
Neuropsychologia 156 (2021) 107826

Available online 12 March 2021
0028-3932/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implicit anticipation of probabilistic regularities: Larger CNV emerges for 
unpredictable events 
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d Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H–1064, Budapest, Hungary 
e Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 
H–1117, Budapest, Hungary 
f Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of 
Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, SE10 9LS, London, United Kingdom 
g Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany 
h Faculty of Modern Philology and Social Sciences, University of Pannonia, Egyetem utca 10, H–8200, Veszprém, Hungary 
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A B S T R A C T   

Anticipation of upcoming events plays a crucial role in automatic behaviors. It is, however, still unclear whether 
the event-related brain potential (ERP) markers of anticipation could track the implicit acquisition of probabi-
listic regularities that can be considered as building blocks of automatic behaviors. Therefore, in a four-choice 
reaction time (RT) task performed by young adults (N = 36), the contingent negative variation (CNV) as an 
ERP marker of anticipation was measured from the onset of a cue stimulus until the presentation of a target 
stimulus. Due to the probability structure of the task, target stimuli were either predictable or unpredictable, but 
this was unknown to participants. The cue did not contain predictive information on the upcoming target. Results 
showed that the CNV amplitude during response preparation was larger before the unpredictable than before the 
predictable target stimuli. In addition, although RTs increased, the P3 amplitude decreased for the unpredictable 
as compared with the predictable target stimuli, possibly due to the stronger response preparation that preceded 
stimulus presentation. These results suggest that enhanced attentional resources are allocated to the implicit 
anticipation and processing of unpredictable events. This might originate from the formation of internal models 
on the probabilistic regularities of the stimulus stream, which primarily facilitates the processing of predictable 
events. Overall, we provide ERP evidence that supports the role of implicit anticipation and predictive processes 
in the acquisition of probabilistic regularities.   

1. Introduction 

Predicting future events is a core aspect of adaptive behavior. Pre-
dictions are guided by prior probabilities according to many theories of 
cognition, learning, and decision making (Daw et al., 2011; Friston, 
2005, 2010; Friston et al., 2014; Gómez and Flores, 2011; Griffiths et al., 

2008; Shohamy and Daw, 2015). Based on prior probabilities, the set of 
processes that facilitate perceptual, cognitive, and motor operations 
before their actual occurrence can be captured by the notion of antici-
pation (Hommel, 2009; van Boxtel and Böcker, 2004). Anticipation 
largely depends on the extraction and processing of probabilistic regu-
larities organizing environmental events (e.g., Koelsch et al., 2016; 
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Maheu et al., 2019; Meyniel et al., 2016), which have been found to be 
crucial in many automatized cognitive abilities (Armstrong et al., 2017; 
Aslin, 2017; Conway, 2020). The presence and operation of anticipatory 
processes can be evidenced by reaction time (RT) changes and various 
measures derived from eye-tracking, electromyography, neuroimaging, 
and electrophysiology (e.g., Fan et al., 2007; Gómez and Flores, 2011; 
Killikelly and Szűcs, 2013; Medimorec et al., 2019; Tremblay and 
Saint-Aubin, 2009). Meanwhile, the question remains to what extent the 
electrophysiological markers of anticipation are sensitive to the pro-
cessing of probabilistic regularities (Daltrozzo and Conway, 2014). 
Therefore, we investigated whether event-related brain potentials 
(ERPs) reflect the implicit anticipation of predictable and unpredictable 
regularities underlying the ongoing sensorimotor stream. 

A possible candidate among the slow cortical potentials related to 
anticipatory processes is the contingent negative variation (CNV). The 
CNV has usually been recorded in cued/forewarned RT tasks as an 
increasingly negative potential shift occurring over the frontal and 
central electrode sites in the time interval between a cue/warning/S1 
stimulus and a target/imperative/S2 stimulus requiring a response 
(Berchicci et al., 2016; Brunia, 2003; Killikelly and Szűcs, 2013; Kono-
nowicz and Penney, 2016; Leuthold et al., 2004; Molnár et al., 2008; 
Verleger et al., 2013; Walter et al. 1964). The CNV could be decomposed 
into multiple potentials: While the early phase of the component has 
been thought to reflect the orientation to the cue stimulus, the late phase 
could reflect the anticipatory activity for the target and the motor 
preparation of the related response (Loveless and Sanford, 1974; van 
Boxtel and Böcker, 2004; Weerts and Lang, 1973). The present study 
focuses on the late CNV, considering that the cue stimulus is not pre-
dictive of the target and a relatively short cue-target interval is used (see 
2.2. Stimuli, task, and procedure section) that might not ensure the full 
development of the differet composing waves (Berchicci et al., 2016; Di 
Russo et al., 2017). 

Given the different composing waves and the various paradigms 
applied, the suggested functional role of the CNV and its interpretation 
are also numerous. Beyond the above-listed processes and the original 
suggestion that the CNV indicates stimulus expectancy (Walter et al., 
1964), this component has been linked to, for instance, time processing 
(Macar and Vidal, 2004), proactive control (Killikelly and Szűcs, 2013), 
motor pre/re-programming (Anatürk and Jentzsch, 2015; Jentzsch, 
Leuthold, & Richard ridderinkhof, 2004; Leuthold and Jentzsch, 2002), 
the complexity of preparation (Cui et al., 2000; De Kleine and Van der 
Lubbe, 2011), feedback/reward anticipation (Hackley et al., 2014), and 
the amount of attentional resources or effort recruited and available for 
stimulus processing and response preparation (Cui et al., 2000; Emerson 
et al., 2014; Pauletti et al., 2014; Stadler et al., 2006). Overall, the CNV 
is likely a marker of a task-specific preparatory state that tunes and 
optimizes perceptual, cognitive, and motor processes, supported by the 
activation of multiple sensory-motor brain areas and controlled by the 
frontoparietal networks (Gómez and Flores, 2011; Kononowicz and 
Penney, 2016; Pauletti et al., 2014). 

So far, only a few studies have examined directly the sensitivity of 
the CNV to the probabilistic regularities underlying a stimulus sequence 
while implicitly acquiring the sequence per se (Daltrozzo and Conway, 
2014). In a visual S1–S2 associative learning task, the CNV amplitude 
decreased before the S2 in the predictable condition while it increased in 
the unpredictable condition as the acquisition of the probability struc-
ture progressed (Rose et al., 2001). Meanwhile, the CNV amplitude 
increased for regular vs. random targets in an auditory learning-oddball 
task (Jongsma et al., 2006) and for possible vs. impossible target 
occurrence in another oddball task with tone pairs (Stadler et al., 2006). 
A further auditory sequential learning task showed that the CNV 
emerged only after the high- and low-probability predictor tones and not 
after the zero-probability predictors (Emerson et al., 2014). Overall, it 
seems that either enhanced or decreased CNV amplitudes could indicate 
the sensitivity to probabilistic regularities. 

