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Abstract 

Autologistic Actor Attribute Models (ALAAMs) provide new analytical opportunities to 

advance research on how individual attitudes, cognitions, behaviors, and outcomes diffuse 

through networks of social relations in which individuals in organizations are embedded. 

ALAAMs add to available statistical models of social contagion the possibility of 

formulating and testing competing hypotheses about the specific mechanisms that shape 

patterns of adoption/diffusion. The main objective of this paper is to provide an 

introduction and a guide to the specification, estimation, interpretation and evaluation of 

ALAAMs. Using original data, we demonstrate the value of ALAAMs in an analysis of 

academic performance and social networks in a class of graduate management students. 

We find evidence that both high and low performance are contagious, i.e., diffuse through 

social contact. However, the contagion mechanisms that contribute to the diffusion of high 

performance and low performance differ subtly and systematically. Our results help us 

identify new questions that ALAAMs allow us to ask, new answers they may be able to 

provide, and the constraints that need to be relaxed to facilitate their more general adoption 

in organizational research.   

    

Keywords: autologistic actor attribute model (ALAAM), individual performance, diffusion, 

exponential-family random graph models (ERGMs), social contagion, social influence, social 

networks, statistical models  
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Introduction 

Following a more general trend in the study of human behavior, contemporary 

organizational research has been progressively eroding the categorical boundaries conventionally 

separating the “individual” and the “social” level of analysis. In consequence, it is now less clear 

that explanations cast exclusively in individual terms are sufficient to understand individual 

outcomes and behavior (Christakis & Fowler, 2013; Tsvetkova & Macy, 2014). Social networks 

ideas have been frequently relied upon to derive the empirical implications of this general 

theoretical reorientation both within, as well as between organizations (Padgett & Powell, 2012).  

In studies of organizations, actor-specific characteristics traditionally considered as 

correlates of individual behavior such as emotions (Barsade, 2002), personality (Kleinbaum et 

al., 2015), attitudes (Erickson, 1988), empathy (Hatfield et al., 2009), preferences (Kilduff, 

1990), and, ultimately, individual performance and achievements (Morrison, 2002; Podolny & 

Baron, 1997; Seibert et al., 2001), are increasingly being reinterpreted as consequences of social 

contagion—a process of diffusion sustained by social contact (Ugander et al., 2012).   

While the tendency of social networks to act as vehicles for social influence within 

organizations has been long recognized in empirical organizational research (Krackhardt & 

Porter, 1985), the underlying mechanisms of social contagion linking the individual and social 

remain poorly understood. This is due, at least in part, to the lack of a satisfactory modeling 

framework capable of connecting hypotheses about possible social contagion mechanisms to 

data on social networks routinely collected in empirical organizational research (Kilduff & 

Krackhardt, 2008; Robins, 2015). In this paper, we introduce Autologistic Actor Attribute 

Models (ALAAMs)—a new class of statistical models that promise to narrow the gap between 



4 
 

theoretically grounded mechanisms of social contagion, and empirical data on organizational 

networks.1   

Originally derived as a variant of undirected Exponential Random Graph Models 

(ERGMs) for social selection (Robins et al., 2001), the Autologistic Actor Attribute Model offers 

a principled analytical framework for modeling social contagion that predicts the presence of an 

individual attribute (or behavioral outcome) based on patterns of social relations linking the 

actors (Robins et al., 2001). Like ERGMs, ALAAMs are models for the analysis of cross-

sectional data (Snijders et al., 2006). While ERGMs are used to model the probability of 

observing network ties conditional on individual attributes (Amati et al., 2018; Kalish, 2020), 

