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Multi-objective NSGA-II based shape optimisation of the 

cross-sectional shape of passively cooled heat sinks 

Structured Abstract:
Purpose:

 The purpose of the study is to optimise the cross-sectional shape of passively cooled 

horizontally mounted pin fin heat sink for higher cooling performance and lower material 

usage. 

Design/Methodology/Approach:

 Multi-objective shape optimisation technique is used to design the heat sink fins. Non-

dominated sorting genetic-algorithm (NSGA-II) is combined with a geometric module to 

develop the shape optimiser. High fidelity Computational Fluid Dynamics (CFD) is used to 

evaluate the design objectives.  Separate optimisations are carried out to design the shape of 

bottom row fins and middle row fins of a pin-fin heat sink. Finally, a computational validation 

was conducted by generating a 3D pin-fin heat sink using optimised fin cross-sections and 

comparing its performance against the circular pin-fin heat sink with the same inter-fin 

spacing value.

Findings:

Heat sink with optimised fin cross sections, has 1.6% higher cooling effectiveness than circular 

pin-fin heat sink of same material volume, and has 10.3% higher cooling effectiveness than 

the pin-fin heat sink of same characteristics fin dimension. The special geometric features of 

optimised fins which resulted in superior performance are highlighted. Further, Pareto 

optimal fronts for this multi-objective optimisation problem are obtained for different fin 

design scenarios.

Originality/Value:

 For the first time, passively cooled heat sink’s cross sectional shapes are optimised for 

different spatial arrangements, using NSGA-II based shape optimiser, which makes use of CFD 
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solver to evaluate the design objectives. The optimised, high performance shapes will find 

direct application to cool power electronic equipment. 

Keywords: Heat sink design, Genetic algorithm, Shape optimisation, Natural convection, CFD

1. Introduction
 Thermal management is a key challenge in modern microelectronics system design due to 

ever increasing levels of miniaturisation, integration, and operating frequency. Thermal 

management challenges are clearly also encountered in a wide range of engineering 

problems. Forced convective cooling is used in situations where the performance of natural 

convective cooling does not meet specified design requirements. However, this comes at an 

additional energy cost so enhancement of the performance of natural convective cooling 

systems may enable their use where forced convective systems are currently required.

Typically, circular, rectangular or square cross-sectional shaped heat sinks are used in the 

electronics industry. Such designs evolved based on the knowledge of heat transfer and ease 

of manufacturing such shapes. Design methodologies have improved markedly in recent 

years, with a number of differing forms of optimization algorithm able to define heat 

exchange structures with higher performance than can be achieved using simplistic / 

parametric optimisation approaches. Designers employ parametric optimisation approach to 

determine the optimum value of design parameters like number of plate-fins, spacing 

between the fins, their height etc. during heat sink design.  Researchers also use topology 

optimisation and shape optimisation methods to design heat exchanging structures.  In 

topology optimisation (TO), from the specified design domain, a shape is evolved from an 

initial material distribution in response to a shape sensitivity value. An alternative to this 

approach is shape optimisation, wherein only selected design variables are optimised to 

achieve extremum objective values. Though TO gives more design freedom it suffers from 

disadvantages such as grey cells (diffused shape boundary). Since TO uses a gradient based 

optimiser, different material initialisations have to be tested to avoid ending up in local 

optima. However, shape optimisation with stochastic optimisers can predict global optima. 

Genetic algorithms (GA) are a popular form of stochastic optimisation.
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Genetic algorithms were inspired by Darwinian natural selection and genetics (Goldberg, 

1989). GA based shape optimisers will have either an empirical model or computational fluid 

dynamics based model to evaluate the objectives corresponding to a design. In 2002, Deb 

et.al, proposed a fast and elitist multi-objective genetic algorithm known as Non-dominated 

Sorting Genetic Algorithm (NSGA-II). This algorithm makes use of non-dominated ranking to 

preserve the important parent population to produce offspring in the later generations.

 One of the earliest studies on GA based optimisation of a heat transfer application was by 

Tayal et.al (1999), wherein they calculated the minimum heat exchange area required for the 

given heat exchanger requirements. They also compared the performance of GA optimiser 

against Simulated Annealing, another probabilistic optimiser. Hilbert et.al (2006), performed 

a multi objective optimisation of a heat exchanging blade shape design considering 

minimization of pressure drop and maximization of temperature change as objectives for a 

forced convective study. The study obtained a Pareto front of optimised designs and 

investigated the ways to decrease computational cost. Subsequently, Peng and Ling (2008) 

applied a combined neural network (NN) / GA approach to optimise the design of plate fin 

heat exchangers. The objectives of this study were to minimise weight and the total annual 

cost, while the design variables are different geometric parameters of plat fin heat sink. The 

study concluded that GA combined with NN is effective and efficient. 

