 9 

that the proposed BD algorithm together with multi-cut schem, knapsack inequalities, and Pareto-cut 10 

strategy outperforms Cplex and standard BD for larger networks. Furthermore, it can be seen that the 11 

objective value gap is smaller when the accelerated BD method is applied to the instances.  12 

It worths to mention that in our computational experiments, we initialise a core point approximation �̅�𝑖𝑡
𝑐  13 

with a feasible solution to our MP and then update the approximation at each iteration by 𝐗𝑖𝑡
𝑐 ← 𝜑𝐗𝑖𝑡−1

𝑐 +14 

(1 − 𝜑)𝐗𝑖𝑡
𝑀𝑃. According to emprical observations of Papadakos (2008) and Oliveira et al. (2014), 𝜑 is set 15 

to 0.5. Also, the stopping cirterion is set to when the objective value gap is below a threshold value 0.01. 16 

Table 6.  Computational results of the first experiment set. 

Test 

set 
|𝕀| |𝕁| 

Number of 

variables 

Number of 

constraints 

Cplex 
Bender 

decomposition 

Accelerated Bender 

decomposition 

Time Gap 

(%) 
Time  Gap (%) Time  

1 2 10 82742 58550 4.09 0.02 22.14 0.001 22.06 

2 3 20 202463 156020 15.20 0.11 26.28 0.023 25.09 

3 5 30 429315 359160 77.40 0.06 36.19 0.001 32.92 

4 6 40 653086 560680 198.13 0.05 47.09 0.022 44.73 

5 8 50 1025608 909490 3043.26 0.74 2929.05 0.51 2436.92 

The second experiment is designed to investigate the effect of the number of scenarios on the performance 17 

of the algorithm. Table 7 shows the characteristics of second group of test sets and compares the effect of 18 

accelerateion methods on the objective value gap, and computational times for different number of 19 

scenarios. We select a network instance with the size of |𝕀| = 5 and |𝕁| = 20 for this experiment and 20 

implement both standard and accelerated BD algorithms. Results suggest that both standard and the 21 

proposed acclerated Bender decomposition method outperform Cplex, specially for instances with higher 22 

number of scenarios. Yet, we observe that the computational time of the accelerated BD algortihm compare 23 

to the standard BD is slightly higher within instances with larger number of scenarios. The reason lies in 24 

the fact that despite employing Pareto-optimal cuts assists to reduce the number of iterationts, the 25 

computational time needed to solve the Magnati-Wong problem increases, when larger number of scenarios 26 
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are involved. Nevertheless, the accelerated BD algorithm performs better than the standard version in terms 1 

of the solutions quality as the gaps are quite low. Overall, the results confirm the advantage of using several 2 

accelerating frameworks in the proposed solution strategy, since the accelerated BD algorithm is more time-3 

efficient compare to Cplex and standard BD, and provides higher quality solutions with lower gaps as 4 

compare to standard BD method. 5 

 6 

6. Conclusions 7 

Previous research on inland container shipping network design has dealt with decision-making at different 8 

levels in an isolated manner. This paper proposes a novel integrated dry port network design model that 9 

integrates strategic decision making (dry port location, allocation and the provision of arcs between nodes 10 

in the network) with operational decision making (selection of transportation modes, empty container 11 

repositioning and inventory planning) that takes into account the stochastic nature of demand. The incoming 12 

and outgoing demand of laden containers were considered as uncertain parameters in this problem and were 13 

generated using Monte-Carlo sampling. This procedure resulted in a number of demand and supply 14 

realisations with high variability, which alongside with the hierarchical decision-making structure involved 15 

in this problem, led to us proposing a robust two-stage stochastic programming model that adopted the SAA 16 

method.  17 

The experimental results revealed that the network configuration obtained from our proposed modelling 18 

approach varied according to the cost structure and the solution robustness coefficient. More specifically, 19 

in order to achieve more robust solutions, the number of opened dry ports declined when the holding cost 20 

of empty containers grew (and vice versa). The results, also, show that the direct transportation of laden 21 

containers between the seaport and manufacturers was mostly performed by rail, whereas road was mainly 22 

employed for the movement of empty containers between the seaport and manufacturers through dry ports, 23 

confirming the pivotal significance of dry ports relevant to ECR in the container shipping networks. 24 

Furthermore, service level, fill rate, and inventory turnover were evaluated. The results imply that both 25 

service level and fill rate improve when aiming for higher solution robustness by increasing the value of λ, 26 

Table 7. Computational results of the second experiment set. 

