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We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized

mobile phone data from 1.4 million users, 22% of the whole population in the area, char-

acterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics.

We integrate these data into a mechanistic epidemic model calibrated on surveillance data.

As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI:

[95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while

causing a modest additional decrease in mobility and contacts with respect to previous NPIs,

was decisive in bringing the epidemic under control, highlighting the importance of a timely

governmental response to COVID-19 outbreaks. We find that the impact of NPIs on indivi-

duals’ mobility correlates with the Human Development Index of comunas in the city. Indeed,

more developed and wealthier areas became more isolated after government interventions

and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-

19 impact raises important issues in the implementation of NPIs and highlights the challenges

that communities affected by systemic health and social inequalities face adapting their

behaviors during an epidemic.
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As of September 1, 2020, Chile has reported more than
400,000 cases and 590 SARS-CoV-2 deaths per million,
becoming one of the worst COVID-19 epidemic globally1.

Officially, the first SARS-CoV-2 case in Chile was detected on
March 3, 20202. Although other cases were rapidly confirmed all
over the country, the urban area of the capital city, Santiago
Metropolitan Region, quickly became the epicenter of the
national epidemic. Indeed, as of September 1, 2020, about 70% of
the total cases in the nation have been reported in the comunas
(i.e., municipalities) of Santiago, making it one of the largest
urban COVID-19 outbreak in the world. The first set of non-
pharmaceutical interventions (NPIs) were put in place in mid-
March, when schools were closed, public gatherings were banned,
and passengers traveling from high-risk countries were mandated
to self-isolate for 14 days. However, the adopted measures were
not able to contain the contagion: after a sharp increase in cases, a
full lockdown was instituted to the whole Metropolitan Region on
May 153.

In this work, we model the spatial and temporal spread of
SARS-CoV-2 in 37 comunas of the urban area of Santiago which
comprises 6.4 million individuals. We aim to provide a data-
driven characterization of the unfolding of the COVID-19 epi-
demic and an estimation of the impact of NPIs on its spreading.
Research on similar geographical scales has been conducted, for
example, for Boston4, Wanzhou5, New York City6, and London7.
While COVID-19 is clearly a global issue, the measures adopted
to mitigate and/or suppress the spread of SARS-CoV-2 have been
quite heterogeneous across countries and often across sub-regions
within the same country8–10. Hence, modeling specific contexts
and spatial scales is key to identify separate effects of NPIs, their
practical impact when revoked, and possibly reintroduced over an
extended period of time. We study the reduction of mobility and
contacts inferred from mobile devices as input for a spatially and
age-structured epidemic model. In fact, mobile device data can be
used to evaluate, in near real-time, the effects of interventions and
self-initiated behavioral changes on the mobility of people and to
inform large scale epidemic models11–15. Here, we use anon-
ymised data provided by a major mobile phone operator in South
America (Telefónica Movistar), with a market share of 24.61% as
of March 2020.

To characterize the changes in mobility and physical contacts
during the outbreak, we used anonymised data from 1.4 million
mobile devices (about 22% of the total population in the comunas
under consideration). We find consistent downward trends
coinciding with the NPIs issued by local and national authorities.
We estimate that the first set of NPIs issued on March 16 led to a
reduction of about 48% in the number of travels between
comunas. An additional 17% reduction is observed with the
introduction of the full lockdown on May 15.

We develop a stochastic mechanistic epidemic model inte-
grating mobility, physical contacts, and census data. The model
suggests that the full lockdown, while causing a modest addi-
tional decrease in mobility and physical contacts with respect
to the NPIs already in place, was decisive in bringing the epi-
demic under control. This relatively small additional decrease
in mobility and contacts was enough to push the effective
reproductive number below the critical value of 1, a clear
example of the threshold effects characterizing epidemic
dynamics on structured mobility networks16. We estimate that
the full lockdown prevented an additional 34.7% (95% CI:
[27.2%, 44.1%]) increase in the total number of deaths. In
addition, we estimate the critical impact of the timing of the
full lockdown through counterfactual scenarios: an additional
week of delay would have corresponded to an 18.1% (95% CI:
[6.0%, 34.0%]) more intense incidence peak according to our
estimates.

