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Abstract

Humans are capable of acquiring multiple types of information presented in the same

information stream. It has been suggested that at least two parallel learning processes

are important during learning of sequential patterns—statistical learning and rule-

based learning. Yet, the neurophysiological underpinnings of these parallel learning

processes are not fully understood. To differentiate between the simultaneous mech-

anisms at the single trial level, we apply a temporal EEG signal decomposition

approach together with sLORETA source localization method to delineate whether

distinct statistical and rule-based learning codes can be distinguished in EEG data and

can be related to distinct functional neuroanatomical structures. We demonstrate

that concomitant but distinct aspects of information coded in the N2 time window

play a role in these mechanisms: mismatch detection and response control underlie

statistical learning and rule-based learning, respectively, albeit with different levels of

time-sensitivity. Moreover, the effects of the two learning mechanisms in the differ-

ent temporally decomposed clusters of neural activity also differed from each other

in neural sources. Importantly, the right inferior frontal cortex (BA44) was specifically

implicated in visuomotor statistical learning, confirming its role in the acquisition of

transitional probabilities. In contrast, visuomotor rule-based learning was associated
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with the prefrontal gyrus (BA6). The results show how simultaneous learning mecha-

nisms operate at the neurophysiological level and are orchestrated by distinct pre-

frontal cortical areas. The current findings deepen our understanding on the

mechanisms of how humans are capable of learning multiple types of information

from the same stimulus stream in a parallel fashion.
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1 | INTRODUCTION

How the human brain encodes regularities of the environment is a

current topic in cognitive neuroscientific research. It has been pro-

posed that learning of patterns includes at least two parallel processes

(Batterink, Paller, & Reber, 2019; Conway, 2020; Maheu, Meyniel, &

Dehaene, 2020; Nemeth, Janacsek, & Fiser, 2013). One of them is

called statistical learning and refers to an automatic acquisition of

associative relations and frequencies of external stimuli (Conway,

2020). Another attention-dependent mechanism plays a role in con-

trolling the learning process and integrating rule-based regulations.

This second process is often labelled as higher-order sequence learning

(Howard & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013), deter-

ministic rule-learning (Maheu et al., 2020), or order-based learning

(Simor et al., 2019). It has been proposed that humans organize the

temporal regularities in their environment in two distinct hypothesis

spaces (Conway, 2020; Maheu et al., 2020): one is based on the esti-

mation of probabilities, and works as statistical bias; the other one is

based on deterministic relations or rules. Importantly, in situations

where both statistical and rule-like regularities occur in parallel (e.g., in

language or music), not only competition can occur, but rules can

induce statistical biases and vice versa (Maheu et al., 2020). That is, a

high-frequency continuation of a melody can be remembered as a rule

(i.e., generalization from high probability to hundred percent probabil-

ity), while not knowing the lyrics can be compensated by common

rhymes (i.e., using high frequency associations in a deterministic con-

text). Either way, singing the song might be a success or a catastrophe,

depending on many factors, including the interaction between statisti-

cal and rule-like predictions.

Parallel learning of different types of regularities can be studied

with variations of sequence learning tasks, in which rules and inter-

stimulus dependencies are repeated in the stimulus stream

(Conway, 2020; Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015;

Howard & Howard, 1997; Nissen & Bullemer, 1987). A short sequence

can be memorized as an arbitrary order of items and stored in declara-

tive memory (Conway, 2020). However, when the information stream

becomes longer and more complicated, humans can only encode fre-

quently co-occurring patterns (statistical information) and hierarchical

structures within the sequences (rule-based learning) (Conway, 2020;

Nemeth, Janacsek, & Fiser, 2013). While statistical learning reaches its

plateau quickly, learning of sequential rules is characterized by a gradual

change (Kóbor et al., 2018; Simor et al., 2019). Importantly, statistical

information is not limited to adjacent relations (e.g., the probability of B

following A) but also nonadjacent probabilities (e.g., A-x-B, where B fol-

lows A with high probability) can be detected by humans (Frost, Isbilen,

Christiansen, & Monaghan, 2019; Gebhart, Newport, & Aslin, 2009;

Hsu, Tomblin, & Christiansen, 2014; Kóbor et al., 2019; Nemeth,

Janacsek, & Fiser, 2013; Szegedi-Hallgató, Janacsek, & Nemeth, 2019)

Consequently, the more complex and/or opaque a perceived sequence

is, the larger employment of different computational processes are

needed to detect and learn its structure (Conway, 2020; Dehaene et al.,

2015; Maheu et al., 2020; Szegedi-Hallgató et al., 2019). Thus, human

sequence learning is inherently complex, not just in terms of (sub)pro-

cesses but also in their relations to the wider cognitive architecture.

For instance, statistical learning is thought to be a largely

stimulus-dependent, bottom-up process, and therefore, many aspects

of it are modality-specific (Batterink et al., 2019; Conway, 2020; Frost,

Armstrong, Siegelman, & Christiansen, 2015). Learning of probabilistic

information relies on local computations in separate networks for

auditory, visual, and somatosensory regularities: this is also supported

by the lack of intermodal correlations within individuals (Batterink

et al., 2019; Frost et al., 2015). The functional significance of this rela-

tive independence across perceptual domains possibly lies in the

nature of the stimulus: while auditory information is typically orga-

nized in time series, visual ones are more easily processed in a parallel

fashion (Batterink et al., 2019). On the other hand, the higher-order

integration of sequential information is thought to be domain-general

(Fedorenko, Duncan, & Kanwisher, 2012). The domain-specific versus

domain-general nature of different sequence learning processes are

also related to the different level of involvement of attention and

executive functions. Namely, statistical learning can be viewed as a

result of sensory experience that created representations in specific

sensory areas (Reber, 2013), and as such, it has limited or even

inhibited access from top-down functions (Ambrus et al., 2020;

Conway, 2020; Filoteo, Lauritzen, & Maddox, 2010; Nemeth, Janacsek,

Polner, & Kovacs, 2013). In contrast, sequential rules might be also

accessed and even modified in a top-down manner, thus, different

learning processes also constitute differences in the implicit-explicit

dimension (Batterink et al., 2019; Conway, 2020). Notably, the common

overlap between implicit and statistical, and rule-based and explicit

learning does not rule out exceptions (Batterink et al., 2019). Despite

the growing interest in these simultaneous learning mechanisms
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(Conway, 2020), the neurophysiological processes behind them remain

largely unknown (Kóbor et al., 2018, 2019) and it is an open question

how these parallel learning mechanisms are coded at the neurophysio-

logical level.

However, solving this puzzle represents a methodological chal-

lenge. Namely, different aspects of task-related information and spon-

taneous background activities are present simultaneously in the EEG

recordings of the scalp (Folstein & Van Petten, 2008; Nunez, Pilgreen,

Westdorp, Law, & Nelson, 1991; Ouyang & Zhou, 2020; Stock, Gohil,

Huster, & Beste, 2017) and overlapping brain areas are involved in

processing them (Mückschel, Chmielewski, Ziemssen, & Beste, 2017).

Furthermore, coding levels are more likely to get intermixed if the task

requires manipulations of stimulus- and response-related representa-

tions at the same time, such as in interference suppression (Mückschel,

Chmielewski, et al., 2017) or stimulus–response binding (Opitz, Beste, &

Stock, 2020; Takacs et al., 2020; Takacs, Mückschel, Roessner, &

Beste, 2020). Using averaged trials of EEG data (Kóbor et al., 2018), it

has been demonstrated that the frontal N2 event-related potential

(ERP) component reflects a rapid automatic detection of statistical

properties in the sequence, and a rule-based (pattern vs. random) learn-

ing with a longer time course of development. The P3 ERP-component

seems to be sensitive only to rule-based differences and not to statisti-

cal properties (Kóbor et al., 2018). Therefore, the N2 is an ideal candi-

date to study the simultaneous mechanisms during sequence learning

(Kóbor et al., 2018). In the EEG, the N2 is not a unitary component: it

can be divided into different subcomponents related to cognitive con-

trol and stimulus-related detection of novelty information processing

(Adelhöfer et al., 2018; Adelhöfer, Gohil, Passow, Beste, & Li, 2019;

Chmielewski, Mückschel, & Beste, 2018; Folstein & Van Petten, 2008;

Mückschel, Chmielewski, et al., 2017). Specifically, subprocesses in the

N2 time window that are affected by stimulus-related information can

be expected to show sensitivity to statistical learning. On the other

hand, subprocesses related to control and monitoring may show modu-

lations in relation to rule-based learning of sequential information,

reflecting this process' reliance on top-down functions. Since statistical

learning and deterministic rule-based learning are supposed to occur in

parallel (Conway, 2020), it is likely that these different information

encoding principles are concomitantly coded in the neurophysiological

signal. To solve this problem, we employed a signal decomposition

method to disentangle the proposed simultaneous mechanisms.

A powerful method to disentangle intermixed coding levels in

EEG data is the residue iteration decomposition (RIDE; Chmielewski

et al., 2018; Mückschel, Chmielewski, et al., 2017; Mückschel,

Dippel, & Beste, 2017; Ouyang, Sommer, & Zhou, 2015; Ouyang &

Zhou, 2020). Instead of a traditional averaging of single trial data,

RIDE can dissociate between three main activity clusters which pre-

serve the dynamical response pattern of the single trial data. These

activity clusters are the stimulus-related S-cluster, the response-

related R-cluster, and finally the C-cluster which captures the not

strictly perceptual or motor aspects of the signal. That is, the C-cluster

reflects the translational aspect that is related to the association of

stimuli with the appropriate response (Ouyang, Hildebrandt, Sommer,

& Zhou, 2017). Among these aspects, response selection (Takacs,

Zink, et al., 2020), stimulus-distractor binding (Opitz et al., 2020),

response inhibition (Mückschel, Dippel, & Beste, 2017), and interfer-

ence suppression (Adelhöfer & Beste, 2020) have been linked to the

C-cluster EEG signal, revealing its sensitivity to action control.