ALAAMs are used to model the probability of observing individual attributes (including 

behavioral outcomes) conditional on existing network ties.2 From a theoretical perspective, the 

difference between ERGMs and ALAAMs aligns with Borgatti and Halgin’s (2011) 

conceptualization of theories of networks, which examine networks as the outcome, and network 

theories where networks predict a behavioral outcome. Examples of individual attributes and 

propensities that are increasingly understood in the context of more general social contagion 

processes include happiness (Fowler & Christakis, 2008), employment preferences (Snijders et 

al., 2013), adoptions of social norms (Friedkin, 2001) and the tendency to collaborate (Fowler & 

Christakis, 2010). Examples of outcomes that have been typically treated as individual, but that 

extant research has found to be contagious include academic performance (Stadtfeld et al., 2019), 

                                                           
1 The ALAAM is “Autologistic” because it has the form of a logistic regression with a binary outcome 

variable (presence/absence of an attribute) that is predicted using an exponential function taking as 

argument combinations of the attribute itself with other covariates.  The term “autologistic” may also be 

linked to the historical fact that ALAAMs—and ERGMs from which they derive—share a common 

origin in the autologistic Ising model for Markov random fields (Besag, 1972). 
2 Ideally, the data for ALAAMs should be collected at two points in time, with the network data collected 

prior to the social contagion outcome.  
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and an increasingly wide range of choice (Salganik et al., 2006) and adoption behaviors (Aral & 

Walker, 2011; Cool et al., 1997). In addition, contagion has been a central concern in 

organizational research on social movements for almost a quarter of a century now (Centola, 

2015; Hedström, 1994; Soule, 2013). 

ALAAMs offer two major advantages that distinguish them from alternative modeling 

frameworks for the empirical analysis of social contagion. The first is that ALAAMs avoid the 

theoretically constraining assumptions of statistical independence among the observations 

(Snijders, 2011). ALAAMs afford direct modeling of a variety of dependencies that may be of 

general theoretical interest or contextual empirical relevance. Examples of dependencies created 

by social mechanisms include reciprocity, i.e., the tendency for an individual to give advice or 

affect to those that give to them; and closure, i.e., the tendency of individuals sharing 

acquaintances to become directly connected by social relations. This feature makes ALAAMs 

uniquely appropriate for modeling social contagion—a diffusion process sustained by a system 

of interdependent social relations. Unlike generic statistical models for independent observations, 

some of the defining analytical properties of ALAAMs map onto specific micro-structural 

features of empirical behavioral data typically produced by processes of social contagion.  

According to Ugander et al. (2012, p. 5962): “Traditional models of social contagion 

have been based on physical analogies with biological contagion, in which the probability that an 

individual is affected by the contagion grows monotonically with the size of his or her “contact 

neighborhood”—the number of affected individuals with whom he or she is in contact.” 

ALAAMs enable empirical studies of social contagion to go beyond the useful, but generic 

“contact neighborhood” hypothesis by specifying complex forms of dependence, such as those, 

for example, inherent in jointly occupied network positions (Burt, 1978), and frame them as 
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competing theoretical predictions about the mechanisms that sustain social contagion. Unlike 

more traditional network autocorrelation models where contagion is associated with a single 

parameter (Doreian et al., 1984; Leenders, 2002, see Stivala, Gallagher, et al., 2020 for a 

discussion of the differences between traditional autocorrelation models and ALAAMs), 

ALAAMs are able to characterize social contagion in more complex, detailed and nuanced ways 

through multiple parameters possibly representing competing hypotheses of social contagion. 

This is the second major advantage of ALAAMs over competing models. 

ERGMs are now well-established models in organizational and strategic management 

research (Kim et al., 2016; Lomi et al., 2014; Lomi & Pattison, 2006). While the original 

derivation of ALAAMs is not new—at least in their undirected version (Robins et al., 2001), 

their full empirical potential remains largely unexplored (Stivala, Gallagher, et al., 2020). 

Empirical applications are recent and still relatively infrequent, particularly in studies of 

organizations and organizational behavior (Kashima et al., 2013). The case study that we develop 

in the empirical part of the paper is a first attempt to address this concern by examining how 

behavioral outcomes diffuse among individuals within an organizational setting where 

performance is typically measured at the individual level.  