Test 

set 

Number of 

scenarios 

Number of 

variables 

Number of 

constraints 

Cplex 
Benders 

decomposition 

Accelerated Benders 

decomposition 

Time Gap (%) Time  Gap (%) Time  

6 10 145985 121310 10.86 0.12 24.72 0.02 22.90 

7 20 291865 242500 31.63 0.13 30.01 0.01 28.38 

8 30 437745 363690 70.77 0.21 54.23 0.11 55.12 

9 40 583625 484880 233.12 0.41 88.30 0.22 96.85 

10 50 729505 606070 412.49 0.94 285.6 0.41 298.3 
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whilst these KPIs may decrease with high holding costs. It was also observed that the inventory turnover 1 

of empty containers declined with high empty container holding costs, and also with high values of λ. 2 

A validation procedure was adopted to investigate the performance of the enhanced SAA approach by 3 

approximating an optimality gap of 95%. The results from 80 instances based on a practical case study, 4 

disclosed some practical and managerial insights confirming the significance of hinterland container 5 

shipping network design and its operational decisions under uncertainty. The findings showed that the 6 

applied robust modelling approach produced solutions with low variability with the average CV of less than 7 

1% under an uncertain environment. This was confirmed by the fact that this metric decreased for all 8 

operational decisions when the value of solution robustness coefficient rose.  9 

Finally, two sets of experiment were tested and analysed to validate the effectiveness and efficiency of the 10 

proposed solution algorithm. The obtained objective value gaps, and computational times of Cplex, the 11 

standard Benders decomposition method, and the accelerated Benders decomposition algorithm were 12 

compared. The results confirmed that applying the acceleration methods to the Benders decomposition 13 

algorithm can improve the computational performance for various problems with different network sizes 14 

and different number of scenarios.  15 

Overall, we believe the proposed model and solution procedure can be applied to address practical cases 16 

efficiently to achieve more reliable hinterland container shipping networks in terms of cost and operational 17 

performance. As future research directions, incorporating the inventory policies within the modelling 18 

process would be appealing. It also would be interesting to investigate the uncertainty in other parameters 19 

such as capacities, transportation and operational costs. 20 
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Appendix A. 

The results regarding to the number of opened dry ports and allocation decisions obtained from all described 

problem instances are presented in Tables A1-A4. The allocation decisions are shown according to the 

sourcing strategies of single-sourcing and multiple-sourcing, where the former shows the percentage of 

manufacturers who allocated to only one opened dry port, while the latter denotes the percentage of 

manufacturers allocated to more than one established dry ports. Furthermore, the average of mentioned 

results over different values of ν for a given λ are provided for further transparency.  

Table A1. Network configuration decisions results of cost structure (a) 

λ ν Nb Dry Ports 
Allocation decision 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 67% 33% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 67% 33% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 68% 32% 

2000 2 70% 30% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 3 100% 0% 

2000 3 100% 0% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2.4 81% 19% 

1 

1000 5 88% 12% 

2000 8 0% 100% 

3000 8 0% 100% 

4000 8 0% 100% 

5000 8 0% 100% 

Average 7.4 18% 82% 

 

 

 

 

 

 



44 
 

 

 

 

 

 

Table A2. Network configuration decisions results of cost structure (b) 

λ ν Nb Dry Ports 
Allocation/Sourcing rule 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 68% 32% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 67% 33% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 1 100% 0% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 1.8 74% 26% 

1 

1000 1 100% 0% 

2000 1 100% 0% 

3000 1 100% 0% 

4000 1 100% 0% 

5000 1 100% 0% 

Average 1 100% 0% 
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Table A3. Network configuration decisions results of cost structure (c) 

λ ν Nb Dry Ports 
Allocation/Sourcing rule 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 68% 32% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 34% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 67% 33% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 2 88% 12% 

2000 2 88% 12% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 76% 24% 

1 

1000 2 100% 0% 

2000 8 0% 100% 

3000 8 0% 100% 

4000 8 0% 100% 

5000 8 0% 100% 

Average 6.8 20% 80% 
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Table A4. Network configuration decisions results of cost structure (d) 

λ ν Nb Dry Ports 
Allocation/Sourcing rule 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 68% 32% 

2000 2 70% 30% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 68% 32% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 1 100% 0% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 1.8 74% 26% 

1 

1000 1 100% 0% 

2000 1 100% 0% 

3000 1 100% 0% 

4000 1 100% 0% 

5000 1 100% 0% 

Average 1 100% 0% 
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Appendix B. 1 

The details of numerical results associated with the solution of the intermodal transportation of both laden 2 

and empty containers are provided in Tables B1-B4. More specifically, we present the percentage of laden 3 

containers flow (LCF) and empty containers flow (ECF) throughout the network using both available 4 

transportation modes of road and rail. Also, we categorized the flow solutions according to the dry-ports 5 

deployment, where “Direct” flows refer to the flows of containers which are transported between nodes 6 

without using dry ports, while “Indirect” flows denote the flows of containers which are moved via 7 

established dry ports. Moreover, the average of flow percentages over different values of ν for a given λ, as 8 

well as the total average of flow percentages over all different values of ν and λ, are provided for each cost 9 

structure. 10 

Table B1. Flow decisions results for cost structure (a) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.67% 84.36% 4.59% 1.38% 

