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Preface 1 

           This historical review on River Blindness, onchocerciasis, is written in honour of (i) the 120-year 2 

anniversary of the Bernhard Nocht Institute for Tropical Medicine (BNITM), founded in 1900 in Hamburg 3 

in the sequel of a tremendous cholera outbreak that hit Hamburg in 1892, (ii) the 75-year anniversaries of 4 

Acta Tropica and (iii) the Swiss Tropical and Public Health Institute (Swiss TPH), both founded in 1944 in 5 

Basel by the renowned scientist of tropical medicine Rudolf Geigy (1902-1995). Geigy was the first 6 

director of the former Swiss Tropical Institute (STI) and simultaneously the first editor of Acta Tropica. 7 

           River Blindness caused by the tissue filaria Onchocerca volvulus was one focus of research in the 8 

BNITM over almost 60 years documented in about 300 publications. Consequently, in this historical 9 

review article we have cited major articles based on research conducted at the BNITM. 10 

           In addition to this historical review article on onchocerciasis two historical articles on 75 year of 11 

both, Acta Tropica and Swiss TPH, are jointly published in in one issue of Acta Tropica. 12 
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Abstract  23 

This review summarises more than a century of research on onchocerciasis, also known as river blindness, 24 

and its control.  River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting 25 

the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The 26 

parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers.  Featured are history 27 

and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its 28 

endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, 29 

the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. 30 

Detailed information is documented on the time course of control programmes in the afflicted countries in 31 

Africa and the Americas, a long road from previous programmes to current successes in control of the 32 

transmission of this infectious disease. By development, adjustment and optimization of the control 33 

measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, 34 

in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future 35 

perspectives for control, elimination and eradication within the next 20-30 years are described and 36 

discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria 37 

and it will be helpful in efforts to control and eliminate other filarial infections. 38 
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1. Introduction and history 39 

 Onchocerciasis – commonly known as river blindness – is an infectious disease caused by the 40 

parasitic filaria Onchocerca volvulus Leuckart 1893 (Parsons, 1908) belonging to the tissue-residing 41 

nematodes (class Chromadorea). The name Onchocerca derived from a combination of the Greek words 42 

‘onchos’ meaning ‘hook’ and ‘kerkos’ meaning ‘tail’. The infection occurs primarily in sub-Saharan Africa, 43 

but it is also found in Yemen and until recently in foci of six countries within Central America (WHO, 1995; 44 

WHO 2020 fact sheets, 2019; WHO, 2020). The Global Burden of Disease Study 2010 (Hotez et al., 2014) 45 

quantified the burden of almost 300 diseases, including onchocerciasis, in terms of their relative impacts 46 

as disability-adjusted life years (DALYs) which was noted as 490,000 for onchocerciasis with 30 million 47 

infected people. 48 

 Primarily, the infection affects the skin and eyes and the pathology is caused by subcutaneous larvae 49 

(microfilariae). Microfilariae were first discovered in 1874 – almost 150 years ago - by John O’Neill, a 50 

British naval surgeon in the Gold Coast (Ghana), while examining skin-snips from so-called craw-craw 51 

patients suffering from intense acute dermatitis (O’Neill, 1875). Patrick Manson in 1890 first identified the 52 

adult microfilariae-releasing worms and in 1893 Rudolf Leuckart described their morphology from 53 

subcutaneous infestations as “Filaria volvuloxus”, now known as Onchocerca volvulus (Leuckart 1893; 54 

Fülleborn, 1908). The genus name Onchocerca had been given to filarial worms infecting cattle by Diesing 55 

in 1841. In 1917 Rodolfo Robles (Robles, 1917) published details of the association of dermatitis with 56 

subcutaneous nodules, microfilariae and anterior ocular lesions based on research in Guatemala and 57 

named the causative worms O. caecutiens (“blinding”) (Brumpt, 1919; Fülleborn, 1924). In 1927, while 58 

working in Sierra Leone, Blacklock discovered that blackflies, Simulium (Edwardsellum) damnosum 59 

Theobald transmitted O. volvulus causing onchocerciasis (Blacklock, 1927).  60 

 Chromosomes of Simulium were first described in 1937 (Painter et al., 1937) and those of the vectors 61 

in 1975 (Vajime and Dunbar, 1975), whereas for Onchocerca they were described later (Hirai et al., 1987; 62 

Post et al., 1989). The complete genome of O. volvulus was first published in 2016 by Choi et al. (2016) and 63 

Cotton et al. (2016). Rickettsia-like endobacteria, Wolbachia, were first reported in Onchocerca in 1977 by 64 

Kozek and Figueroa-Marroquin (1977) and the genome of Wolbachia was described in 1999 by Bandi et al. 65 

(1999) and Slatko et al. (1999). 66 

A control programme in 11 West African countries applying vector control began with the 67 

Onchocerciasis Control Programme (OCP) in 1974 and ended in 2002 (see section 4.2.2.). The OCP started 68 

with vector control by insecticide and was expanded to include treatment of Onchocerca-infected people 69 

with the microfilaricide ivermectin in 1987. Treatment studies with doxycycline killing the Wolbachia 70 

endobacteria (Fig. 10) started in 2003 after initial in vitro experiments in 2000 (Hoerauf et al., 2000, 2001; 71 

Abegunde et al., 2016). Crump et al. (2012) described the onchocerciasis chronicle in detail and Table 1 72 

summarises major milestones in the history of onchocerciasis research and control. 73 

 74 
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Table 1.  Milestones in onchocerciasis research    75 

 76 

 

Discovery 

 

 

Characteristic 

 

Discoverer 

/Originator 

 

Year 

 

Skin disease 

 

“Craw-craw” 

 

O’Neill 

 

1875 

Parasite Filaria volvulus 

Filaria volvuloxus 

Onchocerca volvulus 

Manson  

Leuckart, Fülleborn 

Railliet and Henry 

1890 

1893, 1908 

1910 

Pathology Skin: dermatitis 

 

Nodule, onchocercoma 

 

Eye pathology, blindness 

 

Sowda(h) 

 

Neurologic disease: 

epilepsy, nodding disease, 

dwarfism 

O’Neill, Robles 

Gasparini 

Leuckart, Robles, 

Büttner 

Brumpt, Robles 

Fülleborn 

Omar, Büttner  

 

Druet-Cabanac 

Duke 

1874, 1917 

1962 

1893, 1917 

1983 

1919, 1917 

1924 

1979, 1982, 

1983 

1999 

1998 

Vector 

 

 

 

Phoretic host 

Simulium 

S. damnosum species 

complex: chromosomes  

 

Freshwater crab: 

Potamonautes 

Blacklock 

Vajime and Dunbar 

Painter 

 

 

van Someren 

1927 

1975 

1937 

 

 

1950 

Onchocerca strains Savannah - Forest Duke 

Garms and Cheke 

Cheke and Garms 

1967a 

1985 

2013 

Endobacteria 

Wolbachia 

Simulium 

Onchocerca 

Hertig and Wolbach 

Kozek and Figueroa-

Marroquin 

1924 

1977 

Onchocerca chromosomes, 

genome 

Chromosomes 

Gene codes 

 

Genome 

Hirai, Post 

Unnasch and 

Williams 

Choi,  Cotton 

1987, 1989 

2000 

2016 

Wolbachia genome  Gene codes Bandi  

Slatko  

Unnasch 

1999 

1999 

2000 

Diagnostics 

 

Dermatitis 

Onchocercoma 

Skin microfilariae 

Mazzotti test 

ELISA, Antigen 

DNA, PCR 

Biomarkers 

O’Neill 

Leuckart 

Picq 

Mazzotti 

Bartlett 

Bradley 

Denery 

1875 

1893 

1971 

1951 

1975 

1991 

2010 

  77 



 4 

2. Parasite Onchocerca  78 
 79 
2.1. O. volvulus life cycle 80 
 81 
2.1.1  Development of the filaria in the human host 82 

 The infective third stage larvae (L3) of the parasite with a length of 600-700 µm invade the skin when 83 

an O. volvulus-infected blackfly bites the human host for blood (Fig. 1; Fig. 2). The L3 larvae moult in the 84 

skin of the human host to fourth stage larvae which migrate in subcutaneous tissue and grow to the adult 85 

female and male stages in 6-12 months. The adult females measure 30-60 cm, while the males are only 86 

1.5-4.5 cm long (Fig. 2). The host reaction against the parasites leads to the formation of nodules known as 87 

onchocercomata. Interestingly, the males of the cattle parasite O. ochengi, and probably those of O. 88 

volvulus too, migrate between the nodules, thus from female to female.  89 

 In a single day an inseminated adult female can release 1000-3000 microfilariae responsible for the 90 

symptoms of the disease. The parasite has an enormous reproductive capacity resulting in millions of 91 

microfilariae released from fertilized females during their lives. Schulz-Key and Karam (1986) calculated 92 

that the number of microfilariae released from one female during its life of 10-15 years was >10 million.  93 

The severity of the disease increases with the parasitic load and there is a direct relation between O. 94 

volvulus microfilarial load and host ocular morbidity (Little et al., 2004). The microfilariae leave the 95 

onchocercomata and move through the subcutaneous tissue to reach the cutis where they leave the host if 96 

taken up by a vector (Fig. 1). 97 

 98 

2.1.2. Transmission by the vector Simulium   99 

2.1.2.1.  The genus Simulium  100 

 There are 2310 living species of blackflies in the family Simuliidae (order Diptera) and 18 known 101 

fossil taxa (Adler, 2019). Most species are of no economic importance but 1.5% of them are vectors of 102 

human pathogens causing onchocerciasis and mansonellosis (caused by Mansonella ozzardi in Brazil). 103 

Blackflies also transmit Onchocerca spp. to other vertebrates including cattle and, through their biting, 104 

they may also cause serious allergic reactions in cattle which can be fatal. In addition, they transmit 105 

protozoa to birds including Leucocytozoon spp. causing infections that are sometimes of economic 106 

importance for poultry. The major vectors of human onchocerciasis in Africa are members of the S. 107 

damnosum species complex of which at least 65 different forms have been described, with at least 15 of 108 

them acting as vectors (Adler et al., 2010).  109 

  In addition to their importance as vectors, blackflies can be serious biting pests of man and animals 110 

in both tropical and temperate climates, with examples including S. erythrocephalum in central Europe 111 

and S. posticatum in England. Particularly infamous was the Golubac fly S. colombaschense which in 1923 112 

killed 22000 animals (sheep, goats, cattle) in the Danube valley in Yugoslavia, Hungary and Romania 113 

(Crosskey, 1990). 114 
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 Members of the genus Simulium (Diptera: Simuliidae) have aquatic immature stages. The adults lay 115 

their eggs on trailing vegetation or rocks in streams or fast-flowing sections of rivers. Larvae hatch from 116 

the eggs and pass through 6 to 11 instars before becoming pupae from which the adults later emerge (Fig. 117 

3). The males do not blood-feed but may obtain sugar-feeds from plants. Most female Simulium are 118 

haematophagous and it is this habit which links them to vectorial importance.  119 

 In Africa, the most important vectors are members of the S. damnosum species complex, but the 120 

disease is also transmitted in East Africa by members of the S. neavei complex (subgenus Lewisellum, 9 121 

species) which has its immature stages phoretic on freshwater crabs. The most important vectors within 122 

the S. neavei complex are S. neavei in Uganda and S. woodi in Tanzania.  In the Congo S. albivirgulatum is a 123 

vector in the central basin region (Fain et al., 1981). Recently S. dentulosum and S. vorax have been found 124 

biting man in the absence of S. damnosum s.l., S. neavei s.l. and S. albivirgulatum in the Ituri-Albert focus of 125 

the Democratic Republic of Congo. Furthermore, DNA tests confirmed the presence of O. volvulus in both S. 126 

dentulosum and S. vorax but few samples of the latter were available and none were infective. In contrast, 127 

30% of 155 S. dentulosum were infected and 11% were infective, so a new vector species has been 128 

confirmed (R.J. Post et al. unpubl. and pers. comm.).  129 

 A variety of vectors is or was responsible for transmission in central and southern America. Members 130 

of the S. ochraceum and S. metallicum complexes were involved in Mexico, with the former most active in 131 

transmission in Guatemala (Garms and Ochoa, 1979a) before elimination of the disease in that country 132 