In this study, therefore, we aimed to measure implicit anticipatory 

processes in a four-choice RT task that, unknown to participants, 
included a sequential regularity between nonadjacent trials yielding a 
probability structure with predictable and unpredictable stimuli. By 
means of RTs, using a version of this task, we have already shown that 
the implicitly acquired prior knowledge on the probabilistic regularities 
influenced the processing of further stimuli lacking a predictable 
structure (Kóbor et al., 2020). We assumed that this persistence of 
knowledge occurred through the formation of internal models. There-
fore, it is conceivable that anticipatory processes based on similar in-
ternal models would start to operate before each stimulus is presented, 
at least after the probability structure of the task has been acquired. 
Because of these internal models, the anticipation of predictable stimuli 
and the preparation of appropriate responses possibly become automatic 
and require less attentional resources, as opposed to the unpredictable 
stimuli (Horváth et al., 2020a). Accordingly, considering the functional 
significance of the CNV, its amplitude was expected to be larger for 
unpredictable than for predictable stimuli. In parallel, according to 
other behavioral studies with this task (e.g., D. V. Howard et al., 2004; 
Nemeth et al., 2010; Takács et al., 2018; Tóth et al., 2017), we expected 
slower RTs to unpredictable than to predictable stimuli. 

2. Material and methods 

2.1. Participants 

Thirty-six healthy young adults (23 females) between the ages of 18 
and 28 (M = 21.6, SD = 2.2) participated in the study. They were un-
dergraduate students from Budapest, Hungary (years of education: M =
14.6, SD = 1.5). Handedness was assessed with the Edinburgh Hand-
edness Inventory revised version (Dragovic, 2004a, 2004b; Oldfield, 
1971), according to which the mean Laterality Quotient was 80.3 (SD =
35.3; − 100 means complete left-handedness, 100 means complete 
right-handedness). Participants had normal or corrected-to-normal 
vision, and according to the predefined inclusion criteria, none of 
them reported a history of any neurological and/or psychiatric condi-
tion, and none of them was taking any psychoactive medication. They 
performed in the normal range on standard neuropsychological tests 
that were administered before the EEG experiment, part of the standard 
participant screening procedure we follow in the lab (Wisconsin Card 
Sorting Task [perseverative error percentage]: M = 10.42, SD = 2.23; 
Digit span task [mean short-term memory span; possible range: 3–9]: M 
= 6.31, SD = 1.31; Counting span task [mean working memory span; 
possible range: 2–6]: M = 3.64, SD = 0.72; Go/No-Go task [discrimi-
nability index: hit rate minus false alarm rate]: M = 0.76, SD = 0.15; 
these results are not published elsewhere). All participants provided 
written informed consent before enrollment and received course credit 
for taking part in the study. The study was approved by the United 
Ethical Review Committee for Research in Psychology (EPKEB) in 
Hungary and was conducted in accordance with the Declaration of 
Helsinki. 

2.2. Stimuli, task, and procedure 

Implicit acquisition of probabilistic regularities was measured by a 
modified cued version of the Alternating Serial Reaction Time (ASRT) 
task (Horváth et al., 2020a; Kóbor et al., 2018, 2019; Nemeth et al., 
2010). In this task version, an experimental trial consisted of the pre-
sentation of two subsequent stimuli: a cue and a target. First, a central 
fixation cross that served as the cue was presented for a fixed duration of 
900 ms. Second, after this duration, the cue was replaced by an arrow 
stimulus that served as the target, presented at the center of the screen 
for a fixed duration of 200 ms (cf. Kóbor et al., 2019; Kóbor et al., 2018). 
After target offset, a blank response window was displayed for a fixed 
duration of 700 ms. Then, the next trial started, yielding an 
1800-ms-long intertrial interval (ITI) that consisted of an anticipator-
y/response preparation phase (from cue onset to target onset) and a 
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response execution phase (from target onset to the next cue onset, see 
Fig. 1A). 

Participants were instructed to respond as quickly and accurately as 
possible to the direction of the target by pressing one of the four 
response keys of a Cedrus RB-530 response pad (Cedrus Corporation, 
San Pedro, CA). The spatial directions of the arrow stimuli were mapped 
onto the four response keys (left direction/left response key = left 
thumb, up = left index finger, down = right thumb, and right = right 
index finger). Participants were also asked to pay attention to and 
maintain their gaze on the fixation cross and try not to blink, because it 
was shortly followed by the target. If an incorrect response occurred, the 
fixation cross starting the next trial was presented in red color instead of 
the original black one. If no response occurred during target presenta-
tion or in the predefined response window (i.e., missing response), the 
fixation cross starting the next trial was presented in blue instead of 
black. Participants were informed that the color of the fixation cross 
would change if they did not provide the correct response. As the fixa-
tion cross did not convey information on the following target, no other 
details were provided about its function. After an incorrect or missing 
response, although participants could provide further behavioral re-
sponses, this did not influence the presentation and timing of the next 
trial. 

Unbeknownst to the participants, the arrow stimuli were presented 
according to an eight-element sequence, within which predetermined/ 
pattern (P) and random (r) elements alternated with one another (see 
Fig. 1A). For instance, 2 – r – 1 – r – 3 – r – 4 – r was one of the sequences, 
where numbers denoted the four predetermined spatial directions [1 =

left, 2 = up, 3 = down, 4 = right] of the arrows and rs denoted the 
randomly chosen directions out of the four possible ones (see Fig. 1B). 
There were 24 permutations of the four spatial directions that could 
determine the applied sequence; however, because of the continuous 
presentation of the stimuli, there were only six unique permutations: 1 – 
r – 2 – r – 3 – r – 4 – r, 1 – r – 2 – r – 4 – r – 3 – r, 1 – r – 3 – r – 2 – r – 4 – r, 1 
– r – 3 – r – 4 – r – 2 – r, 1 – r – 4 – r – 2 – r – 3 – r, and 1 – r – 4 – r – 3 – r – 2 
– r. Note that each of these six permutations could start at any position; i. 
e., 1 – r – 3 – r – 4 – r – 2 – r and 2 – r – 1 – r – 3 – r – 4 – r were identical 
sequence permutations. The applied sequence for each participant was 
determined by only one of the six unique permutations of the 24 possible 
ones. The given permutation was selected for each participant in a 
pseudorandom manner (see also J. H. Howard, Jr. and Howard, 1997; 
Kóbor et al., 2019; Kóbor et al., 2018; Nemeth et al., 2010). 

