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Abstract

Intermittent androgen deprivation therapy is often used to treat prostate
cancer, but there are few mathematical modelling studies of it. To explore
the mechanisms of such therapy, we describe intermittent therapy with im-
pulsive differential equations, then we propose a novel mathematical model
of intermittent androgen deprivation therapy with white noise. We first s-
tudied the model’s basic properties including the existence and uniqueness
of the solution. By using the theory of stochastic differential equations, we
investigated the thresholds for the extinction and persistence of prostate can-
cer cells, which are markedly affected by antigenicity of tumours and noise
parameters. Moreover, sufficient conditions for the stationary distribution
and ergodicity of the system are provided. The results show that reducing
the period of pulsed interventions or increasing the dosages (or frequencies)
of the therapy will be helpful for curing prostate cancer.
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1. Introduction

Prostate cancer is one of the most common cancers in the world [1],
with its incidence ranking second of all male tumours worldwide in the lat-
est survey [2]. The traditional treatment of prostate cancer mainly involves
surgery, endocrine therapy and radiotherapy, but as these approaches were
not always highly effective, androgen deprivation therapy (ADT) has become
adopted in many cases. ADT is usually divided into two types: continuous
androgen deprivation (CAD) therapy and intermittent androgen deprivation
(IAD) therapy. Although CAD is the best endocrine therapy for advanced
prostate cancer but, as the overall survival period can only be prolonged
by 3-6 months at most, it is becoming less and less acceptable by patients.
Therefore, IAD therapy has been proposed and has recently attracted the
attention of the medical community. Serum prostate-specific antigen (PSA)
which is produced by cells in the prostate gland is considered to be an im-
portant biomarker for detecting prostate cancer [3], with a high level of PSA
indicating the presence of malignant tumours. According to their responses
to androgen suppression, the tumour cells are divided into androgen depen-
dent cells (AD) and androgen independent cells (AI). Many patients who
have received CAD later suffered from tumour recurrence caused by emer-
gence of AI cells [4].

Mathematically, IAD therapy was first proposed to prevent AI cells [5–7],
and then IAD was studied to detect its therapeutic effect [8–10]. The results
showed that IAD therapy not only improved the quality of a patient’s life, but
also reduced adverse effects such as sexual dysfunction, osteoporosis and hot
flushes during treatment. Ideta et. al. established an ordinary differential
equation mathematical system to model the growth of prostate cancer with
IAD therapy [11]. Their model fitted the concentration of androgen and the
growth curves of AD and AI cells well, and mutation rates from AD to AI
were also studied. Portz and Kuang then extended the previous studies by
incorporating CAD therapy and immunotherapy into a model for advanced
prostate cancer [12]. They pointed out that immunotherapy together with
CAD therapy or IAD therapy can lead to eradication of cancer. Moreover,
Rutter and Kuang later developed the model by taking the mutation of
biphasic function into account [13], the global dynamics were investigated
and the efficacy of of hormonal immunotherapy was discussed.

The above studies mainly focused on deterministic models [11–13], but all
living organisms are influenced by environmental disturbances, such as tem-
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perature, radiation, oxygen supply and nutrients, and cancer is no exception
[14, 15], so a stochastic approach is more realistic. Tanaka and co-authors
proposed a stochastic mathematical model concerning intermittent hormone
therapy [4] and they not only considered personalized hormone therapy but
also discussed optimal scheduling of hormone therapy. Zazoua andWang con-
sidered different competition coefficients between AD and AI, established a
mathematical model concerning CAD therapy with white noise, and focused
on the effects of white noise and competition parameters on the dynamics of
prostate cancer [16, 17].

In the above analyses, piece-wise functions were used to describe the I-
AD therapy although details of how its dosage, period and frequency and
of immunotherapy affect prostate cancer are still unknown. To investigate
further we adopted Impulsive Differential Equations, widely used in many
fields [18, 19], to describe IAD therapy, with which we can precisely adjust
the concentration of androgen. For simplicity, we do not distinguish the
types of prostate cancer cells, that is, we consider combinations of AD and
AI cells as cancer cells. Since the antigenicity of the tumour always exists
during the whole invasion process, pulsed immunotherapy and the antigenic-
ity of the prostate cancer cells are also explored. Therefore, we develop a
novel stochastic mathematical model concerning impulsive IAD therapy and
immunotherapy, to answer the following questions: (1) How do the periods,
dosages and frequencies of pulsed therapy affect the thresholds for extinction
of prostate cancer cells? (2) When pulsed IAD therapy is considered, does
the proposed system exist with an ergodic stationary distribution? (3) How
can an optimal treatment scheme for prostate cancer be to determined? The
solutions to these problems would not only provide theoretical significance
for cancer medication strategy, but also provide guidance for the treatment
of other cancers.

The paper is divided into the following parts. In section 2, the model will
be proposed and some important definitions and lemmas are introduced. In
section 3, the main results are derived including the existence and uniqueness
of the solution and the extinction and persistence of the solution. In section
4, we discuss the existence of the unique ergodic stationary distribution of the
system. In section 5, numerical simulations are performed and the optimal
treatment plan is obtained.
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2. Model formation and preliminaries

2.1. Model formation

Recently, Ideta and co-authors proposed a mathematical model to explore
the differences between CAD and IAD therapy, they also studied the effects
of key factors on the androgen-independent relapse [11], the model can be
described by the following equations,

dA = {−γ(A− a0)− γa0u(t)}dt,
dX1 = {α1p1(A)− β1q1(A)−m1(A)}X1dt,

dX2 = {m1(A)X1 + [α2p2(A)− β2q2(A)]X2}dt,
(2.1)

where A is the serum androgen concentration, X1 and X2 represent the AD
and AI cells at time t, respectively. γ is the clearance and production rate of
androgen, a0 represents the basic level of androgen concentration. α1p1 and
β1q1 are the proliferation and apoptosis rates of the AD cells, respectively.
α2p2 and β2q2 are the proliferation and apoptosis rates of the AI cells, re-
spectively. m1 is the irreversible mutation rate from AD to AI cells, and u(t)
is either 0 (if treatment off) or 1 (if treatment on).