(Rodríguez-Pérez et al., 2015). In the remaining Amazonas focus that straddles the Venezuela-Brazil 133 

border the main vectors are members of the S. oyapockense and S. guianense species complexes and S. 134 

incrustatum (Shelley et al., 2010).   135 

 136 

2.1.2.2. Development of the filaria in Simulium 137 

 The mouthparts of the female vectors of onchocerciasis do not penetrate the skin and absorb blood in 138 

the manner of mosquitoes but rather they use their mandibles to rasp at the skin until bleeding occurs and 139 

then the blood is lapped up from the resultant pool, hence they are known as pool-feeders (Fig. 3). Any O. 140 

volvulus microfilariae (Fig. 2.1) that are within the pool may be ingested by the blackflies. In vectors with 141 

pronounced buccopharangeal armatures such as members of the S. ochraceum complex, many 142 

microfilariae may be killed at this stage (Omar and Garms, 1975). In contrast, S. metallicum complex 143 

members lack such structures and if they ingest many microfilariae the flies may soon die shortly after 144 

their blood-meals (Omar and Garms, 1977), although this does not appear to happen with the S. 145 

damnosum complex which also lacks marked buccopharangeal armatures.  146 

 Once within the stomach with the blood meal the microfilariae must try to escape through the 147 

stomach wall into the haemocoel (Fig. 1) before being trapped within the peritrophic matrix that can form 148 

within 30 minutes. Bain et al. (1976) suggested that the reason that forest S. damnosum harbour higher 149 

numbers of developing O. volvulus larvae than do savannah forms was because of differences between the 150 
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two vector groups in the structure and speed of development of the peritrophic matrix, with forest flies’ 151 

membranes being less well sealed and slower to form.  152 

 Those microfilariae that reach the haemocoel move into the thoracic muscles, changing their shape to 153 

become “sausage stage” forms. These moult to the second stage (L2) and then moult again within the 154 

thoraces to become third stage larvae (L3) (Fig. 2.3) before emerging into the female’s body cavity to 155 

become elongated infective L3 stage larvae that will be capable of infecting a new host (Fig. 1, Fig. 2.3). L3s 156 

penetrate several fly organs, the ovaries, the brain, antennae, and the palps, thereby debilitating the fly 157 

resulting sometimes in only about 1% of the flies carrying L3s surviving, according to results of a 158 

laboratory study involving S. yahense (Trpis et al., 2006). Because the development process of the 159 

Simulium stages takes 6-9 days and the gonotrophic cycle of the females is 2-4 days, it is usually only at 160 

their third bite that the flies can transmit infections. 161 

 Much of what is known about the transmission of onchocerciasis by different S. damnosum complex 162 

members was derived from research conducted during the WHO Onchocerciasis Control Programme in 163 

West Africa (OCP). As mentioned in a later section (see section 4.2.2.), the OCP was affected by reinvasions 164 

of controlled zones by immigrant flies bred outside the treated areas. Thus, it became important to 165 

identify which members of the S. damnosum complex were responsible in order to be able to locate and 166 

treat the sources. Garms (1978) showed that savannah species could be separated from forest species by a 167 

combination of the colour of the basal wing tufts and the ratio between the lengths of the thoraces and 168 

antennae, with the latter being longer and less compressed in forest forms for a given fly size. Later 169 

morphological studies (Garms et al., 1982; Garms and Zillmann, 1984; Garms and Cheke, 1985; Meredith 170 

et al., 1983) allowed more of the species, or at least species groups, occurring in the OCP to be identified 171 

such that it was possible to compare their transmission abilities (Cheke and Garms, 2013). In general, 172 

forest forms carry more O. volvulus larvae per infected fly than the savannah forms.  173 

 174 

2.2. Endobacterium Wolbachia 175 

 176 
2.2.1. Wolbachia in the parasite Onchocerca       177 

 In 1977 Kozek and Figueroa-Marroquin (1977) found intracytoplasmic Rickettsia-like bacteria in O. 178 

volvulus and Sironi et al. (1995) provided molecular evidence for a close relative of the arthropod 179 

endosymbiont Wolbachia in a filarial worm. Rickettsia-like gram-negative endobacteria, alpha 2 180 

proteobacteria, were originally detected in arthropods in 1924 by Hertig and Wolbach (1924), 181 

representing the eponym Wolbachia designated in 1936. 182 

 Wolbachia are found in the hypodermal cells of the lateral cords of adult filariae and in embryonic 183 

stages (Taylor and Hoerauf, 1999, Hoerauf et al., 2000) (Fig. 2.6). The absence of Wolbachia appears to be 184 

an ancestral condition (Bandi et al., 2001). The Wolbachia were shown to be mutualistic in Onchocerca 185 

(Comandatore et al., 2015), with the endobacteriae appearing to provide essential metabolites to the 186 
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filaria, which contribute to its reproduction and larval development, promoting fertility, embryogenesis 187 

and viability of the filaria (Comandatore et al., 2015).  188 

 Products of the endosymbionts have been implicated in the pathogenesis of ocular onchocerciasis 189 

(Saint André et al., 2002). Recent data support the hypothesis that suspected differences between severe 190 

and mild strains of O. volvulus (see section 2.3.) may be a function of their relative Wolbachia burden 191 

indicating that Wolbachia products may play a central role in the pathogenesis of ocular onchocerciasis 192 

(Pearlman, 2003).      193 

 The genome of onchocercal Wolbachia (wOv) has been analysed (Unnasch and Williams, 2000; Choi et 194 

al., 2016). The 956 kb genome contains 785 predicted protein-coding genes 195 

(http://exon.niaid.nih.gov/transcriptome/O_volvulus/v245/wOv_web/wOv_Web.xlsx) including the most 196 

abundant proteins: Wolbachia surface protein (WSP, wOv00566) and the chaperone DnaK (wOv00687) 197 

(Choi et al., 2016). The proteins were mapped to functional categories, with the top five functions being (i) 198 

translation, ribosomal structure, and  biogenesis; (ii) post-translational modification, protein turnover, 199 

and chaperone; (iii) energy production and conversion; (iv) coenzyme metabolism and cell envelope 200 

biogenesis, and (v) outer membrane proteins (Bennuru et al., 2016).  201 

 The bacteria in the filariae represent a target for antibiotic therapy (D.W. Büttner, 1997, pers. comm.; 202 

Hoerauf et al., 2000, 2002; Taylor et al., 2001). Immunological studies revealed that the hosting 203 

endobacteria contribute to inflammatory reactions of the human host of the filariae (Pearlman, 2003). 204 

 205 

2.2.2. Wolbachia in the vector Simulium 206 

  Yen (1975) first reported on intracellular Wolbachia in insects, long before the Wolbachia were 207 

identified as intracellular bacteria in filariae. Wolbachia are responsible for cytoplasmic incompatibility in 208 

Culex pipiens and numerous subsequent studies revealed that these endobacteria manipulate the 209 

reproduction of their arthropod hosts and can move horizontally across species’ boundaries. Meanwhile 210 

Wolbachia have been demonstrated in numerous mosquito vector species of medical and veterinary 211 

importance and have been used to control transmission of dengue fever by releasing Aedes aegypti vectors 212 

infected with the wMel strain of Wolbachia (Hoffmann et al., 2011).  213 

     The presence of Wolbachia in onchocerciasis vectors was first demonstrated by Crainey et al. (2010) 214 

who found the endosymbiont in larval samples of Simulium from Ghana. It is unclear if all individuals are 215 

infected, as the Wolbachia were found in less than a quarter of specimens, but they have also been 216 

detected in S. squamosum and S. yahense adults and in S. oyapockense s.l., with those in the latter differing 217 

markedly from the types found in the S. damnosum complex (J.L. Crainey, 2019, pers. comm). If there are 218 

consistent interspecific differences in the frequencies of occurrence and/or the varieties present in 219 

different vectors, it is possible, given Wolbachia’s known manipulation of reproductive capacities and 220 

vector status in other arthropods, that they could be of epidemiological importance, e.g. by accounting for 221 

differences in parasite burdens between forest and savannah vectors in West Africa. Wolbachia may also 222 

http://exon.niaid.nih.gov/transcriptome/O_volvulus/v245/wOv_web/wOv_Web.xlsx
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be implicated in why Simulium are so difficult to colonise in the laboratory, e.g. by male-killing, and this 223 

hurdle will need to be overcome if the potential of using Wolbachia in Simulium control can be realised. 224 

Nevertheless, progress towards such a goal has been made with the discovery of a prophage element 225 

within S. squamosum E  that includes a SpvB-like protein at the extreme terminal end of its sequence 226 

which is suspected of having insecticidal properties (Crainey et al., 2017). 227 

 228 

2.3. Phylogeny and biology of Onchocerca 229 

 The phylogenetic tree of the genus Onchocerca Leuckart  comprises 14 species divided into three 230 

clades (Lefoulon et al., 2017). The third clade is composed of O. volvulus and the related species O. ochengi, 231 

O. gibsoni and O. gutturosa which parasitize domesticated bovids. O. volvulus is genetically most closely 232 

related to O. ochengi (https://parasite.wormbase.org/Onchocerca_ochengi_prjeb1465/Info/Index). The O. 233 

volvulus / O. ochengi sister relationship supports the scenario that the human parasite resulted from a host 234 

transfer by the bovine O. ochengi, or its ancestor (Bain, 2002; Morales-Hojas et al., 2006), possibly during 235 

the course of cattle domestication and hence within the last 10,000 years, with O. ochengi switching into 236 

humans to become O. volvulus (Lefoulon et al., 2017).    237 

 On the basis of the genetic similarity of O. volvulus and O. ochengi, the bovine infection by O. ochengi 238 

has become famous as a natural model or 'analogue' of human onchocerciasis (Trees et al., 2000; 239 

Makepeace and Tanya, 2016). A multitude of experimental joint studies by the University of Ngaoundéré 240 

and the University of Tübingen, Germany, demonstrated similarities in the stage-specific proteome 241 

(Armstrong et al., 2016), in excretory-secretory (E/S) peptides (Eberle et al., 2015), in immune 242 

recognition of ES proteins (Manchang et al., 2015), in cross-protection (Wahl et al., 1998), in cross-243 

vaccination (Achukqui et al., 2007), and in the conserved nature of circulating miRNA (Quintana et al., 244 

2015). Further, similarities in the immune antigen recognition pattern was reported in O. ochengi-infected 245 

cattle and in an O. volvulus-infected chimpanzee (Graham et al., 2000) confirming the use of the primate as 246 

a surrogate host for Onchocerca infection . The comparability of both infections, nevertheless, appears to 247 

be limited since in the evolutionarily primordial O. ochengi infections the parasite is highly adapted to its 248 

bovine host eliciting minimal pathology, whereas in the evolutionarily younger parasitism by O. volvulus 249 

severe damage often results (see section 3.3.). 250 

(https://pubmed.ncbi.nlm.nih.gov/27869790/?from_sort=pubdate&from_term=Cotton+JA&from_cauthor251 

_id=27881553&from_pos=4). 252 

 Differences between the manifestation of onchocerciasis in forest and savannah regions, in particular 253 

between blinding rates, gave rise to a two-strain hypothesis (Duke et al. 1966). Analyses of entomological 254 

data (Cheke and Garms, 2013) and a reanalysis of pre-control blindness data (Cheke et al., 2020) have led 255 

to this hypothesis being questioned.  Although some molecular studies of different O. volvulus populations 256 

revealed differences between savannah and forest strains, for instance by being distinguishable using the 257 

O-150 repeat region sequence (Erttmann et al., 1987; Zimmermann et al., 1992), other studies did not 258 

https://parasite.wormbase.org/Onchocerca_ochengi_prjeb1465/Info/Index
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(Morales-Hojas et al., 2007). Recent studies involving nuclear DNA have not confirmed clear cut 259 

distinctions but did show that parasites from the two zones can and do interbreed (Choi et al., 2016).  260 

 The complete genome of the mitochondria of O. volvulus 261 

(https://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index) was published by Crainey et 262 

al. (2016) while the total genome of O. volvulus comprises a 97 Mb nuclear genome coding 12,143 protein-263 

coding genes, and the onchocercal Wolbachia have a 956 kb genome containing 785 predicted protein-264 

coding genes (Cotton et al., 2016; http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index;  265 

http://exon.niaid.nih.gov/transcriptome/O_volvulus/v245/wOv_web/wOv_Web.xlsx). Nine percent of the 266 

genes are O. volvulus-specific (Unnasch et al., 2000; Cotton et al., 2016; Choi et al., 2016). Recent reports 267 

on the transcriptome and proteome of O. volvulus and its Wolbachia endosymbiont (Bennuru et al., 2016) 268 

open up candidate molecules for diagnosis, new biomarkers, vaccine and drug targets. Further, the 269 

proteome of O. volvulus identified various mimics and antagonists of human cytokines and chemokines. 270 

Furthermore, the genome encodes numerous serine protease inhibitors such as serpins, as well as 271 

cysteine protease inhibitors like cystatin (Cotton et al., 2016). These proteins can interfere with antigen 272 

processing and presentation indicating parasite interference with host immune responses, thereby 273 

facilitating and promoting their survival in immunocompetent hosts. Interestingly, distinct encoded 274 

proteins are similar to human autoantigens, which may be implicated in the pathogenesis of eye diseases 275 

and nodding syndrome.  276 

 Onchocerciasis is very probably an anthroponosis. Humans are almost certainly the unique host of O. 277 

volvulus – although there are two reports indicating that primates can also host O. volvulus. Caballero and 278 