Despite being regarded as a high-income country, Chile and
its capital city show concerning social and economic
inequalities17. Unfortunately, this makes Santiago a natural
experiment to investigate the link between socioeconomic dis-
parities and the burden of the pandemic. We explore this
important dimension finding that changes in mobility patterns
strongly correlate with the economic and development indica-
tors of comunas. Furthermore, the model links these observa-
tions with heterogeneous burden of COVID-19 across comunas
which is also observed in the epidemiological data reported by
the national surveillance. More precisely, our results suggest
higher attack and death rates in disadvantaged areas. Due to
challenges faced in reducing their mobility and contacts,
communities exhibiting systemic social disparities are affected
in a differential way by government-mandated NPIs and dis-
ease’s burden. This observation raises the key issue of health
disparities in the management of emerging infectious diseases
such as COVID-19.

Results
We evaluate the effects of NPIs policies, government-mandated
mobility limitations by integrating mobile phone data and an
epidemic model. We identify three phases of the epidemic
management in Santiago: (i) before March 16 (business as usual,
baseline), (ii) between March 16 and May 15 (first set of NPIs),
and (iii) after May 15 (full lockdown). For convenience, we will
refer to the period March 16 to May 15 as the partial lockdown
and to the period after May 15 as the full lockdown.

It is important to notice how the timeline of interventions is
fairly complex. It includes night curfews, dynamic quarantine,
and lockdowns restricted to a few comunas across the region
studied here and in other parts of Chile2. However, as we see
below, the data suggest that those measures did not have a sig-
nificant impact on people’s behaviors, thus for simplicity we
consider the two main sets of NPIs only. We characterize the
three phases outlined above in terms of (a) mobility among
comunas, and (b) contacts reduction between individuals.
Mobility describes the (varying) rates at which people travel
among different comunas, while contacts reduction parameters
estimate to what extent physical contacts varied in time in each
comuna (more details in the “Methods” section).

Effects of NPIs and social inequalities. In Fig. 1a, we provide an
overview of mobility in Santiago during the period of study. As a
proxy for general mobility, we consider the number of devices
visiting a comuna that is different from their home one (see
“Methods” section). We observe a sharp drop following the first
set of interventions on March 16. Afterward, mobility remains
fairly constant until the introduction of the full lockdown on May
15, when we observe an additional 17% decrease. As we will show
below, this intervention represented an important tipping point
of the epidemic in Santiago.

More in detail, we represent changes in mobility flows across
comunas in Fig. 1b. The partial lockdown causes an average
drop of about 48%, while, with the introduction of the full
lockdown, mobility across comunas drops by 65% with respect
to the baseline. For each comuna we also consider the mean
percentage decrease in mobility after March 16 and compare it
with the Human Development Index (HDI), a coefficient that
measures key aspects of human development, such as life
expectancy, education, and per capita income18 (see the
“Methods” section for more details on HDI calculation). In
Fig. 1c, we observe that a greater decrease in mobility is
generally associated with a higher HDI (Pearson correlation
coefficient ρ=− 0.80, p < 0.001). The same trend is observed in
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the absolute change of mobility (see Supplementary Fig. 5)
suggesting that wealthier and more developed comunas became
more isolated after the interventions. This result is in line with
previous studies that showed how changes in mobility patterns
following government-issued interventions, and the extent to
which people can afford social distancing, vary across different
socio-demographic groups15,19–22.

In Fig. 1d, we represent contacts reduction parameters.
Across the board, contacts drop by 36% with the first set of
NPIs policies and by an additional 11% with the lockdown.
Since all points are below the diagonal, we conclude that, with
the introduction of the full lockdown, contacts decrease further
in all comunas. Also, the decrease is consistent with the existing
reductions after the partial lockdown. Indeed rpartialj and rfullj

show a high significant correlation (Kendall rank correlation
coefficient τ= 0.79, p < 0.001).

The spread of COVID-19 in Santiago. We use the mobility data
to develop and inform a stochastic mechanistic metapopulation
epidemic model (see “Methods” for details) and simulate the
spread of COVID-19 in the comunas of Santiago. The model is
calibrated on official surveillance data and takes as initial seeding
the realistic projections of active cases on March 1, 2020, in the
Metropolitan area of Santiago from ref. 14.