In order to reduce the recurrence of the tumours and increase the sur-
vival rate of patients, immunotherapy was introduced for the treatment of the
prostate cancer. Since dendritic cells are the most robust antigen-presenting
cells and are capable of producing immature T cells to induce tumour im-
mune responses, the dendritic cell vaccines are considered to be promising
candidates for the treatment of cancer [20]. Notice that IL-2 is an important
cytokine involved in the immune response. In fact, it can not only enhance
the killing activity of the effector cells by enhancing dendritic cells, but also
improve the efficacy of immunotherapy. Therefore, Rutter and Kuang ex-
tended system (2.1) by incorporating ADT (intermittent and continual) and
dendritic cell vaccine immunotherapy into the model [13], which is descried
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as follows,

dX1 = {r1(A,X1, X2)X1 −m1(A)X1 +m2(A)X2 −X1f1(X1, X2, E)}dt,
dX2 = {r2(X1, X2)X2 +m1(A)X1 −m2(A)X2 −X2f2(X1, X2, E)}dt,

dE = { eD

g +D
− µE + Ef3(IL, E)}dt,

dIL = {Ef4(X1, X2)− ωIL}dt,
dA = {γ(a0 − A)− γa0u(t)}dt,
dD = −cDdt,

(2.2)
where E and IL are the effector cells (such as cytotoxic T-cells, macrophages,
and natural killer cells) and the concentration of IL-2, respectively. D is the
number of dendritic cells. r1(A,X1, X2)X1 and r2(X1, X2)X2 are the growth
and death rates of AD and AI cells. m1(A)X1 and m2(A)X2 represent the
maximum mutation rates from AD to AI cells and from AI to AD cells.
f1(X1, X2, E) and f2(X1, X2, E) are the death rates of AD and AI cells by
E cells. Ef3(IL, E) and Ef4(X1, X2) represent the activation of E cells by
cytokines and the secretion by tumours, respectively. Besides, e is the max
activation rate of E cells, g is the saturation level of dendritic cells activated
by E cells. µ and c are the death rates of effector cells and the dendritic
cells, respectively. ω denotes the clearance rate of IL-2. The effects of IL-2,
ADT and dendritic cell vaccine immunotherapy on the AD to AI cells are
discussed [13].

In the above analyses, IAD therapy was usually described by using a
piecewise function, but the details of its dosages, period and frequencies, and
how immunotherapy affects prostate cancer are still unclear. To explore these
characteristics, the introduction of pulse therapy is meaningful. Since the
antigenicity of the tumour remains throughout the invasion, the antigenicity
of prostate cancer cells should be considered. For simplicity, we do not
distinguish between the types of prostate cancer cells and ignore the term for
cytokines (IL-2). Then impulsive differential equations are used to describe
the IAD therapy and we take pulsed immunotherapy and the antigenicity of
the prostate cancer cells into consideration [11, 13, 16, 21].

In reality, the growth rate rA and the antigenicity C are subjected to
stochastic perturbations around some average value. Thus, rA and C can be
random variables r̃A and C̃, in [t, t+dt), we have r̃Adt = rAdt+δ1(X)dB1(t)
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and C̃dt = Cdt+ δ2(E)dB2(t), where dBi(t) = Bi(t+ dt)−Bi(t) denotes the
increment of a standard Brownian motion, but we still use the notations of
rA and C instead of r̃A and C̃ for simplicity. Base on [11, 13], let X be the
prostate cancer cells. All these modifications lead to the following extended
model,

dX = [rA(1− X

K
)− d(1− A

a0
)− aE

g1 +X
]Xdt+ δ1XdB1(t),

dE = [CE +
eD

g2 +D
− µE]dt+ δ2EdB2(t),

dA

dt
= −γ(A− a0),

dD

dt
= −cD,


t ̸= nT,

A(nT+) = (1− δ)A(nT ),

D(nT+) = D(nT ) + τ,

}
t = nT,

(2.3)
where, r and d denote the growth rate and death rate of prostate cancer cells,
respectively. K is the carrying capacity of these cells, a is the maximum
killing rate of the effector cells, g1 and g2 are saturation constants of prostate
cancer cells and dendritic cells, respectively, δ1 and δ2 denote the intensities of
the white noise influencingX and E, respectively. δ is the treatment intensity
of IAD, τ is the pulse injection dosage of dendritic cells at impulsive point
series nT (n = 1, 2, 3, · · · ), and we keep the meaning of other parameters
consistent with (2.1) and (2.2). In addition, note that all the parameters in
(2.1)-(2.3) are positive.

Moreover, the dynamics of the ADT and immunotherapeutic drugs are
given by 

dA

dt
= −γ(A− a0),

dD

dt
= −cD,

 t ̸= nT,

A(nT+) = (1− δ)A(nT ),

D(nT+) = D(nT ) + τ,

}
t = nT.

By a simple calculation, we can derive the expression of the T periodic solu-
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tion AT (t) andDT (t) of (2.3) with
AT (t) = a0 −

a0δe
−γ(t−nT )

1− (1− δ)e−γT
,

DT (t) =
τe−c(t−nT )

1− e−cT
.

Replace A and D with AT (t) and DT (t), then we get the reduced system of
system (2.3),

dX = [rAT (t)(1− X

K
)− d(1− AT (t)

a0
)− aE

g1 +X
]Xdt+ δ1XdB1(t),

dE = [CE +
eDT (t)

g2 +DT (t)
− µE]dt+ δ2EdB2(t).

(2.4)
Now, we will focus on the global dynamics of equivalent system (2.4). To

this end, some important definitions and lemmas will be introduced first.

2.2. Preliminaries

Assume that (Ω,F , {Ft}t≥0,P) is a complete probability space which has
a filtration {Ft}t≥0, and it is right continuous and F0 contains all P -null sets.
In this probability space, we define Bi(t)(i = 1, . . . , n) as an independent
Brownian motion. If the number of factors in a product is zero, then we
assume that the product is equal to unity. Based on these assumptions, we
introduce some useful definitions and lemmas [12].
Definition 2.1. For any ε ∈ (0, 1), if there is a positive constant H such
that any positive solution Y (t) = (x(t), y(t)) satisfies

lim sup
t→∞

P{|Y (t)| > H} < ε,

then the positive solutions of system (2.4) are said to be stochastically ulti-
mately bounded.
Definition 2.2. For any two solutions X1(t) = (x1(t), y1(t)) and X2(t) =
(x2(t), y2(t)) of system (2.4) with X1(0) > 0, X2(0) > 0, system (2.4) is called
globally attractive provided that

lim
t→+∞

| x1(t)− x2(t) |= 0 and lim
t→+∞

| y1(t)− y2(t) |= 0.
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Lemma 2.3. Suppose that N = {N(t)}t≥0 is a real-valued continuous local
martingale vanishing at time zero. If

lim sup
t→∞

⟨N,N⟩t
t

<∞ a.s.

then

lim
t→∞

Nt

t
= 0 a.s.