The method postulates that parallel processes have different

latency characteristics: perceptual and posterior attention processes

are more likely tied to the stimulus presentation (S-cluster), while

motor execution is locked to the response (R-cluster) (Ouyang,

Herzmann, Zhou, & Sommer, 2011). Furthermore, higher-order mech-

anisms, such as visuo-motor integration, memory, retrieval, and deci-

sion making have variable latencies (C-cluster), and, therefore, the

related neurophysiological signals are smeared in the undecomposed

EEG recording. In a previous study, different N2 effects related to

conflict detection and response control could be differentiated by

temporal signal decomposition (Mückschel, Chmielewski, et al., 2017).

Based on the parallel subprocesses notion of Conway [2020; see also

Kóbor et al., 2018], it is expected that statistical learning as an auto-

matic, stimulus-driven process is reflected by the S-cluster activity,

while the attention-related, higher-order rule-based learning is mainly

reflected by the C-cluster activity. If this is the case, the current study

would be the first to relate cognitive distinctions of statistical and

rule-based learning to distinct coding processes at the neurophysio-

logical level. Learning of sequential patterns has been tied to wide-

spread activations including the parietal cortex, the prefrontal cortex

(PFC), the hippocampus, the cerebellum, and the basal ganglia

(Conway, 2020). Yet, at least two networks can be differentiated from

each other: a more perceptual, posterior one, and a prefrontal one

(Conway, 2020). Especially the lateral PFC is important in the

processing of rule-based information in temporal sequences (Conway,

2020; Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015). Prefrontal

functions, such as response selection and selective attention likely play

a role not only in the production of sequential action, but also in learn-

ing of sequenced information (Conway, 2020). For instance, learning of

nonadjacent, long-distance regularities involves the inferior frontal

gyrus (IFG; Barascud, Pearce, Griffiths, Friston, & Chait, 2016;

Conway, 2020; López-Barroso et al., 2013; Maheu et al., 2020;

McNealy, Mazziotta, & Dapretto, 2006; Southwell & Chait, 2018). Spe-

cifically, the left IFG has been proposed as a supra-modal hierarchical

processor of sequence information (Tettamanti & Weniger, 2006), espe-

cially when sequences consisted of grammar-like structures or verbal

stimuli (Maheu et al., 2020). Learning of statistical information in the

auditory domain involves a wide network: this includes functional con-

nections between IFG and adjacent Broca's area and superior temporal

cortex and Wernicke's area, indicating that efficient communication

between temporal and (left) frontal areas is crucial in extracting probabili-

ties from language-like stimuli (Batterink et al., 2019; López-Barroso

et al., 2013; Maheu et al., 2020; McNealy et al., 2006). However, musical

syntax is related to activations both in left and right IFG (Koelsch &

Siebel, 2005). Importantly, processing sequences of visuospatial or

visuomotor items seem to show right hemisphere dominance (Janacsek

et al., 2015; Jarret, Stockert, Kotz, & Tillmann, 2019; Roser, Fiser, Aslin, &

Gazzaniga, 2011), and data from brain stimulation experiments have

shown that the right dorsolateral prefrontal cortex (DLPFC), but not the
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left DLPFC is associated with learning and retention of visuomotor

sequences (Janacsek et al., 2015). Given the bottom-up nature of

sequence learning (Conway, 2020), and the importance of left IFG in lan-

guage (Amunts et al., 2010; Friederici, 2006), a difference in laterality

between visual and auditory sequences is conceivable. However, as the

current study does not compare different modalities, it cannot contribute

to this ongoing debate. Rather, potential laterality effects will be

reported with tentative explanations only.

Additionally, prefrontal functions, such as attention and inhibitory

control have been suggested to have an orthogonal relationship with

statistical learning (Conway, 2020; Filoteo et al., 2010; Nemeth,

Janacsek, Polner, & Kovacs, 2013). That is, performance on prefrontal

functions negatively correlates with statistical learning abilities; more-

over, temporary decrease of executive functions can enhance statisti-

cal learning (Ambrus et al., 2020; Nemeth, Janacsek, Polner, &

Kovacs, 2013; Virag et al., 2015). The controversy between the role

of frontal neural activity, particularly in the IFG in statistical learning

and the opposing relation between prefrontal executive functions and

learning of probabilistic information can be solved by considering

alternative functions for the right IFG (Erika-Florence, Leech, &

Hampshire, 2014). Specifically, the alternative attentional rule-

processing (ARP) account of the right IFG postulates that this struc-

ture is not specific for inhibitory (or other executive) functions, but

houses general task-related functions, such as detecting novelty and

frequency information in task settings, and gating of learning through

attention control (Erika-Florence et al., 2014; Southwell & Chait,

2018). Thus, the orthogonal relationship between statistical learning

and prefrontal executive functions does not exclude the possibility of

the involvement of IFG in learning, especially when the sequence is

presented visually. In such sequences, detection of mismatch between

internal models of the sequence and unexpected new items in the

information stream contributes to surprise detection, which process

has been linked to the right IFG (Barascud et al., 2016; Southwell &

Chait, 2018). Moreover, it has been proposed that learning of non-

adjacent dependencies relies on IFG (Amunts et al., 2010; Batterink

et al., 2019) as opposed to adjacent regularities that are associated

with activations in the (ventral) premotor cortex (Friederici, 2006;

Opitz & Kotz, 2012). Thus, the statistical complexity of the sequence

could influence the loci of frontal activations during learning.

In the current study, statistical learning effects are studied by

temporally decomposed ERP components. Among these components,

the S-cluster N2 is expected to show the mismatch function related

to distinguishing between predictable (frequent) and unpredictable

(rare) stimuli. Since learning of statistical regularities is functionally

related to detecting novelty in the stimuli, based on the ARP model

(Erika-Florence et al., 2014), we expected that learning of statistical

probabilities as an S-cluster N2 effect is related to the right IFG

(Barascud et al., 2016; Conway, 2020; Maheu et al., 2020; Southwell &

Chait, 2018). In contrast, we expected more widespread prefrontal

activations related to rule-based learning effect in the C-cluster N2 in

accordance with previous brain stimulation studies (Conway, 2020).

The current study is a re-analysis of the research by Kóbor et al. (2018).

The undecomposed time-domain data suggested that anterior negative

deflections in the N2 time window were sensitive to both statistical

learning and rule-based learning albeit with different development as

learning progressed (Kóbor et al., 2018). However, the conclusion was

drawn based on overlapping time windows due to latency differences

in the EEG data. To overcome this limitation, the current study employs

temporal signal decomposition that is particularly suitable for studying

simultaneous processes in the EEG signal (Ouyang et al., 2011; Ouyang

& Zhou, 2020). Moreover, to further evaluate the independence of sta-

tistical learning and rule-based learning at the neurophysiological level

(Southwell & Chait, 2018), we have compared their neural source infor-

mation, as well. In sum, to dissociate between neurophysiological

markers of parallel learning mechanisms within sequence learning, we

employed temporal signal decomposition and subsequent source locali-

zation of the RIDE-decomposed components. Of note, while our

hypotheses are specific to the decomposed N2, as in the original study

(Kóbor et al., 2018), we also present related analyses of the P3 time

window.

2 | METHODS

2.1 | Participants

The current study is a re-analysis of the sample of 40 undergraduate

students (21.4 years ± 1.6) as reported in Kóbor et al. (2018). All par-

ticipants reported their vision to be normal or corrected-to-normal,

the lack of any neurological or psychiatric condition, or taking any

psychoactive medication. Further details of the participants, including

handedness, years of education, and performance on standard neuro-

psychological tests are reported in the original study (Kóbor et al., 2018).

2.2 | Ethics statement

Before the experiment started, participants were informed about the

procedures of measurement and data collection. All participants pro-

vided written informed consent prior to participating, for which they

received either payment or course credit. The study received approval

from the United Ethical Review Committee for Research in Psychol-

ogy in Hungary (EPKEB). The experiment was conducted in accor-

dance with the Declaration of Helsinki.

2.3 | Task

To measure sequence learning, a modified version of the Alternating

Serial Reaction Time (ASRT) task (Howard & Howard, 1997) was pres-

ented to the participants, while EEG was recorded. This variation of

the task is called the cued ASRT (Nemeth, Janacsek, & Fiser, 2013)

and it has been successfully adapted for EEG measurement before

(Kóbor et al., 2018). In this version of the task, a target stimulus (either

a black or a red arrow facing left, up, down, or right) was presented on

the display. The stimuli were always arranged to a central position of
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the screen. The task's instruction asked for pressing the corresponding

button on the response box (indicating the four possible directions,

see Figure 1) as accurately and as fast as possible. The stimuli

appeared according to an eight-element alternating sequence. The

alternating sequence determined that random elements were always

followed by pattern elements, and vice versa. Following this rule of

stimulus presentation, if the sequence was 1–2-4-3, the stimuli

appeared as 1-r-2-r-4-r-3-r, where the four numbers correspond to

the arrow's possible directions and “r” stands for a random direction.