Using original data that we have collected on interpersonal advice relations among 

students enrolled in a graduate management program, and information on their individual 

academic performance, we specify and estimate ALAAMs to examine the contagiousness of 

academic performance. Educational settings are organizational settings where the 

interdependence of socialization and individual achievement is particularly relevant and 

transparent (Akerlof & Kranton, 2002; Baldwin et al., 1997). For this reason, educational settings 

are particularly useful empirical contexts for illustrating how individual goal-oriented behavior 
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and social relations interact to produce observable outcomes (Kilduff. 1990, 1992; Lomi et al., 

2011). This is the objective of the illustrative case study that we develop in the empirical part of 

this paper. 

More specifically, we illustrate how ALAAMs may ameliorate our understanding of how 

individual performance spreads between organizational participants connected by contextually 

meaningful advice relations. We focus on advice relations because extant research has argued 

and shown that in educational settings knowledge sharing and social influence both travel 

through advice networks (Lomi et al., 2011). The empirical analysis that we present is guided by 

the following orienting question: Are students who seek advice from high-performing peers more 

likely to achieve high levels of academic performance? We also explore the direction of social 

contagion and examine differences in patterns of diffusion of high and low academic 

performance. Therefore, we also ask: How do social contagion mechanisms sustaining the 

diffusion of high and low academic performance differ? The results of the analysis demonstrate 

the unique ability of ALAAMs to tease out subtly complex social processes, and provide a rich 

and nuanced qualitative insight about the mechanisms that drive social contagion.   

The paper is organized as follows. In the next section, we discuss the theoretical and 

empirical motivation for models of interdependent behavior and outcomes that explicitly 

consider the structure of social networks in which individuals in organizations are embedded. In 

the third section, we define Autologistic Actor Attribute Models and establish the basic notation 

needed to identify their analytical components and define their basic properties. In the fourth 

section, we summarize a study that we have designed to illustrate the empirical value of the 

model, and describe briefly the empirical setting and the data. In the fifth section, we report the 

empirical results of the analysis and discuss their contextual interpretation and qualitative 



8 
 

implications. We adopt a computational approach to model fit that reveals subtle differences in 

social contagion mechanisms across outcomes (high and low performance). In the final section, 

we use the empirical results of the study to launch a more general discussion on the value and 

limitations of ALAAMs for future research on social contagion within and between 

organizations.  

 

Motivation and Background 

General recognition that individual behavior is affected by non-individual components is clearly 

revealed by the proliferation of terms used in organizational and management research to 

identify the effects of social influence processes on individual attitudes, cognitions and behaviors 

(Cialdini & Goldstein, 2004). An incomplete list of such terms includes contagion (Burt, 1987; 

Tsvetkova & Macy 2014), diffusion (Fiss et al., 2012), assimilation (Torló & Lomi, 2017), 

propagation (Aral & Walker, 2011), imitation (Ross & Sharapov, 2015), adoption (Greve, 1998), 

behavioral cascades (Friedkin, 2010), and herding (Raafat et al., 2009, Welch, 2000). 

Bandwagon-effects (Abrahamson & Rosenkopf, 1993), neighborhood effects (Brock & Durlauf, 

2002), and peer-effects (Erez et al., 2015; Manski, 1993), are also terms often used to 

acknowledge that individual behavioral orientations may be influenced by the majority of others, 

or by others who may be closer, or perceived as similar along contextually meaningful 

dimensions, respectively (Lomi et al., 2011). 