Barrera (1958) reported recovery of a nodule containing fertile O. volvulus adults from a golden spider 279 

monkey (Ateles geoffroyi) captured in Chiapas (Mexico), and a natural infection with O. volvulus has been 280 

found in a gorilla (Gorilla gorilla) by van den Berghe et al. (1964) in the Congo. Neumann et al. (1964) 281 

reported experimental onchocercal ocular lesions in chimpanzees (Pan troglodytes) and these primates 282 

were used as surrogate hosts in experimental infections for a long period to investigate humoral and cell-283 

mediated immune responses, vaccination and drug effects (Greene, 1987; Taylor et al., 1988; Soboslay et 284 

al., 1991; Prince et al., 1992) until 2013 when the USA’s National Institutes of Health (NIH) banned 285 

invasive research on chimpanzees (Knight, 2008).  286 

 287 

3.  Disease  288 

 289 
3.1. Prevalence 290 

 291 
 Estimates of prevalence vary substantially.  Thus, the WHO stated for 1983 that globally 85.5 million 292 

people were at risk and about 37 million people were infected with O. volvulus (Amazigo et al., 2008), with 293 

0.34 million of the infected blinded by onchocerciasis (WHO, 1987). For 1995, the WHO noted 123 million 294 

at risk, 17.7 million infected people and 0.27 million blinded people (WHO fact sheets, 2019, 2020; Fig. 4). 295 

https://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index
http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index
http://exon.niaid.nih.gov/transcriptome/O_volvulus/v245/wOv_web/wOv_Web.xlsx
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Onchocerciasis is almost exclusively (>99%) prevalent in 31 countries of sub-Saharan Africa, but about 296 

20,000 infected persons live in Yemen (Büttner et al., 1982; Connor et al., 1983; WHO 2019). In terms of 297 

populations living in areas where more than 50% live in areas where the predicted nodule prevalence is 298 

greater than 20%, the main countries are the Democratic Republic of Congo with 23.3 million people, 299 

Nigeria (14.3 million), Ethiopia (5.9 million) and Cameroon (5.2 million)(Zouré et al., 2014). In central 300 

Africa – the Central African Republic, Gabon, Democratic Republic of Congo, Angola, Sudan, Ethiopia, 301 

Uganda, Nigeria, Cameroon – onchocerciasis is co-endemic with loiasis. Loiasis, caused by the filaria Loa 302 

loa and transmitted by horseflies (Chrysops dimidiatus and C. silaceus) affect the eyes (African eye worm) 303 

(Vinkeles Melchers et al., 2020). Loiasis coinfection is a major concern for onchocerciasis elimination in 304 

Africa (see 4.1.). 305 

 Onchocerciasis also occurred in 13 isolated foci in six countries of Latin America, infecting 97 200 306 

people with 500,000 people at risk (Sauerbrey, 2018; CDC 2013). Active transmission currently is limited 307 

to two foci among Yanomami indigenes in adjacent border areas of Venezuela and Brazil (CDC, 2013) (see 308 

section 4.3.3.). The fact that O. volvulus populations of African savannah and Central America are 309 

genetically indistinguishable, indicates that onchocerciasis was introduced into America by the entry of 310 

infected Africans from the savannah (Crump et al., 2012).  311 

 312 

3.2. Diagnostics 313 

 314 
 Tests for diagnosing onchocerciasis are summarised in Table 2. Onchocerciasis is primarily diagnosed 315 

clinically by detecting onchodermatitis, by subcutaneous nodules (onchocercomata), often located at the 316 

hips, and by detection of microfilariae in skin snips (microfilaridermia) requiring a microscopic 317 

examination (Picq et al., 1971; Albiez et al., 1988a; Alhassan et al., 2016). Skin patch testing (Mazzotti 318 

reaction) with diethylcarbamazine (DEC) can indicate microfilaridermia (Mazzotti, 1951). Awadzi et al. 319 

(2015) reported a clinical evaluation of a transdermal delivery technology-based patch for the diagnosis 320 

of O. volvulus infection via skin exposure to diethylcarbamazine. Ocular status can also help diagnosis, if 321 

pathological findings such as punctate keratitis or even microfilariae in the anterior chamber are noted 322 

(O’Day and Mackenzie, 1985). 323 

 Laboratory analyses have been used since 1975 (Bartlett et al., 1975) to detect serum antibodies 324 

against Onchocerca surface proteins, preferentially IgG4, in infected persons by applying enzyme-linked 325 

immunosorbent assays (ELISA), by a fluorescent antibody staining technique or more recently by rapid-326 

format antibody card test (Bartlett et al., 1975; Weil et al., 2000). As target antigens numerous O. volvulus-327 

specific proteins have been investigated, in particular low molecular weight antigens such as Ov16 in 328 

addition to numerous additional proteins or hybrid proteins (Ov33, Ov10, Ov20 (Ov-FAR-1), Ov-RAL-2, 329 

Ov7, OvSOD1, Ov-ENO, Ov103, Ov9.3, OvMSA-1) (Lucius et al., 1988; Lobos et al., 1991; Mpagi et al., 2000; 330 

Andrews et al., 2008; McNulty et al., 2015; Unnasch et al., 2018). However, the sensitivity and species 331 
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specificity of antigen recognition assays are mostly of limited value because of cross-reactions with 332 

proteins from other filariae.  333 

 Ov16 was identified as highly diagnostic, mostly applied antigen (Lobos et al., 1991; Denery 2010; 334 

Lont et al., 2017; Bennuru et al., 2020).  Subsequently, peptide epitopes (OvMP-23, OvNMP-48; OvOC9384, 335 

OvOC198, and OvOC5528; rOVOC10469 and rOVOC3261) (Gonzalez-Moa, 2018; Lagatie et al., 2019; 336 

Bennuru et al., 2018) were applied in ELISA analysis verifying the sensitivity and specificity by receiver 337 

operating characteristic (ROC) analysis. The lateral flow rapid assay with Ov16 and rOVOC3261 was 338 

developed as the best antigen-antibody test with 94% sensitivity and applied as the current diagnostic 339 

tool to verify interruption of transmission of O. volvulus (Vlaminck et al., 2015; Unnasch et al., 2018). 340 

 Some molecular biological analyses with high specificity have been developed such as real time 341 

polymerase chain reaction RT-PCR and colorimetric loop-mediated isothermal amplification (LAMP, 342 

Alhassan, 2016). The amplification assay targets a repeated O. volvulus sequence O-150, present in the O. 343 

volvulus genome with a unit length of roughly 150 bp. 344 

 Recently circulating biomarkers, e.g. peptides (OvOC3261, N-acetyl-tyramine- O-glucuronide, NATOG) 345 

(Globisch et al., 2013) or lipids (phospholipid, glycerophosphorlipid) as well as micro RNA have been 346 

developed as promising proof-of-contact diagnostic tests (Quintana et al., 2015; Lagatie et al., 2016; 347 

Gonzalez-Moa et al., 2018; Bennuru et al., 2020; Macfarlane et al., 2020).  348 

 349 

  350 
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Table 2.   Diagnostic tests for detection of O. volvulus infection   351 

  352 

 

Test 

 

Target 

 

Principle 

 

 

Reference 

Biopsy 

 

Microfilaria   Microscopic detection of 

microfilariae in a skin snip 

biopsy 

Picq 1971 

Alhassan 2016 

Mazzotti patch 

test 

 

Microfilaria Microfilaria-induced 

inflammatory reaction by 

provocation with DEC 

Mazzotti 1958 

Awadzi 2015 

 

 

 

 

 

Antibody 

detection 

(ELISA) 

Onchocerca 

antigens, hybrid: 

Ov16, Ov20 (Ov-

FAR-1), Ov33, 

Ov10, Ov7, 

Ov103, OvSOD1, 

Oc9.3, Ov-MSA-1 

 

Recognition of surface or 

secreted antigens of Onchocerca 

by serum IgG (IgG1, IgG4), IgM 

in infected humans 

 

Lucius 1988      

Lobos 1990 

Andrews 2008 

Burbela 2010 

McNulty 2015 

Lagatie 2018 

Unnasch 2018 

Peptide epitope 

OvMP-23, 

OvNMP-48 

OvOC9384, 

OvOC198, 

OvOC5528 

 

Recognition by IgG 

 

Lagatie 2019  

Gonzalez-Moa 2018 

Ov16 and  

rOVOC3261 

Antigen recognition by a Point-

of-Care lateral flow rapid assay 

Steel 2015 

Bennuru 2020 

qPCR1 

LAMP2 

Genes: 

O-150 

Cox1 

miRNA3 

DNA amplification 

qPCR, LAMP 

Zimmermann 1994 

Alhassan 2016 

Macfarlane 2020 

Biomarker 

Lateral flow 

immunoassay, 

Mass 

spectrometry 

 

NATOG4 

Phospholipids 

OvOC3261 

OvOC9384, 

OVOC9087, 

OVOC835, 

OVOC224 

Lateral flow immunoassay, 

Liquid chromatography tandem 

mass spectrometry method (LC-

MS/MS) 

Denery 2010 

Globisch 2013 

Bennuru 2018 

Bennuru 2020 

1 quantitative polymerase chain reaction, 2Loop-mediated isothermal amplification, 3microRNA,  353 

4NATOG, N-acetyltyramine-O-glucuronide 354 

 355 

3.3. Pathology 356 
 357 
 The primary manifestation of an O. volvulus infection is itching of the skin. The skin affliction results 358 

from the migration of a myriad of microfilariae from the subcutaneous nodules (onchocercomata), 359 

harbouring fertilised adult female and male filariae, into the adjacent skin. In the course of the infection an 360 

acute papular rash develops into a chronic papular dermatitis which may be associated with 361 

lichenification, development of papules, atrophy, and depigmentation. The skin manifestation may 362 
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comprise so-called “leopard, elephant or lizard skin”. In addition, oedema and lymphadenopathy can occur 363 

and so-called “hanging groins” (Puente et al., 2018). 364 

 A distinct variation of skin pathology (Fig. 5) expressing severe chronic onchodermatitis with dark 365 

black hyperpigmentation and plaques, designated as sowda(h) (arabic word “aswad” for black) (Fig. 5.3), 366 

was originally observed in the Yemen by Gasparini (1962) and subsequently investigated by numerous 367 

scientists (Büttner et al., 1982; Connor et al., 1983; Ottesen, 1995; Richard-Lenoble et al., 2001, Al-Kubati 368 

et al., 2018). Sowda patients were also found in other endemic countries including Nigeria, Sudan, 369 

Ethiopia, Liberia, Guatemala and Ecuador (see section 4.3.1.). Patients with sowda manifestations 370 

exhibited generally low densities of microfilariae (Büttner and Racz, 1983; Büttner, 1984; Connor et al, 371 

1983; Richard-Lenoble et al., 2001).  372 

 Adult female worms induce an inflammatory response in the infected host and infiltration of immune 373 

cells leads to the formation of a granuloma and then a subcutaneous nodule, an onchocercoma (Burchard 374 

et al., 1979) (Fig. 5.6). Also, excreted filarial proteolytic, angiogenic and collagen-inducing proteins 375 

promote the formation of the nodule or connective tissue-degrading activity (Haffner et al., 1998). The 376 

onchocercomata harbour 2-20 fixed and clustering females and 1-10 males migrating from nodule to 377 

nodule. 378 

     The most aggravating pathology in onchocerciasis is represented by severe visual impairment afflicting 379 

500,000 people and blindness occurring in approximately 270,000 persons rendering river blindness the 380 

second most frequent cause of infectious blindness (Albiez et al., 1981; Hall and Pearlman, 1999). Most 381 

affected are patients with onchocercomata in the upper part of the body, including the head when 382 

microfilariae invade the eyes. The host’s reaction to the infiltrated microfilariae initiate corneal opacities 383 

or punctate keratitis that can develop into corneal scarring and a sclerosing keratitis.  384 

 Rarely, a disfiguring manifestation involving retarded growth (dwarfism, Nakalanga syndrome) 385 

occurs in onchocerciasis patients (Duke, 1998). Further pathogenic features are varying neurological 386 

diseases, nodding syndrome and epilepsy associated with autoimmunity (Colebunders et al., 2017; 387 

Johnson et al., 2017).  388 

 389 

3.4.  Parasite– Host interaction 390 

 391 
 The parasite Onchocerca, residing and developing in a human host, can survive because its resilient 392 

cuticle surface resists the host’s efforts to cope with the invading parasite. In addition, the parasite 393 

synthesizes and releases a myriad of intercepting excretory/secretory (E/S) molecules, via extracellular 394 

vesicles or directly. These molecules include antioxidants, protease-inhibitors, carbohydrate- and lipid-395 

binding molecules and cytokine regulators, which mitigate and detoxify the offending host’s components 396 

(Hewitson et al., 2009; Njume et al., 2019).  O. volvulus microfilariae also release matrix-degrading serine 397 

and metalloproteases which can degrade components of the dermal extracellular matrix and elastic fibres 398 
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of host tissue, as observed in chronic onchocerciasis (Haffner et al., 1998). Vital secreted defence 399 

compounds of the filaria represent antioxidants like superoxide dismutase, peroxidoxin and thioredoxin 400 

peroxidase.  Also, proteinase inhibitors, onchocystatin and serpin, are released as protection against host 401 

immune attack (Henkle-Dührsen and Kampkötter, 2001; Schönemeyer et al., 2001; Hewitson et al., 2009).  402 