We use an Approximate Bayesian Computation (ABC)
approach23,24 (see details in the “Methods” section) to find the
posterior distribution of the reproductive number in Santiago
(median R0= 2.66, 95% CI: [2.58, 2.72]), which is in line with
previous findings that identify the value of R0 of SARS-CoV-2 to
be in the range between 2 and 3 in different countries25–27. In
Fig. 2a, we report the number of weekly deaths projected by the
model together with official figures (used for calibration). The
two time series show a good agreement with a high correlation

Fig. 1 Mobility and contacts changes in Santiago. a Overview of mobility changes, we consider the number of devices visiting a comuna different from
their home one as a proxy for general mobility (gray areas represent weekends). Changes are expressed as percentages with respect to February 26.
b Percentage changes in mobility rates (with respect to mobility before March 16). On the left drop-in mobility after the partial lockdown, on the right after
the full lockdown. Color and dots size are scaled according to the magnitude of the change. c Average percentage mobility decreases after March 16 versus
HDI of different comunas. We display the regression line, 95% CI, and the Pearson correlation coefficient ρ. Dots size is proportional to the population of
the comuna. d Scatter plot of contacts reduction parameters during partial (rpartialj ) and full (rfullj ) lockdown. We display the Kendall rank correlation
coefficient τ. Dots size is proportional to the distance from the diagonal (bigger dots indicate comunas where contacts decreased more after the full
lockdown).
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(ρ= 0.99, p < 0.001) and a median absolute percentage error of
12%. Interestingly, the agreement between data and model starts
to deviate in the last two data points (end of July early August).
We can speculate that, at least in part, this might be due to a
lockdown fatigue. In fact, while the official restrictions were
relaxed later (mid of August), a decrease in compliance, linked to
the reduction of cases/deaths, could have taken place earlier. The
period is outside our current data coverage. Hence, we leave
testing such hypothesis to future work.

As of August 1, 2020, the median projected fraction of infected
individuals in the area under study is 38.7% (95% CI: [35.1%,
41.6%]). This estimate is about tenfold the official reported
figures. We are not aware of publicly available seroprevalence
studies that we can use as a comparison and validation. For this
reason, we can only consider qualitative evidence hinting that the
Chilean outbreak has affected a significant fraction of the
population. For example, the share of positive COVID-19 tests
peaked at 59.10% on June 18, and in the Santiago Metropolitan
Region the occupation of ICU beds reached almost saturation
level (95%) in May. Also, a recent epidemiological study aimed at
characterizing the first wave in Chile showed significant under-
reporting of symptomatic cases (around 50%) based on estimates

of the Case Fatality Rate2. Another recent modeling study focused
on the COVID-19 outbreak in Santiago estimates a number of
infected individuals 5–10 times larger than the official figures28.
Finally, previous seroprevalence studies conducted, for example,
in the United States29, Spain30, Italy31, Brazil32, and Iran33,
showed that the actual number of COVID-19 infections is several
times (factors vary from 4 to 20) those reported by the official
surveillance. As a sensitivity check, we repeated the calibration
considering the upper limit of the 95% credible interval for the
Infection Fatality Rate from ref. 34. This leads to a projected
median prevalence of 28.3% (95% CI: [23.5%, 32.3%]) but to a
sensibly worse fit of the data (ρ= 0.82, median percentage error
of 49%).

Projected cases present a significant correlation with official
numbers as can be observed in Fig. 2b (ρ= 0.84, p < 0.001).
Besides, we compare the dates when 200 infections have been
reached in different comunas according to our model and official
surveillance, finding a significant correlation (Kendall rank
correlation coefficient τ= 0.61, p < 0.001). Similar results are
found considering instead the dates when 50, 100, and 500 cases
have been reached (see Supplementary Fig. 6). Interestingly, the
same dates estimated through modeling are much earlier, hinting

