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Abstract. With rapid technology advancements and impacts of digital trans-
formation technologies, there have been a lot of efforts in recent years at the
global and national scope to develop technology eco-systems moving toward
Industry 4.0. There has also been a growing number of studies about opti-
mization of process parameters based on AI, IoT and Bigdata analytics,
including CNC machining, additive manufacturing, as well as industrial welding
with robots, for development of Smart Manufacturing (SM), which is one of the
key elements of Industry 4.0. However, there are challenges to fully develop and
apply in industrial practices the ideal SM models in the next 5 to 10 years. It is
necessary to develop the cost-effective SM models that are easy to understand
with a high level of applicability in practice and adoptability for SMEs. In this
paper , a conceptual digital twin is proposed, with the focus on cost-effective
design and development of a welding robotic system for smart manufacturing.

Keywords: Welding robot � Digital twin � Smart manufacturing

1 Introduction

Manufacturing is becoming smarter and smarter at all levels based on these core
advancements, especially digital transformation technologies, AI and bigdata analytics,
and abilities to learn, configure and execute with cognitive intelligence, leading to the
concept of Smart Manufacturing (SM) and Smart Factory (SF) [1].

There has been a growing number of studies about optimization of process
parameters based on AI, IoT and Bigdata analytics, including CNC machining, additive
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manufacturing, as well as industrial welding with robots, for development of SM,
which is one of the key elements of Industry 4.0. Development of cost-effective digital
twin models for optimization of smart manufacturing shop floors has also obtained
growing attentions.

In the welding process with robots, a digital twin model includes not only a digital
kinematic model of a robot arm, but also other signal processing layers which con-
structed with sensors, actuators, data acquisition systems integrated on a robotic sys-
tem. Specifically, for a smart manufacturing system with welding robots, the signals in
the signal processing layers include the following ones: welding voltage, current, weld
tip position, seam profile, weld pool, bead dimension.

There are solutions that can be utilized to measure, analyse, monitor and control an
integrated welding robotic system. In [2], a sonar sensor was used to estimate the
quality of weld bead, together with voltage sensor, current sensor which gathered by a
DAQ card and sent to a computer. Force/torque sensor on tool tip was employed in [3]
to determine the point on unknow workpiece surface. For recognizing the weld path, a
pair of sound microphone set up at two ends of path in [4]. Recently, due to the
increasing ability of camera systems with high speed processor and new image
recognition algorithm, several parameters of a welding robotic system can be measured
without particular sensor. In [5, 6], a camera capturing 2D welding pool shape was
integrated with a computation module for calculating the pool shape dimensions to give
feedback signals to the controller. 3D images were processed in [7, 9]. A common
hardware structure including a robot, a welding machine, sensors, cameras, a control
software on PC was demonstrated in [4–6].

There have also been some research works focusing on digital twin model for a
robotic system [8–11]. A Kuka robot and the Microsoft Kinetic to integrate a HIRIT
platform was investigated in [8]. The work [10] takes into account a 3D digital robot,
camera images, ROS to study a digital twin model. Based on the PLM platform, the
authors in [11] attempted to a robotic digital twin with a Hybrid 6 DOFs cutting system
connected to Labview and Matlab softwares.

The applications of SM in practice are still in the early stage, and there have been a
lot of proposed SF conceptualisations with different degree of automation and absence
of human workforce [1, 12]. Therefore, there are challenges to fully develop and apply
in industrial practices the ideal SF models.

There are challenges to fully develop and apply in industrial practices the ideal SM
models in the next 5 to 10 years. It is necessary to develop the cost-effective SM
models that are easy to under-stand with a high level of applicability in practice and
adoptability for SMEs.

This paper proposes a framework and a case study for cost-effective design and
development of a welding robotic system for smart manufacturing. A proposed case
study of a digital twin model includes a robot arm and smart elements, for cost-effective
development of a smart welding robotic system, with the focus on digital twin model
for optimization of welding parameters and robot control, to increase the welding
productivity and the welding accuracy.

The rest of the paper is presented as follows. Section 2 presents the materials and
methods of a study, with the details about development of the conceptual digital twin
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for a smart welding robotic system for smart manufacturing. Section 3 presents dis-
cussions and conclusions.

2 Materials and Methods

2.1 Hardware and Software for a Smart Welding Robot System

A physical-digital structure of a smart welding robotic system, in which measurement
functions, control features and data communication channels, were developed based on
the integration of the following functional elements: A robot arm Mitsubishi RV-12SD,
welding hardware devices, sensors, data acquisition cards. The following tools and
software are used for 3D design and analysis: SolidWorks, LabVIEW and
MatLab/SIMULINK.

2.1.1 Industrial Robot Arm
The robot arm Mitsubishi RV-12SD is shown in Fig. 1. The robot arm has 6 Degrees of
Freedom (DOF), dedicated by Mitsubishi servo technology plus a high-performance
controller CR3D-700 working for high speed (0.66 s cycle time) and accuracy. The
robot controller is compatible with not only Mitsubishi’s family of automation prod-
ucts, but also other standard devices from other suppliers. This makes the robot arm
flexible and durable for industrial applications. The tool head can carry a maximum
12 kg load, moving in 1086 mm radius reach at a top speed of 9600 m/s with 0.05 mm
position accuracy.

The robot controller, CR3D controller, supports the PTP and CP path control
methods with the MELFA-BASIC language, which instructions could be sent from the

Fig. 1. Standard Robot hardware components for a smart welding system.
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computer. Remote command devices connect to the CR3D controller via either RS
232C or Ethernet ports. Additional teaching pedant R32TB is attached to Improved
display performance and operability.