2000 6.53% 58.75% 17.36% 17.36% 9.68% 84.35% 4.59% 1.38% 

3000 6.21% 55.93% 18.93% 18.93% 9.68% 84.34% 4.61% 1.38% 

4000 6.18% 55.62% 19.10% 19.10% 9.68% 84.35% 4.59% 1.38% 

5000 6.34% 57.03% 18.32% 18.32% 9.62% 84.36% 4.65% 1.38% 

Average 6.31% 56.81% 18.44% 18.44% 9.67% 84.35% 4.61% 1.38% 

0.01 

1000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

2000 6.30% 56.70% 18.50% 18.50% 9.66% 84.37% 4.59% 1.38% 

3000 6.26% 56.38% 18.68% 18.68% 9.59% 84.36% 4.67% 1.38% 

4000 6.24% 56.13% 18.82% 18.82% 9.60% 84.35% 4.67% 1.38% 

5000 6.21% 55.93% 18.93% 18.93% 9.58% 84.37% 4.67% 1.38% 

Average 6.27% 56.46% 18.63% 18.63% 9.61% 84.36% 4.65% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 9.59% 84.34% 6.07% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 9.68% 84.32% 6.00% 0.00% 

3000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

4000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

5000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

Average 7.81% 70.31% 10.94% 10.94% 9.63% 84.33% 5.22% 0.83% 

1 

1000 10.00% 90.00% 0.00% 0.00% 10.16% 83.60% 6.24% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 9.72% 83.86% 6.41% 0.00% 

3000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

4000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

5000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

Average 7.81% 70.31% 10.94% 10.94% 9.63% 84.33% 5.22% 0.83% 

Total Average 7.60% 68.39% 12.00% 12.00% 9.64% 84.29% 5.18% 0.90% 
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Table B1. Flow decisions results for cost structure (a) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 10.07% 0.00% 62.95% 26.98% 3.31% 0.00% 74.66% 22.03% 

2000 0.00% 0.00% 70.00% 30.00% 1.65% 0.00% 74.26% 24.08% 

3000 0.00% 0.00% 70.00% 30.00% 1.95% 0.00% 74.03% 24.01% 

4000 28.21% 0.00% 50.25% 21.54% 3.53% 0.00% 74.46% 22.02% 

5000 0.00% 0.00% 70.00% 30.00% 0.20% 0.00% 77.80% 22.00% 

Average 7.66% 0.00% 64.64% 27.70% 2.13% 0.00% 75.04% 22.83% 

0.01 

1000 0.00% 0.00% 70.00% 30.00% 0.93% 0.00% 77.04% 22.02% 

2000 0.00% 0.00% 70.00% 30.00% 0.20% 0.00% 75.84% 23.96% 

3000 0.00% 0.00% 70.00% 30.00% 0.10% 0.00% 77.91% 21.99% 

4000 0.00% 0.00% 70.00% 30.00% 0.07% 0.00% 77.94% 21.99% 

5000 0.00% 0.00% 70.00% 30.00% 0.09% 0.00% 77.92% 21.99% 

Average 0.00% 0.00% 70.00% 30.00% 0.28% 0.00% 77.33% 22.39% 

0.1 

1000 0.00% 0.00% 100.0% 0.00% 0.00% 0.00% 100.0% 0.00% 

2000 0.00% 0.00% 100.0% 0.00% 0.00% 0.00% 96.67% 3.33% 

3000 0.00% 0.00% 70.00% 30.00% 0.90% 0.00% 77.07% 22.02% 

4000 0.00% 0.00% 70.00% 30.00% 1.25% 0.00% 76.72% 22.03% 

5000 0.00% 0.00% 70.00% 30.00% 0.71% 0.00% 77.26% 22.03% 

Average 0.00% 0.00% 82.00% 18.00% 0.57% 0.00% 85.54% 13.88% 

1 

1000 0.00% 0.00% 97.59% 2.41% 0.00% 0.00% 90.09% 9.91% 

2000 0.00% 0.00% 99.57% 0.43% 0.00% 0.00% 100.0% 0.00% 

3000 0.00% 0.00% 98.42% 1.58% 0.00% 0.00% 100.0% 0.00% 

4000 0.00% 0.00% 98.37% 1.63% 0.00% 0.00% 100.0% 0.00% 

5000 0.00% 0.00% 98.45% 1.55% 0.00% 0.00% 100.0% 0.00% 

Average 0.00% 0.00% 82.00% 18.00% 0.57% 0.00% 85.54% 13.88% 

Total Average 1.91% 0.00% 78.78% 19.31% 0.74% 0.00% 83.98% 15.27% 
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Table B2. Flow decisions results for cost structure (b) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.56% 84.41% 4.65% 1.38% 

2000 6.24% 56.13% 18.82% 18.82% 9.62% 84.39% 4.62% 1.38% 

3000 6.20% 55.76% 19.02% 19.02% 9.63% 84.38% 4.62% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.67% 84.37% 4.59% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.58% 84.38% 4.66% 1.38% 

Average 6.28% 56.53% 18.59% 18.59% 9.61% 84.39% 4.63% 1.38% 

0.01 

1000 6.30% 56.70% 18.50% 18.50% 9.72% 84.36% 4.54% 1.38% 

2000 6.24% 56.13% 18.82% 18.82% 9.62% 84.39% 4.62% 1.38% 

3000 6.20% 55.76% 19.02% 19.02% 9.63% 84.38% 4.62% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.67% 84.37% 4.59% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.58% 84.38% 4.66% 1.38% 