Teasing out the subtle differences in these various ways to characterize social influence is 

not one of our objectives in this paper. Excellent discussions and reviews of various strands of 

research on social influence may be found in An (2011), Centola (2015), Flache et al. (2017), 

Friedkin & Johnsen (2011), Marsden & Friedkin (1994), and Mason et al. (2007), among others. 
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More important for our current purpose is to emphasize their broad convergence to a generic 

notion of social contagion—a process of diffusion sustained by social contact. Social contagion 

is the term that we will be using henceforth as a generic term to denote not only social influence, 

but also the informal social infrastructure of interpersonal relations that makes social influence 

concretely possible. 

The need for a purpose-built statistical modeling framework arises, almost by definition, 

from the lack of independence among the actors involved in processes of social contagion. 

Dependence mechanisms lie at the heart of diffusion processes. Generic statistical models based 

on assumptions of independence among the observations are ill-suited to an analysis of social 

contagion (Robins, 2015; Snijders, 2011). To be truly useful as a model for data, a model for 

social contagion has to be based on explicit dependence assumptions (Pattison & Robins, 2002), 

and be at the same time specific and flexible.  

It has to be specific, because it is not sufficient to observe that social contagion spreads 

through social relations so that connected actors are more likely to exhibit similar attributes, 

attitudes, and behavioral orientations. Specific mechanisms responsible for social contagion have 

to be identified and framed as alternative hypotheses. For example, social contagion may operate 

through cohesion which is a direct connection between two individuals or through structural 

equivalence which occurs when two individuals have a tie to the same person (Burt, 1987). 

Cohesion may appear in many empirical guises ranging from direct connections to membership 

in cliques, i.e., three or more people who all have ties with each other (Pallotti & Lomi, 2011). 

Structural equivalence may or may not involve the presence of direct connections. Also, to the 

extent that social contagion travels only through ties embedded in more complex network 

configurations (Uzzi, 1996), observations of actors connected only through direct relations,—i.e., 
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a dyadic relationship between one person and another (which is the simplest form of cohesion)—

might prove insufficient to sustain predictions of behavioral contagion.  

To be useful, a model for data produced by social contagion also has to be flexible, i.e., 

applicable to contagion processes involving actors that may be defined at any level of analysis, 

and identified in multiple empirical settings—at least in principle. Flexibility is necessary 

because social contagion may diffuse mood among individuals sharing membership in 

experimental social groups (Barsade, 2002), just as easily as it can diffuse reputation of 

performance among managers connected by informal social relations (Kilduff & Krackhardt, 

1994), preferences among users connected through social media (Aral & Walker, 2011), 

corporate practices among organizations connected by interlocking directorates (Shropshire, 

2010), knowledge among companies connected by R&D alliances (Powell et al., 1996), and 

implementation of public health treaties among countries connected by trade relations (Valente et 

al., 2019).      

Originally proposed by Robins et al. (2001) as a variant of undirected Exponential Random 

Graph Models (ERGMs) for social selection, Autologistic Actor Attribute models (ALAAMs) 

satisfy the criteria of specificity and flexibility needed for a model of social contagion to be useful 

as a model for data. ALAAMs are specific because they allow the identification and estimation of 

configurations representing alternative hypotheses about mechanisms of social contagion. By 

allowing potential contagion mechanisms to interact with individual attributes of the actors 

involved, ALAAMs encourage development and testing of hypotheses about how actor-specific 

characteristics affect the individual susceptibility to social contagion (Daraganova & Robins, 

2013). ALAAMs are flexible because they are indifferent to the level at which the actors are 

defined, and to the empirical setting that generates the observations. 
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Despite their considerable potential, empirical experience with ALAAMs is very recent 

and relatively limited. Empirical studies of the adoption/diffusion of health-related practices and 

behavior have been the primary, even if by no means the only, beneficiaries of ALAAMs 

(Fujimoto et al., 2019; Song et al., 2019). In the original statement of the undirected model, Robins 

et al. (2001) illustrate the use of ALAAMs in an analysis of contagion of individual attitudes about 

a training program in a major Australian government business company. Daraganova and Pattison 