 In the course of the infection the host elicits a sequence of defence mechanisms reviewed by Ottesen 403 

(1995), Brattig (2004a) and Maizels et al. (2018). In response to the filarial antigens the B-lymphocytes of 404 

the host produce antibodies, predominantly immunoglobulin G4 (IgG4) and IgE antibody isotypes (Brattig 405 

et al., 1994; Garraud et al, 1996; Adjobimey and Hoerauf, 2010). The blocking IgG4 type antibodies 406 

enhance the parasite’s potential for host response evasion by inhibiting detrimental reactions since (i) 407 

IgG4 represent non-complement-fixing immunoglobulins and (ii) IgG4 cannot induce antibody-dependent 408 

cell-mediated cytotoxicity (ADCC) (Adjobimey and Hoerauf, 2010). Hence, high IgG4 concentrations are 409 

found in immunosuppressed patients with high microfilarial loads (Adjobemey and Hoerauf, 2010; 410 

Ottesen, 1995). 411 

 The defence mechanisms also include cellular responses of the adaptive and innate immune system:  412 

lymphocyte and granulocyte populations are activated to secrete cytokines and toxic compounds which 413 

affect the parasite (Ottesen 1995; Maizels et al. 2018). In Onchocerca-infected individuals the T helper 414 

lymphocyte populations Th1, Th2, Th17 and regulatory T cells (Treg) are stimulated - predominantly 415 

occurring as a Th2-response (Brattig et al., 1987; Plier et al., 1995; Timmann et al., 2003; Allen and 416 

Sutherland, 2014).  The helminth initiated  lymphocyte subsets produce the cytokines IL-4, IL-13, IL-5, IL-417 

10, and TGF-beta which subsequently initiate multiple reactions from the innate immune system (Turaga 418 

et al., 2000; Brattig et al., 1997; 2002; Soboslay et al., 1999; Dötze et al., 2000; Hoerauf and Brattig, 2002).  419 

 Characteristic of the innate immune response are eosinophilic and neutrophilic granulocytes, mast 420 

cells and alternatively activated macrophages (Brattig, 2004a; Maizels et al., 2018). Predominant 421 

eosinophilic granulocytes are activated by IL-5, released from Th2 cells, and their infiltration in the tissue 422 

is regulated by IL-4 and IL-13. Such activated eosinophils adhere and degranulate at the surface of 423 

microfilariae (Fig. 7.1-2) and infective larvae (Fig. 7.3-4) (Medina-De la Garza et al., 1990; Strote et al., 424 

1990; Brattig et al., 1991; Abraham et al., 2004). Eosinophilic effector cells produce reactive oxygen 425 

species and secrete, via extracellular granules, multiple toxic molecules including oxygen radicals, 426 

eosinophil peroxidase, major basic proteins, eosinophil cationic proteins , eosinophil-derived neurotoxin 427 

and cytokines such as IL-10 and even  IL-13 (Tischendorf et al., 1992; Pearlman 1997; Weller and Spencer, 428 

2017).  In addition to the eosinophils, mast cells are also operative in the host responses against helminths 429 

(Ottesen, 1995; Korten et al. 1998). The Th1-associated response of neutrophilic granulocytes reflect the 430 

presence of the endobacteria (see section 3.5.) (Brattig et al., 2001; Tamarozzi et al., 2016). In addition to 431 

anti-parasitic reactions, the innate immune system is involved in wound repair mechanisms (Weller and 432 

Spencer, 2017).   433 
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 These multifarious reactions result in an inflammatory or immunosuppressed status which affect 434 

both competitors (Mackenzie et al., 1985; Ottesen, 1995; Brattig, 2004a). Hence, the pathogenesis of 435 

onchocerciasis is considered to be a consequence of long-standing reciprocal reactions of both parasite 436 

and host. The genetic constitution of the host represents one basic factor determining the variability of the 437 

host reactivities (Meyer et al., 1994; Timmann et al., 2008), and the presentation of a spectrum of disease 438 

manifestations (Ottesen, 1995, Büttner, 1984; Lucius et al., 1986; Hoerauf et al., 2003a; Brattig, 2004a). 439 

 Patients with a hyperreactive form of onchocerciasis, Sowda(h) (see section 3.3.) exhibit a particular 440 

host-parasite interaction (Bartlett et al., 1978; Connor et al., 1983; Ottesen, 1995; Brattig, 2004a). The 441 

high inflammatory potential visibly manifests in the skin showing hyper-pigmentation, lesions, pruritus 442 

and lichenification (Fig. 5). This activated state corresponds with strong cellular immune responses. 443 

Characteristic are Th2 and Th17-Th2 lymphocytes and their secreted products such as IL-13, IL-4 and IL-444 

17; they are associated with low Treg cells (CD4+CD25hiFoxp3+) reactivity (Brattig et al., 1987; Hoerauf et 445 

al., 2002; Katawa et al., 2015). Furthermore, high numbers of eosinophlic granulocytes,together with their 446 

released toxic cell products,  and mast cells occur in hyperreactive onchocerciasis (Medina-De la Garza et 447 

al., 1990; Rubio-de Krömer et al., 1995; Tischendorf et al., 1992; Hoerauf et al., 2002). Although only a 448 

small number of microfilariae occur in the skin, the lack of Treg cells results in uncontrolled inflammatory 449 

responses (Brattig 2004a; Hoerauf and Brattig, 2002; Katawa et al., 2015). Serologically, strongly 450 

increased antibody including autoantibody responses are characteristic of sowda patients (Brattig et al., 451 

1994; Gallin et al., 1995) (see section 3.3.). In consequence, these strong immune responses are associated 452 

with the reported low level of microfilarial density (Omar et al., 1979; Büttner and Racz., 1982, 1983; 453 

Siddiqui and Khawajah, 1991). 454 

 One major option for an effective host immune response is a prophylactic vaccine against the parasite, 455 

notably that spurred on and advanced by Sarah Lustigman (Lustigman et al., 2002, 2018; Hotez et al., 456 

2015; George et al., 2019). Vaccines are aimed at preventing infection by infective larvae (anti-L3), and/or 457 

reducing microfilariae thereby complementing the control or elimination of onchocerciasis. Numerous 458 

proteins released by the filariae have been investigated for their vaccine potential; these comprise Ov-103, 459 

Ov-RAL-2, Ov-CHI-1, Ov_ALT-1, Ov-B20, Ov28CRP, Ov-GAPDH (Steisslinger et al., 2015; Lagatie et al., 460 

2018; Lustigman et al., 2018). The alum-adjuvanted vaccine consisting of Ov-103, expressed at the surface 461 

of microfilariae, and Ov-RAL-2, found in the hypodermis of infective larvae, have the potential of reducing 462 

the infection by inhibition of moulting and survival of larvae. The development of cytophilic antibodies 463 

against the antigens and of interleukins effect antibody-dependent cellular cytotoxicity (George et al., 464 

2019). Further, an immunomics approach with serum samples from putatively immune individuals has 465 

been applied (Bennuru et al., 2016). Recently a multi-epitope subunit vaccine coding for selected B-cell 466 

and T-cell epitopes, was constructed representing a novel approach for generating a specific immune 467 

response thereby avoiding responses against other unfavourable epitopes in the complete antigen (Shey 468 

et al., 2019).  Another optional vaccine consists of nanoparticles or the use of non-protein molecules such 469 
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as carbohydrates, like the specific glycoform of glycosyl-phosphatidylinositol, that can act as vaccine 470 

candidates, as indicated for microbes (Jaurique and Seeberger, 2017). 471 

 472 

3.5.  Role of Wolbachia in onchocerciasis 473 

 474 
 The Wolbachia endobacteria are obligatory symbionts contributing to the viability of the parasite, its 475 

growth and development. The endobacteria are transovarially transmitted like mitochondria to the next 476 

filarial generation. Thus, antibiotics deployed to antagonize the endobacterial symbiotic role result in 477 

disruption of embryogenesis in female filariae.  478 

 Immunologically, the Wolbachia stimulate innate and adaptive immune responses. The bacteria-479 

derived surface-associated and released molecules play immunological and pathological roles in 480 

onchocerciasis. In particular, endotoxin-like molecules induce Th1-type inflammatory reactions as known 481 

in all gram-negative lipopolysaccharide-exposing bacteria (Brattig et al., 2000; 2004b). In contrast to the 482 

helminth-characteristic type 2 (Th2) and Th3 immune responses, the Wolbachia provoke bacteria-typical 483 

predominant type 1 (Th1) reactions.   Neutrophils - characteristically activated against bacteria - 484 

accumulate within an onchocercoma at the surface of a female comprising a multitude of Wolbachia in the 485 

lateral cord (see section 3.3., Fig. 7.5) (Brattig et al., 2001; Tamarozzi et al., 2016) - but neutrophils are 486 

absent in the onchocercoma on the surface of a female when the onchocerciasis patient has been treated 487 

with antibacterial doxycycline eliminating the Wolbachia (Fig. 9) (Brattig et al.,  2001; 2004; Pearlman, 488 

2003; Saint André et al., 2002). Subsequently, high peripheral levels of TNF-alpha, IL-1 beta, IL-6, IL-8 and 489 

antibacterial acute phase reactants arise on site and in the circulation. The Wolbachia surface protein 490 

(WSP) and heat-shock protein induce Th1-associated cytokines, TLR2/4 and IgG1 antibody responses 491 

(Pearlman, 2003; Brattig, 2004b; Kamalakannan et al., 2012; Tamarozzi et al., 2016). 492 

 The endotoxin-like and other products of the Wolbachia initiate a major proinflammatory stimulus in 493 

the eye disease leading to keratitis. Wolbachia, in addition, are associated with the severity of adverse 494 

reactions after chemotherapy of onchocerciasis with anti-filarial drugs. Wolbachia thus represent a target 495 

for therapy (Saint Andre et al., 2002; Pearlman, 2003).   496 

 497 

4. Onchocerciasis control and elimination programmes 498 
 499 
4.1.  Elimination of onchocerciasis by chemotherapy of infected patients  500 
 501 
 Table 3 summarises past, present and potential future therapeutic agents for treatment of 502 

onchocerciasis.  The first therapeutic agent against parasitic infections was suramin (Germanin; Bayer 503 

AG), a complex compound with four aromatic benzene rings and a functional urea group, which was 504 

introduced in 1949 (Wilson and Wormall, 1949). Suramin is a micro- and macrofilaricide, i.e. it not only 505 

kills microfilariae but also adult filariae. Suramin damages the intestinal epithelium of the filaria. Suramin, 506 

however, is inherently dangerous because of its high protein-binding affinity and alteration of enzyme 507 
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function; thus, it carries the risk of dermatitis, diarrhoea, optic neuropathy, nephrotoxicity, and even the 508 

occasional death. A three-year study in the Onchocerciasis Control Programme advised against suramin 509 

treatment (Rolland et al., 1980) and it is contraindicated in pregnancy.  510 

 Diethylcarbamazine (DEC, Hetrazan. PharmaCompass) a piperazine derivative, has been used as 511 

therapy against onchocerciasis since 1950 (Ruiz Reyes, 1951). It is also a micro- and macrofilaricide 512 

affecting the neuromuscular system of the parasites and promotes cellular cytotoxicity mediated by 513 

immune factors. In addition, DEC provokes various side effects such as itching and urticaria (reactions to 514 

disintegrating microfilariae) facial swelling, headache, nausea, vomiting, fever, joint pain and anorexia. 515 

DEC is used in a patch test (Mazzotti) for detection of skin microfilariae (see section 3.2.). 516 

 Kuesel (2016) reviewed the path from discovery of new compounds (see below) to their qualification 517 

for large scale use and the support of regulatory authorities provides for development of drugs for 518 

neglected tropical diseases. 519 

 Ivermectin (MectizanR, Merck) a macrocyclic lactone, derived from Streptomyces, is an endectocide. In 520 

2015, the Nobel Prize in physiology or medicine was jointly awarded to W. Campbell (University of 521 

Wisconsin) and S. Omura (Kitasato University) at the Karolinska Institute (Sweden) for their discovery 522 

and exploration of ivermectin and its mode of action, resulting in a novel therapy against onchocerciasis 523 

and other nematode infections (Aziz et al., 1982; Campbell et al., 1983, 2016; Ömura, 2016; van Voorhis et 524 

al., 2015) (Fig. 8). This molecule binds to the inhibitory neurotransmitter GABA on neurons and muscles 525 

resulting in an irreversible activation of a chloride influx, in a hyperpolarization of the membrane, and in 526 

paralysis and death of microfilariae. Ivermectin expresses micro- but not macrofilaricidal activity, 527 

although it causes long-term sterility of the adult female worms. Ivermectin was introduced for anti-528 

filarial treatment in 1981. Albiez et al. (1988b) showed that ivermectin was a more effective 529 

microfilaricidal agent than DEC that caused more frequent and severe side effects. Initially, ivermectin was 530 

administered once a year (150 µg/kg) , but lately it is increasingly administered bi-annually (Frempong et 531 

al., 2016). A 3-monthly treatment with ivermectin even may be most effective to prevent the appearance 532 

of onchocercomata (Campillo et al., 2020). The 3-monthly treatments not only target microfilariae, but 533 

probably in addition the moulting of third to fourth stage larvae and possibly can affect immature adults 534 

suggesting a prophylactic effect. Further, Navarro et al. (2020) reviewed data on the safety of high doses 535 

of ivermectin (>400 up to 800 µg/kg) but did not exclude ocular adverse events. 536 