One block of the ASRT task contained 85 trials. In each block, the 
eight-element sequence repeated 10 times after five warm-up trials 
consisting only of random stimuli. The trials of each block were cate-
gorized as chunks of three successive trials, hereafter referred to as 
triplets. Particularly, each trial was categorized as the third trial of a 
triplet and the third trial of a triplet was also the second trial of the 
following triplet, e.g., 2–3–1, 3–1–2 (Kóbor et al., 2017; Kóbor et al., 
2018; Szegedi-Hallgató et al., 2017). The warm-up trials at the begin-
ning of each block were not categorized as triplets. The warm-up trials 
were followed by two starter trials containing the first two elements of 
the alternating sequence. These two starter trials were not categorized as 
triplets either, since also the foremost triplet technically requires three 
successive trials. Thus, trials were categorized as triplets from the 8th 

Fig. 1. Design of the experiment. (A) In this version of the Alternating Serial Reaction Time (ASRT) task, a central fixation cross that serves as the cue is followed by 
an arrow stimulus that serves as the target. The cue is not predictive of the target. The duration of the cue is 900 ms, the duration of the target is 200 ms, and 
responses are recorded from target onset until the end of the trial (for altogether 900 ms). This yields a fixed 1800-ms-long intertrial interval (ITI). The presentation of 
the target stimuli follows an eight-element sequence, within which pattern (P) and random (r) elements alternate with one another. (B) In the alternating sequence 
structure, numbers denote the four spatial directions (1 = left, 2 = up, 3 = down, 4 = right) of the arrows. The alternating sequence makes some runs of three 
consecutive trials (triplets) more probable than others. High-probability triplets are denoted with dark-grey shading and low-probability triplets are denoted with 
coral shading. Each pattern and random trials are categorized as the last trial of a high- or a low-probability triplet, thus, three different triplets occur: pattern high- 
probability (P – r – P structure), random high-probability (r – P – r structure), and random low-probability (r – P – r structure) triplets. This study analyses only 
pattern high-probability or predictable (dark-grey shading in the lower table) and random low-probability or unpredictable triplets (coral shading in the lower table). 
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trial of the block. Altogether 30 blocks, containing 2550 trials in total, 
were completed. From these trials, 2340 triplets were constructed, but 
not all of them were used in the analysis (see 2.3. Behavioral data 
analysis section below). 

The alternating sequence yields a probability structure in which 
some triplets are more probable than others. Thus, the construction of 
triplets could be considered as a method for identifying a hidden prob-
ability structure in the ASRT task. Particularly, while the third trials of 
some triplets are probable (predictable) continuations for the first trials, 
the third trials of other triplets are less probable continuations for the first 
trials. The former triplets are referred to as high-probability triplets while 
the latter ones are referred to as low-probability triplets (e.g., Nemeth and 
Janacsek, 2011; Nemeth et al., 2013b). Because of the alternating 
sequence, although high-probability triplets could have P – r – P or r – P 
– r structure, low-probability triplets could only have a r – P – r structure 
(see Fig. 1B). In the case of the 2 – r – 1 – r – 3 – r – 4 – r sequence, 2 – X – 
1, 1 – X – 3, 3 – X – 4, and 4 – X – 2 are high-probability triplets (X 
denotes the middle trial of the triplet), and, for instance, 1 – X – 2 and 4 – 
X – 3 are low-probability ones. From another perspective, random trials 
that are the 50% of all trials appear either with high or low probability, 
while pattern trials that are the other 50% of all trials always appear 
with high probability. Overall, the combination of the sequential and 
probability properties yields three possible triplet types: pattern 
high-probability, random high-probability, and random low-probability 
triplets (occurring with an overall probability of 50%, 12.5%, and 
37.5%, respectively; see Fig. 1B). 

After completing each block, participants received feedback (lasting 
for 4000 ms) about their mean reaction time and accuracy in the given 
block, then, they could have a short rest before starting the next block. 
The experimental procedure lasted about 2.5 h, including the applica-
tion and removal of the electrode cap. The ASRT task was written in and 
controlled by the Presentation software (v. 18.1, Neurobehavioral Sys-
tems). Stimuli were displayed on a 21” LCD screen at a viewing distance 
of 125 cm. Neuropsychological tests (see 2.1. Participants section) were 
administered a few days before the EEG experiment during a 1-h-long 
session. 

2.3. Behavioral data analysis 

The set of the constructed triplets was narrowed for further analysis. 
First, following the standard data analysis protocol established in pre-
vious studies using the ASRT task (e.g., J. H. Howard, Jr. and Howard, 
1997; Kóbor et al., 2017; Nemeth et al., 2013b; Song et al., 2007; Virag 
et al., 2015), two types of low-probability triplets – repetitions (e.g., 
1–1–1, 4–4–4) and trills (e.g., 1–2–1, 2–4–2) – were excluded, because 
pre-existing response tendencies have often been shown to them (D. V. 
Howard et al., 2004). Therefore, the analyzed low-probability triplet 
category consisted of low-probability triplets without trills and repeti-
tions (but see Szegedi-Hallgató et al., 2019). 

Second, all random high-probability triplets were excluded from 
further analyses (cf. Horváth et al., 2020a). Random high-probability 
triplets could be considered as “accidently-regular” random triplets, 
which are predictable but rarely occurring at the level of unique triplets. 
These trials integrate characteristics related to both the alternating P – r 
– P – r sequence and the hidden probability structure (Kóbor et al., 
2019). In addition, some pre-existing response biases originating from 
higher levels of the alternating sequence have also been observed for 
these triplets (Szegedi-Hallgató et al., 2019). Therefore, the exclusion of 
random high-probability triplets enabled us to focus on contrasting the 
predictable pattern events with the unpredictable random events (i.e., 
pattern high-probability triplets vs. random low-probability triplets). 

Ten-block-long bins of the behavioral data were grouped into three 
periods, labeled consecutively in this paper (1, 2, etc.). For each 
participant and period, separately for pattern high-probability and 
random low-probability triplets, median RT was calculated for those 
correct responses that also followed correct responses. Independent of 

triplet types, general skill improvements (faster RTs) reflecting more 
efficient visuomotor and motor-motor coordination due to practice were 
also considered (cf. Hallgató et al., 2013; Juhasz et al., 2019). 

The mean accuracy of responding for each triplet type and period are 
provided in Table 1; otherwise, the paper focuses on the RT analysis (cf. 
Kóbor et al., 2019; Kóbor et al., 2018). We have three reasons to do so: 
accuracy is influenced by (1) the feedback given to participants after 
each block; (2) the presentation of the cue increased the length of the 
trial that possibly provided more time for accurate response selection; 
and (3) overall accuracy has usually been high with relatively low 
variability in samples of healthy young adults performing the ASRT task 
(J. H. Howard, Jr. and Howard, 1997; Janacsek et al., 2015; Nemeth 
et al., 2010; Romano et al., 2010). 