Fig. 2 SARS-CoV-2 spreading in Santiago. a We represent the simulated (median and 95% CI) and reported weekly deaths used for model calibration.
b Left: scatter plot of reported versus simulated cases as of August 1, 2020. Right: scatter plot of days (since January 1, 2020) needed to reach 200
infections in each comuna as reported by official surveillance and as projected by our model. c Scatter plot of HDI versus attack rate as of August 1, 2020,
in different comunas as projected by our model (left) and as reported by official surveillance (right). Size of dots is scaled according to the mobility drops
after March 16 (bigger bullets indicate bigger decreases in mobility). d Scatter plot of HDI versus deaths per 1000 as of August 1, 2020, in different
comunas as projected by our model (left) and as reported by official surveillance (right). Size of dots are scaled according to mobility drops after March 16.
In panels b, c, and d we show regression lines, 95% CI, and Pearson correlation coefficient ρ or Kendall rank correlation coefficient τ.
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that many of the infections in the initial phase of the spreading
went unreported. In Fig. 2c, we show the attack rates versus the
HDI of different comunas. We find a strong correlation between
attack rates computed on officially reported cases and HDI (ρ=
−0.74, p < 0.001), providing evidence that wealthier comunas
experienced significantly smaller outbreaks. In addition, the very
same picture emerges from our modeling results. Indeed,
simulated attack rates present a high significant correlation with
HDI (ρ=−0.69, p < 0.001). Finally, in Fig. 2d we show the
number of deaths per 1000 versus the HDI of different comunas.
We find a significant correlation between HDI and both
simulated (ρ=−0.50, p < 0.002) and officially reported (ρ=
−0.40, p < 0.02) deaths, hinting that wealthier comunas experi-
enced also a smaller burden in terms of casualties. We note that
the correlations obtained in this case are lower than those found
previously for the attack rates. This may be due to the interplay
between diverse age distributions and age-dependent mortality
rates. Indeed comunas with higher HDI have a higher mean age
and the infection fatality rate for COVID-19 is significantly
higher in older age brackets.

In Section 2 of the Supplementary Information, we compare
our modeling approach and results with three simpler models.
The first neglects the mobility between comunas. In other words,
we attempt to fit the evolution of deaths in the region by
considering each comuna as a separate population. Interestingly,
this approach leads to a median absolute percentage error of 38%
which implies a worse performance than the main model
discussed above (12%). This result highlights the importance of
capturing the coupling between areas and accounting for spatio-
temporal heterogeneities in spreading patterns which are shaped,
among other factors35, by mobility. The second and third
consider the entire metropolitan area as a single, age-structured,
population. Similar approaches have been proposed to model the
spreading of SARS-CoV-2 and the impact of NPIs in cities7,
regions15, and countries36. The difference between these two
models lays on the data we used to capture the effects of NPIs on
contact matrices. In one, we use estimates measured from the
mobile phone data. In the other instead, we use the Google
Mobility Reports37 and the Oxford COVID-19 Government
Response Tracker38,39 (see Section 2 of the Supplementary
Information for details). Both models lead to inferior perfor-
mance, with a median absolute percentage error of 18% and 43%,
respectively.

Overall, out of these three simpler models, the second is the
closest to the performance of our main modeling approach
described above. However, by construction, it does not provide
any information about the heterogeneous spread and impact of
the virus across comunas.

Counterfactual scenarios. To assess the impact of heterogeneous
responses to the spreading we run a hypothetical scenario in
which mobility and contacts decrease uniformly across comunas,
starting on March 16. More in detail, we apply to all comunas the
average reduction in mobility and contacts observed for the 4th
quartile of HDI (i.e., 25% comunas with higher HDI). See Sec-
tion 3 of the Supplementary Information for more details.
According to our simulations, this leads to a significant decrease
of cases and deaths: −83.8% (95% CI: [−77.6%, −88.6%]) fewer
cases and −70.5% (95% CI: [−55.0%, −80.9%]) fewer deaths as of
May 15, the date when the full lockdown was enforced. Inter-
estingly, the uniform reduction we are imposing implies a rela-
tively modest additional decrease in mobility and contacts with
respect to the ones estimated through mobile phone data. In this
hypothetical scenario, with the partial lockdown mobility rates
drop by 55% and contacts by 49% (versus, respectively, the 48%

and the 36% estimated in our main analysis). Although such
homogeneous reduction across comunas is a theoretical exercise
that does not consider complex socioeconomic constraints, that
go from the collective need to keep key supply chains active to the
individual imperative to feed their own family, it crystallizes
the dramatic effects of inequality on disease spreading on the one
side, and it shows the positive benefits of equal, early, and strong
responses on the other.