Sanaye and Hajabdollahi (2010) optimised fin pitch, fin height, cold stream flow length and 

further parameters of plate fin heat exchanger using the NSGA-II algorithm. Maximum 

effectiveness of heat exchanger (a function of overall heat transfer coefficient) and minimum 

total pressure drop were considered as objectives and they are calculated using ‘number of 

transfer unit’ method. Results of optimisation as Pareto optimal fronts are obtained.  They 

also evaluated the correlation between objective functions and design variables using NN. 

Hajabdollahi et.al (2011). later extended this work with high fidelity CFD.

Najafi et.al (2011) optimized air-cooled plate fin heat exchanger using multi-objective GA. The 

total rate of heat transfer and annual cost were considered as objectives while fin height, fin 

frequency and number of fin layers were considered as design variables. In addition to 

optimisation, Najafi et.al also evaluated the sensitivity of objective function against different 

design variables. Ranut et.al (2014) performed a shape optimisation study of a tube bundle, 
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as an extension of Hilbert's 2006 work.  In this study, both the flow over the shell and flow 

inside the tube were considered. The results obtained reiterate the importance of taking the 

internal flow field into account.

Notable work on natural convection on plate fin arrays include that of Bar-Cohen, et.al (2003), 

who extended the least-material optimisation method to design, multiple vertical rectangular 

plate fin arrays. The study showed that ‘least material approach’ is a suitable optimisation 

design heuristic for plate fin designs. Later, Bahadur and Bar-Cohen (2005) designed a 

polymer-based pin-fin heat sink for natural convection cooling applications. They studied heat 

dissipation against different geometric variables including pin-fin height, pin diameter, 

horizontal spacing, and pin fin density. Finally, the performance of polymer heat sink was 

compared against conventional aluminum heat sinks.

 Yu et.al (2011) investigated natural convection cooled radial heat sink for a light-emitting 

diode (LED) device by a combination of response surface methodology and evolutionary 

algorithm based optimisation.  Different parametric designs, (long fins, long and middle fins 

and long, middle and short fins) were investigated using CFD and found that long and middle 

fins gave better performance compared to others. Results were validated through 

experiments. 

Jang et. al (2012) optimized radial pin fin heat sinks for LED applications. The number of fins 

and length of fins were considered as variables. Different heat flux values are considered. 

Thermal resistance and mass are considered as objectives. Same authors in their later paper 

(2014) optimized fin height profile of LED heat sink considering natural convection and 

radiation heat transfer. The height of the outermost fin and the difference between fin 

heights and number of fin arrays were adapted. Results showed that taller fins on the outer 

side provided better cooling performance than taller fins on the inner side. 

Joo and Kim (2015) used two objective functions to compare the plate fin and pin fin heat sink 

performance under natural convection. For pin fin heat sink optmisation correlations are 

developed using their own experimental study results. The study found that for total heat 

dissipation objective, plate fins are doing better, but for heat dissipation per unit mass 

objective pin fin heat sinks are performing better. Recently, Imran et.al (2017) applied multi-

objective optimisation based on GA to design water-water chevron type plate heat 
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exchangers and also evaluated the sensitivity of objective function with respect to design 

variables. Other genetic algorithm-based design of heat exchanging fin shapes include 

Copiello and Fabbri (2009) and Azarkish et al. (2010). An exhaustive review of design 

optimisation for heat exchangers using various advanced techniques is provided by Venkata 

Rao et al. (2019).

Apart from shape optimisation, topology optimisation(TO) was also employed to identify the 

optimum heat sink shape for natural convection conditions. Topology optimisation is a super 

set of shape optimisation, wherein given the design domain and constraints, the shape 

evolves during the optimisation. Alexanderson et al. (2016) designed natural convection 

cooled heat sinks using Density based TO. Later same authors (2018) designed LED heat sinks 

using TO and compared the performance of TO heat sinks against pin-fin heat sinks. Dede et 

al. (2015) designed air cooled heat sinks using density based TO considering heat conduction 

and side surface convection. The authors manufactured the design using additive 

manufacturing and experimentally validated their performance. Design of forced convection 

cooled heat sinks using density and level-set TO method and their validation against 

conventional pin fin heat sinks was conducted by Santhanakrishnan et.al (2018). Later the 

same authors (2019) designed liquid impingement cooled copper and composite material 

heat sinks using TO. A review of optimal heat transfer system design using TO is given by 

Dbouk (2017).

Though NSGA-II based shape optimisers were applied to design heat sinks under natural 

convection conditions, so far, no work has been done to design the cross-sectional shape of 

horizontally mounted pin fin heat sinks. Such heat sinks are quite popular in LED cooling and 

in other electronic appliances. The 2D cross-sectional design is valid at the top-central portion 

of pin-fin heat sinks. Hence, this study employs shape optimisation techniques to design cross 

sectional shape of passively cooled pin-fin heat sink fins for different inter-fin spacing values. 