To visually indicate the task's rule, the black arrows represented pat-

tern elements and the red arrows represented random elements. The

instruction explicitly stated that the black arrows always followed a

pattern, while red arrows appeared in random directions. Thus, the

sequential rule was made explicit beforehand for the participants, and

this information stayed salient during the task with the use of differ-

ent colors for the two types of stimuli. Participants were asked to find

the pattern in how the black arrows were presented to perform better

in the task.

The structure of alternating black and red arrows means that

some three-element series of consecutive stimuli (“triplets”) appeared
with different levels of probabilities, that is, triplets with high and low

frequencies could be identified. In the example of 1-r-2-r-4-r-3-r, the

combinations of 1-X-2, 2-X-4, 4-X-3, 3-X-1 (X stands for any middle

stimulus within the triplet) are frequent ones. However, series as

3-X-2 or 4-X-2 are less common. In these latter examples, the third

element of the triplet can never occur as part of the sequence (pattern

element), while in the former, frequent ones, the triplet can end either

as a pattern or as a random stimulus. Triplets that are more probable

to occur are called high-frequency triplets, while less probable ones

are called low-frequency triplets. The designations also refer to the

transition probabilities within the triplets. That is, in a high-frequency

triplet, the third element is highly predictable based on the first ele-

ment (with 62.5% probability). In the case of the low-frequency triplet,

the predictability of the last element is lower (12.5%). In addition, each

element can be categorized according to its sequential position, that

is, whether it is a pattern element or a random element. If the last

F IGURE 1 Experimental design. (a) In the current version of the Alternation Serial Reaction Time (ASRT) task, participants saw an arrow in
the middle of the screen. The arrows' presentation followed an eight-element sequence, in which pattern and random (R) elements alternate.
Regularity of the sequence (e.g., the task rule) has been marked by black color for pattern and red color for random elements. Numbers denote
the four possible directions of the arrows (1—left, 2—up, 3—down, 4—right). These directions correspond to the configuration of the response pad
as presented in the top right corner of the figure. Timing of the task is presented below the thick black arrow (timeline). (b) Some series of
consecutive elements (triplets) occur frequently in the task than others. High-frequency triplets could either end with pattern or with random
elements, while low-frequency triplets always end with a random element

TAK�ACS ET AL. 5



element is a pattern one, the explicit knowledge of the sequential rule

contributes to predicting the direction of the next arrow. Therefore,

the combination of the alternating sequence structure and the fre-

quency information of the triplets results in a three-way categoriza-

tion of regularities within the task: high-frequency triplets with either

pattern or random endings and low-frequency triplets that always end

with random elements.

Consequently, based on the frequency and structure of the trip-

lets, three types of trials can be distinguished: (a) high-frequency pat-

tern trials, (b) high-frequency random trials, and (c) low-frequency

random trials. These types of trials can be analyzed to track the course

of the two most important learning mechanisms in the ASRT task:

sequence or rule-based learning and statistical learning. Learning of

sequential rule is quantified as a difference in response times between

high-frequency pattern and high-frequency random elements. These

elements are the last parts of a high-frequency triplet, thus, they rep-

resent the same frequency information across the task. However, they

differ in terms of sequential position, as one is part of the reoccurring

pattern, while the other appears randomly. Therefore, faster

responses to the pattern compared to the random trials indicates bet-

ter learning of the sequential rule. To calculate the acquisition of

frequency-based information, that is, statistical learning, response

times for high-frequency random, and low-frequency random trials

are compared. Here, the elements carry the same information of the

sequential rule (both random) but differ in frequencies, since they

appear either in a high-frequency or a low-frequency triplet. There-

fore, faster response time to high-frequency random elements than to

low-frequency random elements is considered as a behavioral marker

for successful statistical learning. In summary, statistical learning cap-

tures purely probability-based learning, while learning of the sequen-

tial rule captures order-based learning. In other words, the alternating

regularity between nonadjacent items of the sequence creates more

and less frequent (less predictable) chunks with either pattern-ran-

dom-pattern or random-pattern-random configurations (triplets). In

statistical learning, a second-order transitional probability is being

learnt: in one triplet, the first two items always followed by one fre-

quently occurring and some less frequent endings within the stimulus

chunk (Szegedi-Hallgató et al., 2017; Szegedi-Hallgató et al., 2019).

That is, in high-frequency triplets, the final item is more predictable by

the first item compared to the low-frequency triplets (the middle item

does not have predictive value, hence, nonadjacent dependency).

While in rule-based learning, the second-order transitional probability

is always one: if the sequence has been learnt, pattern elements can

be predicted with 100% certainty based on the previous pattern ele-

ments (Nemeth, Janacsek, & Fiser, 2013; Szegedi-Hallgató et al.,

2017, 2019).

Stimuli were presented in blocks, each of them containing 85 tri-

als. Participants could take a short break between them, as the start

of the blocks was self-paced. In a block, first five warm-up random tri-

als were presented, then the eight-element sequence appeared ten

times. After a block was completed, explicit sequence knowledge was

assessed. Participants were asked to type the order of the black (pat-

tern) stimuli with the corresponding buttons, that is, as a continuous

sequence that leaves out the red (random) arrows. The sequence report

was finished after twelve button presses. If a participant reported at

least ten correct continuous responses from the sequence, and they

were able to keep this performance for the rest of the task, the origi-

nal block where the sequence was first correctly reported was labelled

as the timing of the discovery of the sequence. A more continuous mea-

sure of emerging sequence knowledge was calculated as a sequence

knowledge score. In each postblock sequence report, each correct

sequence item worth one point, then the sum of correct items was

averaged across the thirty blocks of the experiment. After the

sequence report has been completed, participants received feedback

on the display for 4,000 ms that informed them about their general

performance (average RT and accuracy on sequence stimuli). Of note,

the feedback was not informative about the statistical learning perfor-

mance nor about the rule-based learning. After the feedback, partici-

pants took a short break before starting the next block. In sum,

participants completed 2,550 trials over 30 blocks. The experiment

lasted about 2.5 hr, including dimming the electrode cap and individ-

ual breaks.

2.4 | EEG recording and analysis

Scalp EEG was recorded with 64 Ag/AgCl electrodes from an elastic

cap (EasyCap, Germany), using Synamps amplifier and Neuroscan

recording software (Compumedics Neuroscan, USA). For reference

and ground, the tip of the nose and AFz electrode were employed.

EEG recording was performed with a sampling rate of 1,000 Hz and

with an online filter of 70 Hz low-pass, 24 dB/oct. Impedance levels

of electrodes were kept below the threshold of 10 kΩ. The recordings

were analyzed in BrainVision Analyzer 2.0 (Brain Products, Germany).

The EEG data were band-passed filtered (0.5–30 Hz, 48 dB/oct), and

a notch filter was applied (50 Hz). Then, independent component

analysis (ICA, Infomax) was performed to remove only those compo-

nents that were identified either as eye-movement artifacts or as

pulse artifacts based on their temporal properties and spatial distribu-

tions (Delorme, Sejnowski, & Makeig, 2007). As a result, two to four

components have been removed per person (M = 3.2 ± 0.7). Then, the

channel-based EEG data were re-referenced to the average of all elec-

trodes. The preprocessed EEG was segmented according to time-on-

task and experimental conditions, which required two consecutive

steps. First, six equal length time bins or epochs were created. Second,

the data were segmented into the three experimental conditions in

each epoch. That is, high-frequency pattern, high-frequency random,

and low-frequency random segments were created. Segments with

incorrect responses or without response markers (misses) were not

included in the segmentation to ensure that only those trials are ana-

lyzed which were correctly identified by the participants. These seg-

ments were 800 ms long, starting −200 ms before the stimulus

presentation, and ending 600 ms after that. Following the segmenta-

tion, automatic artifact rejection (as implemented in BrainVision Ana-

lyzer 2.0) was used to remove the remaining artifacts (with a voltage

threshold of ±100 μV at any channels). The percentage of removed
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segments across conditions was 1.4% ± 3.7. None of the participants

had to be removed because of a low number of kept segments. The

kept segments were then baseline corrected based on the activity in a

200-ms-long interval before the stimulus presentation. The final seg-

ments represented the experimental conditions in six consecutive time

stages of the task with correct responses. Further details of the EEG

processing, including justification of these steps, can be found in Kóbor

et al. (2018). The original analysis identified a frontal N2 component

(time window of 200–300 ms) and a P3 component with a maximum

activity on the electrode Pz (time window of 250–350 ms). Results of

the original ERP analysis are reported in Kóbor et al. (2018). In the cur-

rent study, the preprocessed, segmented, cleaned, and baseline-

corrected data was re-analyzed with RIDE temporal decomposition.