We also use the model to investigate counterfactual scenarios
aimed at estimating the impact of NPIs on the spread of COVID-
19 in Santiago. As a first counterfactual scenario, we simulated
the epidemic in the absence of a full lockdown. From Fig. 3a, we
observe that this leads on average to a 21.6% (95% CI: [7.5%,
41.3%]) more intense incidence peak and 34.7% (95% CI: [27.2%,
44.1%]) more deaths. To estimate the impact of the timing of the
full lockdown, we run simulations where we anticipate or delay it
up to 4 weeks. According to results in Fig. 3b, an earlier lockdown
implies a less intense incidence peak (from around −20% to
−35%). It is interesting to note, however, that a delay of
1–2 weeks has a very similar effect of no intervention at all in
terms of incidence peak intensity. More specifically, 1 week delay
causes a 18.1% (95% CI: [6.0%, 34.0%]) while two weeks delay
cause a 21.6% (95% CI: [7.4%, 41.1%]) more intense incidence
peak. The timing of the full lockdown also has a significant effect
on the number of deaths. According to our estimates in Fig. 3b,
just 1 week of delay implies a 7.7% (95% CI: [1.3%, 13.7%])
increase in mortality.

Effective reproduction number. In Fig. 3c we show the evolution
of the effective reproduction number Rt estimated using the
method from ref. 40 on the simulated and the official reported
incidence. In the simulated Rt time series, we observe the two
discontinuities after the implementation of government-issued
NPIs. However, we note that the partial lockdown had the sole
effect of slowing down the epidemic. Indeed, after March 16, the
estimated Rt is still >1. After the full lockdown, instead, Rt was
pushed below 1 making the containment possible. This is visible
both in the simulated and the reported time series. This result
underlines the importance of the full lockdown that, despite
causing a relatively small effect on mobility, had a decisive role in
bringing the outbreak under control. It is worth stressing this
result. The full lockdown constituted a key tipping point for the
evolution of the epidemic pushing the reproductive number
below its critical threshold. A similar finding has been recently
reported for the evolution of the pandemic in Germany41. Indeed,
also in that context, only the subsequent compounding of inter-
ventions was able to bring the reproductive number below one
thus curbing spreading of the virus.

Discussion
The analysis presented here shows that the effects of NPIs issued
by the government strongly correlate with a measure of human
development, such as the HDI. In particular, comunas with
higher HDI were able to reduce more significantly their mobility.
This, in turn, is reflected in both data and modeling estimates by a
lower burden of COVID-19 (i.e., cases, deaths) in the comunas
characterized by a higher HDI. The combination of these results
raises policy-making concerns. Indeed, while lockdowns are
unquestionably effective in mitigating the epidemic activity, they
may as well augment social and health inequalities, penalizing
more vulnerable communities. Other studies have found that
mobility restrictions unequally affected different regions of
France15, Italy20, United States19, Colombia, Mexico, and
Indonesia21 with a higher income being associated with a larger
capacity to afford social distancing. Furthermore, observations in
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the United States19,22,42,43, Singapore44, and the UK45,46 show
that socioeconomic inequalities are linked to worst health out-
comes during the current pandemic.

Our data-driven analysis also shows that the timeliness of NPIs
is just one variable influencing the outcome of the mitigation
effort. The case of Santiago is emblematic. NPIs were introduced
early with respect to other countries. Only 2 days after the first 50
confirmed cases. For comparison, Denmark introduced measures
after five, Austria after nine, Italy and Germany after 15 days of
reaching that threshold47. These measures were followed by a
considerable reduction in mobility and contacts, but cases soared
anyway in the metropolitan area. According to our analysis, the
first set of NPIs significantly slowed down transmissions but not
enough to stop the epidemic. It was only after the introduction of
the second additional lockdown that the Santiago outbreak was
brought under control. This indicates that earlier implementation
of more stringent NPIs may be beneficial in quickly mitigating the
outbreak without extending for a long time policies that poten-
tially might unequally affect communities. Similar results have
been reported in the context of China48, New Zealand49, and the
USA8,50.

The present work comes with limitations. First, we focused
only on the epidemic evolution within the Santiago Metropolitan
Area and we overlooked both national and international impor-
tations after March 1, 2020. While it is reasonable to assume that