For simplicity, we introduce the following notation for any integrable
function x(t) on [0,∞), < x >t= 1/t

∫ t

0
x(s)ds for t > 0, < x >∗=

lim supt→∞ 1/t
∫ t

0
x(s)ds, and < x >∗= lim inft→∞ 1/t

∫ t

0
x(s)ds.

Definition 2.4. The solution Yi(t) is said to be extinctive if limt→∞ Yi(t) =
0; and Yi(t) is said to be persistent in mean if < Yi(t) >

∗> 0.
Definition 2.5. ([22, 23]). Let Y (t) = (x(t), y(t)) be a solution of system
(2.4), if for any ε ∈ (0, 1), there exist two positive constants β > 0 and δ > 0
such that

lim inf
t→+∞

P{x(t) ≥ β} ≥ 1− ε, lim inf
t→+∞

P{x(t) ≤ δ} ≥ 1− ε,

then x(t) is called stochastically persistent.
Remark 1. Biologically, the definitions of extinction, weak persistence and
stochastic permanence correspond to the phases of elimination, equilibrium
and escape, respectively, which are just three phases of cancer immunoedit-
ing.

3. Analysis of stochastic system (2.4)

3.1. Existence and uniqueness of the solution

For simplicity, we denote P1 = rAT (t) = ra0 − ra0δe−γ(t−nT )

1−(1−δ)e−γT , Q1 = d(1 −
AT (t)
a0

) and S1 =
eDT (t)

g2+DT (t)
, then the system (2.4) can be simplified as dX = [P1(1−

X

K
)−Q1 −

aE

g1 +X
]Xdt+ δ1XdB1(t),

dE = [(C − µ)E + S1]dt+ δ2EdB2(t).

(3.1)

Lemma 3.1. ([16, 24, 25]). For (X(0), E(0)) ∈ IntR2
+ and all t ≥ 0, there

exists with a unique positive solution Y (t) = (X(t), E(t)) for system (3.1)
almost certainly.
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Proof. The coefficients of system (3.1) are subjected to the local Lipschitz
condition, then system (3.1) has a unique positive local solution. Then we
want to show that the solution is global. Firstly, the process of the solution
does not explode in finite time, defining the stopping times:

τk = inf

{
t ≥ 0, X(t) /∈ (

1

k
, k) or E(t) /∈ (

1

k
, k)

}
,

we just need to prove that τ∞ = limk→∞ τk = ∞, where τ∞ is the explosion
time. Defining a C2− function V : IntR2

+ → R+ as follows

V (X,E) = X − 1− lnX + E − 1− lnE.

By using Itô’s formula,

dV = LV dt+ δ1(X − 1)dB1(t) + δ2(E − 1)dB2(t),

where

LV = (X − 1)(P1(1−
X

K
)−Q1 −

aE

g1 +X
) + (E − 1)(C − µ)

+S1 −
S1

E
+

1

2
δ21 +

1

2
δ22

= (X − 1)(P1(1−
X

K
)−Q1 −

aE

g1 +X
) + CE + S1 + µ

−µE − C − S1

E
+

1

2
δ21 +

1

2
δ22.

Furthermore,

LV ≤ −P1X
2

K
+ P1(1 +

1

K
)X +Q1 + µ+ S1

−
(µ− C − a

g1
)E2 + S1

E
+

1

2
δ21 +

1

2
δ22,

It is easy to see that when µ − C − a/g1 > 0, and the right-hand side
of the above inequality can be regarded as two quadratic functions with
negative leading coefficients to judge the boundedness of LV . In terms of
the extremum conditions of quadratic functions, LV is upper bounded. Then

LV ≤M,
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where M is a positive constant. Then by a similar proof of Theorem 2.1 in
literature [25] we can get the conclusion. This completes the proof.
Theorem 3.2. ([16, 26]). The positive solution Y (t) = (X(t), E(t)) of
system (3.1) is stochastically ultimately bounded.
Proof. Let V (t,X) = etXp (p > 1). By using Itô’s formula,

dV (X) = et(1 + p(P1(1−
X

K
)−Q1 −

aE

g1 +X
+
p− 1

2
δ21))X

pdt

+petδ1X
pdB1(t)

≤ et{(1 + p(P1 +
p− 1

2
δ21))X

p − p
P1

K
Xp+1 − paE

g1 +X
Xp}dt

+petδ1X
pdB1(t)

= etXp−1{(1 + p(P1 +
p− 1

2
δ21))X − p

P1

K
X2 − paEX

g1 +X
}dt

+petδ1X
pdB1(t)

≤ M1e
tdt+ petδ1X

pdB1(t),

due to −(paEX)/(g1 +X) ≤ 0 and the maximum conditions for quadratic
functions, we can get that M1 is a positive constant. Integrating the above
inequality from 0 to t and then the expectation of both sides leads to

E[etXp(t)] ≤ Xp(0) +M1(e
t − 1).

Thus,
E[Xp(t)] ≤ Xp(0)e−t +M1(1− e−t).

As a result,
lim sup
t→+∞

E[Xp(t)] ≤M1. (3.2)

Simlarly,

dV (etEp) = et[1 + p(C − µ+
S1

E
+
p− 1

2
δ22)]E

pdt

+petδ2E
pdB2(t)

≤ et[1 + p(C +
S1

E
+
p− 1

2
δ22)]E

pdt

+petδ2E
pdB2(t)

≤ M2e
tdt+ petδ2E

pdB2(t).
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Using the same method as above,

lim sup
t→+∞

E[Ep(t)] ≤M2. (3.3)

By a similar proof of Theorem 4.5 in literature [16], it follows from (3.2) and
(3.3) that

lim sup
t→+∞

E(| Y |p) ≤ 2p/2[M1 +M2] <∞.

The Chebychev’s inequality gives rise to the desired result. The proof is
completed.

Theorem 3.3. The solution of system (3.1) is globally attractive.