2.5 | Residue iteration decomposition

The RIDE temporal decomposition method was used for trial-to-trial

variability-based analysis of the stimulus-locked ERPs. RIDE aims to dis-

tinguish components with variable intercomponent delays based on the

single trial latency variability information (Ouyang et al., 2015; Ouyang &

Zhou, 2020). The single-trial ERPs are decomposed into different compo-

nents with differential latency variability. Temporal decomposition is

achieved in an iterative way. RIDE assesses latency variability in a

channel-specific fashion, thus, differences between individual electrodes

remain valid in the identified components (Ouyang et al., 2015). In

the current study, we used the RIDE toolbox in Matlab (Mathworks,

Inc., MA), and followed the protocols of earlier studies (Mückschel,

Chmielewski, et al., 2017; Ouyang et al., 2011; Verleger, Metzner,

Ouyang, Śmigasiewicz, & Zhou, 2014). For a review of previous RIDE

applications, see Ouyang and Zhou (2020). In two cluster types, latency

information was extracted based on existing marker information. That is,

stimulus onset was used to create the S-cluster (“stimulus cluster”) and
response markers for the R-cluster (“response cluster”). The C-cluster

(“central cluster”) was estimated and iterated in each trial, assuming a

nonconstant latency. That is, virtual time markers were created to

decompose the last cluster. RIDE uses an iterative decomposition with

an L1-norm minimization. The resulting median waveforms represent the

dynamics of single trials more reliably than traditional averaging of ERP

components (Ouyang et al., 2017; Ouyang & Zhou, 2020). To estimate

the first decomposed cluster, RIDE subtracts the other two from each

trial and adjusts the residual of all trials for the latency information of the

first one. As a result, median waveform is created for all time points in

the cluster's search interval. The procedure is then repeated to create

the remaining two clusters. The whole process iterates until convergence

to better estimate the sub-components. To extract the waveforms of

each cluster, search windows should be predefined (Ouyang et al., 2011,

2015). The following time-intervals were specified: for the S-cluster up

to 500 ms after the stimulus presentation; for the R-cluster 300 ms

before and after the correct response marker; for the C-cluster 150 to

600 ms after the stimulus. Based on the original study (Kóbor

et al., 2018), we selected the electrode Fz for the N2 component, and

the electrode Pz for the P3 component. The selected channels were then

visually inspected to determine the time window of these two compo-

nents separately for the three RIDE clusters. The N2 component was

identified between 200 and 300 ms after the stimulus presentation in the

S-cluster (similar to the undecomposed N2 in Kóbor et al. (2018). In the

C-cluster, the N2 was visible between 240 and 340 ms after the stimulus

onset. In the R-cluster, the N2 could not be identified by visual inspec-

tion, however, it was analyzed in the time window corresponding to the

undecomposed N2 and the S-cluster N2 time window (200–300 ms).

The original study reported the P3 component between 250 and

350 ms after the stimulus presentation (Kóbor et al., 2018). We

selected the identical time window in the S-cluster data. In the

C-cluster, the P3 was detected between 250 and 400 ms, and in

the R-cluster, between 280 and 440 ms after the stimulus onset.

Within the selected time intervals, the mean amplitude was quanti-

fied and extracted at the single-subject level.

2.6 | Source localization

The standard low resolution brain electromagnetic tomography

(sLORETA) (Pascual-Marqui, 2002) was used to examine the esti-

mated neural sources of the effects of statistical learning and rule

learning for the temporally decomposed EEG data. sLORETA provides

neural source information based on images of standardized current

source density. The standard electrode coordinates according to the

10/20 system were used as input. Then, a three-shell spherical head

model and the covariance matrix were calculated using the baselines

at the single subject level. Within the head model, the intra-cerebral

volume is partitioned into 6,239 voxels using a spatial resolution of

5 mm. The standardized current density is calculated for each voxel,

using an MNI152 head model template. sLORETA provides a single

linear solution for the inverse problem without localization bias

(Marco-Pallarés, Grau, & Ruffini, 2005; Pascual-Marqui, 2002; Sekihara,

Sahani, & Nagarajan, 2005). Sources identified with using the sLORETA

have been validated in combined MRI/EEG and TMS/EEG studies

(Dippel & Beste, 2015; Ocklenburg et al., 2018; Sekihara et al., 2005).

Comparisons against zero were used for the sLORETA contrasts. To

calculate the statistics on the sLORETA sources, we used voxel-wise

randomization tests with 2,500 permutations and statistical nonpara-

metric mapping procedures. Locations of voxels that were significantly

different (p <.05) are shown in the MNI-brain. Significant activations

represent critical t-values corrected for multiple comparisons as

implemented in the sLORETA software.

2.7 | Statistics

Statistical analyses were performed by using IBM SPSS Statistics, and

followed the established procedure of analyzing the ASRT task (Kóbor

et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Song, Howard, &

Howard, 2007). The two main learning processes, statistical learning

and rule-based learning were quantified for the behavioral and EEG

analyses. Statistical learning was defined as the difference between
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high-frequency random and low-frequency random trials in reaction

time, and mean activity of the RIDE clusters. Better statistical learning

means shorter reaction time for high-frequency random than for low-

frequency random trials. This learning index is expected to become

larger as the learning progresses. Rule-based learning was quantified

as a difference between high-frequency pattern and high-frequency

random trials in reaction time, and mean activity of the RIDE clusters.

Better rule-based learning means shorter reaction time for the pattern

than for high-frequency random trials. This learning index also

becomes larger as the learning progresses (revealed by a significant

interaction with the epoch). The two learning mechanisms were ana-

lyzed in two-way repeated measures ANOVAs with “type” (high-

frequency pattern, high-frequency random, and low-frequency

random) and “epoch” (from one to six) as within-subject factors on

reaction time, and the mean amplitude of the N2 and P3 components

in the three RIDE clusters. When the interaction between type and

epoch was significant, statistical learning was tested with a type by

epoch ANOVA, in which the type factor included high-frequency ran-

dom and low-frequency random trials. Similarly, rule-based learning

was analyzed as a type by epoch ANOVA, in which the type factor

included high-frequency random and high-frequency pattern trials. In

these ANOVA models, the Greenhouse–Geisser epsilon correction

was used when the lack of sphericity necessitated it. Effect sizes are

reported as partial eta-squared. Post hoc pairwise comparisons of the

behavioral measures and the decomposed N2 and P3 mean ampli-

tudes were Bonferroni-corrected, if necessary.

3 | RESULTS

3.1 | Behavioral results

Details of the behavioral results, including main effects and descrip-

tive data are reported and illustrated in Kóbor et al. (2018). Overall

accuracy separately for conditions has also been reported in the origi-

nal manuscript. Crucially for the current study, the error rate was low

in the entire sample (6.0% ± 2.0, range: 2.4–11.4%), thus, no partici-

pant had to be excluded based on low task performance. Here we

summarize only those behavioral results that indicate learning effects

and are necessary to interpret the neurophysiological results. Impor-

tantly, the type (high-frequency pattern, high-frequency random, and

low-frequency random) by epoch (1–6) ANOVA on the reaction time

data showed a significant type by epoch interaction (F(10, 390) = 15.25,

ε = .382, p < .001, ηp
2 = .281). This indicates that participants'

responses changed between triplet types during the task. In the case

of rule-based learning, the type by epoch ANOVA revealed a signifi-

cant type by epoch interaction (F(5, 195) = 16.78, ε = .617, p <.001,

ηp
2 = .301). Participants' responses were faster in high-frequency pat-

tern than in high-frequency random condition in all six epochs

(p <.001), and this difference gradually increased from the first to the

fourth epoch (smaller in the first epoch than in the other epochs ps

<.004; smaller in the second epoch than in the fourth, and sixth ones

p <.019; smaller in the third epoch than in sixth p <.001; for

descriptive data, see Kóbor et al. (2018). That is, participants showed

rule-based learning from the beginning of the task, and this learning

effect became larger as the task progressed. In the case of statistical

learning, the type by epoch ANOVA did not reveal a significant type

by epoch interaction (p = .643), however, the main effect of type was

significant (F(1, 39) = 123.53, p <.001, ηp
2 = .760). Participants were

faster in high-frequency random than in low-frequency random condi-

tion, throughout the task. That is, while rule-based learning showed a

gradual adaptation to the task starting from the first epoch, sensitivity

to statistical regularities developed quickly and remained stable

(i.e., reached its plateau more quickly). According to the collected

sequence reports during the task, participants gained explicit knowl-

edge about the sequence of the black arrows from around the fourth

block (3.68 ± 6.15, that is, before reaching the end of the first epoch).

Furthermore, the mean score of the sequence knowledge was

11.56 ± 0.82. After the first block, the majority (28 participants, 70%

of the whole sample) responded with the maximum of 12 correct

items (see also Kóbor et al., 2018).

3.2 | Neurophysiological results

Analyses of the decomposed N2 and P3 components are presented as

follows. First, type by epoch repeated measure ANOVAs are

described. Second, separate ANOVAs investigating statistical learning

or rule-based learning are described.

3.2.1 | Decomposed N2 (S-cluster)

Grand-averages of ERP waveforms in the S-cluster N2 time window

split by triplet type and epoch are presented in Figure 2 and statistical

results are summarized in Table 1.

The type by epoch ANOVA on the mean amplitude of the

S-cluster N2 showed that the main effect of type was significant

(F(2,78) = 10.73, ε = .809, p <.001, ηp
2 = .216). Similarly, the main

effect of epoch was significant (F(5,195) = 3.97, p = .002, ηp
2 = .092).

Importantly, the type by epoch interaction was also significant

(F(10,390) = 2.20, ε = .674, p = .036, ηp
2 = .053), suggesting that the

mean amplitude of the S-cluster N2 changed between triplet types

during the task.

In case of statistical learning, the type by epoch ANOVA showed

that the main effect of triplet type was not significant (F(1,39) = 1.52,

p = .226, ηp
2 = .037). However, the main effect of epoch was signifi-

cant (F(5,195) = 2.99, ε = .811, p = .020, ηp
2 = .071). The S-cluster N2

was larger in the fifth (−1.07 μV ± .26) than in the second epoch

(−0.54 μV ± .28, p = .027). None of the other differences between

epochs were significant (p >.070). However, the type by epoch inter-

action was significant (F(5,195) = 3.14, ε = .796, p = .016, ηp
2 = .074).