 Ivermectin is donated free of charge by the Mectizan Donation Program and was distributed amongst 537 

communities by the African Programme for Onchocerciasis Control (APOC) and by various Non-538 

Governmental Organisations (NGOs) such as Sight Savers, Lions International Sight First Programme, The 539 

Carter Foundation and the Helen Keller Foundation.  Latterly, the Expanded Special Project for 540 

Elimination of Neglected Tropical Diseases (ESPEN) has responsibility for oversight of ivermectin 541 

distribution in Africa. The programme reaches more than 300 million people in the affected areas of 35 542 

countries annually, with more than 3.4 billion treatments donated since 1987. (The MectizanR Donotion 543 
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Program (MDP) https://www.merck.com/about/featured-stories/mectizan.html, 544 

https://www.cartercenter.org/health/river_blindness/index.html).   545 

 The drug has rare adverse effects such as red eyes and dry and burning skin. However, ivermectin is 546 

contraindicated in persons with loiasis due to the risk of ivermectin-associated severe inflammation since 547 

treatment with ivermectin may result in adverse reactions in patients with both onchocerciasis and loiasis 548 

(Gardon et al., 1997) (see section 3.1.). In a ‘test-and-treat’ (TNT) strategy a rapid test (LoaScope) has 549 

been introduced for loiasis-endemic areas identifying individuals with levels of Loa loa microfilaremia 550 

associated with a risk of post-ivermectin severe adverse events. LoaScope-positive individuals were 551 

excluded from ivermectin treatment (Boussinesq et al., 2018). Adverse effects after ivermectin treatment 552 

have been observed at a rate of about 9% with cases showing hypotension or dyspnoea (De Sole et al., 553 

1989). Bockarie et al. (2013) discussed the option of preventive chemotherapy as a strategy for 554 

elimination of onchocerciasis by treating populations at risk, to prevent transmission or morbidity. 555 

 Moxidectin, a milbemycin macrocyclic lactone, related to ivermectin, has been used since 1995 as an 556 

anthelminthic in veterinary medicine against various Onchocerca species (Monahan et al., 1995). Opoku et 557 

al. (2018) conducted a randomised, controlled, double-blind phase 3 trial in the Democratic Republic of 558 

Congo, Ghana and Liberia and stated that skin microfilarial loads were lower after moxidectin treatment 559 

than after ivermectin treatment. Moxidectin would therefore be expected to reduce parasite transmission 560 

between treatment rounds more than ivermectin could, thus accelerating progress towards elimination. 561 

Moxidectin has microfilaricidal and embryostatic effects after a single dose and expresses a 562 

macrofilaricidal effect upon repeated doses. Several studies indicate that moxidectin has a higher efficacy 563 

than ivermectin (Awadzi et al., 2014). Besides moxidectin, also flubendazole and emodepside had been 564 

investigated as candidate drugs (Kuesel, 2016). 565 

 Recently, metabolic chokepoint compounds have been identified which were either produced or 566 

consumed by a single enzyme reaction. The respective checkpoint enzymes that govern these reactions 567 

have been investigated (Taylor et al., 2013). Inhibition of such enzymes either leads to a toxic 568 

accumulation or lack of a compound necessary for subsequent reaction. Taylor reported anti-filarial 569 

effects on Onchocerca microfilariae by perhexiline, a piperidine derivative affecting carnitine o-570 

palmitoyltransferase and the fatty acid oxidation pathway. Most recently, benzimidazole-benzoxborole 571 

hybrids, amide- or ketone-linked, termed 8a (AN8799) or 21 (AN15470), have been reported as promising 572 

macrofilaricidal agents tested to date in animal models (Akama et al., 2020). 573 

 Since 1998 antibiotic therapy has demonstrated depletion of Wolbachia endobacteria in O. volvulus 574 

and other filariae (Hoerauf et al., 2000, 2001). Doxycycline was proposed for treatment of onchocerciasis 575 

in addition to ivermectin since adult females were sterilized when the antibiotic killed the Wolbachia (Fig. 576 

9). However, a general implementation of doxycycline for filariasis therapy was hardly feasible because of 577 

the frequency and duration of the required treatment of 100 or 200 mg daily for 4-6 weeks. Also, adverse 578 

reactions have been reported and no pregnant women and children can take doxycycline (Hoerauf et al., 579 

https://www.merck.com/about/featured-stories/mectizan.html
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2003b, 2008; Abegunde et al., 2016).  580 

 Since 2014 an Anti-Wolbachia Consortium (A-WOL) at the Liverpool School of Tropical Medicine, has 581 

been active among others in the field of antiwolbachial drug discovery to treat filarial infections. There are 582 

numerous ongoing studies on novel alternate drugs against Wolbachia with excellent potential. The 583 

tylosin analog ABBV-4083 (TylAMac), a macrolide antibiotic, is an inhibitor of bacterial protein synthesis. 584 

ABBV-4083 resulted in a >99% elimination of Wolbachia as measured 16 weeks after treatment initiation, 585 

blocking the embryogenesis and leading to a complete clearance of circulating microfilariae. ABBV-4083 586 

expressed relatively low activity against microfilariae of L. loa. A successfully completed phase I clinical 587 

trial assessing the safety and tolerability of ABBV-4083 has provided encouraging findings to support 588 

advancement of ABBV-4083 to phase II clinical trials (von Geldern et al., 2019; 589 

https://www.dndi.org/diseases-projects/portfolio/abbv-4083/). 590 

 There are other attractive non-macrolid antibiotic anti-Wolbachial compounds (AWZ=anti-Wolbachia) 591 

such as the heterocyclic thienopyrimidine/quinazoline scaffold AWZ1066 and its enantiomers AWZ1066-592 

S and –R expressing drug metabolism/pharmacokinetic features (Hong et al., 2019). AWZ1066S is a highly 593 

specific anti-Wolbachia candidate selected through a lead optimization programme focused on balancing 594 

efficacy, safety and drug metabolism/ pharmacokinetic (DMPK) features of a thienopyrimidine 595 

/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing 596 

anti-Wolbachia therapies in validated pre-clinical models of infection and has DMPK characteristics that 597 

are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-598 

positioned for onward development and has the potential to make a significant impact on communities 599 

affected by filariasis.  Furthermore, some intriguing future anti-Wolbachial candidate molecules include 600 

the heterocyclic quinazolines CRB417 and CRB490 with excellent efficacy and properties (Bakowski and 601 

McNamara, 2019). Very recently, in vivo efficacy of boron-pleuromutilin AN11251 against Wolbachia in 602 

the rodent filarial nematode Litomosoides sigmodontis model has been demonstrated to be superior to 603 

doxycycline (Ehrens et al., 2020). Thus, AN11251 treatment resulted in a Wolbachia FtsZ/actin reduction 604 

of 94% compared to <40% with doxycycline. 605 

 606 

  607 

https://www.dndi.org/diseases-projects/portfolio/abbv-4083/
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Table 3.  Therapeutic agents for treatment of onchocerciasis   608 

 609 

 

Target 

 

 

Therapeutic agents 

 

 

Originator / Operator 

 

Start of 

treatment 

Onchocerca 

 

 

 

 

 

 

 

 

Suramin 

 

Diethylcarbamazine, DEC (Hetrazan) 

 

Ivermectin  

 

 

 

 

 

 

Moxidectin, Milbemycin 

 

Wilson and Wormall 

 

Ruiz Reyes 

 

Aziz 

Campbell 

Ömura 

Nobel prize, Karolinska 

Institute, Sweden 

van Voorhis 

 

Monahan 

Opoku 

1949 

 

1951 

 

1982 

1983, 2016 

2016 

2015 

 

2015 

 

1995 

2018 

Wolbachia Doxycycline 

Doxycycline versus Ivermectin 

Tolosin A analog: ABBV-4083, 

TylAMac 

AWZ1066S, CRB490/417 

Hoerauf 

Abegunde 

von Geldern 

Taylor 

Hong 

 

2002 

2016 

2019 

2019 

2019 

           610 

 611 

4.2.  Vector control 612 

 613 
 4.2.1. Vector control 1932-1974 614 

 The first known attempt to control onchocerciasis by vector control was in Mexico in 1932. This and 615 

many other vector control efforts by both vegetation removal and chemical applications were reviewed by 616 

Davies (1994). There were aerial treatments with the organochlorine Dichloro-diphenyl-trichloro-ethane 617 

(DDT) of the River Congo at Kinshasa, now in the Democratic Republic of Congo, from 1948 to 1952 which 618 

led to the temporary disappearance of S. damnosum s.l., after which the vector populations have never 619 

recovered to their pre-control levels. DDT was in addition successfully used in Kenya and Uganda. In 1943, 620 

bush-clearing led to the disappearance by 1947 of vectors from the small (42 km2) Riana focus in Kenya 621 

and, in 1946, the vector S. neavei was eliminated from a focus in the Kodera district of Kenya by dripping 622 

DDT into rivers (McMahon et al., 1958), even though it was not known until 1950 that the species’ 623 

immature stages were phoretic on crabs. Also, in Kenya, DDT was successfully used to eradicate 624 

onchocerciasis vectors from foci in Kissy/Kericho and North Nyaza. A similar success was achieved in 625 

neighbouring Uganda, when DDT was used again to eliminate S. damnosum s.l. from the Victoria Falls by 626 

1973.  627 
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 Other control programmes were maintained in West Africa, for instance in Côte d’Ivoire from 1965 to 628 

1971. DDT was phased out in favour of temephos, which was first used for Simulium control in the Sanaga 629 

river, Cameroon, in 1972, and temephos was the insecticide of choice used by OCP from 1975 (see below). 630 

This was after it was realised that localised control was only effective in isolated foci, when a plan for the 631 

massive Onchocerciasis Control Programme in the Volta Basin of West Africa (OCP) was initiated 632 

(https://www.who.int/blindness/partnerships/onchocerciasis_OCP/en/). 633 

 634 

4.2.2. The World Health Organization Onchocerciasis Control Programme in the Volta Basin of West Africa 635 

(OCP) 636 

     At a meeting in Tunis during 1-8 July 1968 on the feasibility of onchocerciasis control it was agreed to 637 

plan a control campaign covering seven countries around the Volta Basin of West Africa 638 

(WHO/ONCHO/69.75 Joint US-AID/OCCGE/WHO Technical Meeting on the Feasibility of onchocerciasis 639 

control. Tunis, 1-8 July 1968, Report). This led to the production of a proposal to the Governments of 640 

Dahomey (now the Republic of Benin), Ghana, Ivory Coast (= Côte d’Ivoire), Mali, Niger, Togo and Upper 641 

Volta (now Burkina Faso) for the initiation of a control programme using aerial applications of insecticide 642 

to the vector’s breeding sites in rivers (WHO, 1973)  643 

  The OCP programme was established in 1974 and spraying started in 1975, with the aim of interrupting 644 

transmission for twenty years to allow for all existing adult worms to die (WHO/OCP/1973). This would 645 

intend to protect areas previously abandoned due to the severity of the disease and allow re-population 646 

and increased agricultural production. It was thought at the time that 5.9 million people would have been 647 

infected in the above seven countries in 1975. Later the programme was extended to include Guinea, 648 

Guinea-Bissau, the western part of Mali, Senegal and Sierra Leone where a further 6.8 million people 649 

would have been infected, but revised estimates suggest that these were underestimates and that 17.8 650 

million were infected in the 11 countries of the extended OCP (O’Hanlon et al., 2016).    651 

 Detailed descriptions of the history and the structure of the OCP, the methods, and the results during 652 

the first five years of the programme were provided by Walsh et al. (1978, 1979) and updated by 653 

Philippon et al. (1990). To assess the results of the vector control measures from November 1974 to 654 

October 1978 almost 1.2 million S. damnosum females were caught in over 52,000 man-days of catching 655 

and 674,000 flies were dissected to determine Annual Biting Rates (ABRs) and Annual Transmission 656 

Potentials (ATPs) (Walsh et al., 1978).  657 

 Up to 6000 km of rivers were sprayed weekly from the air in the original 7 countries in the dry 658 

seasons and 18,000 km in the rainy seasons. Eventually, vector control was expanded into the southern 659 

and western extension areas bringing the total OCP area to 1 235 000 km2 with a population of 30 million 660 

and increasing the lengths of rivers under control to 50 000 km (Samba, 1994).   661 