In this article, section 2 describes about genetic algorithm for multi-objective shape 

optimisation and section 3 describes about the heat sink design problem and the solution 

techniques. Section 4 contains results and discussion. Conclusions are given in Section 5. 
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2. Genetic algorithm for multi-objective shape optimisation
2.1. Non-dominated Sorting Genetic Algorithm (NSGA-II):
   NSGA-II is an evolutionary multi-objective optimisation algorithm proposed by Deb et al. In 

this algorithm, initially a population of design variables are taken at random, and their fitness 

values (objective functions) are evaluated.  Based on the fitness values and domination 

principle, the population is ranked. A solution ‘x1’ is said to dominate the other solution ‘x2’, 

if i) x1 is no worse than x2 for all objectives and ii) x1 is strictly better than x2, at least for one 

objective. The algorithm also makes use of crowding distance strategy, which gives more 

importance to diverse solutions during ranking.  From the ranked population, offspring 

designs are produced, using suitable parent selection (tournament selection) and mutation 

methods. The algorithm uses elitism principle such that elites of the population are given 

opportunity to be carried to the next generation.  In this section only a summary of the 

algorithm is provided, for full details readers should refer to Deb et al.

Based on the fitness of the offspring and parents a new generation of population is created. 

As this process repeats the individuals in the population converge towards the desired 

objective. The NSGA-II algorithm uses crowding distance operator along with pareto 

dominance to rank different individuals in the population, forcing the individuals in successive 

generations to converge toward and spread out along the pareto front. 

For offspring production, simulated binary cross over and polynomial mutation techniques 

are used. The offspring population is combined with the current generation population and 

selection is performed to set the individuals of next generation. Since all the previous and 

current best individuals are included in the population, elitism is ensured.  The population is 

then sorted based on non-domination using rank and crowding distance. The NSGA-II based 

shape optimisation framework is developed in Matlab by adapting the work of Seshadri 

(2019).

2.2. Shape optimisation using NSGA-II

 Generally, in a shape optimisation study, design variables would be geometric parameters 

such as length, width, leading edge radius etc. or simply x,y coordinates of control points of a 

smooth curve. In general, the control points are joined by a Bspline curve to obtain a smooth 
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shape. In this study, coordinates of control points are considered as design variables. The 

Ansys ICEMCFD package is used to generate the geometry using the in-built Bspline curve 

option. A CFD simulation is performed to evaluate the fitness value or objective function for 

each design. Meshing of the computational domain is carried out in ICEMCFD and the flow 

solution is obtained using the Fluent 17.2 commercial solver. After solving the given thermal 

problem in Fluent to the desired convergence level, the objective values are exported back to 

genetic algorithm as shown in the pseudo-code (Figure 1). Based on the objective values, 

designs are ranked and the algorithm continues with the offspring production for next 

generation. The loop continues till the specified number of generations are reached. Finally, 

for a multi-objective optimisation problem, the algorithm reports out the pareto of optimal 

designs.

Figure 1 Genetic algorithm-based shape optimisation procedure
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2.3. Validation
The design framework is initially validated by replicating the study of Hilbert et al. (2006). In 

this forced convective problem (Figure 2), pressure drop minimisation and temperature 

change maximisation are considered as objectives. The computational domain and flow 

parameters and material properties are all detailed in the relevant publication, so it will not 

be duplicated here. However, the method used for geometry generation differs from the 

original study in that the geometry of the blade is generated with ICEMCFD Bspline curves. 

Only 2 control points are used for simplicity and for prevention of generation of negatively 

curved aerofoil shapes. The x, y coordinates of the two points are considered as design 

variables. In total there are 12 design variables – 4 for each blade (Table 1) details the design 

variables lower and upper bounds.

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6

Min
(m) 0.032 0.0025 0.0365 0.0025 0.042 0.0012 0.0465 0.0012 0.052 0.0025 0.0565 0.0025

Max
(m) 0.0345 0.0038 0.0385 0.0038 0.0445 0.0025 0.0485 0.0025 0.0545 0.0038 0.0585 0.0038

Table 1 Lower and upper bounds for design variables

 The optimisation is carried out for a population size of 30 and for 20 generations (same as 

Hilbert’s). The computational domain and the obtained Pareto front are shown in Figure 3 and 

Figure 4 respectively. Very thin aerofoil like shapes with negative curvature near trailing edge, 

(which were obtained by Hilbert) are not obtained in this study as the minimum thickness of 

the shapes are hard limited by the bounds of the design variables given in Table 1. Heat bank 

shapes and their objective values are reasonably agreeing with Hilbert’s results. The 

optimised shapes reported here are thicker than Hilbert’s, due to the limits set for control 

points. 
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Figure 2 Tube bank heat exchanger cooled by cross flow 

Figure 3 Computational domain used for heat exchanger cross section optimisation

         
Figure 4  a) Results of all shape evaluations along with Pareto optimal front (Bold symbols), b) Selected 
optimised shapes and their objectives

3. Shape optimisation of passively cooled heat sinks
 Heat exchangers are either cooled by active cooling or passive cooling methods. The later 

method is more cost effective, and most of the large industrial heat exchangers are of this 

type. The heat exchanger tubes are typically either circular or rectangular in shape. In this 

study, the NSGA-II based shape optimisation tool is used to find the optimum cross-sectional 
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shape for the heat exchanger fins/tubes in a passive cooling setup. 