In the second epoch, the S-cluster N2 amplitude was larger in the

low-frequency random (−0.90 μV ± .26) than in the high-frequency

random (−0.19 μV ± .32, p <.001) condition. Triplet types did not dif-

fer from each other in other epochs (ps >.155). The sLORETA analysis
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revealed that the statistical learning effect across all epochs was

reflected by activation modulations in the right IFG (BA44; MNI [x,y,

z]: 60, 5, 15). Thus, in the S-cluster N2, statistical learning was

observed as a rapid effect occurring between the first and second

epochs of the experiment. Additionally, statistical learning during the

task was related to right IFG activation.

In case of rule-based learning, the type by epoch ANOVA showed

that the main effect of type was significant (F(1,39) = 9.53, p = .004,

ηp
2 = .196). The S-cluster N2 was larger in the high-frequency random

(−0.83 μV ± .24) than in the high-frequency pattern (−0.41 μV ± .23)

condition. Similarly, the main effect of epoch was significant (F(5,195) =

5.33, p <.001, ηp
2 = .120). The S-cluster N2 was smaller in the second

epoch (−0.21 μV ± .26) than in the third (−0.68 μV ± .23, p = .008),

fourth (−0.69 μV ± .23, p = .037), fifth (−0.78 μV ± .24, p = .001), and

sixth epochs (−0.80 μV ± .24, p <.001), consecutively. None of the other

epochs differed from each other (p >.296). The type by epoch interaction

was not significant (F(5,195) = 1.98, ε = .796, p = .101, ηp
2 = .048).

According to the sLORETA analysis, the rule-based learning effect during

the task was reflected by activation modulations in the right prefrontal

gyrus (BA6; MNI [x,y,z]: 65, 0, 15). Thus, rule-based learning showed

time-invariant effect in the S-cluster N2 mean amplitude. Triplets ending

with pattern or random elements with the same frequency were dissoci-

ated through the whole task, and this difference was related to prefrontal

activity.

F IGURE 2 S-cluster N2. (a) S-cluster data is presented on channel Fz. Time point zero represents the stimulus presentation. The analyzed
time window (200–300 ms) is marked with a shaded area. The S-cluster N2 is presented across three conditions: high-frequency pattern (black),
high-frequency random (blue), and low-frequency random (green). The six panels depict the six consecutive epochs of the task. The scalp
topography plots show the distribution of the mean activity of the two main contrasts: statistical learning as a difference between low-frequency
random and high-frequency random and rule-based learning as a difference between high-frequency pattern and high-frequency random
conditions. (b) Voxels with significant differences for the statistical learning and rule-based learning effects according to the standard low
resolution brain electromagnetic tomography (sLORETA) analysis are presented. The sLORETA color bar presents critical t values
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3.2.2 | Decomposed N2 (C-cluster and R-cluster)

Grand-averages of ERP waveforms in the C-cluster N2 time window

split by triplet type and epoch are presented in Figure 3 and statistical

results are summarized in Table 1.

The type by epoch ANOVA on the mean amplitude of the C-

cluster N2 showed that the main effect of type was significant

(F(2,78) = 9.20, ε = .715, p = .001, ηp
2 = .191). However, the main effect

of epoch was not significant (F(5,195) = 1.27, ε = .679, p = .287,

ηp
2 = .032). Importantly, the type by epoch interaction was significant

(F(10,390) = 3.98, ε = .695, p < .001, ηp
2 = .092), which suggests that the

mean amplitude of the C-cluster N2 changed between triplet types dur-

ing the task. In case of statistical learning, the type by epoch ANOVA

showed that the main effect of triplet was significant (F(1,39) = 4.54,

p = .039, ηp
2 = .104). The C-cluster N2 was larger in the low-frequency

random (−2.91 μV ± .36) than in the high-frequency random

(−2.65 μV ± .33) condition. However, the main effect of epoch was not

significant (F(5,195) = 0.48, ε = .832, p = .755, ηp
2 = .012). Similarly, the

triplet by epoch interaction was not significant (F(5,195) = 1.93, ε = .827,

p = .105, ηp
2 = .047). The sLORETA analysis revealed that the statistical

learning effect was reflected by activation modulations in the left mid-

dle frontal gyrus (BA6; MNI [x,y,z]: −35, 0, 40) and in the right medial

frontal gyrus (BA10; MNI [x,y,z]: 15, 50, 10). Thus, statistical learning

effect occurred as a difference between low-frequency random and

high-frequency random triplets irrespective of time on task, and this

effect of the C-cluster N2 was related to prefrontal activities.

In case of rule-based learning, the type (high-frequency random

vs. high-frequency pattern) by epoch (1–6) ANOVA showed that the

main effect of type was significant (F(1,39) = 7.48, p = .009, ηp
2 = .161).

The C-cluster N2 was larger in the high-frequency random

(−2.65 μV ± .33) than in the high-frequency pattern (−2.12 μV ± .33)

condition. Similarly, the main effect of epoch was significant

(F(5,195) = 2.60, ε = .725, p = .044, ηp
2 = .062). The C-cluster N2 was

smaller in the third epoch (−2.20 μV ± .35) than in the first

(−2.78 μV ± .34, p = .017) and second (−2.66 μV ± .34, p = .017), and

it was smaller in the fourth epoch (−2.03 μV ± .40) than in the first

(p = .009), and second epochs (p = .015). None of the other epochs

differed from each other (p >.082). The type by epoch interaction was

also significant (F(5,195) = 3.81, p = .003, ηp
2 = .089). The C-cluster N2

was more negative in the high-frequency random than in the high-

frequency pattern condition in the fifth (−2.83 μV ± .37 vs. −2.01

μV ± .37, p = .019) and sixth epochs (−2.78 μV ± .39 vs. −1.68

μV ± .37, p = .001). The difference between conditions was not signifi-

cant in the other epochs (p >.061). The sLORETA analysis revealed that

the rule-based learning effect was reflected by activation modulations

in the left superior frontal gyrus (BA6; MNI [x,y,z]: −15, 10, 70). Thus,

rule-based learning was detected in the C-cluster N2 mean amplitude

data as a gradually increasing difference between random and pattern

elements with the same frequency. This difference became the largest

by the end of the learning. Additionally, rule-based learning during the

task was related to activation in the superior frontal gyrus.

The type (high-frequency pattern, high-frequency random, and

low-frequency random) by epoch (1–6) ANOVA on the mean amplitude

of the R-cluster N2 showed that the main effects of type (F(2,78) = 0.79,

ε = .641, p = .409, ηp
2 = .020) and epoch (F(5,195) = 1.58, p = .169,

ηp
2 = .039) were not significant. Similarly, the type by epoch interaction

was not significant either (F(5,195) = 0.22, ε = .590, p = .967, ηp
2 = .006).

Thus, the response-related R-cluster N2 did not show any modulation

related to either statistical learning or rule-based learning. For the com-

plete comparisons, we provide the details of the follow-up analyses

(statistical learning and rule-based learning) in Table 1.

3.2.3 | Decomposed P3 (S-cluster)

Grand-averages of ERP waveforms in the S-cluster P3 time windows

split by triplet type and epoch are presented in Figure 4 and statistical

results are summarized in Table 2.

TABLE 1 Summary of the
decomposed N2 findings

S-cluster C-cluster R-cluster

Analysis and effects F p ηp
2 F p ηp

2 F p ηp
2

General

Type 10.73 <.001 .216 9.2 .001 .191 0.79 .409 .020

Epoch 3.97 .002 .092 1.27 .287 .032 1.58 .169 .039

Interaction 2.2 .036 .053 3.98 <.001 .092 0.22 .967 .006

Statistical learning

Type 1.52 .226 .037 4.54 .039 .104 0.82 .372 .020

Epoch 2.99 .020 .071 0.48 .755 .012 1.55 .189 .038

Interaction 3.14 .016 .074 1.93 .105 .047 0.11 .990 .003

Rule-based learning

Type 9.53 .004 .196 7.48 .009 .161 1.18 .285 .029

Epoch 5.33 <.001 .120 2.6 .044 .062 0.78 .565 .020

Interaction 1.98 .101 .048 3.81 .003 .089 0.28 .926 .007

Note: p values ≤ .001 are presented in bold.
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The type by epoch ANOVA on the mean amplitude of the S-cluster

P3 showed that the main effect of type was significant (F(2,78) = 4.85,

p = .010, ηp
2 = .111). Similarly, the main effect of epoch was significant

(F(5,195) = 2.57, p = .028, ηp
2 = .062). However, the type by epoch inter-

action was not significant (F(10,390) = 1.36, p = .198, ηp
2 = .034). In case

of statistical learning, the type by epoch ANOVA showed that the main

effects of type (F(1,39) = 3.41, p = .072, ηp
2 = .080) and epoch

(F(5,195) = 1.62, p = .157, ηp
2 = .040) were not significant. Similarly, the

type by epoch interaction was not significant (F(5,195) = 1.20, p = .311,

ηp
2 = .030). Thus, the S-cluster P3 did not show any modulation related

to statistical learning. In case of rule-based learning, the type by epoch

ANOVA showed that the main effect of type was significant

(F(1,39) = 9.16, p = .004, ηp
2 = .190). The S-cluster P3 was larger in the

high-frequency pattern (1.74 μV ± .18) than in the high-frequency ran-

dom (1.48 μV ± .21) condition. Similarly, the main effect of epoch was

significant (F(5,195) = 2.49, p = .033, ηp
2 = .060). The S-cluster P3 was

smaller in the fourth epoch (1.47 μV ± .21) than in the third

(1.80 μV ± .21, p = .023). None of the other epochs differed from each

other (p >.402). However, the type by epoch interaction was not signifi-

cant (F(5,195) = 1.89, p = .098, ηp
2 = .046). The sLORETA analysis rev-

ealed that the rule-based learning effect was reflected by activation

modulations in the left IFG (BA9; MNI [x,y,z]: −50, 10, 35) and in the

left anterior cingulate cortex (BA24; MNI [x,y,z]: −5, 25, 30). Thus, the

S-cluster P3 was sensitive the rule-based learning.