Average 6.28% 56.53% 18.59% 18.59% 9.64% 84.38% 4.61% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 11.92% 83.64% 3.29% 1.15% 

2000 6.24% 56.13% 18.82% 18.82% 9.62% 84.39% 4.62% 1.38% 

3000 6.20% 55.76% 19.02% 19.02% 9.63% 84.38% 4.62% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.67% 84.37% 4.59% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.58% 84.38% 4.66% 1.38% 

Average 7.02% 63.19% 14.89% 14.89% 10.08% 84.23% 4.36% 1.33% 

1 

1000 10.71% 89.29% 0.00% 0.00% 24.59% 75.41% 0.00% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 25.81% 74.19% 0.00% 0.00% 

3000 10.0% 90.0% 0.00% 0.00% 27.0% 73.0% 0.00% 0.00% 

4000 10.0% 90.0% 0.00% 0.00% 26.98% 73.02% 0.00% 0.00% 

5000 10.0% 90.0% 0.00% 0.00% 12.24% 83.32% 3.29% 1.15% 

Average 10.14% 89.86% 0.00% 0.00% 23.32% 75.79% 0.66% 0.23% 

Total Average 7.43% 66.53% 13.02% 13.02% 13.17% 82.20% 3.56% 1.08% 
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Table B2. Flow decisions results for cost structure (b) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 5.88% 0.00% 65.88% 28.24% 0.24% 0.00% 77.81% 21.95% 

2000 5.88% 0.00% 65.88% 28.24% 1.23% 0.00% 76.78% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.59% 0.00% 77.43% 21.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.81% 0.00% 75.19% 24.01% 

5000 5.88% 0.00% 65.88% 28.24% 0.85% 0.00% 77.14% 22.01% 

Average 5.88% 0.00% 65.88% 28.24% 0.74% 0.00% 76.87% 22.39% 

0.01 

1000 12.09% 0.00% 61.54% 26.37% 3.27% 0.00% 72.77% 23.96% 

2000 5.88% 0.00% 65.88% 28.24% 1.23% 0.00% 76.78% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.59% 0.00% 77.43% 21.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.81% 0.00% 75.19% 24.01% 

5000 5.88% 0.00% 65.88% 28.24% 0.85% 0.00% 77.14% 22.01% 

Average 7.12% 0.00% 65.01% 27.87% 1.35% 0.00% 75.86% 22.79% 

0.1 

1000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 64.52% 35.48% 

2000 5.88% 0.00% 65.88% 28.24% 1.23% 0.00% 76.78% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.59% 0.00% 77.43% 21.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.81% 0.00% 75.19% 24.01% 

5000 5.88% 0.00% 65.88% 28.24% 0.85% 0.00% 77.14% 22.01% 

Average 11.37% 0.00% 66.04% 22.59% 0.70% 0.00% 74.21% 25.09% 

1 

1000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 69.99% 30.00% 

2000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 65.62% 34.37% 

3000 33.33% 0.0% 66.7% 0.0% 0.0% 0.0% 65.6% 34.4% 

4000 33.34% 0.00% 66.66% 0.00% 0.0% 0.0% 64.52% 35.48% 

5000 33.34% 0.00% 66.66% 0.00% 0.0% 0.0% 64.52% 35.48% 

Average 33.34% 0.00% 66.67% 0.00% 0.00% 0.00% 66.05% 33.95% 

Total Average 14.43% 0.00% 65.90% 19.67% 0.70% 0.00% 73.25% 26.05% 
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Table B3. Flow decisions results for cost structure (c) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.59% 84.36% 4.67% 1.38% 

2000 6.53% 58.75% 17.36% 17.36% 9.61% 84.36% 4.66% 1.38% 

3000 6.21% 55.93% 18.93% 18.93% 9.61% 84.36% 4.65% 1.38% 

4000 6.18% 55.62% 19.10% 19.10% 9.60% 84.35% 4.68% 1.38% 

5000 6.34% 57.03% 18.32% 18.32% 9.63% 84.35% 4.65% 1.38% 

Average 6.31% 56.81% 18.44% 18.44% 9.61% 84.36% 4.66% 1.38% 

0.01 

1000 6.30% 56.70% 18.50% 18.50% 9.70% 84.36% 4.56% 1.38% 

2000 6.30% 56.70% 18.50% 18.50% 9.59% 84.36% 4.68% 1.38% 

3000 6.26% 56.38% 18.68% 18.68% 9.59% 84.35% 4.68% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.59% 84.39% 4.64% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.63% 84.35% 4.64% 1.38% 

Average 6.31% 56.77% 18.46% 18.46% 9.62% 84.36% 4.64% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 9.59% 84.46% 4.70% 1.25% 