    The OCP did not succeed without overcoming a variety of operational problems. The first of these was 662 

the continuing presence of adult flies from the starts of rainy seasons at treated sites lacking larvae or 663 

https://www.who.int/blindness/partnerships/onchocerciasis_OCP/en/
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pupae and it was deduced, and later shown by experimental treatments of potential sources, that there 664 

was a reinvasion of the treated zone by flies bred outside it (Garms et al., 1979b).  It was later established 665 

that the flies involved in studies in Côte d’Ivoire, in the central OCP area, were mostly savannah members 666 

of the S. damnosum complex (S. damnosum s.str. and S. sirbanum) and that they could migrate enormous 667 

distances of up to 500 km (Baker et al., 1990). Furthermore, they were parous and many carried infective 668 

larvae so they were of epidemiological importance (Garms et al., 1979b). A similar phenomenon also 669 

occurred in the east of the OCP, where S. squamosum was additionally involved (Cheke and Garms, 1983), 670 

and in the west where savannah flies were found to migrate both northeastwards and southeastwards out 671 

of and into Guinea, respectively (Baker et al., 1990). 672 

 Despite supplementing insecticidal control with mass drug administration of the microfilaricidal 673 

compound ivermectin, onchocerciasis control was not complete in some areas. Some rivers continued to 674 

have S. damnosum s.l. larvae present after extensive treatment cycles and infective adult flies were still 675 

being caught. After the main OCP ceased operations in 2002 such areas, designated as special intervention 676 

zones, continued to be treated with insecticides until 2001). 677 

  The great success of the OCP by 2002 was to have freed for agriculture 250,000 km2 of fertile land 678 

from the threat of onchocerciasis, 40 million people had been protected from the disease and 600,000 679 

cases of blindness prevented in seven countries (WHO, 2002).  After the cessation of OCP, responsibility 680 

for continuing onchocerciasis control was devolved to the eleven member countries’ governments. 681 

 682 

4.2.3. The African Programme for Onchocerciasis Control (APOC) 683 

 In 1995 WHO had instigated the African Programme for Onchocerciasis Control (APOC) aiming to 684 

promote control (and from 2009 elimination) by establishing self-sustaining community-directed 685 

treatment with ivermectin (CDTI), and, where appropriate, vector control with environmentally safe 686 

methods. The participating 19 countries were the remaining non-OCP endemic countries: Angola, Burundi, 687 

Cameroon, Central African Republic, Chad, Democratic Republic of Congo, Equatorial Guinea, Ethiopia, 688 

Gabon, Kenya, Liberia, Malawi, Mozambique, Nigeria, Rwanda, Sudan, Tanzania and Uganda. APOC’s vector 689 

control activities were restricted to a few isolated foci, notably in Bioko (Equatorial Guinea) (Traoré et al., 690 

2009), Tanzania and Uganda (Garms et al., 2009; https://www.who.int/apoc/vector/en/). APOC 691 

terminated in December 2015 and WHO’s action on onchocerciasis control was subsumed in May 2016 692 

within the Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) that deals not 693 

only with onchocerciasis but also with lymphatic filariasis, loiasis, schistosomiasis, soil-transmitted 694 

helminthiasis and trachoma (http://espen.afro.who.int/; Hopkins, 2016). 695 

 696 

4.3.  Current status of onchocerciasis in selected countries  697 

 According to WHO (2017) onchocerciasis control with mass drug administration (MDA) was still 698 

continuing in 2017 in the African Region in Angola, Benin, Burkina Faso, Burundi, Cameroon, Central 699 

http://espen.afro.who.int/
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African Republic, Chad, Congo, Côte d’Ivoire, Democratic Republic of the Congo, Equatorial Guinea, 700 

Ethiopia, Ghana, Guinea, Guinea Bissau, Liberia, Malawi, Mali, Mozambique, Nigeria, Senegal, Sierra Leone, 701 

South Sudan, Togo, Uganda and the United Republic of Tanzania. In the Eastern Mediterranean Region, 702 

MDA continued in Sudan and Yemen.  The results of evaluations of CDTI were separated into those 703 

campaigns that were reported as being where criteria for stopping CDTI had been met or were close to 704 

elimination, on track to elimination or showing unsatisfactory progress.  705 

 706 

4.3.1.  Africa 707 

4.3.1.1. Guinea 708 

  The first research on onchocerciasis was conducted by staff of the Bernhard Nocht Institute in the 709 

1960s. Knüttgen (1964) and Knüttgen and Büttner (1968) examined 18,634 people in northeastern 710 

Guinea and reported that 45.8% carried microfilariae and 24% had nodules, with blindness rates varying 711 

from 1.07 to 4.56%. Subsequently, Knüttgen (1971) and De Sole et al. (1991) summarized the 712 

epidemiological situation. Garms and Post (1966) were the first to report the presence of S. damnosum s.l. 713 

and later Garms and Vajime (1975) found that, of the then known cytospecies, S. yahense, S. sanctipauli, S. 714 

soubrense, S. damnosum s.str. and S. sirbanum were present. This information was updated by Boakye et al. 715 

(1998). Guinea was part of the western extension of the OCP and was identified as a source of flies 716 

reinvading northern Cote d’Ivoire and Burkina Faso, involving distances of up to 500 km (Baker et al., 717 

1990; see section 4.2.2.). According to WHO 2018a,b in 2017 almost 7 million people in 24 districts still 718 

required MDA with a reported coverage of 72.3%.  719 

  720 

4.3.1.2. Liberia   721 

 Liberia was never a member of the OCP but onchocerciasis and its vectors were studied extensively 722 

by teams from the Bernhard Nocht Institute for Tropical Medicine, which established the Liberian 723 

Research Unit field station at Bong town, in 1968. The extent of onchocerciasis in the country was 724 

described by Frentzel-Beyme (1973, 1975a,b). Interestingly, the clinical state of onchocerciasis known as 725 

sowda is frequent in Liberia (Darge and Büttner, 1995) (see section 3.3.). Garms and Vajime (1975a) 726 

showed that S. damnosum s.str. and S. sirbanum occurred in the savannah areas, while in the forest S. 727 

yahense and a variety of members of the S. sanctipauli sub-complex are present, of which S. yahense is the 728 

most important vector (Garms, 1987; Trpis, 2006). The form of the S. sanctipauli complex occurring in the 729 

St. Paul river was originally described by Vajime and Dunbar (1975) as S. sanctipauli s.str. but after re-730 

examinations of cytotaxonomic material Post (1986) pointed out that its chromosome patterns actually 731 

showed it to be a form of S. soubrense.  732 

 Furthermore, those populations are genetically distinct from the Farmington form present in the 733 

Farmington river (Kashan and Garms, 1987; Güzelhan and Garms, 1991). In addition S. sanctipauli s.str. 734 

does occur in Liberia too, but only in forest/savannah mosaic habitats in the Cestos, Mano and Makona 735 
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rivers. Also, S. soubrense B (= S. leonense) was recorded in the Farmington river (Güzelhan and Garms, 736 

1991).  Anthropogenic factors have influenced vector dissemination as extensive deforestation associated 737 

with iron mining activities allowed savannah forms (S. damnosum s.str. and S. sirbanum) to invade 738 

previously forested areas as far south as Bong (Garms 1987; Garms et al., 1991). 739 

Treatments with ivermectin began in 1999 but Liberia has also been the site of successful trials of a new 740 

macro- and microfilaricide, moxidectin (Opoku et al., 2018; see section 4.1). 741 

 742 

4.3.1.3. Cameroon   743 

 At the beginning of the 1990s it was estimated that 1,300,000 people were infected in Cameroon, of 744 

whom 26,000 were blind (WHO, 1995). Major advances in onchocerciasis research were made from a base 745 

at Kumba in Cameroon by Duke and his colleagues who developed the concept of Onchocerca–Simulium 746 

complexes involving forest and savannah strains of the parasite (Duke et al., 1966; Duke 1967a; Lewis and 747 

Duke, 1966).  748 

 Non-volvulus species of Onchocerca are more commonly found in S. damnosum s.l. in Cameroon than is 749 

usual in many other African countries (Duke 1967b).  This necessitates care in the analysis of the results 750 

of Onchocerca parasites counted in the vectors.  The most important of these is O. ochengi, a cattle parasite, 751 

the impact of which on the transmission of O. volvulus was discussed by Eisenbarth et al. (2016)  752 

 Detailed studies in Cameroon of the vectorial abilities of S. damnosum s.str. and S. sirbanum have been 753 

conducted (Renz 1987, Renz and Wenk 1987) and on S. squamosum B in the Sanaga valley by Demanou et 754 

al. (2003), who also discussed data from Kumba on S. squamosum A and C.   755 

    Studies in Cameroon have highlighted the slow progress towards elimination based on ivermectin. 756 

Katabarwa et al. (2013) described how only 3 of 11 health districts were close to elimination after 15 757 

years of treatment. Continuing transmission and prevalence of up to 52.7% were also reported for areas 758 

in the southwest by Wanji et al. (2015a) after 10 years of ivermectin distribution by CDTI. In another 759 

study it was reported that 15.5% of 2,364 people had never taken ivermectin (Wanji et al., 2015b). Similar 760 

results with onchocerciasis remaining at mesoendemic levels in the Centre and Littoral Regions and in the 761 

Vina du Nord River Valley after 15 and 25 years of CDTI, respectively, were documented by Kamga et al. 762 

(2016) and Eisenbarth et al. (2016).  763 

 It is unlikely that a long-term solution to the control of biting fly numbers or of onchocerciasis will be 764 

possible in the long-term without complementary vector control.  Whilst, in theory, ivermectin 765 

distribution will interrupt transmission if distribution is maintained at 100% coverage for more than 25 766 

years, in practice this is unlikely to be achieved because of (a) insufficient coverage for logistic and 767 

management reasons; (b) lack of acceptability of the drug in loiasis areas; and (c) the emergence of 768 

resistance to ivermectin, as “non-responders” (defined as individuals with microfilaria (mf) counts in skin 769 

>10 mf/snip after nine or more rounds of ivermectin treatment) have already been found in Ghana 770 

(Dadzie et al. 2003, Awadzi et al. 2004), with further evidence for it in Cameroon (Bourginat et al 2007).  771 
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According to WHO (2018a,b), in 2017 more than 11 million people in 112 of 113 districts required MDA 772 

and 71% were treated.  773 

 774 

4.3.1.4. Uganda 775 

 In Uganda, where  approximately 1.4 million people had been infected with onchocerciasis 776 

(Ndyomugyenyi 1998) and the disease existed in 17 foci, about 2.8 million  people required MDA in 2017 777 

(WHO 2018a,b), but not in 8 formerly endemic districts after onchocerciasis had been eliminated by MDA 778 

and vector control. So far Uganda, together with Kenya, Equatorial Guinea, Sudan and Ethiopia are the 779 

only African countries where onchocerciasis foci have been eliminated. In Uganda onchocerciasis is 780 

transmitted by two vectors, both of which were described from there: S. damnosum Theobald 1903 and S. 781 

neavei Roubaud 1915 (Adler, 2019). The larvae of S. neavei develop in a phoretic association on 782 

freshwater crabs of the genus Potamonautes and S. neavei is or was the vector in most of the smaller 783 

isolated foci.  Uganda was one of the first countries where large scale vector control projects were carried 784 

out. From 1951 to 1973 there were 11 vector control projects, all with DDT (Davies 1994). Particularly 785 

famous were the projects on the important Victoria Nile focus where S. damnosum was breeding in a 786 

series of 70 km of rapids below the Owen dam. The application of 1973 was completely successful 787 

(McCrae, 1978), no flies have been found up to the present day (Davies, 1994), but it had never been 788 

formally verified that the transmission had been stopped. However, a recent study showed a total of 2953 789 

serum samples taken from children younger than ten years and tested using the Ov16 ELISA test (see 790 

section 3.2.) were all negative (Katabarwa et al., 2020). Fly catches were carried out at the historical 791 

catching sites for at least a year. No S. damnosum were collected, indicating that the former vector never 792 

came back. However, 854 Simulium adersi Pomeroy (Subgenus Meilloniellum) were caught, which all 793 

turned out to be negative when tested by PCR. S. adersi is not known to be a vector of onchocerciasis, but 794 

can be infected experimentally (Wegesa, 1970). 795 

 Of the original 17 onchocerciasis foci in Uganda (Fig. 10) in only one, the Lhubiriha focus in Kasese 796 

District bordering D.R. Congo (Fig. 10.2, focus 14; red) is transmission by S. kilibanum (S. damnosum 797 

complex) still continuing. Interruption of the transmission by S. damnosum has now probably been 798 

achieved in the Mid North Focus (Fig. 10.2, focus 14; light green), mainly by vector control using temephos, 799 

but also experimentally by clearing of vegetation, window traps and CDTI. Vector control was also 800 

primarily responsible for the elimination of the Kashoya-Kitomi S. neavei focus (Lakwo et al., 2017). In 801 

most Ugandan foci where onchocerciasis has been eliminated by CDTI and vector control, Simulium neavei 802 

was the vector. Many of such successes followed on from research and control work begun in 1991 in a 803 

cooperation between the German Technical Cooperation Agency (GTZ), the Bernhard Nocht Institute for 804 