   

Figure 5 a)Temperature (K) distribution and (b)velocity (m/s) field at different axial locations on a 
passively cooled pin fin heat sink

 The fin length of horizontally mounted heat sinks are about 15 to 30 times higher than their 

fin diameter (D) or side-length. In a passively cooled heat sink, the thermal conductivity ratio 

between heat sink material and air, is typically higher than 10,000. Hence, the temperature 

variation within a pin fin, over its length will be fairly small on the top rows (Figure 5). Further, 

the laminar natural convective flow in the middle of the pin-fin will not be much affected by 

the base plate natural convection flow. So, it is reasonable to assume that the flow at the top-

middle region of pin-fins are two dimensional. Figure 5 shows that the velocity distribution are 

very similar at 40% and 75% of fin-length, indicating a two dimensional nature of flow. Hence, 

optimising the pin-fins cross-sectional shape is a reasonable exercise given that three-

dimensional shape optimisations are very expensive.

 In this study fin cross sections of a typical passively cooled pin fin heat sink (Figure 5) are 

optimised. In a pin fin heat sink, bottom row fins experience different flow and temperature 

pattern than middle row fins. Hence optimisation of these fin’s cross sections are dealt 

separately. To optimise bottom row fins, only two rows of fin arrangement is considered and 

to optimise middle row fins, three rows of fin arrangement is considered.
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3.1. Optimisation of Bottom row fin’s cross section
 To optimise bottom row fin’s cross section, two rows of fin arrangement is considered (Figure 

6) and in which the top row fins have a fixed circular cross section and bottom row fins have 

design control points. The two rows of fins are arranged in inline manner. The dimensions of 

computational domain are given in Table 2. Three control points are defined on the fin fixed 

at the symmetry plane and seven control points are defined on the outer fin. These control 

points are connected by ICEMCFD Bspline curves to obtain the heat sink shape. The x and y 

coordinates of control points are considered as design variables. The bounds of the 20, x and 

y design variables were carefully chosen to give more freedom for shape optimiser and also 

to avoid forming complex shapes which will fail during mesh generation (Table 3). The control 

point’s (Figure 6b) limits ensure the formation of baseline circular to other random shapes 

during optimisation process. Additionally, the distance between fixed points (A,B &C in Figure 

6b) to their immediate neighboring points is constrained to be greater than or equal to 

0.00365m to avoid formation of high negative curvature in the heat sink shape. The 

optimisation is carried out for three different inter-fin heights (H)  (H/D=0.42, 0.83, 1.67)) and 

two different inter-fin widths (W) (W/D=0.42, 0.67) of heat sink arrangement. 

The objectives of optimisation are maximisation of rise in temperature of the ambient air 

(between side inlet to top outlet of the domain) and minimisation of the total cross-sectional 

area of the heat sinks. The later objective will lead to less material for manufacturing and 

hence will result in cost reduction (ignoring the manufacturing cost). The heat sinks were 

maintained at an isothermal condition of 310K and ambient air temperature is 288K. As the 

considered flow is laminar and steady, symmetry condition is exploited to model and solve 

only 1/2 of the domain in order to save computation time. Other boundary conditions are 

shown in Figure 6.

Parameter Value

D (m) 0.012

H/D 0.42, 0.83, 1.67

W/D 0.42, 0.67

WD (m) 0.096, 0.13
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LD (m) 0.45

Table 2 Computational domain parameter values

x1 y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5

Min(m) 0.00235 0.01 0.0033 0.013 0.00235 0.0179 0.019 0.0107 0.021 0.014

Max(m) 0.004 0.0123 0.006 0.017 0.004 0.02 0.021 0.0132 0.023 0.016

X6 Y6 X7 Y7 X8 Y8 X9 Y9 X10 Y10

Min(m) 0.0191 0.017 0.0166 0.0205 0.013 0.017 0.011 0.014 0.0125 0.0105

Max(m) 0.0209 0.0194 0.0174 0.0214 0.0149 0.0194 0.013 0.016 0.0155 0.0132

Table 3 Lower and upper bounds for the heat sink fin’s design variables

 The governing equations of this natural convection flow problem are given in Eqn 1 -3. The 

considered flow is laminar in nature as the Grashof number is 5800 based on the heat sink 

diameter (D). Body aligned quadrilateral meshes were created around the heat sinks and the 

total mesh size for this case is around 29000. Exact number of cell counts changes slightly 

with respect to the design iteration.  A typical mesh structure around the heat sinks is given 

in Figure 7. To evaluate the mesh sensitivity, by halving the cell side length, a refined mesh of 

size, 79300 elements is created. The change in temperature rise objective (Eqn-4) due to the 

mesh refinement is found to be 2.4%. As the change in objective is less and the increase in 

computational cost is more, it is decided to go ahead with 29000 element mesh.