(2013) examined the spread of unemployment through social and discussion networks. Kashima 

et al. (2013) applied the model to the acquisition of descriptive behavioral norms using survey data 

collected on members of a regional community in New South Wales, Australia. In a more recent 

empirical study of scientific productivity, Letina (2016) adopted ALAAMs to examine how 

individual scientific productivity diffuses through networks of co-authorships in the academic 

fields of sociology and psychology. Bryant et al. (2017) adopted ALAAMs to study the role of 

social networks in the diffusion of mental health outcomes taking the form of posttraumatic stress 

disorder produced by natural disasters. In addition, ALAAMs have been used to examine whether 

the contagion of communicating in a second language is based upon structural characteristics of 

an individual’s position in the network (Gallagher, 2019). Stivala, Gallagher, et al. (2020) explore 

the statistical properties of ALAAMs in a simulation study and in the analysis of two datasets well-

known in studies of public health: the Colorado Springs (Klovdahl et al., 1994), and the National 

Longitudinal Study of Adolescent Health (“Add Health”) datasets (Harris & Udry, 2015). Finally, 

Koskinen and Daraganova (2020) have recently derived a Bayesian inference framework for the 

estimation of ALAAMs that admits the presence of missing data. 

As detailed earlier, ALAAM models have a potentially broad applicability in management 

and organization research. Whenever individual behavior responds to the behavior of others who 
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are connected by social relations to the focal actor—as is frequently the case in organizations 

(Borgatti & Foster, 2003; Brass et al., 2014) it is conceivable that some form of social contagion 

will be at work (Christakis & Fowler, 2003). Examples of questions related to research in 

organizational and management theory, organizational behavior, and leadership that a social 

contagion framework might help to illuminate include—but are not limited to—the following:  

 Does the individual propensity to leave an organization depend on the social ties 

with former members who have left (Krackhardt & Porter, 1985)?   

 Are individual perceptions of wellbeing in organization contagious (Chancellor et 

al., 2017)?  

 To what extent is absenteeism from work determined by relational, rather than 

dispositional, factors (Miraglia & Johns, 2001)? 

 Are members of venture capital syndicates more likely to invest in a company if 

many others do (Sorenson & Stuart, 2008)?   

 Are managers connected by interpersonal relations more likely to express similar 

evaluations of opportunities (Galaskiewicz & Burt, 1991)?    

 Are organizational participants connected by social relations more likely to adopt 

similar organizational vocabularies? (Tasselli, Zappa, & Lomi, 2020)?  

In the empirical part of the paper, we specify and estimate models inspired by what these 

empirical experiences have taught us about the network mechanisms that drive social contagion. 

However, we also go beyond current experiences by examining how contagion mechanisms may 

operate differently for different kinds of contagion processes. Before moving on to the discussion 

of the empirical case study, however, we need to define ALAAMs unambiguously, identify their 
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core analytical features, and establish the notation that we will rely upon in the discussion and 

interpretation of the empirical results. We do so in the next section.      

 

Formalizing Competing Hypotheses about Social Contagion: Autologistic Actor Attribute 

Models 

The Autologistic Actor Attribute model was first derived by Robins et al. (2001) as an 

extension and generalization of p* (p-star) models formalized by Wasserman & Pattison (1996) 

five years earlier—and later known as Exponential Random Graph Models, or ERGMs (Snijders 

et al., 2006). ALAAMs contribute to a time-honored line of research on network 

autocorrelation—how social networks in which actors are embedded make individual behavior 

susceptible to social influence by adopting similar behaviors to those around them (DiMaggio & 

Powell, 1983; Doreian et al., 1984; Erbring & Young, 1979; Friedkin, 2006; Granovetter, 1985). 