2.4. EEG recording and analysis 

The continuous EEG activity was recorded in an electrically shielded, 
acoustically attenuated, and dimly lit room using the actiCAP active 
electrode system with BrainAmp Standard amplifier and BrainVision 
Recorder 1.2 software (BrainProducts GmbH, Gilching, Germany). The 
64 sensors consisting of Ag/AgCl electrodes integrated with active cir-
cuits were mounted in an elastic cap and placed according to the 10% 
equidistant system. The FCz electrode was used as reference and the Fpz 
electrode was used as ground. The sampling rate was 1000 Hz. During 
recording, the impedance of the electrodes was kept below 10 kΩ. 

The continuous EEG data were analyzed offline using the BrainVision 
Analyzer 2.1.2 software (BrainProducts GmbH). The pre-processing 
steps described below followed those presented in the Kóbor et al. 
(2018) and Kóbor et al. (2019) papers with minor modifications (e.g., 
filter settings, length of the segment, number of time bins) to fit the 
purposes of the present study. First, after visual screening for major 
deflections, if necessary, bad electrodes were replaced by spline inter-
polation: A maximum of one electrode per participant (M = 0.14, SD =
0.35) was interpolated. Second, the EEG data were band-pass filtered 
within 0.03–30 Hz (48 dB/oct) and notch filtered at 50 Hz to remove 
additional electrical noise. Third, horizontal and vertical eye-movement 
artifacts and heartbeats were corrected with independent component 
analysis (Delorme et al., 2007): Components between one and three per 
participant (M = 1.97, SD = 0.51) were rejected, then, the 
channel-based EEG data were recomposed. Fourth, EEG data were 
re-referenced to the average activity of all electrodes. (The FCz, which 
was the online reference electrode, was also included in the calculation 
of the offline average reference and then re-used to analyze its signals, as 
well.) Fifth, the continuous EEG data were segmented in two steps as 
follows. 

To track the temporal trajectory of acquisition, as in the case of the 
behavioral data, the data were cut into three periods, each containing 
ten consecutive blocks of the ASRT task. Next, within each period, 
segments were extracted from − 200 to 1500 ms relative to cue onset, 
separately for pattern high-probability and random low-probability 
triplets. Only those correctly responded triplets were included in this 
step of the segmentation that also followed correctly responded triplets. 
Triplets with any responses occurring during the response preparation 
phase (i.e., before the presentation of the target) were omitted from the 
analyses. As in the case of the behavioral data, trills and repetitions were 

Table 1 
Mean percentage (%) and standard deviation of response accuracy split by 
triplet type and period.   

Pattern High Random Low 

M (SD) M (SD) 

Period1 96.0 (2.8) 95.8 (3.0) 
Period2 95.9 (2.8) 95.6 (2.5) 
Period3 95.8 (2.6) 95.1 (3.2) 
Overall 95.9 (2.5) 95.5 (2.6)  
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also excluded and random high-probability triplets were not analyzed. 
Altogether six (two triplet types * three periods) segment types were 
created for the cue-locked averages. 

Following segmentation, the segments were baseline corrected based 
on the mean activity from − 200 ms to 0 ms (pre-cue baseline). Then, to 
remove artifacts still present in the data after ICA corrections, an auto-
matic artifact rejection algorithm implemented in the BrainVision 
Analyzer software was applied, which rejected segments where the ac-
tivity exceeded ± 100 μV at any of the electrode sites. In addition, after 
this automated cleaning procedure, the retained segments were visually 
inspected for low frequency electrode drifts that could confound the 
CNV measurement. Segments with low frequency electrode drifts were 
manually rejected. After, the mean numbers of the retained (artifact- 
free) segments were 336.0 (SD = 43.2, range: 185–382) for pattern high- 
probability triplets and 167.1 (SD = 24.5, range: 75–210) for random 
low-probability triplets. This means that the mean proportion of the 
removed segments was 6.1% for pattern high-probability triplets and 
6.3% for random low-probability triplets. Finally, the retained (artifact- 
free) segments were averaged for the two triplet types in each of the 
three periods. 

Grand average ERP waveforms calculated separately for each triplet 
type in each period as well as averaged for the entire acquisition phase 
across all periods were created. These grand averages were visually 
inspected to determine the latency range where the CNV component 
would emerge and vary as a function of triplet types. Accordingly, the 
time window for the CNV analysis was determined in a post-hoc manner 
between 800 ms and 900 ms after cue onset (cf. Boehm et al., 2014). For 
both triplet types, the CNV showed maximal negativity in this time 
window, after its steep increase starting around 700 ms following cue 
onset over the frontocentral, central, and centroparietal electrode sites. 
The electrodes for CNV analysis were also chosen in a post-hoc manner 
based on the difference waveforms calculated as ERPs for random 
low-probability triplets minus ERPs for pattern high-probability triplets. 
The difference waveforms were maximal over the central and cen-
troparietal electrode sites (cf. Brunia and Damen, 1988; De Kleine and 
Van der Lubbe, 2011; Gómez et al., 2003; Leynes et al., 1998; Verleger, 
Wauschkuhn, van der Lubbe, Jaśkowski and Trillenberg, 2000). There-
fore, based on the observed topographical distribution of the CNV dif-
ference waveform, a centroparietal (CP) electrode pool was defined by 
calculating the average activity of the electrodes C1, Cz, C2, CP1, CPz, 
CP2, P1, Pz, and P2. Altogether, the CNV was quantified over this cen-
troparietal electrode pool as the mean amplitude between 800 ms and 
900 ms after cue onset for all triplet types and periods. 

The distribution of the between-triplets difference remained stable 
after target onset, which is in line with the observation that the CNV and 
the P3 components could overlap (Verleger et al., 2006; Verleger et al., 
2013; Verleger et al., 2017). Therefore, the peak of the P3 and the late 
descending flank of the P3 (hereafter referred to as the late P3) were also 
examined over the same centroparietal electrode pool. The peak of the 
P3 was quantified as the mean amplitude between 1200 ms and 1300 ms 
after cue onset. The late P3 was quantified in the remaining interval of 
the segment, as the mean amplitude between 1300 ms and 1500 ms (cf. 
Kóbor et al., 2019). 

2.5. Statistical analysis 

The implicit acquisition and prediction of probabilistic regularities 
was quantified with two-way repeated measures analyses of variance 
(ANOVA) with Type (pattern high-probability vs. random low- 
probability triplet) and Period (1–3) as within-subjects factors on the 
RTs, the mean amplitude of the CNV, and the mean amplitudes of the P3 
peak and the late P3. In all ANOVAs, the Greenhouse-Geisser epsilon (ε) 
correction (Greenhouse and Geisser, 1959) was used when necessary, i. 
e., when sphericity was violated as indicated by the significance of the 
Mauchly’s sphericity test. (The test statistics and the p values for the 
Mauchly’s test are not reported.) Note that the assumption of sphericity 

was not relevant in the case of the Type factor as it involved less than 
three levels. Original df values and corrected p values (if applicable) are 
reported together with partial eta-squared (ηp

2) as the measure of effect 
size. LSD (Least Significant Difference) tests for pairwise comparisons 
were used to control for Type I error. 