  Pressure based solver with semi-implicit method for pressure-linked equations (SIMPLE) 

method of pressure-velocity coupling is used to solve the governing equations. Pressure is 

solved using second order method while other primitive variables are solved using second 

order upwind method. Thermal conductivity and specific heat capacity of air are treated 

constant. The simulations were run, at least until continuity residue falls below 1e-3 (Figure 

7).

(1) .(𝜌𝑢) = 0

(2)(𝑢.𝑢) =  𝜌𝑔𝛽(𝑇 ― 𝑇∞) + .{µ{𝑢 + (𝑢)𝑇}}

(3)𝜌𝐶𝑝𝑢. 𝑇 = 𝑘∇2𝑇
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 The objectives for this shape optimisation problem are maximisation of air temperature rise 

(Eqn-4) and minimisation of heat sink cross sectional area (Eqn-5). The objectives (Eqn-6) are 

normalized for better convergence. The flow temperature is obtained by mass weighted 

averaging, with a higher temperature obviously correlating to increased heat exchanger 

performance. To maximise the temperature rise, the objective ∆T is negated.

 T = -(Ttop – Tside)/5 (4)

Area Ratio = 
𝐴𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝐴𝑐𝑖𝑟𝑐𝑙𝑒

Aoptimized:Total area of optimised heat sinks

Acircle:Total area if all heat sinks were circular

(5)

Objective:   Minimize  ( ― (∆𝑇),(𝐴𝑟𝑒𝑎 𝑅𝑎𝑡𝑖𝑜)) (6)

      

Figure 6 a) Computational domain used for the design of bottom row fin’s cross section and 

(b) the design variables

3.2 Optimisation of Middle row fin’s cross-section 
 The key aspect of this case is that the middle row fin’s cross section is optimised considering 

the hot plume coming from the bottom row fins and its own plume interacting with the top 
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row fins. The computational domain considered for this study is shown in Figure 8, with width 

(WD) of the domain is increased to 0.13m. The number of design variables remains the same 

and their minimum and maximum limits are also maintained the same. Optimisation is 

conducted for an inter-fin height value of H/D=0.83. The computational domain is discretised 

with 31800 elements in this case. The area objective is normalised by the total area of 3 

circular fins (similar to bottom fin’s case) and the temperature objective is normalised with 

5K.

    

Figure 7 Typical mesh on the computational domain and a sample convergence history

4. Results and Discussion
  The shape optimisation of heat sinks are conducted with a population size of 40 and a 

generation size of 40. The initial population is selected by random seeding and this will have 

an effect on the final optimal designs obtained. Cross over is performed with 90% probability 

and mutation is performed with 10% probability. To minimise the effect due to random seed,
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Figure 8 Computational domain used for the design of middle row fin’s cross section

optimisation is repeated two times for each case and the best result is reported here. Total 

run time varies with respect to convergence of CFD runs and also with respect to initial 

random seed, but it is generally between 50 to 60 hours on 4 cores of 20 cores Intel Xeon 

workstation with 128GB RAM.

4.1. Optimisation of Bottom row fin’s cross section 
 As the two objectives (Eqn-6) are conflicting with each other, this optimisation problem leads 

to a Pareto of optimal solutions. The Pareto front obtained for different inter fin heights (H/D) 

of 0.42, 0.86, 1.67 are shown in Figure 9, Figure 10 and Figure 11 respectively. Results of all 

shape evaluations of 40 generations of H/D=0.42 case is shown along with its Pareto optimal 

front in Figure 9. Left hand side region of pareto front contains all feasible shapes tested 

during the optimisation, while the right-hand side indicates un-feasible region. The 

optimisation process defines notably different cross section designs for the different inter-fin 

heights indicating that the optimiser has accounted for the change in physics. When 

H/D<=0.83, the central fin is rectangular in shape for moderate area values. Further, when 

H/D=0.42, the centre fin’s trailing edges (TE) are rounded, because there is very little chance 
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to diffuse or deflect the plume away from the top row heat sink. As H/D increases, the 

optimised central fins have pointed trailing edges to reduce the plume thickness and to 

decrease the interaction with the top row central fins.

The outer fins are asymmetrical, and are thicker on the inner side, creating a nozzle like 

constriction (along with central fin) to increase the free convection velocity (Figure 10). Along 

the flow direction, beyond maximum thickness location, some outer fins have convex 

curvature and some others have concave curvature. This plays a role in changing the 

convective flow direction and its velocity. 