2000 10.00% 90.00% 0.00% 0.00% 9.61% 84.33% 4.68% 1.38% 

3000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

4000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

5000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

Average 7.81% 70.31% 10.94% 10.94% 9.61% 84.36% 4.68% 1.35% 

1 

1000 10.00% 90.00% 0.00% 0.00% 10.52% 83.00% 5.32% 1.17% 

2000 10.00% 90.00% 0.00% 0.00% 9.72% 83.86% 6.41% 0.00% 

3000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

4000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

5000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

Average 10.00% 90.00% 0.00% 0.00% 9.74% 83.98% 6.04% 0.23% 

Total Average 7.61% 68.47% 11.96% 11.96% 9.65% 84.26% 5.01% 1.09% 
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Table B3. Flow decisions results for cost structure (c) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 0.00% 0.0% 70.00% 30.00% 1.97% 0.00% 76.03% 22.01% 

2000 0.00% 0.0% 70.00% 30.00% 0.21% 0.00% 77.79% 22.00% 

3000 0.00% 0.0% 70.00% 30.00% 1.97% 0.00% 76.02% 22.01% 

4000 0.00% 0.0% 70.00% 30.00% 0.01% 0.00% 77.99% 22.00% 

5000 0.00% 0.0% 70.00% 30.00% 1.82% 0.00% 76.14% 22.04% 

Average 0.00% 0.00% 70.00% 30.00% 1.20% 0.00% 76.79% 22.01% 

0.01 

1000 0.00% 0.0% 70.00% 30.00% 0.18% 0.00% 75.87% 23.96% 

2000 0.00% 0.0% 70.00% 30.00% 0.07% 0.00% 77.94% 21.98% 

3000 0.00% 0.0% 70.00% 30.00% 0.12% 0.00% 77.89% 21.99% 

4000 0.00% 0.0% 70.00% 30.00% 0.20% 0.00% 77.81% 21.99% 

5000 0.00% 0.0% 70.00% 30.00% 0.23% 0.00% 77.77% 22.00% 

Average 0.00% 0.00% 70.00% 30.00% 0.16% 0.00% 77.46% 22.38% 

0.1 

1000 0.00% 0.0% 70.00% 30.00% 0.00% 0.00% 76.67% 23.33% 

2000 0.00% 0.0% 70.00% 30.00% 0.00% 0.00% 76.93% 23.07% 

3000 0.00% 0.00% 70.00% 30.00% 0.03% 0.00% 77.97% 22.00% 

4000 0.00% 0.00% 70.00% 30.00% 0.85% 0.00% 77.12% 22.02% 

5000 0.00% 0.00% 70.00% 30.00% 0.98% 0.00% 76.99% 22.03% 

Average 0.00% 0.00% 70.00% 30.00% 0.37% 0.00% 77.14% 22.49% 

1 

1000 0.00% 0.00% 100% 0.00% 0.00% 0.00% 81.63% 18.37% 

2000 0.00% 0.00% 99.57% 0.43% 0.00% 0.00% 100% 0.00% 

3000 0.00% 0.00% 98.42% 1.58% 0.00% 0.00% 100% 0.00% 

4000 0.00% 0.00% 98.37% 1.63% 0.00% 0.00% 100% 0.00% 

5000 0.00% 0.00% 98.45% 1.55% 0.00% 0.00% 100% 0.00% 

Average 0.00% 0.00% 98.96% 1.04% 0.00% 0.00% 96.33% 3.67% 

Total Average 0.00% 0.00% 77.24% 22.76% 0.43% 0.00% 81.93% 17.64% 
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Table B4. Flow decisions results for cost structure (d) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.54% 84.41% 4.68% 1.38% 

2000 6.53% 58.75% 17.36% 17.36% 9.56% 84.40% 4.67% 1.38% 

3000 6.21% 55.93% 18.93% 18.93% 9.73% 84.36% 4.54% 1.38% 

4000 6.18% 55.62% 19.10% 19.10% 9.54% 84.40% 4.68% 1.38% 

5000 6.34% 57.03% 18.32% 18.32% 9.55% 84.40% 4.68% 1.38% 

Average 6.31% 56.81% 18.44% 18.44% 9.58% 84.39% 4.65% 1.38% 

0.01 

1000 6.35% 57.18% 18.23% 18.23% 9.57% 84.34% 4.72% 1.38% 

2000 6.30% 56.70% 18.50% 18.50% 9.42% 84.41% 4.80% 1.38% 

3000 6.26% 56.38% 18.68% 18.68% 9.55% 84.39% 4.68% 1.38% 

4000 6.24% 56.13% 18.82% 18.82% 9.55% 84.39% 4.69% 1.38% 

5000 6.21% 55.93% 18.93% 18.93% 9.64% 84.36% 4.63% 1.38% 

Average 6.27% 56.46% 18.63% 18.63% 9.55% 84.38% 4.70% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 11.92% 83.64% 3.29% 1.15% 

2000 7.04% 63.33% 14.82% 14.82% 9.60% 84.33% 4.69% 1.38% 

3000 6.35% 57.18% 18.23% 18.23% 9.60% 84.33% 4.69% 1.38% 

4000 6.35% 57.18% 18.23% 18.23% 9.60% 84.33% 4.69% 1.38% 

5000 6.35% 57.18% 18.23% 18.23% 9.57% 84.34% 6.09% 0.00% 

Average 7.22% 64.97% 13.90% 13.90% 10.06% 84.19% 4.69% 1.06% 

1 

1000 10.71% 89.29% 0.00% 0.00% 24.59% 75.41% 0.00% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 25.81% 74.19% 0.00% 0.00% 