3. Results 

3.1. Behavioral results 

The Type (pattern high-probability vs. random low-probability 
triplet) by Period (1–3) ANOVA on the RTs revealed a significant main 
effect of Type, F(1, 35) = 8.86, p = .005, ηp

2 = .202, indicating faster RTs 
on pattern high-probability triplets than on random low-probability 
ones (362.3 ms vs. 364.3 ms; see Fig. 2A). Although the Type * Period 
interaction was only a tendency, F(2, 70) = 2.42, p = .096, ηp

2 = .065, 
pairwise comparisons showed that the difference between pattern high- 
probability and random low-probability triplets was significant in 
period3 (3.5 ms, p = .004) but not before (period1: 1.4 ms, p = .144, 
period2: 1.0 ms, p = .217). In addition, this difference was significantly 
larger in period3 than in period2 (p = .026; other pairwise differences 
were nonsignificant, p ≥ .136). In details, RTs on pattern high- 
probability triplets tended to become faster as the task progressed 
(period3 vs. period1: 360.4 ms vs. 364.7 ms, p = .052); meanwhile, the 
fastest RTs on low-probability triplets were found in period2 (period2 vs. 
period1: 362.7 ms vs. 366.1 ms, p = .028; other pairwise differences did 
not approach significance for both triplet types, p ≥ .120). General skills 
did not reliably improve: The Period main effect was only a tendency, F 
(2, 70) = 2.39, p = .099, ηp

2 = .064, and, according to the pairwise 
comparisons, improvement between period1 and period2 just reached 
significance (365.4 ms vs. 362.2, p = .050) and no further change was 
observed (ps ≥ .113). Overall, RTs differed between the triplet types and 
some indication was found for the stabilization of this difference by the 
end of the task. 

3.2. ERP results 

Grand average ERP waveforms for the two triplet types averaged for 
all periods and split by period over the centroparietal electrode pool are 
presented in Figs. 3–4, respectively. 

3.2.1. CNV 
The Type by Period ANOVA on the CNV showed a significant main 

effect of Type, F(1, 35) = 12.33, p = .001, ηp
2 = .261, indicating that the 

mean amplitude of the CNV was larger (more negative) for random low- 
probability triplets than for pattern high-probability ones (− 0.84 μV vs. 
− 0.70 μV; see Figs. 2B and 3B, C). This difference did not change with 
practice (nonsignificant Type * Period interaction, F(2, 70) = 1.54, p =
.221, ηp

2 = .042; see Fig. 4A and B). Meanwhile, as shown by the sig-
nificant Period main effect, F(2, 70) = 13.24, ε = .715, p < .001, ηp

2 =

.274, the overall CNV amplitude gradually increased as the task pro-
gressed (period1: − 0.44 μV, period2: − 0.84 μV, period3: − 1.05 μV; all 
pairwise differences were significant at p ≤ .014; see Figs. 2B and 4A). 

3.2.2. P3 peak 
The Type by Period ANOVA on the P3 peak showed a significant 

main effect of Type, F(1, 35) = 11.03, p = .002, ηp
2 = .240, indicating that 

the P3 peak amplitude was lower for random low-probability triplets 
than for pattern high-probability ones (3.40 μV vs. 3.54 μV; see Figs. 2C 
and 3B, C). This difference did not change with practice (nonsignificant 
Type * Period interaction, F(2, 70) = 1.43, p = .246, ηp

2 = .039; see 
Fig. 4A and B). The significant Period main effect, F(2, 70) = 4.64, ε =
.708, p = .024, ηp

2 = .117, showed that the overall P3 peak amplitude 
decreased as the task progressed (period1: 3.70 μV, period2: 3.47 μV, 
period3: 3.25 μV; period1 > period3, p = .021, period2 > period3, p =
.045; see Figs. 2C and 4A). In terms of the Type main effect, comparable 
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Fig. 2. (A) Group-average RTs of correctly responded triplets split by period (1–3) and triplet type (pattern high-probability vs. random low-probability triplets) (left 
panel, line chart) and split by triplet type but collapsed across periods (right panel, bar chart). (B) Group-average CNV mean amplitudes split by period and triplet 
type (left panel, line chart) and split by triplet type but collapsed across periods (right panel, bar chart). Values along the vertical axes are plotted in a reversed scale. 
(C) Group-average P3 peak mean amplitudes split by period and triplet type (left panel, line chart) and split by triplet type but collapsed across periods (right panel, 
bar chart). (D) Group-average late P3 mean amplitudes split by period and triplet type (left panel, line chart) and split by triplet type but collapsed across periods 
(right panel, bar chart). Error bars denote standard error of mean. On the left panel, asterisks/plus marks above the means of each period denote the significance of 
the difference between triplet types (note that these pairwise differences are indicated here although nonsignificant Type * Period interactions were found). As-
terisks/plus marks below the line charts denote the pairwise differences between periods collapsed across triplet types (i.e., pairwise differences related to the Period 
main effects). Note: +p < .100, *p < .050, **p < .010, ***p < .001. 
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results were obtained when the response-locked P3 peak was analyzed 
(see Supplementary Material). 

3.2.3. Late P3 
Similar results emerged for the late P3 from the Type by Period 

ANOVA. The mean amplitude of the late P3 was lower for random low- 
probability triplets than for pattern high-probability ones (significant 
main effect of Type, F(1, 35) = 13.51, p = .001, ηp

2 = .278; 2.07 μV vs. 
2.23 μV; see Figs. 2D and 3B, C), and, irrespective of the triplet type, the 
overall mean amplitude of the late P3 decreased with practice (signifi-
cant main effect of Period, F(2, 70) = 11.26, ε = .804, p < .001, ηp

2 =

.243; period1: 2.49 μV, period2: 2.05 μV, period3: 1.90 μV; period1 >

period2, p = .002, period1 > period3, p < .001; see Figs. 2D and 4A). The 
Type * Period interaction was nonsignificant, F(2, 70) = 0.06, p = .942, 
ηp

2 = .002 (see Fig. 4A and B). In terms of the Type main effect, com-
parable results were obtained when the late phase of the response- 

locked P3 was analyzed (see Supplementary Material). 

3.3. Correlations between the behavioral and ERP measures 

Correlational analyses were performed to test (1) the potential 
speed-accuracy trade-off in task performance and (2) whether behav-
ioral measures were related to the ERPs. Therefore, associations (Pear-
son correlations) between (1) RTs and accuracy and (2) between each of 
these behavioral measures and the CNV, P3 peak, and late P3 amplitudes 
were investigated. These analyses were run for each triplet type sepa-
rately in the corresponding time periods (e.g., RTs to random low- 
probability triplets in period2 with CNV amplitude for random low- 
probability triplets in period2) as well as for the entire acquisition 
phase (e.g., mean accuracy for pattern high-probability triplets with the 
mean amplitude of the CNV for pattern high-probability triplets). 