Generally, the outer fins have pointed trailing edges, but because of their asymmetric 

thickness and entrainment of ambient air around the trailing edges, the direction of plume is 

inclined inwards. The inward inclination of plume leads to weak interaction of plume with the 

top row fins and this enhances the heat transfer from the top-outer fins. The fins of maximum 

temperature rise (∆Tmax) objective, deflect the flow inwards more effectively than the fins 

of minimum area-ratio (Amin) objective (Figure 12). Figure 12 also shows that velocity between 

the top and bottom row fins is higher for fins of ∆Tmax objective than for fins of Amin 

objective. As such, H/D=1.67 case will have enhanced heat transfer, due to higher inter fin 

distance. The optimised fins, by nozzle formation further increases the heat transfer (Figure 

11). 

Figure 9 Results of all evaluations along with Pareto optimal front (Black + symbol) for 
bottom row fin shape optimisation (H/D=0.42) (LE: Leading edge, TE: Trailing edge)
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Figure 10 Pareto optimal front obtained for bottom row fin shape optimisation (H/D=0.83)

Figure 11 Pareto optimal front obtained for bottom row fin shape optimisation (H/D=1.67) 

   

Figure 12 Velocity vector distribution around bottom row fins designed for H/D=1.67, a) ∆Tmax 
objective b) Amin objective 
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Figure 13 a) Temperature (K) contour and b) Velocity (m/s) contour over bottom row fins 
(H/D=0.83) designed for Amin objective.

The increase in flow velocity due to horn like thick inner side of outer fin (nozzle effect) is 

clearly captured in Figure 13, which shows temperature and velocity field over H/D=0.83 Amin 

heat sink. The plume of the outer fin is deflected inwards and it is slightly diffused due to 

ingestion of cold air between top and bottom row heat sinks. This heat sink shape is much 

better than inclined rectangle with rounded edges, which are sometimes used in horizontally 

mounted LED heat sinks.  The advantage of this optimized shape is that its outer-sides are 

lying aligned with the flow direction and the horn-like inner side deflect the cold flow towards 

central top fin, as this fin is exposed to more hot plume (Figure 13).

The objective values of these 3 cases are summarised in Table 4 for Amin and ∆Tmax 

objectives. Results show that, shapes obtained for H/D=0.83, Amin objective are the best as 

it gives higher ∆T for the similar value of heat sink Area. The random seed population selected 

for this study could have resulted in this better shape. 

Optimisation of bottom row fins with reduced inter-fin distance:

In order to evaluate the effect of decreasing the inter-fin width on optimised shapes obtained, 

an optimisation is conducted for W/D=0.42 and H/D=0.42. The pareto front obtained along 

with few optimised shapes are shown in Figure 14. From the Table 4, which shows the 

objective values, it is clear that ∆T objective decreased with reduction in width. This is 

Page 18 of 29

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Num
erical M

ethods for Heat and Fluid Flow

19

expected, as the hot plume from bottom row fins directly impinge on the top fins and the 

amount of cold air ingested in between central and outer fins would have decreased due to 

decreased width. Hence, the net heat transfer is less. The optimised shape, in general exhibits 

some similarity with earlier shapes. The fin in symmetry plane is similar to a rectangle with 

rounded edges. The outer fin (of Amin objective), forms a nozzle with central fin and also 

deflects the ingested flow inwards towards the top central fin.

Figure 14 Pareto optimal front obtained for bottom row fin shape optimisation with 
W/D=0.42 and H/D=0.42 

Area Ratio T
Tmax objective fin 0.8821 0.8439H/D=0.42

W/D=0.67 Amin objective fin 0.7671 0.7349

Tmax objective fin 0.8828 0.8565H/D=0.83
W/D=0.67 Amin objective fin 0.7626 0.7822

Tmax objective fin 0.8781 0.8790H/D=1.67
W/D=0.67 Amin objective fin 0.7790 0.7973

Tmax objective fin 0.8746 0.8245H/D=0.42
W/D=0.42 Amin objective fin 0.7621 0.6979

Table 4 Objective values corresponding to the extreme points of pareto front of bottom row fins 
optimisation

4.2. Optimisation of Middle row fin’s cross section
 The middle row fin’s shape optimisation for H/D=0.83 and W/D=0.67 is conducted and the 

results are shown in Figure 15 and objective values are given in Table 5. The ∆T objective is 

again normalised with 5K (similar to the two-row heat sink optimisation), but since a greater 
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number of fins are modelled in the domain, the temperature rise of ambient air exceeds 5K 

in some cases. This means that the ∆T objective can become greater than one. There is no 

pareto optimal solution with an ‘Area Ratio’ above 0.83. Examination of all the evaluated 

solutions showed that higher ‘Area’ designs were indeed tested but they were not dominant 

solutions, as the ∆T of those designs are much less than the reported Pareto optimal solutions.   