Proof. Assume that (X1(t), E1(t)) and (X2(t), E2(t)) be any two solutions
of system (3.1) with initial values X1(0) > 0, E1(0) > 0, X2(0) > 0 and
E2(0) > 0. In terms of Theorem 3.2, there exist three constants M3 >
0, c1 > 0 and c2 > 0 such that M3 ≥ X, M3 ≥ E hold almost surely, and we
assume that M3 = c1X = c2E. Defining the Lyapunov function as follows:

V (t) =| lnX1(t)− lnX2(t) | + | lnE1(t)− lnE2(t) |,

where t > 0 and t ̸= nT . First of all, we calculate the upper right derivative
d+V (t) of V (t) and then an application of Itô’s formula along the solutions
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of system (3.1) leads to

d+V (t) = sign(X1(t)−X2(t))d(lnX1(t)− lnX2(t))

+sign(E1(t)− E2(t))d(lnE1(t)− lnE2(t))

≤ sign(X1(t)−X2(t))[−P1

K
(X1(t)−X2(t))

−a(E1(t)− E2(t))

g1 +M3

]dt

= sign(X1(t)−X2(t))[−P1

K
(X1(t)−X2(t))

−
a
g1
(E1(t)− E2(t))

(1 + c2
g1
E1(t))(1 +

c2
g1
E2(t))

]dt

≤ sign(X1(t)−X2(t))[−P1

K
(X1(t)−X2(t))

−
a
g1
(E1(t)− E2(t))

(1 + c2
g1
M3)2

]dt

= [−P1

K
| X1(t)−X2(t) | −

a
g1

(1 + c2
g1
M3)2

| E1(t)− E2(t) |]dt

≤ −ρ(| X1(t)−X2(t) | + | E1(t)− E2(t) |)dt
.
= −ρV(t)dt,

(3.4)
where ρ = min{P1/K, (

a
g1
)/(1 + c2

g1
M3)

2}. Secondly, for t = nT we have

V (nT+) = | lnX1(nT
+)− lnX2(nT

+) | + | lnE1(nT
+)− lnE2(nT

+) |
= | lnX1(nT )− lnX2(nT ) | + | lnE1(nT )− lnE2(nT ) |
= V (nT ).

From 0 to t, we integrate equation (3.4) and then take the expectation of
both sides,

V (t) ≤ V (0)− ρ

∫ t

0

V(s)ds.

Hence,

V (t) + ρ

∫ t

0

V(s)ds ≤ V (0) <∞.

In addition, V (t) > 0 is always valid which gives rise to limt→+∞ V(t) = 0.
That is to say,

lim
t→∞

| X1(t)−X2(t) |= 0 and lim
t→∞

| E1(t)− E2(t) |= 0.
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This completes the proof.

3.2. Extinction and persistence in mean

Since we have studied the existence, uniqueness, global attractivity and
stochastic ultimate boundedness of solutions of (3.1), in the following, the
threshold conditions for the extinction and persistence of prostate cancer
cells will be investigated which are important in their treatment.

Theorem 3.4. (i) If

P1 −Q1 −
δ21
2
< 0, (3.5)

then prostate cancer cells X go to extinction.

(ii) If

C − µ <
1

2
δ22 and P1 −Q1 −

δ21
2
> 0, (3.6)

then prostate cancer cells X are persistent in the mean.

Proof. (i) For the positive solution of (2.4), we get

dX(t) ≤ (P1 −Q1 −
P1

K
X)Xdt+ δ1XdB1(t).

Let φ(t) be the solution of

dφ(t) = (P1 −Q1 −
P1

K
φ)φdt+ δ1φdB1(t), for all t ≥ 0,

with the initial value φ(0) = X(0) > 0. The comparison principle of stochas-
tic differential equations [27] yields

X(t) ≤ φ(t) for all t ≥ 0.

Applying the same methods as shown in [28, 29], we get

lim
t→+∞

φ(t) = 0 a.s.

Therefore,
lim

t→+∞
X(t) = 0 a.s.
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That is to say, P (Ω̄) = 1 where

Ω̄ = {ω ∈ Ω : lim
t→+∞

X(ω, t) = 0}.

Consequently, for any ω ∈ Ω̄ and any small ϵ > 0, there exists a constant
T2(ω, ϵ) > 0 such that

X(ω, t) < ϵ for t ≥ T2. (3.7)

(ii) According to Lemma 3.1, E(t) ≥ 0, for the positive solution of (2.4), one
can see that

dE ≤ [(C − µ)E + S1]Edt+ δ2EdB2(t), for all t ≥ 0.

Let ψ(t) be the solution of

dψ(t) = [(C − µ)ψ + S1]ψdt+ δ2ψdB2(t),

with the initial value ψ(0) = E(0). Similarly,

E(t) ≤ ψ(t) for all t ≥ 0.

Then
lim

t→+∞
ψ(t) = 0 a.s.

Therefore,
lim

t→+∞
E(t) = 0 a.s.

In other words, P (Θ̄) = 1 where

Θ̄ = {ω ∈ Θ : lim
t→+∞

E(ω, t) = 0}.

Thus, for any ω ∈ Θ̄ and any small ε > 0 , there exists a constant T3(ω, ε) > 0
such that

E(ω, t) < ε for t ≥ T3. (3.8)

Let us consider the case that under (3.6), the inequality (3.8) conforms to
0 < ε < g1(P1 −Q1 − δ21/2)/a. As a consequence, for t ≥ T3 and ω ∈ Θ̄, we
have

dX(ω, t) ≥ [P1 −Q1 −
aε

g1
− P1

K
X]X(ω, t)dt+ δ1X(ω, t)dB1(ω, t).
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Suppose φ be the solution of

dφ(t) = [P1 −Q1 −
aε

g1
− P1

K
φ]φdt+ δ1φdB1(ω, t),

with the initial value φ(0) = X(0). Hence,

lim
t→+∞

1

t

∫ t

0

φ(s)ds =
K

P1

(P1 −Q1 −
aε

g1
− δ21

2
) > 0.

With an application of the comparison principle, we have

lim sup
t→+∞

1

t

∫ t

0

X(s, ω)ds ≥ K

P1

(P1 −Q1 −
aε

g1
− δ21

2
) > 0 for all ω ∈ Θ̄.

Recalling that P (Θ̄) = 1, we obtain

lim sup
t→+∞

1

t

∫ t

0

X(s)ds ≥ K

P1

(P1 −Q1 −
aε

g1
− δ21

2
) > 0 a.s.

which is the required assertion. This completes the proof.

3.3. Stochastic permanence

Since X and E are stochastic ultimately bounded and the duration of
pulse therapy throughout the treatment phase is limited, we can make the
following assumptions.

Assumption 1. Theorem 3.2 shows that X and E are always bounded, and
that there exist two positive constants J1 and J2, such that 0 ≤ X ≤ J1
and 0 ≤ E ≤ J2. Therefore, there exist four positive constants n1 = 0,
N1 = J1/K, n2 = 0, N2 = J2/g1 such that n1 ≤ X/K ≤ N1 and n2 ≤
E/(g1 +X) ≤ E/g1 ≤ N2.