The 3D CAD models of the robot arm Mitsubishi RV-12SD was built in
SOLIDWORKS for analysis and simulations.

2.1.2 The Welding Components
The high duty cycle Jasic Mig 250 welding hardware for the integration is used. The
supply welding current is from 25 to 250 A at voltage range 11–29 V and wire feeding
adjustable 2–15 m/min. The compact accessory set including a welding gun and a
pressure air connector are provided to be attached on the robot arm.

2.1.3 Sensors
The voltage sensor module B25, current sensor module Qi-300-I (QEED), encoder
Autonics E50S8-100-3-V-5 and air pressure sensor Autonics TPS30-G4KAR2-00 are
selected and integrated to measure actual values of the welding voltage, current and
wire feed speed respectively.

2.1.4 Data Acquisition Module
The NI USB 6001 module is used which provides functions to measure analog/digital
signal from sensors with 8 AI (14-Bit, 20 kS/s), 2 AO (5 kS/s/ch), and 13 DIO. The
amplified signal then be given into Labview environment for processing. Simulink
model is designed to receive processed data to calculate and simulate the states of the
welding robot. The Simulink module also sends separated data back to the robot via
Labview/USB 6001.

2.1.5 Camera
In order to determine the dimensions of seam gap, weld bead, torch, etc., the robot is
equipped a CCD camera with light filter attached beside the welding tip. The images
from camera are transferred to a computer through USB port. In particular cases, it also
used to estimate the welding point or path.

2.1.6 Melfa-Basic Remote Command Set
In order to control the robot, the users need programming. For this robot, the commands
via RS232C port are accepted. A command usually contains a frame of characters. The
movement commands run in either PTP and CP types. The commands could be edited
with various software (C#, Matlab, Visual Basic, etc.) to execute the desired tasks. In
addition, it helps to set up angle, position or load during operation together with giving
the dynamic parameters to remote controller. Remote control ability could change the
strategy of movement online, suitable for adaptive welding movement.

Example of commands:

CNTLON set the Robot controller to On for operation.
SRVON to set all the servo a On ready to run all joints.
EXECP1 = (232.00,3.00,400.00,0.00,45.00,0.00)(6,0) set the position 6 DOF.

Figure 2 presents an integration of smart elements for a mart welding system,
including the robot arm and controller, welding tool, camera, sensors, and data
acquisition module.
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2.2 Integration of a Digital and Communication Model

Figure 3 presents the link between the CAD software and Matlab platform. The robot
arm RV-12SD was digitalized with respect to the definition of joints and interfaces, the
dimensions of arm bodies, the limit position of the tool head, the range of speed and
acceleration of each axis and home position. The 3D CAD model of the robot was built
in Solidworks and converted into the Xml format, which is then embedded into the
Matlab/Simulink work space with the kinematic features of the physical model.

Figure 4 present the Simulink block diagram of the RV-12SD robot model, a block
diagram presents the kinematic features of a robot, in which J1, J2, J3, J4, J5 and J6 are
respectively related to the Base, Shoulder, Upper, Elbow, Fore and Wrist of the robot.

The Labview program was built on a PC to read data from NI USB 6001, processes
images from the camera to calculate the welding parameters and transfer all the data to
Matlab/Simulink work space. In this manner, the states of the physical and digital
models can be synchronized. The designed Simulink module also makes tasks and
sends Melfa basic commands back to physical robot to make the bidirectional com-
munication. This is an important part of the digital twin creation for the real time
parameters updating. In addition, the sensor data, images can be stored in a bigdata
platform for smart solution such as IoT and Machine learning.

Fig. 2. An integration of smart elements for a mart welding system. (1–3): Robot arm and
controller. (4): Welding tool. (5): Camera. (6–9): Sensors, Data acquisition module.
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3 Discussions and Conclusions

A conceptual framework for cost-effective development of a smart manufacturing
system is presented in Fig. 5, it is aimed to demonstrate the cost-effective digital twin
model for a smart manufacturing system, with welding robots.

With the proposed digital twin model, it was successfully demonstrated that the
proposed conceptual framework can be extended with additional physical and digital
modules, based on the original model, with integration of additional smart elements.
The sensor data captured during the operation of the digital-physical system can be
stored for related bigdata analytics, from which the machine learning algorithms are
applied to optimize the performance of the smart welding robotic system.

Fig. 3. CAD model to.XML file extension

Fig. 4. Simulink block diagram of RV-12SD model
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In conclusion, there have been a lot of efforts in recent years at the global and
national scope to develop technology eco-systems moving toward Industry 4.0.
However, the manufacturing industry is more vulnerable compared to the service one
due to the constraints related to human workforces and manufacturing resources as well
as the economic fluctuations and recessions. In addition, applications in practice of SM
are still in the early stage. There are challenges to fully develop and apply in industrial
practices the ideal SM models in the next 5 to 10 years [1]. In addition, there is also the
lack of skilled workforce and financial resources, standardization problems and
cybersecurity issues related to development of SM solutions for industrial applications.
Therefore, it is necessary to develop the cost-effective SM models that are easy to
under-stand with a high level of applicability in practice and adoptability for SMEs. In
this study, a conceptual digital twin for cost-effective design and development of a
welding robotic system for smart manufacturing is proposed and demonstrated. The
study is a foundation for further development of a smart manufacturing system, with a
full integration of smart elements, including robots, CNC machines and additive
manufacturing systems, collaborative robots, automated guided vehicles (AGVs) and
smart sensors.
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