None of the correlations were significant between RTs and accuracy 

Fig. 3. Grand average ERP waveforms at (A) electrode FCz and over (B) the centroparietal electrode pool are presented, displaying the CNV and the P3 components 
for pattern high-probability and random low-probability triplets, averaged for all periods. The cue onset was at 0 ms, the target onset was at 900 ms; the latter is 
denoted by small arrows above the horizontal axes. In part (B) of this figure, the light-grey shaded area indicates the time window in which the CNV was quantified 
(800–900 ms), the medium-grey shaded area indicates the time window in which the P3 peak was quantified (1200–1300 ms), and the dark-grey shaded area 
indicates the time window in which the late P3 was quantified (1300–1500 ms). Negativity is plotted upwards here and in Fig. 4. (C) The scalp topography 
(amplitude distribution) of ERP differences for random low-probability minus pattern high-probability triplets and for pattern high-probability minus random low- 
probability triplets in the time windows of the CNV, the P3 peak, and the late P3, respectively (from left to right), averaged for all periods. 
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(all |r|s ≤ .150, ps ≥ .382), indicating the lack of speed-accuracy trade- 
off. Similarly, no significant correlations were found between the 
behavioral measures and the CNV amplitude (all |r|s ≤ .166, ps ≥ .334). 
In contrast, significant negative correlations consistently emerged be-
tween RTs and the P3 peak, indicating that faster responses were asso-
ciated with larger P3 peak amplitudes (pattern high-probability triplets: 
period1 r(34) = − .449, p = .006; period2 r(34) = − .516, p = .001; 
period3 r(34) = − .456, p = .005; all periods: r(34) = − .485, p = .003; 
random low-probability triplets: period1 r(34) = − .455, p = .005; 
period2 r(34) = − .448, p = .006; period3 r(34) = − .405, p = .014; all 
periods: r(34) = − .443, p = .007). However, this was not observed in the 
case of accuracy (all |r|s ≤ .304, ps ≥ .071; but see the response-locked 
averages in the Supplementary Material). In terms of the response- 
locked P3 peak, a similar pattern of associations emerged with the 
RTs, albeit the correlations were weaker and less consistent (the corre-
lations were significant only in the first two periods for pattern high- 
probability triplets and in the first period for random low-probability 
triplets, see Supplementary Material). No significant correlations were 
found between the behavioral measures and the amplitude of the late P3 
(neither in the cue-locked nor in the response-locked averages; all |r|s ≤
.216, ps ≥ .205). 

4. Discussion 

4.1. Summary of results 

This study provided ERP evidence for the operation of implicit 
anticipatory processes in the acquisition of probabilistic regularities. 
The CNV developed during the presentation of the cue until target onset, 
and its amplitude was larger before unpredictable than before predict-
able targets. Importantly, the cue was not predictive of the target. The 
ERP difference reflecting sensitivity to the underlying regularities was 
continuously present with the same magnitude in the time window of 
target processing, indicated by the amplitudes of the P3 peak and the 
late P3 being lower for unpredictable than for predictable targets. As 
expected, anticipatory processing was shown not only by the CNV but 
also by the RTs that were faster to predictable targets. Based on these 
results, we propose that internal models have been implicitly formed on 
the probabilistic regularities of the stimulus stream. These internal 
models could have guided a series of anticipatory and preparatory 
processes that eventually facilitated stimulus processing. 

4.2. Interpretation of behavioral results 

Behavioral evidence accumulated so far indicates that participants 

Fig. 4. (A) Grand average ERP waveforms over the centroparietal electrode pool are presented, displaying the CNV and the P3 components for each period (1–3) and 
triplet type (pattern high-probability and random low-probability triplets). The cue onset was at 0 ms, the target onset was at 900 ms; the latter is denoted by small 
arrows above the horizontal axes. The light-grey shaded area indicates the time window in which the CNV was quantified (800–900 ms), the medium-grey shaded 
area is the time window of the P3 peak (1200–1300 ms), and the dark-grey shaded area is the time window of the late P3 (1300–1500 ms). (B) The scalp topography 
(amplitude distribution) of ERP differences in each period for random low-probability minus pattern high-probability triplets in the time window of the CNV (left 
panel), and for pattern high-probability minus random low-probability triplets in the time windows of the P3 peak (right panel, top tow) and the late P3 (right panel, 
bottom row). 
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respond overall faster or increasingly faster to high-probability triplets 
than to low-probability ones in the ASRT task (e.g., Janacsek et al., 
2015; Kóbor et al., 2017; Nemeth et al., 2010; Nemeth et al., 2013b; 
Szegedi-Hallgató et al., 2019; Takács et al., 2017; Tóth et al., 2017). 
Faster responses specifically to pattern high-probability triplets than to 
random low-probability ones were also observed in task versions 
without target-preceding cues (Horváth et al., 2020a; Kóbor et al., 2018, 
2019; Nemeth et al., 2013a; Szegedi-Hallgató et al., 2019). The 
magnitude of the present RT effect was small (2 ms) relative to other 
studies using the ASRT task. This can be explained by the combination of 
the following factors: the present experiment used a slow-paced task 
version with fixed ITI, acquisition occurred in an implicit and incidental 
manner, and the target-preceding cue not only lengthened the ITI but 
could have also influenced acquisition in a currently unknown manner. 
Therefore, irrespective of the reliability of the RT effect, it is expected to 
be smaller or larger based on the combination of these factors as 
described below. 

Larger RT effects (ca. 10–15 ms) have been generally observed in 
self-paced ASRT tasks with fast stimulus presentation rate, in which the 
acquisition of probabilities has occurred in an incidental manner (Kóbor 
et al., 2017; Nemeth et al., 2010; Stark-Inbar et al., 2017). These RT 
effects could further increase in ASRT tasks where the acquisition of 
probabilities is intentional (Nemeth et al., 2013a; Simor et al., 2019; 
Tóth-Fáber et al., 2020). Meanwhile, in fixed-paced tasks (Kóbor et al., 
2020; Tóth et al., 2017) and in those with slow stimulus presentation 
rate (i.e., long ITI, see Kiss et al., 2019; Kóbor et al., 2019), RT effects 
have been found to be reduced (but see Horváth et al., 2020b). The 
present task was fixed-paced, the length of the ITI was longer than 
previously yielding a slow rate of stimulus presentation, and acquisition 
occurred incidentally. These characteristics could have altogether 
reduced the magnitude of the RT effect. Moreover, albeit a 
target-preceding cue stimulus in the ASRT task has not been applied so 
far, one should also take into account the impact of the cue when 
explaining effect size differences between the studies. 