Theorem 3.5. Under assumption 1, if τ = mint≥0[P1−Q1− 1
2
δ21−aN2] > 0,

then the prostate cancer cells are stochastically permanent.

Proof. We need to prove that there are two constants β > 0 and ϱ > 0 such
that lim inft→+∞ P{X(t) ≥ β} ≥ 1− ε and lim inft→+∞ P{X(t) ≤ ϱ} ≥ 1− ε
for any ε ∈ (0, 1).
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For the first inequality, define a Lyapunov function V 1(x) = 1/X (X > 0),
by using Itô’s formula along the first equation of system (3.1), we get

dV 1(X) = −dX
X2

+
dX2

X3

= − 1

X
{[P1(1−

X

K
)−Q1 −

aE

g1 +X
]

+δ1dB1(t)}+ 1
X
δ21dt

= −V 1(X)(P1 −Q1 −
P1X

K
− aE

g1 +X
)dt+ V 1(X)δ21dt

−V 1(X)δ1dB1(t).

Then selecting a positive constant υ such that τ > 0.5υδ21. Define another
Lyapunov function V 2(X) = (1+ V 1(X))υ, then application of Itô’s formula
leads to

dV 2(X) = υ(1 + V 1(X))υ−1dV 1(X) + 0.5υ(υ − 1)(1 + V 1(X))υ−2(dV 1(X))2

= υ(1 + V 1(X))υ−2{(−V 1(X)− (V 1(X))2)[P1 −Q1 − P1X
K

− aE
g1+X

]

+(V 1(X) + (V 1(X))2)δ21 + 0.5(υ − 1)(V 1(X))2δ21}dt
−υ(1 + V 1(X))υ−1V 1(X)δ1dB1(t)

= υ(1 + V 1(X))υ−2{−(V 1(X))2[P1 −Q1 − aE
g1+X

− 0.5δ21 − 0.5υδ21]

+V 1(X){[−(P1 −Q1 − P1X
K

− aE
g1+X

) + δ21] +
P1X
K

}dt

−υ(1 + V 1(X))υ−1V 1(X)δ1dB1(t)

≤ υ(1 + V 1(X))υ−2{−(V 1(X))2[τ − 0.5υδ21]

+V 1(X)[Q1 +
P1N1

K
+ aN2 + δ21] +

P1N1

K
}dt

−υ(1 + V 1(X)υ−1V 1(X)δ1dB1(t).

Further, we choose a sufficiently small ϵ which satisfies

τ − 0.5υδ21 >
ϵ

υ
> 0. (3.9)

Then define a Lyapunov function V 3(X) = exp(ϵt)V 2(X), and then Itô’s
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formula results in

dV 3(X) = ϵ exp(ϵt)V 2(X)dt+ exp(ϵt)dV 2(X)

≤ υ exp(ϵt)(1 + V 1(X))υ−2{ ϵ(1+V 1(X))2

υ
− (V 1(X))2[τ − 0.5υδ21]

+V 1(X)[Q1 +
P1N1

K
+ aN2 + δ21] +

P1N1

K
}dt

−υ exp(ϵt)(1 + V 1(X))υ−1V 1(X)δ1dB1(t)
.
= exp(ϵt)h(X)dt− υ exp(ϵt)(1 + V 1(X))υ−1V 1(X)δ1dB1(t),

where

h(X) = υ(1 + V 1(X))υ−2{−[τ − 0.5υδ21 −
ϵ

υ
](V 1(X))2

+[Q1 +
P1N1

K
+ aN2 + δ21 +

2ϵ

υ
]V 1(X) +

P1N1

K
+
ϵ

υ
}.

Let B1 = τ − 0.5υδ21 − ϵ/υ, B2 = Q1 + P1N1/K + aN2 + δ21 + 2ϵ/υ and
B3 = P1N1/K + ϵ/υ. Because all parameters are positive, then B1 > 0,
B2 > 0 and B3 > 0 and (3.9) holds true. Therefore, h(X) can be rewritten
as

h(X) = υ(1 +
1

X
)υ−2

{
−B1

X2
+
B2

X
+B3

}
.
= h1(X).

It is clear that h(X) is upper bounded when X > 0. If 1/X ≥ {B2 +√
B2

2 + 4B1B3}/2B1
.
= ∆1, then h1(X) ≤ 0. If 0 < 1/X ≤ ∆1, then h1(X) ≤

{4B1B3 +B2
2}/4B1. If υ ≥ 2, then υ(1 + 1/X)υ−2 ≤ υ(1 + ∆1)

υ−2; if υ < 2,
then υ(1 + 1

X
)υ−2 ≤ υ.

Therefore, when X > 0 we always have h(X) ≤ h0 = ∆2(4B1B3+B
2
2)/(4B1),

where ∆2 = max{υ, υ(1 +∆1)
υ−2}. That is, h(X) is always upper bounded.

Furthermore,

dV 3(X) ≤ exp(ϵt)h(X)dt− υ exp(ϵt)(1 + V 1(X))υ−1V 1(X)δ1dB1(t)

≤ h0 exp(ϵt)dt− υ exp(ϵt)(1 + V 1(X))υ−1V 1(X)δ1dB1(t).

Integrating the above equation from 0 to t and then take the expectation,
we have

E[V 3(X(t))] ≤ V 3(X(0)) +
h0
ϵ
exp(ϵt),
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note that V 3(X(t)) = exp(ϵt)(1 + V 1(X(t)))υ, thus,

E[V 3(X(t))] = E[exp(ϵt)(1 + V 1X(t)))υ]

≤ V 3(X(0)) +
h0
ϵ
exp(ϵt)

= (1 + V 1(X(0)))υ +
h0
ϵ
exp(ϵt).

By taking the upper limit of both sides, we get

lim supt→+∞E[ 1
X(t)υ

] = lim supt→+∞E[(V 1(X(t)))υ]

≤ lim supt→+∞E[(1 + V 1(X(t)))υ] ≤ h0
ϵ

= hN .

For arbitrary ε > 0, let β = ε
1
υ /h

1
υ
N . From Chebyshev’s inequality we have

lim supt→+∞ P{X(t) < β} = lim supt→+∞ P{ 1
Xυ(t)

> 1
βυ }

≤ lim supt→+∞
E[ 1

Xυ(t)
]

β−υ

= lim supt→+∞ βυE[ 1
Xυ(t)

] = ε.