3000 10.00% 90.00% 0.00% 0.00% 26.98% 73.02% 0.00% 0.00% 

4000 10.00% 90.00% 0.00% 0.00% 26.98% 73.02% 0.00% 0.00% 

5000 10.00% 90.00% 0.00% 0.00% 12.24% 83.32% 3.29% 1.15% 

Average 10.14% 89.86% 0.00% 0.00% 23.32% 75.79% 0.66% 0.23% 

Total Average 7.49% 67.03% 12.74% 12.74% 13.13% 82.19% 3.68% 1.01% 

 

 

 

 

 

 



54 
 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

  8 

 9 

 10 

 11 

Table B4. Flow decisions results for cost structure (d) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 5.88% 0.00% 65.88% 28.24% 2.18% 0.00% 75.88% 21.94% 

2000 5.88% 0.00% 65.88% 28.24% 0.14% 0.00% 77.88% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.32% 0.00% 73.70% 25.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.43% 0.00% 77.59% 21.98% 

5000 5.88% 0.00% 65.88% 28.24% 0.09% 0.00% 77.92% 21.99% 

Average 5.88% 0.00% 65.88% 28.24% 0.63% 0.00% 76.59% 22.77% 

0.01 

1000 5.88% 0.00% 65.88% 28.24% 2.06% 0.00% 75.97% 21.98% 

2000 5.88% 0.00% 65.88% 28.24% 1.59% 0.00% 76.46% 21.96% 

3000 5.88% 0.00% 65.88% 28.24% 0.16% 0.00% 77.87% 21.97% 

4000 5.88% 0.00% 65.88% 28.24% 0.15% 0.00% 77.86% 21.98% 

5000 5.88% 0.00% 65.88% 28.24% 1.97% 0.00% 74.04% 23.99% 

Average 5.88% 0.00% 65.88% 28.24% 1.19% 0.00% 76.44% 22.38% 

0.1 

1000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 63.89% 36.11% 

2000 5.88% 0.00% 65.88% 28.24% 0.00% 0.00% 76.67% 23.33% 

3000 5.88% 0.00% 65.88% 28.24% 0.87% 0.00% 77.14% 21.99% 

4000 5.88% 0.00% 65.88% 28.24% 1.16% 0.00% 76.85% 21.99% 

5000 5.88% 0.00% 94.12% 0.00% 0.12% 0.00% 99.88% 0.00% 

Average 11.37% 0.00% 71.68% 16.94% 0.43% 0.00% 78.89% 20.68% 

1 

1000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 69.99% 30.00% 

2000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 65.62% 34.37% 

3000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 65.62% 34.37% 

4000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 64.52% 35.48% 

5000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 64.52% 35.48% 

Average 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 66.05% 33.94% 

Total Average 14.12% 0.00% 67.53% 18.36% 0.56% 0.00% 74.49% 24.94% 
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Appendix C.  1 

The obtained numerical results regarding to described KPIs of service level, fill rate, and inventory turnover 2 

are reported for different values of rejected demand and solution robustness coefficients, and different cost 3 

structures in Tables C1-C4. Also, the average of these KPIs over different values of ν is presented for each 4 

given λ. 5 

Table C1. KPIs results for cost structure (a) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 80% 77% 86% 91% 12 

3000 69% 69% 79% 88% 12 

4000 54% 54% 68% 82% 12 

5000 42% 38% 60% 76% 12 

Average 67% 66% 78% 87% 12 

0.01 

1000 100% 100% 100% 100% 12 

2000 92% 92% 95% 97% 12 

3000 85% 85% 89% 94% 12 

4000 77% 77% 84% 91% 12 

5000 69% 69% 79% 88% 12 

Average 85% 85% 89% 94% 12 

0.1 

1000 100% 100% 100% 100% 10.08 

2000 100% 100% 100% 100% 10.08 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 11.232 

1 

1000 100% 100% 100% 100% 5.76 

2000 100% 100% 100% 100% 8.64 

3000 100% 100% 100% 100% 10.32 

4000 100% 100% 100% 100% 10.32 

5000 100% 100% 100% 100% 10.32 

Average 100% 100% 100% 100% 9.072 
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Table C2. KPIs results for cost structure (b) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 77% 77% 84% 91% 12 

3000 62% 62% 73% 85% 12 

4000 49% 46% 65% 79% 12 

5000 34% 31% 54% 73% 12 

Average 63% 62% 74% 85% 12 

0.01 

1000 92% 92% 95% 97% 12 

2000 77% 77% 84% 91% 12 

3000 62% 62% 73% 85% 12 

4000 49% 46% 65% 79% 12 

5000 34% 31% 54% 73% 12 

Average 63% 62% 74% 85% 12 

0.1 

1000 100% 100% 100% 100% 12 

2000 77% 77% 84% 91% 12 

3000 62% 62% 73% 85% 12 

4000 49% 46% 65% 79% 12 

5000 34% 31% 54% 73% 12 

Average 64% 63% 75% 86% 12 

1 

1000 100% 100% 100% 100% 12 

2000 100% 100% 100% 100% 12 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 12 
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Table C3. KPIs results for cost structure (c) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 80% 77% 86% 91% 12 