Since the optimised fins are in the middle row, thicker and bigger fins (beyond certain area 

value), may not be beneficial in achieving higher heat exchange in the three-row fin 

arrangement. Results show that, except for the Amin objective central fin, other shapes do 

not have a rounded or blunt LE/TE edges. The pointed TE avoids thicker plume leaving from 

the fin and pointed LE, prevents larger fin area getting affected by the impinging plume from 

the bottom fin. Outer fin with horn-like thick inner side, is found to perform well for this 

middle-row fin design scenario also (black colour, Figure 15). 

Figure 15 Pareto optimal front obtained for middle row fin shape optimisation 

Area Ratio T
Tmax objective fin 0.8208 1.0911H/D=0.83

W/D=0.67 Amin objective fin 0.7744 0.9924
Table 5 Objective values corresponding to the extreme points of pareto front of middle row fins 

optimisation

4.3. Comparison with conventional fin cross sections
In order to verify and to quantify the performance improvement of the optimised fin cross 

section compared to circular (fin) shape, a 2D CFD simulation of two-row circular fins with a 
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spacing of H/D=0.42 and W/D=0.67 has been carried out. The same meshing and convergence 

strategies used in the optimisation studies have been used for this validation analysis. The 

objectives are calculated based on the CFD results (Figure 16, Figure 17, Table 6). The Tmax 

objective optimised fins, in spite having 12% less area, performs 5.4% better than the circular 

fins on the temperature rise objective. The optimised fins achieved this, by stimulating higher 

mass flow and by effectively convecting away the high temperature plume from the fins. 

Figure 16 Temperature (K) field comparison between circular fins and optimised (∆Tmax objective) 
bottom row fins

Figure 17 velocity (m/s) field comparison between circular fins and optimised (∆Tmax objective) 
bottom row fins 

Further, the optimised shape is effective in ingesting the cold air flow for a longer distance 

into the heat sinks. Generally passive cooling will be more effective if the distance between 
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the adjacent fins are increased or the interaction of their plumes is minimised.  This technique 

also seemed to be employed to optimise the fin shapes. It can also be noted that Amin 

objective fins have 23.3% lower area and 8.2% lower cooling performance than circular fins.

H/D=0.42, H/D=0.67 Area Ratio T Mass flow rate at 
top side (kg/s)

Optimised fins
(Tmax objective)

0.8821 0.8439 0.003269

Optimised fins
(Amin objective)

0.7671 0.7349 0.002931

Circular fins 1.0066 0.8006 0.003145
Table 6 Comparison of the objectives of circular fins along with the optimised fins 

4.4. Computational Validation
 In the present study, computational validation of optimised fin shapes are carried out by 

making use of the heat sink model described by Lazarov et al.(2018).  Lazarov et al. conducted 

computational and experimental validation of their topology optimised heat sink designs 

against commercial heat sinks. Their heat sink consists of a circular disk of diameter 65mm 

and thickness 3mm, on which pin-fins are attached at one end and a volumetric heat source 

with a base-plate is attached at the other end (Figure 18). Volumetric heat source (cube 

shaped) mimics a LED chip in the practical scenario. In the present study, the above-

mentioned heat sink design is retained but by modifying the pin-fin parts 3 different heat 

sinks are developed. A circular pin-fin heat sink with 42 fins, each fin with a diameter of 3.8mm 

and W/D=0.789 and H/D= 0.84 is designed and it is named as heat-sink A. The above inter-fin 

width and height values agree with the values used in the bottom row fin optimisation study 

(Section 4.1). As the optimisation study is carried out for inline fin arrangement, the 3D heat 

sink fins are also arranged in the inline manner. 

 To design the fins of optimised 3D heat sink, cross-sectional shape corresponding to Amin 

objective of H/D=0.83 (Figure 10) is utilised. The optimised 3D heat sink also has 42 fins with 

the same W/D and H/D values (Figure 18). Further, the major dimension (or characteristic 

length) of optimised fin cross section match with the diameter of the fin of the heat sink A. 

The total material volume of optimised 3D heat sink is 26.3% less than the circular pin-fin heat 
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sink-A. To compare the performance of optimised heat sink with a heat sink of same volume, 

the third heat sink with circular pin-fins is designed (heat sink B). Each fin of heat sink B has a 

diameter of 2.79mm and H/D=0.84 value is maintained to make a valid comparison. 

Aluminium is used as the heat sink material and Sika boom foam is used to insulate the 

volumetric heat source. The material properties are given in Table 7. Ambient air temperature 

is considered as 296.5K coefficient of volumetric expansion of air is considered as 3.34e-3 1/K.