Thus, lim inft→+∞ P{X(t) ≥ β} ≥ 1− ε.
For the second inequality, define a Lyapunov function V1(X(t)) = Xp(t)

(X > 0), and by using Itô’s formula along the first equation of system (3.1)
yields

dV1(X(t)) = pXp−1(t)dX(t) + 0.5p(p− 1)Xp−2(t)(dX(t))2

= pXp−1(t)[(P1 −Q1 −
P1X

K
− aE

g1 +X
)Xdt+ δ21XdB1(t)]

+0.5p(p− 1)Xp−2(t)δ21X
2dt

= pV1(X(t))[P1 −Q1 −
P1X

K
− aE

g1 +X
+ 0.5(p− 1)δ21]dt

+p1δ
2
1V1(X(t))dB1(t)

≤ pV1(X(t))[P1 −
P1X

K
+ 0.5(p− 1)δ21]dt

+pδ21V1(X(t))dB1(t).
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Let us integrate both sides of the above inequality from 0 to t and then take
the expectation,

E[V1(X(t))]−E[V1(X1(0))] ≤ p

∫ t

0

E{V1(X(s))[P1−
P1X(s)

K
+0.5(p−1)δ21]}ds,

taking the derivative of both sides of this inequality leads to

dE[V1(X(t))]

dt
≤ pE[V1(X(t))][P1 + 0.5(p− 1)δ21]−

pP1

K
E[Xp+1(t)].

In the light of Hölder’s inequality, we have

dE[V1(X(t))]

dt
≤ pE[V1(X(t))][P1 + 0.5(p− 1)δ21]−

pP1

K
E[Xp(t)]

p+1
p .

Let m(t) = E[V1(X(t))], then

dm(t)

dt
≤ pm(t)[P1 + 0.5(p− 1)δ21 − P1

K
m

1
p (t)]

≤ pm(t)[P1 + 0.5pδ21 − P1

K
m

1
p (t)].

It follows from the standard comparison theorem that

lim supt→+∞E[Xp(t)] = lim supt→+∞E[V1(X(t))]

= lim supt→+∞m(t)

≤
(

(P1+0.5pδ21)K

P1

)p

.

Then the Chebyshev’s inequality results in

lim inf
t→+∞

P{X(t) ≤ ϱ} ≥ 1− ε.

Therefore, the prostate cancer cells are stochastically permanent. This com-
pletes the proof.

4. Stationary distribution and ergodicity of system (3.1)

In this section, we explore the existence of the stationary distribution and
ergodicity of system (3.1), we need to show that the following two conditions
are satisfied [26, 30–32],
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(i) There exists with a bounded domain U ∈ IntR2
+ with regular boundary Γ

such that its closure Ū ⊂ IntR2
+ and a non-negative C2− function V (x) such

that for any x ∈ IntR2
+ \ U , LV is negative;

(ii) For any bounded domain Û ∈ IntR2
+, there is a positive constant ζ such

that the diffusion matrix for system (3.1) given by

b(Y ) =

(
δ21X

2 0
0 δ22E

2

)
satisfies

∑2
i,j=1 bij(Y )ξiξj > ζ∥ξ∥2 for all Y = (X,E) ∈ Û , and ξ = (ξ1, ξ2) ∈

R2.

Theorem 4.1. If

Z1 : = P1 −Q1 −
1

2
δ21 > 0,

Z2 : = µ− C > 0,

Z3 : =| P1 −Q1 −
1

2
δ21 | − | C − µ− δ22

2
|> 0,

∆ : = S2
1 − 4(µ− C)S1 < 0,

(4.1)

then system (3.1) has a unique ergodic stationary distribution.
Proof. Let

V (X,E) = X + E − lnX − lnE.

Making use of Itô’s formula yields

dV = LV dt+ δ1(X − 1)dB1(t) + δ2(E − 1)dB2(t),

where

LV (X,E) = X(P1 −Q1 −
P1X

K
− aE

g1 +X
)− (P1 −Q1 −

δ21
2
) +

P1X

K

+
aE

g1 +X
+ E(C − µ)− (C − µ− δ22

2
)− S1

E
+ S1.

Then

LV (X,E) ≤ φ(X) + φ(E) +
aE

g1 +X
,
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where

φ(X) = −P1

K
X2 + (P1 −Q1 +

P1

K
)X,

φ(E) =
1

E
(−(µ− C)E2 + S1E − S1)− (P1 −Q1 −

δ21
2
)− (C − µ− δ22

2
).

It is worth noting that the leading coefficients of the quadratic functions
φ(X) and φ(E) are negative, so φ(X) has an upper bound O1 = supφ(X) =
K(P1 − Q1 + P1

K
)2/4P1. Moreover, it follows from (4.1) that φ(E) has a

negative upper bound O2 = supφ(E).
Now let us find a bounded domain

U = [ϵ1, 1/ϵ2]× [σ1, 1/σ2] ⊂ IntR2
+,

such that LV (X,E) is negative for all (X,E) ∈ IntR2
+ \ U . Because O2 < 0,

we can choose sufficiently small ϵ1, σ1, ϵ2 and σ2 which satisfy the following
conditions:

(P1 −Q1 +
P1

K
)
−(aσ1 +O1g1 + g1)

O1 + 1
+O2 < 0,

ϵ1 =
−(aσ1 +O1g1 + g1)

O1 + 1
, (4.2)

and

O1 −
P1

2K

1

ϵ22
< −1, O2 −

µ− C

2σ2
2

< −1. (4.3)

It is clear that IntR2
+ \ U = U1 ∪ U2 ∪ U3 ∪ U4, where

U1 = {(X,E) ∈ IntR2
+, X ≥ ϵ1, E < σ1}, U2 = {(X,E) ∈ IntR2

+, X < ϵ1},

U3 = {(X,E) ∈ IntR2
+, X >

1

ϵ2
}, U4 = {(X,E) ∈ IntR2

+, E >
1

σ2
}.

Hence, from (4.2) we obtain

LV (X,E) ≤ O1 +
aE

g1 +X
< −1 if (X,E) ∈ U1,

and

LV ≤ (P1 −Q1 +
P1

K
)ϵ1 +O2 < 0 if (X,E) ∈ U2.
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In the same way, from (4.3) we get

LV ≤ −1 when (X,E) ∈ U3 or (X,E) ∈ U4.

As a result, under (4.1) we conclude that

LV (X,E) < 0 for all (X,E) ∈ IntR2
+ \ U.