after this date the epidemic was largely sustained by the internal
spreading (especially considering the various restrictions on
international and national mobility), we acknowledge this as a
possible limitation. Second, compared to other approaches4,51,52,
we considered a relatively simple disease dynamics. However, as
shown in Section 2 of the Supplementary Information, our results
are robust respect to the compartmental structure adopted. Third,
our mobility measures also have limitations. Indeed, we con-
sidered the overall reduction in mobility and contacts. However,
not all mobility translates equally in terms of transmission risk.
Some types of locations such as for example restaurants and
hotels have been linked to higher chances of infection than
others22. We acknowledge that our mobile phone users’ sample
was not selected to be representative of the whole population.
However, Telefónica Movistar data well represent the different
socio-demographic groups of Santiago53. Last, mobile phone data
streams are dependent on the distribution of antennas. None-
theless, this issue is, at least partially, solved by the geographical
level of aggregation we use here which is that of the comunas. In
fact, for all 342 comunas of continental Chile, the Pearson cor-
relation coefficient of census data and “home location” inferred
from mobile phone data is 0.97 (more details in Section 5 of
the Supplementary Information).

Overall, our study characterizes the unfolding of SARS-CoV-2
in one of the largest metropolitan areas in South America; a

Fig. 3 Impact of nonpharmaceutical interventions on COVID-19 spreading. a Model estimates of percentage increases in deaths and incidence peak
intensity without the implementation of the full lockdown (based on n= 5000 stochastic realizations). bModel estimates of percentage changes in deaths
and in incidence peak intensity moving the date of the full lockdown of −4/+4 weeks (based on n= 5000 stochastic realizations). In both panels, the
center of the boxes indicates the median, the bounds indicate the interquartile range (IQR) (i.e., the range between first quartile, Q1, and third quartile, Q3),
and the whiskers indicate the minimum and the maximum defined respectively as Q1− 1.5IQR and Q3+ 1.5IQR. c Effective Reproductive Number Rt
estimated on simulated and officially reported cases. The two time series show a high positive Pearson correlation coefficient (ρ= 0.78, p < 0.001). The
shaded red area indicates Rt < 1.
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region that so far has received far less attention than others. It
quantifies the unequal effects across communities of behavioral
changes introduced by governmental measures as well as indivi-
dual (re)actions and provides evidence that even small delays in
the implementation of NPIs can have a significant impact on the
unfolding of the epidemic.

Methods
Measuring mobility and contacts. In this work, we use phone data in the form of
eXtended Detail Records (XDR). This stream records every interaction (e.g., packet
request) between devices and antennas. An entry in our dataset can be formalized
as a tuple 〈d, t, a〉 indicating a packet request to antenna a made by device d at time
t. We approximate the position of d with that of the antenna, which has a fixed
latitude and longitude. We also assign a home antenna to each device by finding
the most active antenna during night hours. Finally, we assign antennas to cor-
respondent comunas according to their position. The dataset includes data for the
period February 27, 2020 to June 1, 2020, for 1.4 million devices which correspond
to the 22% of the total population in the area considered. To preserve the privacy of
device owners, we analyze and display only anonymous and aggregated results.
Furthermore, no other information about the users (i.e., gender, age etc.) was used
or available.

As specified in the previous sections, by considering the governmental response
and observing variations in the overall mobility, we identify three phases of
nonpharmaceutical interventions and characterize them in terms of mobility and
contacts reduction. Mobility is measured considering the fraction of devices
traveling between comunas. Formally, for each day t we build a mobility rate
matrix σðtÞ 2 RN ´N whose element σij(t) is the fraction of devices living in
comuna i that visited j on day t. It is important to mention how we do not have
information about points of interest (POI). Hence, the data capture all types of
mobility such as commuting for work, grocery runs, and/or recreational activities.
We average these daily rates during the three phases to obtain three distinct
matrices describing mobility (i) before any restrictions, (ii) during the partial
lockdown, and (iii) during the full lockdown.

The data we use do not provide direct information about physical contacts
between users. Having the privacy of the users in mind, and considering the various
non-trivial assumptions one would need to make, we do not attempt to estimate/
infer such contacts. Instead, we focus on a metric that allows us to capture the
variation before and after the various interventions. As we describe below, the
epidemic model considers a homogeneous mixing approximation within each
subpopulation (i.e., comuna) hence the only important variable is an estimate of
contacts reduction rather than the actual contacts. To this end, contacts reduction
is estimated by looking at the variation in the number of users co-located in the
same antenna. Each antenna a in comuna j has a resident population Naj

. On day t,

the total number of visitors from the same comuna is vaj ðtÞ. Assuming

homogeneous mixing, the maximum number of contacts in antenna a is
caj ðtÞ ¼ ðNaj