Accordingly, we assume that since the stimulus presentation rate was 
slower than in other studies, the incidental binding of successive trials (i. 
e., triplet elements) could have been weaker. The insertion of an irrel-
evant cue stimulus into the trial structure could have further distorted or 
at least interfered with the binding process. This weaker binding 
possibly altered the extraction of the triplet-level probability structure, 
eventually yielding reduced measures of implicit acquisition. Alterna-
tively, slow stimulus presentation rate and the insertion of the cue could 
have decreased the facilitatory effect of predictable stimulus combina-
tions (i.e., high-probability triplets). Particularly, when participants 
responded to the current target, the representations of previous stimuli 
might have been inactivated, resulting in weaker response facilitation 
(for more details on this interpretation, see Kiss et al., 2019). As a result 
of weaker response facilitation, although participants possibly acquired 
the probability structure to some degree, the momentary expression of 
this acquired knowledge was hindered with slow stimulus presentation 
rate (Kiss et al., 2019; Willingham et al., 1997). Based on the behavioral 
pilot study of the current experiment, the latter interpretation seems the 
most likely. Particularly, when stimulus presentation was changed from 
the original slower rate (1800 ms ITI) to a faster one (900 ms ITI) in the 
pilot study, larger RT effects were observed. 

Nevertheless, as RTs differed between pattern high-probability and 
random low-probability triplets and this difference stabilized by the end 
of the task, the conclusions drawn from the behavioral data are still in 
line with earlier behavioral (cf. Juhasz et al., 2019; Kóbor et al., 2020; 
Szegedi-Hallgató et al., 2019; Török et al., 2017) and ERP findings 
(Kóbor et al., 2018, 2019). The latter studies together with the present 
one suggest that the sensitivity to multiple probabilistic regularities has 
possibly been grounded in the implicit extraction of the triplet-level 
probability structure. 

4.3. Interpretation of ERP results 

4.3.1. CNV 
As in the present study, larger CNV for unpredictable vs. predictable 

visual stimuli was found previously during the implicit acquisition of 
probabilistic relations (Rose et al., 2001). Meanwhile, studies involving 
more easily learnable sequences of auditory stimuli (Jongsma et al., 
2006; Stadler et al., 2006) and those that contrasted predictive auditory 
contexts with random ones in explicit experimental settings (Fogelson 
et al., 2009) showed the opposite. However, in those studies, repeating 
predictor/standard–target sequences were used. These sequences differ 
from the one we applied in the present implicit ASRT task version: Here, 
a stream of perceptually identical, task-relevant targets that all require 
keypresses create the ongoing stimulus context, and the exact directions 
of the targets are determined only by the underlying regularity. In our 
view, the processes reflected by the CNV in our task are related to the 
pre-allocation of attentional resources and to response preparation in an 
implicit and nonconscious manner. We base this interpretation on the 
assumption that the random low-probability, unpredictable stimuli 
would be more complex to-be-responded targets than the pattern 
high-probability ones, as already observed at the behavioral level. The 
potential functional role of the CNV in the current setting is further 
elaborated below. 

The observed centroparietal distribution of the CNV difference be-
tween unpredictable and predictable targets might originate from the 
characteristics of the current task and the neurocognitive processes 
underlying performance. As in our study, the late CNV is more centrally 
distributed and involves a posterior cortical network in other 
perceptual-motor tasks (e.g., Berchicci et al., 2016; Brunia and Damen, 
1988; De Kleine and Van der Lubbe, 2011; Gómez et al., 2003; Leynes 
et al., 1998). Furthermore, it has been suggested that the late CNV re-
flects two aspects of the parieto-frontal motor system: the maintenance 
of the stimulus-response (S–R) links and the activation of the 
hand-motor area (Verleger et al., 2000). Therefore, the observed CNV 
difference in the present study might indicate the binding of stimulus 
information with the related response to help the selection between 
different motor programs. However, beyond response preparation, im-
plicit and nonconscious predictions were likely generated about the 
direction of the upcoming target (cf. Kóbor et al., 2020; Kóbor et al., 
2019). Consequently, it is conceivable that the presentation of the target 
arrow per se served as a feedback about the “correctness” of these pre-
dictions (i.e., whether the targets were anticipated outcomes or not). 
Thus, the late CNV could have also consisted of the stimulus-preceding 
negativity (SPN) reflecting anticipatory attention to the perceptual 
informational delivered by the target, which might additionally 
contribute to the more posterior scalp distribution of the difference 
(Brunia et al., 2011; Hackley et al., 2014; van Boxtel and Brunia, 1994). 

We intended to measure the genuine predictability of the targets 
because of acquiring the probability structure of the task. To this end, a 
simple fixation cross was used as the cue, which is somewhat unusual in 
cued RT tasks (but see Boehm et al., 2014; Pauletti et al., 2014). The 
fixation cross did not contain probability or direction information about 
the upcoming target. Since no information was delivered about which 
S–R links should be selected before target presentation, a generic 
pre-activation of the sensory-motor areas might have been needed for 
fast and accurate responding (Pauletti et al., 2014). Similarly, sustained 
activity in the frontoparietal network mediating response selection (cf. 
Schumacher, Hendricks, & D’Esposito, 2005; Verleger et al., 2000) 
might have also been involved in task solving. Supporting this notion, 
the amplitude of the CNV was not only modulated as a function of target 
probability but it also increased as the task progressed in time, irre-
spective of probability information. In our earlier study, when the 
pattern high-probability triplets were perceptually distinguishable from 
the random ones (i.e., marked with different colors) and no other cues 
were used, proficiency in the task and response automatization for the 
former triplets were evidenced by the decreasing amplitude of different 
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ERP components (N2, P3, Ne, see Horváth et al., 2020a; Kóbor et al., 
2018). In contrast, since target probability was not explicitly denoted in 
the present experiment, and the task was perceived as increasingly 
exhausting according to verbal reports, the probability-nonspecific CNV 
amplitude enhancement likely indicates the growing effort participants 
needed to maintain task performance. Sustained effort needed for 
stimulus processing and responding is also reflected in the RTs. 
Although RTs became faster due to practice at the descriptive level, 
general skill improvements were not statistically significant over task 
periods. (Note that general skill improvements are independent of the 
observed RT difference between high- and low-probability triplets.) 
According to the correlational results, no speed-accuracy trade-off 
characterized task performance, and it is unlikely that the CNV ampli-
tude enhancement was associated with lower response caution and/or 
increased response speed (cf. Boehm et al., 2014). 

4.3.2. P3 
The differential ERP effect for predictable vs. unpredictable stimuli 

persisted in the time window of the P3 component with similar 
magnitude. Particularly, the enhanced ERP amplitudes before unpre-
dictable target stimuli appeared as decreased amplitudes after target 
onset (cf. Killikelly and Szűcs, 2013). The P3 amplitude has long been 
suggested to scale the probability of the stimulus (Donchin, 1981; 
Donchin and Coles, 1988; Mars et al., 2008) and to be modulated by the 
acquisition of predictive relations embedded in the stimulus sequence 
(e.g., Batterink et al., 2015; Eimer et al., 1996; Jost et al., 2015; Rüsseler 
et al., 2018). Meanwhile, current theoretical accounts of this component 
suggest its more intricate functional relevance in decision making and in 
linking stimulus evaluation to response selection (Kelly & O’Connell, 
2015; Twomey, Murphy, Kelly and O’Connell, 2015; Verleger et al., 
2005; Verleger and Śmigasiewicz, 2016). 