Moreover,

2∑
i,j=1

bij(X,E)ξiξj = δ21E
2ξ21 + δ22X

2ξ22

≥ min
(X,E)∈E

{δ21X2, δ22E
2}∥ξ∥2

for all (X,E) ∈ U, (ξ1, ξ2) ∈ R2.
It means that the necessary conditions have been satisfied. Therefore, system
(3.1) has a unique ergodic stationary distribution. This completes the proof.

5. Numerical simulations

In this section, we describe numerical simulations to verify our results
and to be convincing, we used logarithmic plots. By adopting the Milstein
higher order method [33], we get the approximate solution of system (2.3)
under initial conditions and the discretization equations of system (2.3) are
as follows:

Ak+1 = Ak − γ(Ak − a0)∆t,

Dk+1 = Dk − cDk∆t,

Xk+1 = Xk + [rAk(1−
Xk

K
)− d(1− Ak

a0
)− aEk

g1 +Xk

]Xk∆t

+δ1Xk

√
∆tξk +

δ21
2
Xk(ξ

2
k − 1)∆t,

Ek+1 = Ek + [(C − µ)Ek +
eDk

g2 +Dk

]∆t

+δ2Ek

√
∆tηk +

δ22
2
Ek(η

2
k − 1)∆t,

(5.1)
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at the impulsive point series t = nT , system (2.3) performed pulsed therapies,
i.e., if mod(k, T ) = 0, then {

Ai+1 = (1− δ)Ai,
Di+1 = Di + τ,

(5.2)

where ξk and ηk(k = 1, 2, 3, · · · ) represent independent Gaussian random
variables with a distribution N(0, 1), and we let the time increment ∆t =
0.01. For simplification, we take the maximum values of periodic solution

A∗ and D∗ instead of AT (t) and DT (t), where A∗ =
a0(1−δ)(1−e−γT )

1−(1−δ)e−γT and
D∗ = τ

1−e−cT .

5.1. Effects of random perturbation on the evolution of prostate cancer cells

The parameter values were taken as the same as those shown in the papers
[11–13, 16, 21, 34], as these values are not only based on parameter estimates
from experimental data, but also are of biological significance. Because the
growth of prostate cancer cells is affected by random disturbances such as
temperature, oxygen supply, nutrients, radiation and so on, we will show
how the changes of δ1 affect the evolution of prostate cancer cells. As above,
logarithmic plots are displayed.

In Fig.1(a), we set r = 1.4, δ1 = 3, δ2 = 1, T = 100, n = 100, the initial
values were fixed as (X(0), E(0)) = (0.1, 0.5) and (X(0), E(0)) = (10, 0.5).
Simple calculation indicates that P1 −Q1 − 1

2
δ21 ≈ −1.15 < 0, from Theorem

3.4, the prostate cancer cells become extinct (Fig.1(a)). If we set r = 1.85,

δ1 = 1 and fix others as shown in Fig.1(a), then C−µ = 0.17 <
δ22
2
= 0.5, and

P1−Q1− 1
2
δ21 ≈ 3.97 > 0. Theorem 3.4 implies that the prostate cancer cells

become persistent in the mean (Fig.1(b)). If we set C = 0.81 and fix others

as shown in Fig.1(b), then we have C−µ = 0.51 >
δ22
2
= 0.5, by Theorem 3.4

we know that the prostate cancer cells also become persistent in the mean
(Fig.1(c)).

From Fig.1(a) and Fig.1(b), the dynamic behaviours of prostate cancer
cells gradually changed from extinction to persistence in the mean when the
white noise decreased. This reveals that random interference has a relatively
large impact on the prostate cancer cells. In addition, from Fig.1(c) we know
that tumour antigenicity also affects population dynamics.

In Fig.2(a), we set r = 3, δ1 = 0.5, δ2 = 1, T = 100, n = 100 and the
initial values were fixed as (X(0), E(0)) = (800, 100) and (X(0), E(0)) =
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(500, 50), then

τ = min
t≥0

[P1 −Q1 −
1

2
δ21 − aN2] ≈ 3.225 > 0.

It is concluded from Theorem 3.5 that the prostate cancer cells became s-
tochastically permanent (Fig.2(a)). When δ1 = 0, the amplitude becomes
smaller (Fig.2(b)).

5.2. Combinations of ADT and immunotherapy

Theoretically, environmental noise can determine all possible dynamical
behaviours of prostate cancer cells (Fig.3), but in practice it is so limited
that prostate cancer cannot be controlled by adjusting the noise term alone.
Therefore, we also need to study how ADT and immunotherapy affect the
evolution of the prostate cancer. In Fig.4, when a single ADT is applied,
increasing the intensity of ADT (Fig.4(a),Fig.4(b)) or reducing the impulsive
period (Fig.4(c),Fig.4(d)) will lead to the extinction of the tumours.

It is observed that a single ADT with large dosages or long periods could
result in the eradication of prostate cancer cells (Fig.4(b),Fig.4(c)), but many
drawbacks including resistance or toxic reactions will be found [35]. There-
fore, it is very important to address how the tumours will be affected if ADT
is applied together with immunotherapy. Compared to treatments with ADT
alone, the eradication of prostate cancer cells can be more easily achieved by
combining ADT and immunotherapy (Fig.5). For example, if we increase the
dosages of ADT and immunotherapy (Fig.5(a)), or decrease the periods of
impulsive therapy (Fig.5(b)), or increase the dosages and decrease the peri-
ods simultaneously (Fig.5(c)), then the prostate cancer cells become extinct.
It can be seen that increasing the dosages of ADT and immunotherapy or
increasing the dosages and decreasing the periods simultaneously can reduce
the time to tumour extinction (Fig.5(a),Fig.5(c)).

5.3. Stationary distribution of the system

With the parameter values as shown in Fig.6, the initial values are fixed
as (X(0), E(0)) = (300, 5) and (X(0), E(0)) = (600, 10), then it is found that
all conditions of Theorem 4.1 are satisfied. By simple calculation, we have

P1 −Q1 −
1

2
δ21 ≈ 5.9369 > 0, µ− C = 0.1 > 0,
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| P1 −Q1 −
1

2
δ21 | − | C − µ− δ22

2
|≈ 5.8367 > 0,

and
S2
1 − 4(µ− C)S1 ≈ −0.0039 < 0,

it follows from Theorem 4.1 that system (3.1) exists with a unique stationary
distribution.