F IGURE 3 C-cluster N2. (a) C-cluster data is presented on channel Fz. Time point zero represents the stimulus presentation. The analyzed
time window (240–340 ms) is marked with a shaded area. The C-cluster N2 is presented across three conditions: high-frequency pattern (black),
high-frequency random (blue), and low-frequency random (green). The six panels depict the six consecutive epochs of the task. The scalp
topography plots show the distribution of the mean activity of the two main contrasts: statistical learning as a difference between low-frequency

random and high-frequency random and rule-based learning as a difference between high-frequency pattern and high-frequency random
conditions. (b) Voxels with significant differences for the statistical learning and rule-based learning effects according to the standard low
resolution brain electromagnetic tomography (sLORETA) analysis are presented. The sLORETA color bar presents critical t values
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F IGURE 4 S-cluster P3. S-cluster P3. (a) S-cluster data is presented on channel Pz. Time point zero represents the stimulus presentation. The
analyzed time window (250–350 ms) is marked with a shaded area. The S-cluster P3 is presented across three conditions: high-frequency pattern
(black), high-frequency random (blue), and low-frequency random (green). The six panels depict the six consecutive epochs of the task. The scalp
topography plots show the distribution of the mean activity of the two main contrasts: statistical learning as a difference between low-frequency
random and high-frequency random and rule-based learning as a difference between high-frequency pattern and high-frequency random
conditions. (b) Voxels with significant differences for the statistical learning and rule-based learning effects according to the standard low
resolution brain electromagnetic tomography (sLORETA) analysis are presented. The sLORETA color bar presents critical t values

TABLE 2 Summary of the
decomposed P3 findings

S-cluster C-cluster R-cluster

Analysis and effects F p ηp
2 F p ηp

2 F p ηp
2

General

Type 4.85 .010 .111 10.10 <.001 .206 10.71 <.001 .215

Epoch 2.57 .028 .062 4.40 .002 .101 3.05 .018 .073

Interaction 1.36 .198 .034 1.43 .196 .035 3.61 .001 .085

Statistical learning

Type 3.41 .072 .080 1.05 .312 .026 2.06 .160 .050

Epoch 1.62 .157 .040 2.56 .029 .062 1.17 .328 .029

Interaction 1.20 .311 .030 1.11 .355 .028 1.23 .295 .031

Rule-based learning

Type 9.16 .004 .190 14.27 .001 .268 16.66 <.001 .299

Epoch 2.49 .033 .060 3.26 .008 .077 4.94 <.001 .112

Interaction 1.89 .098 .046 2.14 .063 .052 3.69 .007 .086

Note: p values ≤ .001 are presented in bold.
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3.2.4 | Decomposed P3 (C-cluster)

Grand-averages of ERP waveforms in the C-cluster P3 time windows

split by triplet type and epoch are presented in Figure 5 and statistical

results are summarized in Table 2.

The type by epoch ANOVA on the mean amplitude of the C-cluster

P3 showed that the main effect of type was significant (F(2,78) = 10.10,

ε = .862, p <.001, ηp
2 = .206). Similarly, the main effect of epoch was

significant (F(5,195) = 4.40, ε = .822, p = .002, ηp
2 = .101). However, the

type by epoch interaction was not significant (F(10,390) = 1.43, ε = .662,

p = .196, ηp
2 = .035). In case of statistical learning, the type by epoch

ANOVA showed that the main effect of triplet type (F(1,39) = 1.05,

p = .312, ηp
2 = .026) was not significant. The main effect of epoch

(F(5,195) = 2.56, p = .029, ηp
2 = .062) was significant, however, after

Bonferroni-correction, none of the pair-wise differences between the

epochs were significant (ps >.182). The type by epoch interaction was

not significant either (F(5,195) = 1.11, p = .355, ηp
2 = .028). In case of

rule-based learning, the type (high-frequency random vs. high-frequency

pattern) by epoch (1–6) ANOVA showed that the main effect of type

was significant (F(1,39) = 14.27, p = .001, ηp
2 = .268). The C-cluster P3

was larger in the high-frequency pattern (3.60 μV ± .24) than in the

high-frequency random (3.05 μV ± .25) condition. Similarly, the main

effect of epoch was significant (F(5,195) = 3.26, p = .008, ηp
2 = .077). The

C-cluster P3 was smaller in the fifth epoch (3.15 μV ± .25) than in the

first one (3.64 μV ± .27, p = .028). None of the other epochs differed

from each other (ps >.231).

F IGURE 5 C-cluster P3. (a) C-cluster data is presented on channel Pz. Time point zero represents the stimulus presentation. The analyzed
time window (250–400 ms) is marked with a shaded area. The C-cluster P3 is presented across three conditions: high-frequency pattern (black),
high-frequency random (blue), and low-frequency random (green). The six panels depict the six consecutive epochs of the task. The scalp
topography plots show the distribution of the mean activity of the two main contrasts: statistical learning as a difference between low-frequency
random and high-frequency random and rule-based learning as a difference between high-frequency pattern and high-frequency random
conditions. (b) Voxels with significant differences for the statistical learning and rule-based learning effects according to the standard low
resolution brain electromagnetic tomography (sLORETA) analysis are presented. The sLORETA color bar presents critical t values
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The type by epoch interaction was not significant (F(5,195) = 2.14,

p = .063, ηp
2 = .052). The sLORETA analysis revealed that the rule-

based learning effect was reflected by activation modulations in the

right middle frontal gyrus (BA46; MNI [x,y,z]: 50, 40, 20) and in the right

middle temporal gyrus (BA39; MNI [x,y,z]: 45, −75, 10). Thus, rule-

based learning modulated the C-cluster P3 mean amplitude. High-

frequency pattern and random triplets were dissociated through the

whole task, and this difference was related to frontotemporal activities.

3.2.5 | Decomposed P3 (R-cluster)

Grand-averages of ERP waveforms in the R-cluster P3 time windows

split by triplet type and epoch are presented in Figure 6 and statistical

results are summarized in Table 2.

The type by epoch ANOVA on the mean amplitude of the R-

cluster P3 showed that the main effect of type was significant

(F(2,78) = 10.71, ε = .853, p <.001, ηp
2 = .215). Similarly, the main effect

of epoch was significant (F(5,195) = 3.05, ε = .813, p = .018, ηp
2 = .073).

Importantly, the type by epoch interaction was also significant

(F(10,390) = 3.61, ε = .649, p = .001, ηp
2 = .085). In case of statistical

learning, the type by epoch ANOVA showed that the main effects of

triplet type (F(1,39) = 2.06, p = .160, ηp
2 = .050) and epoch (F(5,195) =

1.17, p = .328, ηp
2 = .029) were not significant. Similarly, the type by

epoch interaction was not significant either (F(5,195) = 1.23, ε = .804,

p = .295, ηp
2 = .031). In case of rule-based learning, the type by epoch

ANOVA showed that the main effect of type was significant

(F(1,39) = 16.66, p <.001, ηp
2 = .299). The R-cluster P3 was larger in the

high-frequency random (0.91 μV ± .15) than in the high-frequency pat-

tern (0.41 μV ± .12) condition. Similarly, the main effect of epoch was

F IGURE 6 R-cluster P3. (a) R-cluster data is presented on channel Pz. Time point zero represents the stimulus presentation. The analyzed
time window (280–440 ms) is marked with a shaded area. The R-cluster P3 is presented across three conditions: high-frequency pattern (black),
high-frequency random (blue), and low-frequency random (green). The six panels depict the six consecutive epochs of the task. The scalp
topography plots show the distribution of the mean activity of the two main contrasts: statistical learning as a difference between low-frequency
random and high-frequency random and rule-based learning as a difference between high-frequency pattern and high-frequency random
conditions. (b) Voxels with significant differences for the statistical learning and rule-based learning effects according to the standard low
resolution brain electromagnetic tomography (sLORETA) analysis are presented. The sLORETA color bar presents critical t values
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also significant (F(5,195) = 4.94, p <.001, ηp
2 = .112). The R-cluster P3

was larger in the first epoch (0.96 μV ± .14) than in the fifth

(0.58 μV ± .13, p = .014) and sixth epochs (0.49 μV ± .12, p = .012).

None of the other epochs differed from each other (ps >.066). Impor-

tantly, the type by epoch interaction was also significant (F(5,195) = 3.69,

ε = .794, p = .007, ηp
2 = .086). The R-cluster P3 was larger for high-

frequency random (1.13 μV ± .18) than for high-frequency pattern trials

in the first epoch (0.79 μV ± .14, p = .042). The same difference

occurred in the third (0.78 μV ± .20 vs. 0.42 μV ± .16, p = .039), fourth

(0.81 μV ± .19 vs. 0.40 μV ± .15, p = .027), fifth (1.05 μV ± .19 vs. 0.11

μV ± .14, p <.001), and sixth epochs (0.87 μV ± .17 vs. 0.10 μV ± .15,

p <.001). The two conditions did not differ from each other in the sec-

ond epoch (p = .333). The sLORETA analysis revealed that the rule-

based learning effect was reflected by activation modulations in the left

superior frontal gyrus (BA10; MNI [x,y,z]: −15, 60, 25). Thus, rule-based

learning was detected in the R-cluster P3 mean amplitude. Moreover,

the interaction revealed a gradually increasing difference between high-

frequency random and pattern elements. This difference grew the larg-

est by the end of the experiment, similarly to the C-cluster N2 results

(see above).