þ vaj ðtÞÞ ´ ðNaj
þ vaj ðtÞ � 1Þ=2 � ðNaj

þ vaj ðtÞÞ
2=2. Then, we assume

the reduction of contact during the partial and full lockdown to be equal to:

rpartialaj
¼

avg
16=03<t<15=05

½caj ðtÞ�

avg
t<16=03

½caj ðtÞ�
rfullaj

¼
avg

t>15=05
½caj ðtÞ�

avg
t<16=03

½caj ðtÞ�
ð1Þ

In other words, the reduction of contacts during the partial and full lockdown is
considered as the variation of the maximum number of contacts before and after
each intervention. Finally, we aggregate at the level of comunas taking the median
of these quantities over all antennas located in the same comuna.

Modeling the spread of SARS-CoV-2 in Santiago. The model used in this work
to simulate the spread of SARS-CoV-2 is largely inspired by the global epidemic
and mobility model (GLEAM)54–56. In this section, we present the conceptual
framework but a full mathematical description is provided in Section 4 of
the Supplementary Information.

The comunas of Santiago are represented as distinct subpopulations forming a
metapopulation network. Inside each one, we divide individuals into K= 16 5-year
age brackets respecting the demographic of different comunas57 and we use the
country-specific contact matrix from ref. 58 to define the rates at which different
age groups mix with each other. Individuals are also divided into compartments
according to their health status. We consider a SLIR (Susceptible, Latent,
Infectious, Removed) compartmentalization setup. A similar approach has been
used in several modeling studies in the context of COVID-1914,59,60. Interacting
with Infectious, Susceptibles move to the Latent stage in which they are not
infectious yet. Only after the latent period, Latent become Infectious. Last,
Infectious transit to the Removed compartment at a rate inversely proportional to
the infectious period. In Section 2 of the Supplementary Information we repeat the
analyses for another compartmentalization that includes pre-symptomatic and
asymptomatic transmission. The findings are not impacted by a different
compartmental setup. Furthermore, the simpler SLIR scheme leads to a closer
reproduction of the observed deaths.

Individuals can get the infection interacting with infected in their home and in
other connected metapopulations. To model this aspect, we consider the mobility
network previously introduced to describe an effective coupling (i.e., the strength of
connection) between comunas. Technically, we use a time-scale separation
technique and approximation55,61 to define a “force of infection” λkj that expresses
the infection rate for individuals in age group k residing in comuna j:

λkj ¼
λkjj

1þ σ j=τ
þ∑

i

λkjiσ ji=τ

1þ σ j=τ
; ð2Þ

τ defines the timescale of mobility and σj=∑i≠jσji is the total mobility rate of
population j. The first term in Eq. (2) represents the contribution from active
infections in comuna j, and the sum instead describes the effective contribution
from cases in other connected comunas i. As mentioned above, the data we use
capture all types of movements across comunas. Hence, the coupling between
subpopulations accounts for mobility linked to work (i.e., commuting), grocery,
and other activities. In our formulation, we assume that such movements take place
over a timescale that is much smaller than the disease timescale and the temporal
resolution of the epidemic data. This assumption is supported by the data. In fact,
as shown in Supplementary Fig. 12, the average duration of trips outside the home
comuna is 4.5 h and 85% of them take place within 8 h. Although users may travel
outside of their comuna for more than 8 h, the probability of a trip to last more
than 1 day is <3%. The time-scale separation approach allows us to integrate the
faster dynamics—that is, the mobility—and consider their contribution to the
spreading processes without simulating individual mobility patterns and thus
considerably simplifying the computational costs of the model. It is important to
notice how such time-separation approximation is exact only in the case τ−1→ 0.
However, it holds as long as the faster timescale is shorter than the transition rates
of the disease61. As mentioned in details below, for COVID-19 these are of the
order of several days. We set the value of τ−1= 1/3 day to also account for
commuting patterns. In Section 4 of the Supplementary Information we provide
the full derivation and more details.

Government interventions are implemented by changing the mobility network
on March 16 (partial lockdown) and again on May 15 (full lockdown) to reflect the
corresponding variations in the coupling between comunas. Similarly, on these

dates, we multiply the age contact matrix of each comuna by rpartialj and rfullj ,
respectively. We do not explicitly account for school closure since its effect is
already included in the changes inferred from mobile devices data.