6. Discussion

Many studies pointed out that random disturbances such as variations
in nutrients, oxygen supply, chemical products, radiation and temperature
have impacts on the growth rate of tumours [36–39]. However, periodical
applications of immunotherapy and chemotherapy are effective for treating
tumours [21] and intermittent androgen deprivation therapy is often used to
treat prostate cancer. In this paper, by using impulsive differential equations,
we proposed and analyzed a novel mathematical model with intermittent
androgen deprivation therapy taking account of white noise.

We first studied the existence and uniqueness of global positive solutions.
Then the ultimate boundedness of the system was analysed, with results
suggesting that prostate cancer cells can be controlled and will not grow
indefinitely. Further, threshold conditions for the extinction and persistence
in the mean of prostate cancer cells were provided by using Itô’s formula, the
strong law of large numbers for local martingales and Lyapunov functions.
We also derived sufficient conditions for the stochastic permanence of the
system. Moreover, the system exists with an ergodic steady-state distribution
under certain conditions. Numerical simulations were carried out to verify
our theoretical results. The results showed that combinations of ADT and
immunotherapy can reduce the time of tumour extinction more than a single
ADT (Fig.4 and Fig.5). Increasing the dosages of ADT and immunotherapy
or increasing the dosages and decreasing the periods simultaneously is more
effective than decreasing the periods of impulsive therapy (Fig.5).

Compared to the results of [16], the differences are listed as follows: (1) In
this paper, we consider combinations of AD and AI cells as cancer cells and do
not distinguish this two types of cells for simplicity. Since the antigenicity of
the tumour always exists during the whole invasion process, a combination of
immunotherapy and IAD therapy and the antigenicity of the prostate cancer
cells are explored. (2) The global attractivity of the system and the sufficient
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conditions for stochastic permanence of tumour cells are studied. (3) It is
shown that both random interference and tumour antigenicity can affect the
dynamic behaviours of prostate cancer cells. Reducing the period of pulsed
interventions or increasing the dosages (or frequencies) of the therapy will
be helpful for curing prostate cancer. Moreover, immunotherapy and ADT
are also discussed, which suggesting that the comprehensive therapy is more
effective than ADT alone.

There are still many interesting questions deserving future investigation.
Cytokines can enhance the effect of immunotherapy by promoting dendritic
cells, so how could injections of cytokines affect the evolution of tumours
in the proposed model? It is also worthwhile to investigate the effects
of chemotherapy, immunotherapy and impulsive ADT on the evolution of
prostate cancer cells, and we leave these questions for the future.
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Figure Legends

Figure 1: Extinction and persistence in the mean of prostate cancer cells. (a) r = 1.4,
δ1 = 3, C = 0.47; (b) r = 1.85, δ1 = 1, C = 0.47; (c) C = 0.81, r = 1.85, δ1 = 1.
The initial values of the solution were fixed as X((0), E(0)) = (800, 100) and red for
(X(0), E(0)) = (10, 0.5), and all other parameters were fixed as: K = 1000, d = 0.3,
a0 = 5, a = 0.4, T = 100, g1 = 10, g2 = 10, J2 = 100, N2 = 10, γ = 0.08, µ = 0.3, e = 10,
c = 0.2, δ = 0.5, τ = 0.2, D(1) = 100, A(1) = 15 and δ2 = 1.

Figure 2: Stochastic permanence of prostate cancer cells. (a) δ1 = 0.5; (b) δ1 = 0.
We set initial values of the solution were fixed as (X(0), E(0)) = (800, 100) and red for
(X(0), E(0)) = (500, 50), and all other parameters were fixed as: r = 3, K = 1000, d = 0.3,
a0 = 5, a = 0.4, T = 100, g1 = 10, g2 = 10, J2 = 100, N2 = 10, γ = 0.08, µ = 0.3, e = 10,
c = 0.2, C = 0.47, δ = 0.5, D(1) = 100, A(1) = 15, τ = 0.2 and δ2 = 1.

Figure 3: The effects of white noise on the evolution of prostate cancer cells. (a) δ1 =
0.5; (b) δ1 = 1; (c) δ1 = 1.5; (d) δ1 = 2; the initial values of solution were fixed as
(X(0), E(0)) = (300, 5), and all other parameters were fixed as: r = 3, K = 1000, d = 0.3,
a0 = 5, a = 0.4, T = 100, g1 = 10, g2 = 10, J2 = 100, N2 = 10, γ = 0.08, µ = 0.3, e = 10,
c = 0.2, C = 0.47, δ = 0.5, D(1) = 100, A(1) = 15, τ = 0.2 and δ2 = 1.

Figure 4: The effects of ADT alone on the evolution of prostate cancer cells. (a) T =
50, δ = 0.2; (b)T = 50, δ = 0.9; (c) T = 20, δ = 0.2; (d) T = 80, δ = 0.2. We set initial
values of the solution were fixed as (X(0), E(0)) = (10, 0.5), and all other parameters were
fixed as: r = 1.85, K = 1000, d = 0.3, a0 = 5, a = 0.4, g1 = 10, g2 = 10, J2 = 100,
N2 = 10, γ = 0.08, µ = 0.3, e = 10, c = 0.2, C = 0.47, A(1) = 15, D(1) = 100, δ2 = 1,
δ1 = 1 and τ = 0.

Figure 5: The effects of comprehensive therapy on the evolution of prostate cancer cells.
(Time series of prostate cancer cells X(t)) (a) T = 50, τ = 2 and δ = 0.9; (b) T = 20, τ =
0.2 and δ = 0.2; (c) T = 40, τ = 2 and δ = 0.9. We set initial values of the solution
were fixed as (X(0), E(0)) = (10, 0.5), and all other parameters were fixed as: r = 1.85,
K = 1000, d = 0.3, a0 = 5, a = 0.4, g1 = 10, g2 = 10, J2 = 100, N2 = 10, γ = 0.08,
µ = 0.3, e = 10, c = 0.2, C = 0.47, A(1) = 15, D(1) = 100, δ2 = 1 and δ1 = 1 .
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Figure 6: Stationary distribution of deterministic model and stochastic model (The specific
parameter values of each curve are shown in the figure above). (a) We set initial values as
(X(0), E(0)) = (300, 5). (b)We set initial values as (X(0), E(0)) = (600, 10). Furthermore,
all other parameters were fixed as: r = 1.2, K = 1000, d = 0.3, a0 = 5, a = 0.4, g1 = 10,
g2 = 10, J2 = 100, N2 = 10, γ = 0.08, µ = 0.3, e = 10, c = 0.2, C = 0.2, D(1) = 100 and
A(1) = 1.
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