4 | DISCUSSION

We compared temporally decomposed neurophysiological correlates

of parallel learning processes, namely statistical learning and rule-

based learning in a visuomotor sequence learning task. The temporal

decomposition successfully differentiated between S- and C-cluster

activities in the time windows of the N2 component, and between S-,

C-, and R-cluster activities in the time windows of the P3 component.

We expected that statistical learning is reflected by the S-cluster

activity, while rule-based learning is reflected by the C-cluster activity.

The results partially confirmed these hypotheses; however, the differ-

ence was more gradual than categorical between the learning mecha-

nisms. In the following sections, we discuss how statistical learning

and rule-based learning effects modulated the temporally decomposed

EEG signal. After reviewing the results of the RIDE clusters, we com-

pare the two mechanisms and discuss the associated functional neuro-

anatomical sources.

4.1 | Statistical learning

Statistical learning occurred incidentally, reflecting stimulus-driven,

implicit process that has reached its plateau quickly (Kóbor

et al., 2018). This was reflected by both S-cluster and C-cluster N2

activities, as random triplets were distinguishable according to their

predictability (e.g., probability information) in these two clusters.

Importantly, the C-cluster N2 did not show any modulation by statisti-

cal learning as the task progressed. This is in line with the results of

Kóbor et al. (2018), where the N2 statistical learning effect was time-

invariant, thus, it did not show a gradual accumulation of statistical

knowledge. However, the statistical learning effect of the S-cluster

N2 was time-variant, as the difference between triplet types

increased between the first and second epochs. Notably, this rapidly

occurring effect decreased by the next epoch, which then showed

similar activity to the beginning of the task. Thus, changes in the

S-cluster N2 were rapid and short lasting, while the C-cluster N2 sta-

tistical learning effect was constant during the task. This is in line with

the behavioral results that showed a rapid acquisition of statistical

information early in the task, which then remained stable during the

experiment (Kóbor et al., 2018). Both the C-cluster N2 and the

S-cluster N2 mean amplitudes were larger for low-frequency random

than for high-frequency random triplets. Thus, less predictable stimuli

triggered larger N2 responses both as a function of mismatch or

novelty detection (S-cluster) and as a signal of response conflict

(C-cluster). Detecting statistical learning effects both in S-cluster N2

and C-cluster N2 promotes the notion of Koelsch, Busch, Jentschke,

and Rohrmeier (2016) that processing transitional probabilities goes

beyond sensory capacities. However, it is likely that a rare sequence

of events signals a potential need for a higher cognitive load (Friston,

2010; Friston & Kiebel, 2009; Koelsch et al., 2016). This explanation

also fits the current study, in which low-frequency random triplets

were associated with slower responses, thus the stimuli that was the

hardest to predict increased the processing load (Kóbor et al., 2018).

This increased load was detected not only in the undecomposed N2

(Kóbor et al., 2018), but also in the C-cluster N2. It has been

suggested, that a neurophysiological marker for statistical learning

inevitably has a dual role: it can signal both increased processing load

and a prediction error signal (Koelsch et al., 2016). Importantly, tem-

poral signal decomposition could provide a meaningful distinction

between these roles, as the S-cluster reflects the stimulus-driven

aspects of novelty or mismatch detection, and the C-cluster reflects

the increased cognitive load and response conflict (Adelhöfer &

Beste, 2020; Mückschel, Chmielewski, et al., 2017; Takacs, Zink,

et al., 2020). Thus, statistical learning operates at a perceptual level,

but not exclusively. Central aspects of statistical learning likely pro-

vide signals for the higher-order functions for adaptive behavior

(Conway, 2020). Unlike previous approaches with the undecomposed

EEG (Kóbor et al., 2018; Koelsch et al., 2016), the temporally

decomposed clusters could differentiate between these two functions

of statistical learning. Even though these simultaneous processes

occur in similar and overlapping time windows, the differences

between them in latency variability reveal that one is directly trig-

gered by the visual presentation of the stimulus while the other one

represents a more variable mental chronometry. Thus, the multiface-

ted role of learning of probabilistic information was confirmed at the

neurophysiological level.

4.2 | Rule-based learning

While statistical learning effects were specific to the S-cluster and

C-cluster N2s, rule-based learning was detected in a wide range of
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temporally decomposed components, such as the S-cluster and

C-cluster N2s, S-cluster, C-cluster, and R-cluster P3s. This pervasive

effect likely indicates that the global integration of the acquired

sequential rule-based information involves sensory, translational, and

motor aspects concurrently. That is, rule-based learning provides a

general access to summary statistics. This includes the distribution

of statistics which originates from statistical learning, and a

general knowledge of the uncertainty of the information stream

(Conway, 2020; Daikoku, 2018). In the following, we discuss how

temporal signal decomposition helped to differentiate between these

set of functions.

Curiously, the S-cluster N2 showed a time-insensitive effect of

rule-based learning. The component was larger for high-frequency

random than for high-frequency pattern triplets. Thus, despite the

same level of stimulus probability, sequential position triggered a

stimulus-driven mismatch response. However, this effect has to be

taken with caution, since in this version of the paradigm, random and

pattern elements were visually distinguishable from each other, mar-

ked by red and black colors, respectively. Visible distinctions (cues)

have been employed in the ASRT task before to help participants

learn the sequence structure in a faster, intentional manner (Kóbor

et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019;

Szegedi-Hallgató et al., 2017). This is motivated by earlier studies

showing that without such cues, rule-based sequential knowledge

requires several hours of practice to develop (Howard & Howard,

1997). Therefore, cues and explicit instruction was given to participants

to speed up learning and enable us to compare different learning pro-

cesses in the same time frame (Nemeth, Janacsek, & Fiser, 2013; Simor

et al., 2019). While visual cues could have had an effect on the S-cluster

results, the advantage of decomposition is that this effect was

potentially dampened in the C- and R-cluster, respectively (Ouyang

et al., 2011; Ouyang & Zhou, 2020). Crucially, rule-based learning was

detected in the C-cluster N2, as well. High-frequency random stimuli

which is harder to predict elicited a larger component compared to the

easy to predict high-frequency pattern condition. Unlike statistical

learning, the rule-based learning effect on the C-cluster N2 increased

with practice, showing a gradual accumulation of sequence knowledge.

This is in line with the undecomposed N2 results (Kóbor et al., 2018)

and earlier reports of ERP correlates of sequence learning (Eimer,

Goschke, Schlaghecken, & Stürmer, 1996; Ferdinand, Mecklinger, &

Kray, 2007; Rüsseler, Kuhlicke, & Münte, 2003). The time-sensitive

nature of rule-based learning also reflects the behavioral results that

showed continuous learning as the task progressed, starting from the

very first epoch (Kóbor et al., 2018). Thus, the C-cluster N2 showed evi-

dence for the changing level of response conflict between predictable

(learnt) and less predictable random triplets.

Rule-based learning effects were detected in the decomposed P3

components, as well. Effect of attention on detecting irregularities in

the information stream is traditionally linked to the P3 (Chennu &

Bekinschtein, 2012; Kóbor et al., 2018; Kóbor et al., 2019). Regulari-

ties, such as sequential patterns evoke attention (Zhao, Al-Aidroos, &

Turk-Browne, 2013). Importantly, in a sequence in which pattern

and random elements alternate with each other and are visually

distinguishable, attention can be both endogenous and exogenous

(Zhao et al., 2013). Exogenous attention evoked by the different

colors of pattern and random elements is likely captured by the rule-

based learning effect in the S-cluster P3, similarly to the rule-based

learning effect in the S-cluster N2. Moreover, endogenous attention

evoked by internal goal might be reflected by the C-cluster P3 effect.

Prioritizing a regular stimulus event over irregular ones is not a strictly

stimulus-driven process since it relies on the internal representation

of the regularities (Zhao et al., 2013). Interestingly, both the S-cluster

P3 and the C-cluster P3 effects were constant: high-frequency pat-

tern elements (targets according to the goal of the task) evoked larger

P3s than high-frequency random elements through the task. How-

ever, this time-invariant nature of the rule-based learning effects con-

tradict the gradual learning curve seen in the behavioral data (Kóbor

et al., 2018). This contradiction was resolved by the R-cluster results.

Importantly, the R-cluster P3 provided a type by epoch interaction,

which showed a growing difference between sequential and random

triplets with the same stimulus frequencies. That is, neurophysiologi-

cal dynamics similar to the behavioral learning curve was observed in

the C-cluster N2 and R-cluster P3. Thus, these two decomposed com-

ponents reflected the adaptation to the sequential regularities

through response conflict and response preparation mechanisms. In

sum, the pervasive effect of rule learning on the temporally

decomposed clusters confirm the complex nature of this learning

mechanism (Conway, 2020). The learning of higher-order visual

sequential information includes selective attention to different stimu-

lus categories (S-cluster P3), goal-directed effort allocation (C-cluster

P3), and gradually more effective response management (R-cluster

P3). These various functions highlight the main characteristics of rule-

based learning. Namely, it is an attention-dependent system which

serves as a gating or control mechanism over the learning of sequen-

tial information (Conway, 2020).