Tropical Medicine, Basic Health Services Project, and the V,ector Control Unit of the Ministry of Health in 805 

Kabarole District (now Kabarole and Kyenjojo districts) in Western Uganda.  806 
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 When annual distribution of ivermectin began in 1991 no vector control was planned, but treatments 807 

were accompanied by studies on the transmission by the vector S. neavei. After 4 years, there was no clear 808 

effect on the transmission and 1000 parous flies still had 151 infective larvae in their heads. In view of 809 

these results and at the request of the local government it was decided to enhance the effect by vector 810 

control. Before starting this, it had been confirmed that temephos, which had been used for 25 years in the 811 

OCP (see section 4.2.2.), could be used safely, in particular, without harming the phoretic host crabs P.  812 

Aloysiisabaudiae (Garms et al., 2017). After only a few monthly applications from mid-1995 to the end of 813 

1996, S. neavei had disappeared from the main Itwara focus and never came back. Sub-foci on the Siisa 814 

and Aswa rivers took a bit longer, but no positive crabs or biting flies were seen any more throughout the 815 

focus after February 2003 (Garms et al., 2009; Michael et al., 2020). 816 

 Of especial interest was the Imaramagambo focus in south-western Uganda, where vector control had 817 

been planned, but when it turned out that there was no transmission anymore, it was noticed that the 818 

vector S. neavei and its phoretic host, the freshwater crab, had both disappeared, possibly because of 819 

runoff into rivers of agricultural chemicals used intensively on the nearby tea plantations (Katabarwa et 820 

al., 2016). The flies also disappeared from areas in the Ruwenzori valley to the northwest of the Itwara 821 

focus (Garms et al., 1994) and habitat changes have also contributed to reductions in transmission 822 

elsewhere in Uganda, as Fischer et al. (1997) reported a reduced prevalence of onchocerciasis following 823 

deforestation. In addition, by 2017 MDA was leading to interruptions or suspected interruptions of 824 

transmission in five other foci where S. neavei was the vector (Katabarwa et al., 2018). The Madi Mid 825 

North focus, where S. damnosum s.l. is the vector, is likely to be the most intractable area but details of the 826 

cytoform present in that region have not been published.  In western Uganda the following S. damnosum 827 

cytoforms have been recorded: S. kilibanum, “Sebwe”, “Nkusi” and S. pandanophilum, of which only S. 828 

kilibanum is anthropophilic and of vectorial importance (Krüger et al., 1999).  829 

 Control of S. damnosum s.l.  by removing the trailing vegetation upon which immature stages develop 830 

was attempted in Mexico from 1932 to 1940 without success, in D.R. Congo in  the early 1940s with only 831 

partial success, and in Malawi in the early 1990s by destruction of the aquatic plant Hydrostachys sp. (M. J. 832 

Roberts, unpubl., Burnham 1992, Davis, 1994). Also, Baker and Abdelnur (1986a,b) showed that in a rocky 833 

breeding site of the Bussere River in south-western Sudan a small team armed with axes, saws and sickles 834 

could do much to reduce larval and pupal supports in the breeding sites caused by vegetation trailing in 835 

fast water flow. A similar strategy has also recently been applied in Uganda (Jacob et al., 2018; Smith et al. 836 

2019) but it is unlikely to provide a long-term solution as it requires regular "slash and clear" and, besides, 837 

the vectors will adapt and breed on other substrates such as rocks, which they often use when no trailing 838 

vegetation is present. In addition, large torrential rivers and rapids, particularly those in the middles of 839 

wide rivers cannot be completely cleared. 840 

 841 

4.3.1.5. Ghana 842 
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         As mentioned in the historical introduction, Ghana was the site where onchocerciasis was first 843 

recorded (O’Neill, 1875).  Crisp (1956) described the geographical extent and severity of the disease in the 844 

north and provided plans for a vector control campaign, while Waddy (1969) elaborated these with 845 

proposals that culminated in the OCP. Ghana was one of the original seven OCP countries, with the west of 846 

the country targeted at the outset in 1975. Most of the rest of the country north of the Volta Lake was 847 

included in Phase II soon afterwards, with areas south of the lake included from 1988 onwards as part of 848 

the southeastern extension. Most of the southwestern forested areas were not included in the vector 849 

control campaign, but were subject to MDA with ivermectin, following the first successful trials that were 850 

conducted in 1987 at Asubende on the River Pru (Remme et al., 1989). 851 

     The initial euphoria about possible elimination of onchocerciasis from Africa using ivermectin 852 

distributions was dealt a blow when incipient resistance to the drug was detected in Ghanaian patients 853 

(Awadzi et al., 2004). Later, cohorts of patients were found in the Brong-Ahafo and Northern Regions to be 854 

being re-populated with microfilariae sooner than was to be expected and these “non-responders” (Osei-855 

Atweneboana et al., 2007) were also possibly harbouring resistant worms (Osei-Atweneboana et al., 856 

2011).  857 

      Despite the activities of the OCP and subsequent continuations of ivermectin distributions, some 858 

transmission continues (Kutin et al., 2004, Garms et al., 2015), including in areas where there had been 859 

vector control (Lamberton et al., 2015, F.B.D. Vereigh, pers.comm.to RAC July 2019).  860 

 The ivermectin distributions were originally annual but it is now the policy in Ghana to distribute bi-861 

annually. This has succeeded in reducing transmission and infection rates in some areas but not 862 

everywhere that has been studied (Frempong et al., 2016, F.B.D. Vereigh, pers. comm.). Another 863 

consideration relevant to continuing transmission is the lack of complete compliance with the drug 864 

distribution programmes. Agyemang et al. (2018) investigated compliance in the Upper Denkyira East 865 

Municipal area and reported that it was lower than given in official reports, with results ranging from 7 to 866 

51% with an overall compliance of only 21%, even less than the 24.4% reported earlier by Kutin et al. 867 

(2004). 868 

    Ghana has a high diversity of S. damnosum cytoforms, including some sites where up to five different 869 

varieties could be found breeding sympatrically. Details of the vectors present and how their geographical 870 

distributions have varied from the 1970s until 2011 were summarized by Post et al. (2013), with 871 

fluctuations attributable to deforestation (Wilson et al., 2002), extinction due to vector control (Cheke et 872 

al., 2008) and pollution resulting from illegal gold-mining activities in rivers such as the Pra and Offin 873 

(Garms et al., 2015), although the mining (locally known as “Galamsy”) has now been curtailed by 874 

Government actions. According to WHO (2018a,b) in Ghana in 2017 of about 8 million infected people 4.4 875 

million (54,6%) in 84 of 85 endemic districts received MDA. 876 

 877 

4.3.1.6.  Ethiopia 878 
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 Onchocerciasis is highly endemic in Ethiopia, with more than 20 million people infected or at risk 879 

(Anon, 2015). The disease is mostly found in southwestern, western and northwestern parts of the 880 

country, being particularly associated with coffee growing areas in the southwest and with cotton and oil 881 

seed farming areas in the northwest. The main vectors are members of the S. damnosum complex (Hadis et 882 

al. 2005), but S. ethiopiense, a member of the S. neavei group phoretic on crabs (Potamonautes antheus), is 883 

suspected of being a secondary vector in the southwestern midlands and the highlands where it is often 884 

sympatric with S. damnosum s.l.  (White 1977). 885 

    Onchocerciasis control with ivermectin began in 2001 and by 2015 there were 18 CDTI project zones in 886 

the country (Anon 2015). At present the country has some areas in various stages of post treatment 887 

surveillance (PTS), for instance in the Metema area (see below; 4.3.1.7.). Onchocerciasis has disappeared 888 

from the Tigray region in the absence of any control measures, probably in the wake of human migrations 889 

and the establishment of commercial farming (Katabarwa et al., 2014b).  In 2017, 17.5 million people 890 

required MDA, with 194 of 199 endemic districts receiving it (WHO 2018a,b).  891 

 892 

4.3.1.7. Sudan and South Sudan 893 

4.3.1.7.1. Sudan 894 

 There are three main areas in Sudan where onchocerciasis occurs or occurred. Principal amongst 895 

these was the Abu Hamed focus in River Nile State where the first case of the elimination of an 896 

onchocerciasis focus in Africa was achieved following ivermectin distribution (Zarroug et al., 2016), 897 

although it was probably assisted by the flooding of all of the western breeding sites of the vector in the 898 

River Nile by the construction of the Merowe dam (Zarroug et al., 2014). The vector there is a unique form, 899 

the hamedense form of S. damnosum (Higazi et al., 2001), which had led to prevalence of 37% in 900 

populations of up to 120,000 people, with high proportions of sowda (see section 3.3.) 901 

     A coordinated interruption of onchocerciasis transmission, which met the criteria set forth by WHO 902 

guidelines for interruption of transmission of O. volvulus, has been achieved at the cross-border focus 903 

where the Galabat focus adjoins the Ethiopian Metema focus. This success, the first such cross-border 904 

initiative in Africa, was accomplished by a combination of annual and semi-annual ivermectin MDA 905 

(Katabarwa et al. 2020b). 906 

 907 

4.3.1.7.2. South Sudan 908 

 About half the population of South Sudan is affected by onchocerciasis with particularly high 909 

endemicity in Western Equatoria, and the Northern and Western Bahr el Ghazal areas. CDTI was begun in 910 

the mid-1990s and 5,605,726 people were being targeted in 2009 (Lugga and Chane 2011). Recent zones 911 

for CDTI were mapped in the context of research on control of nodding syndrome in the country. 912 

Pioneering investigations on the biology of the vectors was conducted in South Sudan by Lewis (1953) 913 

and by Baker and Abdelnur (1986). 914 
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 915 

4.3.2.  Yemen (Arabian Peninsula) 916 

 Yemen is the only country in the Eastern Mediterranean with onchocerciasis, where it is most 917 

prevalent along the permanent waterways (wadis) draining into the Red Sea in the west of the country.  918 

The vector breeds in very shallow flat wadis with low discharges of up to 1 m3.sec-1 (Garms and Kerner, 919 

1982). It is a unique species S. rasyani, a member of the S. damnosum complex (Garms et al., 1988). 920 

Although planned, to our knowledge, there has been no vector control but sporadic ivermectin 921 

distribution was begun in the early 1990s. Since 2011 civil strife and wars have interrupted the national 922 

campaign. The disease in Yemen is characterised by high rates of the hyperreactive clinical manifestation 923 

known as sowda (Anderson et al., 1973; Büttner et al., 1982; Büttner and Racz, 1983). Mahdy et al. (2018) 924 

reported an overall seroprevalence rate of 18.5% during their surveys in 2017. According to WHO 925 

(2018a,b) in Yemen in 2017 of about 6.3 million people in 33 districts were requiring MDA. 926 

 927 

4.3.3.  Americas (OEPA)  928 

 In the continent of America onchocerciasis was restricted to six countries of central and south 929 

America: Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela (Fig. 4). Differing from Africa with 930 

its prevalence in large parts of 31 countries, in the Americas the occurrence of onchocerciasis was or is 931 

confined to limited foci. Accordingly, the combat against onchocerciasis was different and an elimination 932 

of the infection appears to have been or will be feasible by mass drug administration with ivermectin. 933 

 A variety of vectors is or was responsible for transmission in central and southern America. Members 934 

of the S. ochraceum and S. metallicum complexes were involved in Mexico, with the former most active in 935 

transmission in Guatemala (Garms, 1975b; Rodríguez-Pérez et al., 2015).  936 

A detailed review of the potential importance of further anthropophilic Simulium species as vectors of O. 937 

volvulus in Guatemala has been presented by Takaoka (2015). 938 

   In 1993 the Onchocerciasis Elimination Program for the Americas (OEPA), a regional initiative and 939 

international partnership, was launched. Sauerbrey et al. (2018) reported on the successful progress 940 

toward elimination of onchocerciasis in the Americas. From 1989 to 2016, more than 11 million ivermectin 941 

treatments, given twice or four times per year, have been given in the Americas, eliminating transmission in 942 

11 of 13 foci. The number of people at risk of onchocerciasis decreased from >530 thousand to about 30 943 

thousand. Nodulectomy campaigns, e.g. in Mexico and Guatemala, probably helped the success of the MDA 944 

(Figueroa Marroquin,1975).   945 

 Onchocerciasis was eliminated in Columbia in 2010, in Guatemala 2011, in Ecuador 2012, in Mexico 946 

2014 and in Venezuela in 2017 apart from a focus in the South. One focus also exists in the north of Brazil. 947 