Particularly, the P3 component could be considered as reflecting the 
process of mapping a task-relevant stimulus onto an appropriate 
response (Berchicci et al., 2016; Folstein and van Petten, 2011; Stock 
et al., 2016; Verleger et al., 2005). Analysis of the response-locked av-
erages strengthens this notion by showing the differentiation of pre-
dictable vs. unpredictable stimuli also in the response-locked P3 
component (see Supplementary Material and note that at the descriptive 
level, this effect is slightly weaker in the response-locked than in the 
cue-locked averages, especially in the case of the P3 peak). The relation 
between the P3 component and motor responses were further supported 
by the negative correlations emerging between RTs and the P3 peak (in 
both the cue-locked and response-locked averages), indicating faster 
responses associated with larger P3 peaks, irrespective of the predict-
ability of the target. 

In terms of the theoretical accounts of the P3, the concept of S–R link 
might help explaining the P3 findings. According to this concept, S–R 
links established with practice during the task are reactivated for initi-
ating the correct response, and the P3 reflects the amount of this reac-
tivation process (e.g., Verleger et al., 2015; Verleger et al., 2017). The 
implicit acquisition of the probability structure could change the S–R 
links related to unpredictable stimuli that might require stronger reac-
tivation, yielding larger P3 amplitudes (cf. Kóbor et al., 2019). However, 
due to the cued design, some of the stimulus processing might occur in 
an anticipatory manner. It is possible that the stronger response prepa-
ration before the unpredictable stimuli facilitates target processing that 
uses less attentional resources (Polich, 2007; Polich and Criado, 2006) 
and operates at a lower decision threshold (Kelly & O’Connell, 2015), 
eventually yielding decreased P3 amplitudes. Decreased P3 amplitudes 
have been found to reflect decision uncertainty and that the resources 
for stimulus processing are needed elsewhere during effortful processing 
(Beauducel et al., 2006; Johnson, 1986; Kok, 2001), which could also 
explain the increased CNV and decreased P3 for unpredictable stimuli. 
At the same time, the facilitated “pre-processing” is not reflected in the 
RTs, as those are still slower for unpredictable stimuli. The implicit, 
nonconscious aspect of the task, however, might explain this matter, 

since “implicit preparation” might be enough for responding correctly 
but not for responding as fast as to predictable targets. Nevertheless, this 
finding is also in line with the assumption that movement initiation and 
movement preparation could be independent processes (Haith et al., 
2016). 

4.3.3. Mutual properties of the CNV and P3 effects 
As delineated above, the CNV and the P3 seem to be interrelated. 

Accordingly, the observed ERP variation in the P3 time window can be 
regarded as a “CNV return” to baseline and its “overshoot” into the 
positive direction (Verleger et al., 2013). To further support this 
concept, not only the ERP effect related to predictability persisted after 
target onset but also the time-on-task effect, i.e., the overall CNV 
enhancement, which appeared as decreasing P3 amplitudes as the task 
progressed. Although the response-locked P3 amplitudes did not change 
in time, the CNV also appeared to be time-invariant in those averages 
(see Supplementary Figs. S1-S2), additionally indicating associations 
between the two components. Moreover, although the CNV looks mostly 
unaffected by ERP locking (Berchicci et al., 2016), response-locked 
waveforms imply that the CNV is more likely related to the target 
stimulus than to the response: It develops until target onset and returns 
to baseline before response onset. This observation does not preclude 
that the CNV amplitude modulation possibly reflects the activation and 
maintenance of the S–R link relevant to the given target (Verleger et al., 
2000). 

Similar to the RT effects, the magnitudes of the observed CNV and P3 
effects were also small (0.14–0.16 μV) relative to other independent 
studies on the acquisition of probabilistic regularities (e.g., Batterink 
et al., 2015; Emerson et al., 2014; Rüsseler et al., 2018). This phenom-
enon might be explained by those characteristics of the ASRT task and 
underlying processes that we described in relation to the RT effects (see 
also the smaller ERP effects in ASRT tasks with slower stimulus pre-
sentation rate, Kóbor et al., 2019; Kóbor et al., 2018). Indeed, as 
acquisition occurred incidentally in the present experiment, smaller ERP 
effects were expected. Earlier studies using variants of the serial reaction 
time task combined with features of the oddball paradigm showed 
smaller, altered, or lacking ERP effects for incidental as compared with 
intentional acquisition (e.g., Eimer et al., 1996; Ferdinand et al., 2008; 
Rüsseler et al., 2003; Rüsseler and Rösler, 2000). In line with this notion, 
the magnitude of the present P3 differences is comparable to those 
observed in our previous study where acquisition was incidental (Kóbor 
et al., 2019). Although paradigms structurally different from the ASRT 
task might promote the occurrence of larger CNV and P3 effects (cf. 
Batterink et al., 2015; Emerson et al., 2014; Jost et al., 2015; Rose et al., 
2001), the significance of our ERP findings is that they indicate the 
implicit anticipation of predictable and unpredictable events in an un-
supervised statistical learning environment. 

5. Conclusions 

To conclude, the behavioral and ERP markers of implicit anticipation 
differed between predictable and unpredictable events arranged in a 
sequence of visual stimuli. Although the cue signals were unspecific to 
the predictability of these target events, lengthened RTs together with 
enhanced CNV and attenuated P3 amplitudes were recorded for un-
predictable as compared with predictable events. To explain these ERP 
amplitude modulations, we propose that, during the preparatory phase 
of processing, more resources were needed to maintain the stimulus- 
response contingencies appropriate for the unpredictable events. This 
pattern of results possibly emerged due to the implicit and incidental 
acquisition of probabilistic regularities through the formation of internal 
models, which is fundamental not only in perceptual and response se-
lection processes but also in learning and memory. In line with this 
interpretation, our results further suggest that the CNV, by reflecting the 
active operation of these internal models, could be considered as a 
neurocognitive marker of uncertainty. This ERP component would be 
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useful in investigating the acquisition of probabilistic regularities in 
clinical and nonclinical samples. 

CRediT author statement 
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Verleger, R., Paulick, C., Möcks, J., Smith, J.L., Keller, K., 2013. Parafac and go/no-go: 
disentangling CNV return from the P3 complex by trilinear component analysis. Int. 
J. Psychophysiol. 87 (3), 289–300. https://doi.org/10.1016/j.ijpsycho.2012.08.003. 
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