      

Figure 18 (a) Pin-fin heat sink ‘A’ and optimised heat sink geometric details, (b) Computational 

domain details
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 k (W/m/K)  (kg/m3) Cp (J/kg/K)

Air 0.026 1.2 1003

Aluminium 175 2702 903

Insulation 0.026 1.2 1003

Table 7  Heat sink material properties used in the validation simulation

 The computational domain shape is shown in Figure 18b. The side and top sides are assigned 

pressure outlet boundary condition and bottom side is assigned adiabatic wall with no-slip 

boundary condition. The computational domain has 3 different material zones (Foam, 

Aluminium and air) and air zone is discretized with prism and tetrahedral cells while other 

zones are discretised with tetrahedral elements. For this conjugate heat transfer simulation, 

a mesh with 8.253 million elements is used. Same mesh setup is used for all the 3 heat sinks. 

Simulation is conducted for an input power 5.26W in Fluent 18.2 solver. Simulation ran till the 

baseplate maximum temperature variation falls below 0.01K over 100 iterations.

Results:

 To assess the effectiveness of the three heat sinks, maximum temperature of the baseplate 

is evaluated. Lower baseplate temperature indicates higher heat sink’s cooling effectiveness. 

TB,max indicates the difference between maximum temperature in baseplate to ambient air 

temperature. Temperature distribution on different heat sinks (Figure 19) show that optimised 

fins are at lower temperature, indicating that these fins are effective in convecting the heat 

to the air. Temperature and velocity field values (Figure 20 & Figure 21) at the middle of fin 

length show that optimised fins enable high flow velocity between the fin columns and that 

leads to effective convective cooling.  The quantitative results (Table 8) show that, among the 

three heat sinks, optimised heat sink is more effective and its TB,max is 10.3% lower than the 

heat sink A and 1.6% lower than the heat sink B. This result validates that genetic algorithm 

based optimisers are capable of producing fin shapes which are better than the conventional 

circular fins. It must be noted that the cross sections optimised especially for bottom row fins 

is used to make all the fins (bottom, middle and top row fins) of the optimised heat sink. If fin 

cross sections are optimised for this particular pin-fin arrangement, a different and much 
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better fin shape could be obtained which would have further higher cooling effectiveness. But 

this exercise will involve much higher number of design variables and hence computationally 

challenging.

 

Circular 
Heatsink A 

Optimised 
Heat sink 

Circular 
Heatsink B

Volume (1x10-6m3) 47.79 35.24 35.25

Maximum 
Temperature (K) 327.92 324.67 325.27

TB,max (K) 31.42 28.17 28.77

Table 8 Results of computational validation study

Figure 19 Temperature (K) distribution over heat sink surfaces. a) circular heat sink A, b) Optimised 

heat sink, c) Circular heat sink B 

Figure 20 Temperature (K) field at mid-length of heat sink A, optimised heat sink, and heat sink B.

Page 25 of 29

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Num
erical M

ethods for Heat and Fluid Flow

26

Figure 21 Velocity (m/s) field at mid-length of heat sink A, optimised heat sink, and heat sink B.

  The optimised heat sinks can be manufactured by additive manufacturing technique, where 

the design is built by layer-by-layer deposition of molten material at required locations. 

Selective laser melting is one such popular method, wherein high-power density laser is used 

to melt metallic powders at select locations. Due to rapid advancement taking place in this 

field, cost per item of product manufactured by these techniques are continuously 

decreasing. Hence the cost of manufacturing these optimised fins will become acceptable in 

the near future.

5. Conclusions
 This study focused on the assessment of the effectiveness of the NSGA-II genetic algorithm 

based multi-objective shape optimisation approach when applied to the design of cross-

sections of passively cooled heat sinks. The developed shape optimisation tool makes use of 

the CFD module and it was validated by repeating a previous work, with the shapes and 

objective values agreeing well with the earlier study. The validated framework was 

subsequently used to optimise the design of bottom row and middle row fins of passively 

cooled, horizontally mounted pin-fin heat sinks. The effect of inter-fin distance, on the 

optimised fin shape, is also studied. The multi-objective nature of the study obtained a pareto 

front that enabled trade-offs between the heat transfer performance and material usage to 

be explored. 

 Computational validation is performed by generating a 3D pin-fin heatsink by making use of 

the optimised fin cross sections and evaluating its performance by a CFD model. The 
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performance of the optimised 3D heat sink is compared against circular pin fin heat sinks 

having same inter-fin distance. The results have shown that the optimised heat sink has 1.6% 

higher cooling effectiveness than the circular pin fin heat sink with same material volume and 

10.3% higher cooling effectiveness than the circular pin fin heat sink with same characteristics 

fin dimension.

The ramifications of this study are that it is shown that the NSGA-II genetic algorithm based 

multi-objective shape optimisation approach can be effectively applied to the design of heat 

exchanger systems. The method can also be applied to systems where the level of 

performance needs to be retained while seeking a reduction in weight of the thermal 

management system or a combined improvement in performance: weight trade-off.  
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