The model is fully stochastic and transitions among compartments are
simulated through chain binomial processes62–64. More in detail, on a given time
step the number of individuals transiting from compartment Xk

j to compartment

Yk
j is extracted from a binomial distribution: PrBinðXk

j ; pXk
j !Yk

j
Þ. In the main text,

we present results for a latent period of 4 days and an infectious period of 2.5 days,
which imply a generation time TG= 6.5 days, in line with current estimates65,66. In
Section 1 of the Supplementary Information we show a sensitivity analysis to these
choices which do not substantially impact the findings. We simulate deaths
considering the estimates of the infection fatality rate from ref. 34 and a delay Δ
after the transition to the Removed compartment. This delay is included to account
for the time span between isolation of acute cases (i.e., hospitalization), death, and
official reporting, which can be more than 2 weeks67.

Initial seeding is done using the projections of active cases on March 1, 2020, in
the Metropolitan area of Santiago from ref. 14 and assigning infections to different
comunas proportionally to the population distribution. The calibration is
performed on weekly deaths using an Approximate Bayesian Computation (ABC)
Rejection method23,24. At each step of the ABC algorithm, a set of parameters θ is
sampled from a prior distribution and an instance of the model is generated using
these parameters. Then, an output quantity E0 of the model is compared to the
corresponding real quantity E using a distance measure sðE0; EÞ. If this distance is
greater (smaller) than a predefined tolerance ϵ, then the sampled set of parameters
is discarded (retained). After a sufficient number of iterations, the distribution of
accepted sets will approximate the posterior distribution of parameters P(θ, E)
given the evidence E from the data. In this work, we set a flat uniform prior on the
parameters the basic reproduction number R0∈ [2, 4] (in steps of 0.02) and on the
delay in deaths Δ∈ [14, 21] days (in steps of 1 day). We perform calibration using
the median absolute percentage error as a distance metric with a tolerance of 20%
on weekly deaths (in the Supplementary Information we present a sensitivity
analysis on this tolerance). We run 140,000 iterations which correspond to about
200 stochastic realizations for each possible parameter set. We use the official data
issued by the Department of Statistics of the Chilean Minister of Health68. We
consider both COVID-19 “confirmed” and “suspected” deaths to perform the
calibration. In Supplementary Fig. 1 we support this decision showing that
considering only confirmed COVID-19 deaths we still obtain a significant anomaly
in mortality. Nonetheless, we also repeat the calibration only on “confirmed”
deaths showing that the posterior distribution of R0 is smaller but not significantly
different. Model projections are produced sampling parameter sets directly from
the posterior distribution and generating an ensemble of trajectories. In this work,
we generate model estimates sampling 5000 sets on which we compute median and
confidence intervals.
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Measuring socioeconomic differences. We measure socioeconomic differences
using the Human Development Index (HDI). The HDI is a coefficient that mea-
sures the level of achievement of key aspects of human development (including life
expectancy, education, and per capita income) in the population considered18. It is
released regularly for different countries by the United Nations in the Human
Development Report69. In Chile, the last official calculation of the HDI at the level
of comunas was done in 200070. However, to rely on more updated estimates, we
computed the HDI using census data for the period 2013–2015, following the
guidelines provided in ref. 18. These estimates have been previously used to study
the socioeconomic determinants of mobility in Santiago71. The code used for the
calculation of HDI can be found in ref. 72. In Supplementary Fig. 4 we repeat the
analyses for other socioeconomic indicators. In particular, we consider separately
the components of the HDI, namely the Life Expectancy Index (LEI), the Educa-
tion Index (EI), and the Income Index. The general pattern presented in the main
text holds also for the other indicators considered.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data analyzed in the study are not publicly available due to privacy reasons. All
the aggregated mobility data needed to run the model are available at ref. 73. Analysis of
the anonymised mobile phone data was performed on mobile operator’s systems without
transferring it outside. Only aggregated mobility patterns across municipalities were
provided to researchers outside Chile and only these have been used for the results
presented here. The study was deemed exempt (IRB #20-10-05) by the Northeastern
University Internal Review Board.

Code availability
The main epidemic model described in the manuscript has been implemented with the
programming language C++. The alternative models, detailed in Section 2 of
the Supplementary Information, have been implemented in C++ or in Python. All codes
are available at ref. 73, on GitHub https://github.com/ngozzi/covid19-santiago and on
Zenodo https://zenodo.org/record/4607303.
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