3000 69% 69% 79% 88% 12 

4000 54% 54% 68% 82% 12 

5000 42% 38% 60% 76% 12 

Average 67% 66% 78% 87% 12 

0.01 

1000 92% 92% 95% 97% 12 

2000 92% 92% 95% 97% 12 

3000 85% 85% 89% 94% 12 

4000 80% 77% 65% 79% 12 

5000 69% 69% 54% 73% 12 

Average 70% 69% 80% 88% 12 

0.1 

1000 100% 100% 100% 100% 10.08 

2000 100% 100% 100% 100% 11.04 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 11.42 

1 

1000 100% 100% 100% 100% 7.2 

2000 100% 100% 100% 100% 8.64 

3000 100% 100% 100% 100% 10.32 

4000 100% 100% 100% 100% 10.32 

5000 100% 100% 100% 100% 10.32 

Average 100% 100% 100% 100% 9.36 
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Table C4. KPIs results for cost structure (d) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 80% 77% 86% 91% 12 

3000 69% 69% 79% 88% 12 

4000 54% 54% 68% 82% 12 

5000 42% 38% 60% 76% 12 

Average 67% 66% 78% 87% 12 

0.01 

1000 100% 100% 100% 100% 12 

2000 92% 92% 95% 97% 12 

3000 85% 85% 89% 94% 12 

4000 77% 77% 84% 91% 12 

5000 69% 69% 79% 88% 12 

Average 85% 85% 89% 94% 12 

0.1 

1000 100% 100% 100% 100% 12 

2000 100% 100% 100% 100% 12 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 12 

1 

1000 100% 100% 100% 100% 12 

2000 100% 100% 100% 100% 12 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 12 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
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Appendix D. 1 

In this section, the numerical results related to the CV of the solution of second-stage decision variables, represented by  2 

𝐼𝓆𝑡
ℯ (𝜔), �̂�𝓅𝓆𝑡𝑚

ℓ (𝜔), �̂�𝓆𝑡
ℓ (𝜔), and �̂�𝓆𝑡

ℓ (𝜔) are provided in Tables D1-D4 for all 80 described instances.  3 

Table D1. Coefficient of variation for cost structure (a) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.808% 0.182% 0.112% 0.094% 0.142% 1.596% 2.035% 0.155% 0.142% 0.540% 0.558% 

2000 4.808% 0.243% 0.112% 0.109% 0.142% 0.000% 2.693% 0.155% 0.141% 0.341% 0.316% 

3000 4.810% 0.270% 0.110% 0.130% 0.140% 0.000% 2.750% 0.150% 0.140% 0.260% 0.270% 

4000 4.810% 0.300% 0.110% 0.140% 0.140% 1.370% 2.050% 0.150% 0.140% 0.200% 0.200% 

5000 4.810% 0.330% 0.110% 0.150% 0.140% 0.000% 7.680% 0.150% 0.140% 0.170% 0.160% 

0.01 

1000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.900% 0.150% 0.140% 0.000% 0.000% 

2000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 4.630% 0.150% 0.140% 0.540% 0.560% 

3000 4.810% 0.210% 0.110% 0.110% 0.140% 0.000% 7.000% 0.150% 0.140% 0.390% 0.390% 

4000 4.810% 0.240% 0.110% 0.120% 0.140% 0.000% 10.360% 0.150% 0.140% 0.310% 0.320% 

5000 4.810% 0.270% 0.110% 0.130% 0.140% 0.000% 8.150% 0.150% 0.140% 0.260% 0.270% 

0.1 

1000 1.370% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.180% 0.000% 0.000% 

2000 1.330% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.180% 0.000% 0.000% 

3000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.980% 0.150% 0.140% 0.000% 0.000% 

4000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.370% 0.150% 0.140% 0.000% 0.000% 

5000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 4.380% 0.150% 0.140% 0.000% 0.000% 

1 

1000 1.720% 0.150% 0.140% 0.000% 0.160% 0.000% 0.000% 0.120% 0.150% 0.000% 0.000% 

2000 0.770% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.160% 0.000% 0.000% 

3000 0.850% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

4000 0.830% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

5000 0.840% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 
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Table D2. Coefficient of variation for cost structure (b) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 2.770% 3.410% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 3.350% 0.150% 0.140% 0.310% 0.320% 

3000 4.810% 0.290% 0.110% 0.140% 0.140% 2.770% 4.880% 0.150% 0.140% 0.230% 0.230% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 2.770% 4.050% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 2.770% 4.010% 0.150% 0.140% 0.150% 0.140% 

0.01 

1000 4.810% 0.180% 0.110% 0.000% 0.140% 2.520% 2.130% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 3.350% 0.150% 0.140% 0.310% 0.320% 