In the remaining Amazonas focus that straddles the Venezuela-Brazil border the main vectors are 948 

members of the S. oyapockense and S. guianense species complexes and S. incrustatum (Shelley et al. 2010). 949 
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The OEPA's success influenced programmes in Africa, especially in Sudan and Uganda, which moved from 950 

a control to an elimination strategy in 2006 and 2007, respectively. The successes in the Americas have 951 

also influenced WHO guidelines for onchocerciasis transmission elimination. With four of the six originally 952 

endemic American countries now having eliminated onchocerciasis transmission, and 95% of ivermectin 953 

treatments in the region halted, the regional focus is now on the remaining active transmission zone on 954 

the border between Venezuela and Brazil. 955 

 956 

5. Future perspective  957 

 Recent publications report and discuss the success of elimination or close to elimination of 958 

onchocerciasis in limited foci in Africa - in Sudan, Mali, Senegal, Burundi, Chad, Malawi and Nigeria (Tekle 959 

et al., 2012; Zarroug et al., 2014, 2016; Walker et al., 2017; Rebollo et al., 2018; Richards et al., 2020). This 960 

success is completely or mainly based on MDA, of ivermectin. Exceptions are Bioko, Equatorial Guinea, 961 

where vector control was successful, and Uganda where onchocerciasis was eliminated from several 962 

isolated foci by combinations of control of the vector S. neavei by ground larviciding with temephos and 963 

MDA (Katabarwa et al 2018, 2020a,b; Michael et al., 2020). 964 

 The priority is given to treatment with ivermectin. Recently, attention, however, is drawn to the 965 

problems of poor coverage and inadequate compliance to MDA (Agyemang et al., 2018; Dissak-Delon et al., 966 

2019). Correspondingly, Verver et al. (2018) discussed why a wide-reaching elimination of onchocerciasis 967 

cannot be guaranteed by 2025 and proposed a long-term biannual or quarterly MDA combined with 968 

vector control activities as complementary approaches (Routledge et al., 2018) for high-endemicity areas 969 

to accelerate progress toward elimination. The proof-of-principle in distinct foci in Mali, Senegal and 970 

Sudan indicate a possibility to eliminate onchocerciasis with annual or 6-monthly ivermectin treatment in 971 

some endemic foci in Africa. Correspondingly, the published WHO 2030 goals for onchocerciasis were 972 

influenced by the cited models (EPIONCHO and ONCHOSIM) on the impact of biannual or quarterly 973 

ivermectin treatment frequency and in addition complementary vector control (NTD Modelling 974 

Consortium Onchocerciasis Group, 2019; Gates Open Research 2019; Hassan and Shaban, 2020). 975 

 Anthelminthic drug alternatives to ivermectin, include the aforementioned Moxidectin (Awadzi et al. 976 

2014, Opoku et al., 2018) and novel anti-Wolbachia agents like the thienopyrimidine/quinazoline scaffold 977 

AWZ1066 (Hong et al., 2019). 978 

 The timelines of onchocerciasis from control to elimination and eradication were discussed by Kim et 979 

al. (2015). They estimated that the elimination scenario will endure until 2028 in all endemic countries 980 

except four (Republic of Congo, Central African Republic, South Sudan, Gabon) but CDTI was predicted to 981 

continue beyond 2045 in countries with operational challenges, with around 1.15 billion treatments. The 982 

elimination of transmission (EOT) of onchocerciasis for the majority of foci in the 34 countries in Africa 983 

has been projected in several publications to be between 2025 and 2045 (Dadzie et al., 2018; 984 

Gebrezgabiher et al., 2019; Kim et al., 2015).   985 
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 One major problem is that an elimination of onchocerciasis with ivermectin treatment alone has not 986 

so far appeared to be feasible in many African countries where onchocerciasis was endemic over millions 987 

of square kilometres spanning more than 30 countries. In addition, the vectors are highly efficient and 988 

with much higher endemicity levels migrating over hundreds of kilometres (Dadzie et al., 2003) 989 

threatening re-emergence of infected vectors and of onchocerciasis in their wake.  Thus, exemplarily, on 990 

Bioko where the unique endemic vector (the Bioko form of S. yahense) was rendered extinct (Traore et al 991 

2009) some vectors may have returned. These are S. squamosum rather than S. yahense (D. Boakye, pers, 992 

comm 2019) and it is unknown if they brought any O. volvulus with them.  993 

 Nevertheless, given that after nearly 15 years without any transmission on the island very few 994 

onchocercal cases remained (Hernández-González et al., 2016; Moya et al., 2016; Herrador et al., 2018; Ta 995 

et al., 2018), prospects for confirming elimination are good. The interruption of transmission was 996 

considered to have been permanent, but the Bioko case is salutary and illustrates that, however good 997 

planning and forecasts can be, there is room for the unexpected to affect our perspectives. In contrast, in 998 

the Americas, onchocerciasis elimination with ivermectin treatment has been considered feasible, since 999 

most onchocerciasis foci in the Americas were small and circumscribed, and most vector species are 1000 

relatively inefficient. Thus, interruption of the transmission was feasible by 6-monthly or even 3-monthly 1001 

ivermectin treatments (Sauerbrey et al., 2018).  1002 

 Planning MDA programmes is now often based on the outputs of mathematical models such as 1003 

ONCHOSIM (Plaisier et al 1990) or EPIONCHO (Basáñez et al. 2016) but these models skimped on details 1004 

of blackfly biology. Only recently have models begun to model vector biology explicitly and started to take 1005 

account of future uncertainties regarding climate change (Cheke et al., 2015) and the likelihood of needing 1006 

to supplement MDA with vector control (Routledge et al., 2018). Such vector control in isolated foci could 1007 

include ground larviciding, slash-and-clear vegetation destruction and killing host-seeking adult female 1008 

flies in traps such as the Esperanza window trap (Rodriguez-Pérez, 2013; Toé et al., 2014; Hendy et al., 1009 

2017; NTD Modelling Consortium Onchocerciasis Group, 2019; NTD Modelling Consortium, Gates Open 1010 

Research, 2019). These could be supplemented by deploying traps to catch ovipositing female flies such as 1011 

“Bellec plates” placed beside breeding sites (Bellec, 1976; Cheke et al., 1982). 1012 

 Difficulties surrounding the elimination of the transmission of onchocerciasis were reviewed by 1013 

Cheke (2017), who drew attention to cases of successful control where transmission had probably been 1014 

eliminated in contrast to areas where such interruptions were likely to be only temporary. These included 1015 

areas in Africa with >55% prevalence, where mass drug administration (MDA) alone was thought of as 1016 

unlikely to succeed.  1017 

 In summary, anthelminthic MDA complemented by appropriate vector control measures may 1018 

increasingly lead to control and hopefully eradication of onchocerciasis which may be fulfilled in mid-1019 

century.  1020 

 1021 
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 1890 

 1891 

 1892 

 1893 

 1894 

 Figure 1. Onchocerca volvulus life cycle:  B. Infection: (1.) infective third-stage larva (L3) of O. volvulus is 1895 

transmitted by the vector Simulium (A.);(2.) a histological section through an onchocercoma in the human 1896 

host comprising a coiled adult female developed from a fourth-stage larva; (3.) microfilariae produced by 1897 

the adult female worm which (4.) migrate from the onchocercoma into the skin (5.) to be taken up by the 1898 

pool-feeding Simulium. (A.) In the vector a microfilaria develops into a first stage ”sausage” form larva 1899 

(L1), moults into the second-stage larva (L2) and then moults again to become a third-stage infective larva 1900 

(L3) which is transmitted into the skin of the human host when the vector pool feeds (1.) (figure modified 1901 

from Rudolf Geigy, Acta Tropica Supplement 6, Geigy and Herbig, Erreger und Überträger tropischer 1902 

Krankheiten, 1955). 1903 
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 1906 

 1907 

 1908 

 1909 

 1910 

 1911 

Figure 2. Stages of the Onchocerca volvulus: (1.) microfilaria (about 0.2-0.3 mm long), (2.) adult males (1.5-1912 

4.5 cm), (3.) infective third-stage larva (0.7-0.8 mm); (4.) adult females (30-60 cm), (5.) an onchocercoma 1913 

with cut adult females, (6.) sections through a nodule showing adult females (ca. 0.3 mm in diameter) 1914 

showing two uterus branches with cut microfilariae, cut intestine and lateral cords containing 1915 

endobacterial Wolbachia stained red (photo Brattig et al. 2001; D.W. Büttner, Liberia 1991; N.W. Brattig, 1916 

BNITM, 2000). 1917 
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 1920 

 1921 

 1922 

Figure 3. Simulium damnosum s.l. stages: (1.) Masses of eggs Niger, Guinea, photo R. Garms, 1963), (2.) 1923 

larvae on trailing vegetation and (3.) pupae, St. Paul River Liberia (photo R. Garms, 1983). (4.) Adult 1924 

Simulium s.l., photo R. Garms, Liberia, 1983), (5.) Drop of blood after pool-feeding by a Simulium (photo R. 1925 

Gams, Guatemala, 1974). 1926 
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 1929 

 1930 

 1931 

Figure 4. Prevalence of onchocerciasis (marked red) in 30 sub-saharan African countries, in Yemen 1932 

(Arabian Peninsula) and in 6 countries of central and south America. The area of the Onchocerciasis 1933 

Control Programme (1974-2002) is marked yellow (modified, WHO, 1995). 1934 
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 1937 

 1938 

 1939 

Figure 5. Pathology of onchocerciasis. A. Skin pathology and microfilariae: (1.) depigmentation, (2.) 1940 

dermatitis, (3.) lichenification and hyperpigmentation (sowda) (Brattig, 2004; photo D.W. Büttner, Liberia 1941 

1995), (4.) microfilariae in a histological section of skin (photo D.W. Büttner, Liberia, 1999), (5.) 1942 

microfilaria released in vitro from a skin snip (photo N.W. Brattig, 2000); B. Onchocercomata (6.) nodules 1943 

in the torso of a man (photo D.W. Büttner, Liberia, 1985), (7.) nodule in the leg of a boy (photo R. Garms, 1944 

Liberia, 1971), (8.) A bisected onchocercoma with adult females (Brattig, 2004). 1945 
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 1951 

Figure 6. Eye pathology (River blindness). (1.) Two onchocercomata in the forehead of a young child 1952 

which can release microfilariae in the close proximity of the eyes (DW Büttner, Liberia,1993), (2.) cornea 1953 

opacification,sclerosing keratitis (R. Garms, Kouroussa, Guinea, 1963), (3.) man blinded by onchocerciasis 1954 

guided by a child (photo R. Garms, Sérékoroba Guinea, 1963). Microfilariae releasing the onchocercoma 1955 

can infiltrate the eye and can lead to visual impairment and blindness.  1956 
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  1958 
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 1959 

 1960 

Figure 7. Host-parasite interaction. (1., 2.) time-dependent in vitro attack of microfilariae (Mf) by human 1961 

eosinophilic effector cells (3., 4.) and of infective 3rd stage larvae (L3) (modified figures from Brattig, 1962 

2004), (5.) Host neutrophilic granulocytes assembled at the surface of a female in a section of an 1963 

onchocercoma with Wolbachia in the lateral cords of the female; the Wolbachia were stained with 1964 

antibodies against Wolbachia heat shock protein 60, the neutrophils with antibodies against defensin 1965 

(Brattig et al., 2001). 1966 
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 1970 

 1971 

Figure 8. Container with Ivermectin (dihydro-avermectin), the principal drug against onchocerciasis (1.); 1972 

(2) the chemical formula: a macrocyclic lactone, synthesized by Streptomyces sp., administered as 1973 

MectizanR (Merck Inc.) is donated free to millions of onchocerciasis patients organized by the Carter 1974 

Center. (3.) In 2015, the Nobel Prize in Phyiology or Medicine was awarded at the Karolinska Institute to 1975 

William C. Campbell and Satoshi Ömura for their discovery of the anti-filarial compound Ivermectin.  1976 
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 1980 

 1981 

Figure 9. Antibacterial doxycyline, (1.) a tetracycline-class polycyclic antibiotic agent kills Wolbachia 1982 

endobacteriae in Onchocerca microfilariae and is introduced for treatment of onchocerciasis in 2003 1983 

(Hoerauf et al., 2001; Walker et al., 2015). (2.) Sections through onchocercomata (A.) from an untreated 1984 

patient which comprise Wolbachia stained red in the cords and (B.) females in an onchocercoma from 1985 

doxycycline-treated patients with depleted Wolbachia (Brattig et al., 2001).  1986 
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Figure 10. Progress of onchocerciasis elimination in Uganda by 2019. Comparison of transmission in 1992 1993 

(1.) and in 2019 (2.) In 1992 (1.), only the historical large Victoria Nile focus (green) had been eliminated 1994 

after intensive vector control activities. In 2019 (2.), onchocerciasis had been very successfully eliminated 1995 

from 15 (green) of the original 17 foci, transmission was possible still ongoing in the Madi Mid North focus 1996 

(focus 17; light green) and still active in the small Lhubiriha focus on the border with D.R. Congo (focus 14; 1997 

red) (copyright MOH Uganda and The Carter Center; 2019 kindly provided by Moses Katabarwa, 2020). 1998 
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