4.3 | Comparison between statistical learning and
rule-based learning

The main goal of the current study was to differentiate between par-

allel learning mechanisms in the neurophysiological signal. To charac-

terize the differences between the types of learning at a single trial

level, we employed temporal signal decomposition. This was success-

ful as statistical learning in the visuomotor domain was detected spe-

cifically in the mean amplitudes of the S-cluster N2 and C-cluster N2,

while rule-based learning effect occurred in the mean amplitudes

ranging from the S-cluster N2 to the R-cluster P3. Thus, statistical

learning was identified as a learning mechanism related to mismatch-

detection and early response conflict. In contrast, rule-based learning

as a higher-order process was reflected by every aspect of the

decomposed N2 and P3 signals except of the R-cluster N2. Thus, it

was confirmed that rule-based learning builds upon the acquired sta-

tistical regularities, and contributes to the control of the learning

(Conway, 2020). However, a specific statistical learning effect and a

more general rule-based learning also raises the possibility that the
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two learning mechanisms are the same process albeit with different

levels of complexity. This alternative explanation was ruled out by the

source localization analyses. An important validation whether the

decomposed components are related to distinct processes is differen-

tiating between their neural sources. Specifically, we have expected

that statistical learning effect of the S-cluster N2 is associated with

right IFG activity, while rule-based learning as reflected by the

C-cluster N2 is associated with a more widespread dorsolateral activity.

This was partially confirmed by the source localization, which revealed

that the statistical learning effect in a visuomotor sequence on the

S-cluster N2 was related to activation modulations in the right IFG.

In contrast, rule-based learning effect was reflected by the right pre-

frontal gyrus' activation. The C-cluster N2 also showed differences in

the neural sources of the two forms of learning: statistical learning

effect was reflected by changes of activation in the left middle frontal

gyrus and in the right medial frontal gyrus, while rule-based learning

was reflected by activation modulations in the left superior frontal

gyrus. Thus, the right IFG was mainly implicated in statistical learning,

providing further evidence about this region's importance in acquiring

probabilistic information (Barascud et al., 2016; Conway, 2020;

Maheu et al., 2020; Southwell & Chait, 2018). Furthermore, this asso-

ciation was specific for the S-cluster, while the C-cluster N2 showed

more widespread prefrontal activations both for statistical and rule

learning. This pattern is in line with earlier research showing that fron-

tal sources are associated with the learning of hierarchical rule-based

information (Southwell & Chait, 2018). In the current study, the alter-

nation between sequence and random items corresponds to such

hierarchical structure (Nemeth, Janacsek, & Fiser, 2013).

Taken together, the different coding levels in the N2 time win-

dow during the task are also related to different functional neuroana-

tomical structures. Moreover, similar to the N2 results, the S- and

C-cluster sources also differed in the P3 time windows. Note that, the

P3 was only sensitive to the rule-based learning effect. This effect in

the S-cluster showed activation modulations in the left IFG and in the

left anterior cingulate cortex. In contrast, the C-cluster's activity indi-

cated the right middle frontal gyrus and the right middle temporal

gyrus. In sum, different sources related to statistical learning and rule-

based learning effects suggest that sequence learning does not rely

on a single mechanism of predicting the upcoming stimuli. Rather, this

distinction in neural sources implicates that different levels of predic-

tions are organized in different stages of the processing hierarchy

(Southwell & Chait, 2018). Thus, statistical learning and rule-based

learning can be distinguished at the neurophysiological level. Addi-

tionally, the difference in neural sources does not only imply the exis-

tence of parallel processing mechanisms while learning a sequence.

The specific contribution of the right IFG to the statistical learning

effect of the S-cluster N2 also suggests that this region is not specific

to inhibitory functions. Rather, stimulus-driven mismatch detection

may characterize the right IFG (Barascud et al., 2016; Erika-Florence

et al., 2014; Southwell & Chait, 2018).

Please note that neural sources associated with statistical and

rule-based learning in the current study are linked to the average-

referenced and decomposed EEG signal of the time windows of N2

and P3. Thus, while the current study highlights the roles of the right

IFG in statistical learning and wider prefrontal areas in rule-based

learning, these sources do not rule out the involvement of a wider

network, especially in the temporal areas. For instance, statistical reg-

ularities presented in an auditory stimuli are associated with activa-

tions in the left IFG (including Broca's area), the premotor cortex, and

the left superior temporal gyrus (Batterink et al., 2019; Maheu

et al., 2020; McNealy et al., 2006). Moreover, the complexity of the

sequence and the related computational processes could also influ-

ence the source localization results. Learning a sequence can require

five different levels: processing of transitions and timing between

items, chunking of sequences, ordering the items (independently of

timing), understanding algebraic patterns, and finally, nested struc-

tures (Dehaene et al., 2015). In the current study, transitions and

chunking were essential, and participants were capable of ordering

the items as evidenced by the sequence reports. Additionally, the

alternation of random and pattern items constituted an algebraic pat-

tern. However, nested, tree-like structures were not introduced in the

sequence; and, therefore, this level of complexity was not needed for

successful learning. Nested structures are typical in language and

music, and humans have a tendency to discover or even impose to

tree structures (Dehaene et al., 2015). In the language domain, learn-

ing of nested nonadjacent relations is related to the IFG while simpler,

local regularities are linked to the ventral premotor cortex (Amunts

et al., 2010; Friederici, 2006; Opitz & Kotz, 2012). This type of disso-

ciation was not shown in the current study, which highlights the need

of studying the acquisition of environmental regularities not just in

different computational complexities, but also in different modalities

(Conway, 2020; Frost et al., 2015).

Notably, the difference between statistical learning and rule-

based learning is not only the type of information that was acquired in

the task, but also the level of awareness that was gained during learn-

ing. Participants were told to look for a pattern in the stream of black

arrows, that is, the learning was intentional, and participants devel-

oped explicit knowledge of the sequence as shown by the sequence

reports. In contrast, statistical learning about the deeper structure of

the task (i.e., triplet probabilities) emerged without instruction or

visual cues, that is, learning was incidental. Previous studies with the

same paradigm have shown that learning of statistical properties is

also implicit (Nemeth, Janacsek, & Fiser, 2013; Szegedi-Hallgató

et al., 2017). However, the focus of the current study was how the

learning of parallel information embedded in the same sequences dif-

fer and not the awareness involved in their learning. For the latter,

another study is warranted that compares incidental (implicit) and

intentional (explicit) learning situations with a particular emphasis on

the knowledge transition between them (Szegedi-Hallgató et al., 2017).

Importantly, the comparison between the neurophysiological cor-

relates of statistical learning and rule-based learning in the current

study strengthens and widens the results of Kóbor et al. (2018). The

re-analysis confirmed the notion of parallel learning mechanisms; fur-

thermore, it proved that the results can be generalized at a single-trial

level. Moreover, the similarity between the original undecomposed

and the current S-cluster and C-cluster N2 results suggests that
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potential smearing effects of the averaged trials caused by the moving

latencies did not contribute to differences between learning effects.

Rather, statistical learning and rule-based learning are separable but

simultaneous mechanisms that likely build upon each other (Conway,

2020). The existence of separable mechanisms was further confirmed

by the source localization analysis. Given the overlapping time windows

(Kóbor et al., 2018), distinct neural sources provide much warranted

evidence of intertwined but differently driven learning types in the

acquisition of sequential regularities (Southwell & Chait, 2018). Cru-

cially, the re-analysis shed light on the specificity of statistical learning.

The original study proposed that the N2 is sensitive to both statistical

and rule-based learning with the difference between them is how fast

they show asymptote (Kóbor et al., 2018). At the same time, the

peak of the P3 showed solely a rule-based learning effect (Kóbor

et al., 2018). In contrast, in the temporally decomposed data, statistical

learning was specific to mismatch-related S-cluster N2 and conflict-

related C-cluster N2, while rule-based learning effects were shown

across S-cluster and C-cluster N2, and all the P3 clusters. Thus, we pro-

vided evidence of a specific statistical learning mechanism that operates

at the levels of perceptual mismatch and early conflict detection and a

more complex rule-based learning that may be placed higher in the hier-

archy of sequence learning (Conway, 2020; Kóbor et al., 2018; Nemeth,

Janacsek, & Fiser, 2013). Notably, separating the neurophysiological

mechanisms between different learning processes not only enriches our

knowledge of human cognition, but also has implications on under-

standing atypical development. Specifically, the neuroanatomical

differences between the two learning mechanisms may deepen our

understanding of atypical forms of sequence learning, such as in specific

language impairment (Lum, Conti-Ramsden, Morgan, & Ullman, 2014),

developmental dyslexia (Hedenius, Lum, & Bölte, 2020), or Gilles de la

Tourette syndrome (Shephard, Groom, & Jackson, 2019; Takács

et al., 2018).

4.4 | Conclusion

In summary, we successfully identified functionally distinguishable

clusters of neurophysiological activity in the N2 and P3 time range in

sequence learning. The current analyses deepen our understanding

how humans are capable of learning multiple types of information

from the same stimulus stream in a parallel fashion. We have demon-

strated that concomitant but distinct aspects of information coded in

the N2 time window play a role in these mechanisms: mismatch

detection and response control underlie statistical learning and rule-

based learning, respectively, albeit with different levels of time-sensi-

tivity. Moreover, the two learning effects in the different temporally

decomposed clusters of neural activity also differed from each other

in neural sources. Importantly, the right inferior frontal cortex (BA44)

was specifically implicated in statistical learning in a visuomotor

sequence, confirming its role in the acquisition of transitional proba-

bilities. In contrast, rule-based learning was associated with the

prefrontal gyrus (BA6). The results show how parallel learning mecha-

nisms operate at the neurophysiological level and are orchestrated by

distinct prefrontal cortical areas. Understanding the neural mecha-

nisms behind primary information processing functions, such as statis-

tical and rule-based sequence learning is crucial to gain a close-up

picture of how simultaneous learning develop both in typical and

atypical cognition.
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