3000 4.810% 0.290% 0.110% 0.140% 0.140% 2.770% 4.880% 0.150% 0.140% 0.230% 0.230% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 2.770% 4.050% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 2.770% 4.010% 0.150% 0.140% 0.150% 0.140% 

0.1 

1000 5.580% 0.150% 0.150% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

2000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 3.350% 0.150% 0.140% 0.310% 0.320% 

3000 4.810% 0.290% 0.110% 0.140% 0.140% 2.770% 4.880% 0.150% 0.140% 0.230% 0.230% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 2.770% 4.050% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 2.770% 4.010% 0.150% 0.140% 0.150% 0.140% 

1 

1000 5.580% 0.520% 0.380% 0.000% 0.000% 2.770% 1.610% 0.380% 0.190% 0.000% 0.000% 

2000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 1.960% 0.380% 0.180% 0.000% 0.000% 

3000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 2.770% 0.380% 0.180% 0.000% 0.000% 

4000 5.580% 0.500% 0.380% 0.000% 0.980% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

5000 5.580% 0.150% 0.180% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 
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Table D3. Coefficient of variation for cost structure (c) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 2.660% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.110% 0.140% 0.000% 6.820% 0.150% 0.140% 0.340% 0.320% 

3000 4.810% 0.270% 0.110% 0.130% 0.140% 0.000% 2.720% 0.150% 0.140% 0.260% 0.270% 

4000 4.810% 0.300% 0.110% 0.140% 0.140% 0.000% 8.010% 0.150% 0.140% 0.200% 0.200% 

5000 4.810% 0.330% 0.110% 0.150% 0.140% 0.000% 2.750% 0.150% 0.140% 0.170% 0.160% 

0.01 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 4.180% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 6.540% 0.150% 0.140% 0.540% 0.550% 

3000 4.810% 0.210% 0.110% 0.110% 0.140% 0.000% 9.180% 0.150% 0.140% 0.390% 0.390% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 0.000% 6.890% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 0.000% 7.350% 0.150% 0.140% 0.150% 0.140% 

0.1 

1000 1.670% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.180% 0.000% 0.000% 

2000 1.700% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.190% 0.000% 0.000% 

3000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 19.610% 0.150% 0.140% 0.000% 0.000% 

4000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 4.070% 0.150% 0.140% 0.000% 0.000% 

5000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.750% 0.150% 0.140% 0.000% 0.000% 

1 

1000 2.520% 0.150% 0.140% 0.000% 0.160% 0.000% 0.000% 0.150% 0.160% 0.000% 0.000% 

2000 0.770% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.160% 0.000% 0.000% 

3000 0.850% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

4000 0.830% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

5000 0.840% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 
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Table D4. Coefficient of variation for cost structure (d) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 2.770% 2.580% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.110% 0.140% 2.770% 5.010% 0.150% 0.140% 0.340% 0.320% 

3000 4.810% 0.270% 0.110% 0.130% 0.140% 2.770% 6.300% 0.150% 0.140% 0.260% 0.270% 

4000 4.810% 0.300% 0.110% 0.140% 0.140% 2.770% 5.630% 0.150% 0.140% 0.200% 0.200% 

5000 4.810% 0.330% 0.110% 0.150% 0.140% 2.770% 8.500% 0.150% 0.140% 0.170% 0.160% 

0.01 

1000 4.810% 0.150% 0.110% 0.080% 0.140% 2.770% 2.820% 0.150% 0.140% 0.000% 0.000% 

2000 4.810% 0.180% 0.110% 0.090% 0.140% 2.770% 3.050% 0.150% 0.140% 0.540% 0.560% 

3000 4.810% 0.210% 0.110% 0.110% 0.140% 2.770% 5.260% 0.150% 0.140% 0.390% 0.390% 

4000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 7.000% 0.150% 0.140% 0.310% 0.320% 

5000 4.800% 0.300% 0.100% 0.100% 0.100% 2.800% 2.800% 0.200% 0.100% 0.300% 0.300% 

0.1 

1000 5.580% 0.150% 0.150% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

2000 4.810% 0.150% 0.110% 0.070% 0.140% 2.770% 0.000% 0.150% 0.180% 0.000% 0.000% 

3000 4.810% 0.150% 0.110% 0.080% 0.140% 2.770% 4.320% 0.150% 0.140% 0.000% 0.000% 

4000 4.810% 0.150% 0.110% 0.080% 0.140% 2.770% 3.730% 0.150% 0.140% 0.000% 0.000% 

5000 4.160% 0.150% 0.110% 0.080% 0.140% 2.770% 11.420% 0.150% 0.140% 0.000% 0.000% 

1 

1000 5.580% 0.520% 0.380% 0.000% 0.000% 2.770% 1.610% 0.380% 0.190% 0.000% 0.000% 

2000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 1.960% 0.380% 0.180% 0.000% 0.000% 

3000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 2.770% 0.380% 0.180% 0.000% 0.000% 

4000 5.580% 0.500% 0.380% 0.000% 0.980% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

5000 5.580% 0.150% 0.180% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 
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