ALAAMs represent the probability of observing an actor-specific attribute (y) given a 

network (x) connecting the actors. The model assumes that the attribute of interest takes the form 

of a binary vector recording, for each actor, the presence or absence of the attribute of interest. In 

ALAAMs “attribute” should be understood as a generic term: any actor-specific feature like, for 

example, opinions, attitudes, or behavioral expressions can be coded as an “attribute.” The 

network (x) is represented by a binary adjacency matrix recording the presence or absence of 

connections between each pair of actors (Robins, 2015). The network is assumed to be non-

stochastic (i.e., it has a structure that can be modelled), and observed prior to the actor-specific 

attribute y. Daraganova and Robins (2013) propose the following formalization for ALAAMs: 

 

Pr(𝑌 = 𝑦 | 𝑋 = 𝑥) =  
1

𝜅(𝜃𝐼)
𝑒𝑥𝑝 (∑ 𝜃𝐼𝑧𝐼(𝑦, 𝑥, 𝑤)

𝐼

).  (1) 
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Where 𝜃𝐼 are parameters or “weights,” 𝑧𝐼 are the statistics for configurations involving 

interaction of the dependent attribute of interest (y), the network (x), and other actor-specific 

attributes (w) that do not depend on x 3. Finally, 𝜅(𝜃𝐼) is a normalizing function needed to ensure 

a proper probability distribution. The model predicts a binary outcome variable (y) conditional 

on the network dependencies between the actors (the observations) and the actor-specific 

attributes. The network itself is not modeled. As defined above, the statistics (𝑧𝐼) allow social 

influence to depend not only on social network ties linking the actors (x), but also on attributes of 

those actors (w). As Daraganova and Robins (2013) note, if the observations are independent, 

then the ALAAM collapses to a logistic regression model, which may be considered as an “a-

social” null model for ALAAMs, and would only include the actor-specific attributes. The main 

analytical objective of ALAAMs is to produce reliable estimates of 𝜃𝐼 under dependence 

assumptions on x in order to support inference about the possible significance of the 

corresponding network and actor-specific attribute configurations (𝑧𝐼) on behavior (y).  

As an empirical illustration, consider Daraganova and Pattison’s (2013) study on the 

contagiousness of unemployment in a regional community around Melbourne, Australia. In their 

study, the behavioral variable of interest (y in equation 1) is employment status, i.e., 0 = 

employed and 1= unemployed. Unemployment contagion is assumed to travel through social 

proximity in personal discussion networks, i.e., having a direct tie with someone who is 

unemployed, and geographical proximity, i.e., living close by someone who is unemployed (x in 

equation 1). Individual-specific covariates (w in equation 1) include gender, age, level of 

education, unemployment history, and years lived in the area. The study finds that the probability 

of being unemployed is greater for individuals who have direct network ties with others who are 

                                                           
3 Following Daraganova and Robins (2013), we take the subscript I to stand for “influence.” 
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themselves unemployed and who live close to others who are unemployed. In addition, those 

with a history of unemployment and who did not have a university degree were more likely to be 

unemployed. Hence, the configuration of interest (zI) includes the presence of direct network ties 

and geographical closeness (x), and unemployment history and education (w), with regard to 

unemployment (y).   

In models of contagion, it is important to account for Incidence, the presence of the 

attribute in the sample (and in the population) regardless of connectivity considerations. The 

Incidence effect is similar to the intercept value in a logistic regression: it simply tell the baseline 

diffusion (or presence) of the attribute of interest in the sample. When selecting configurations to 

be included in a model two main factors deserve special attention: the context within which 

actors are forming ties, and the theoretical question that is being addressed. When taking into 

account the context, network-attribute configurations (zI) afford considerable flexibility in 

specifying principles of social contagion embodying competing hypotheses about the 

mechanisms controlling the distribution of attributes observed in the data. For example, when 

networks are directed, network-attribute configurations of recurrent empirical interest include 

Popularity (the tendency of an attribute to be associated with incoming network ties), and 

Activity (the tendency of an attribute to be associated with outgoing network ties). Reciprocity is 

the tendency of an attribute to be associated with reciprocated (bidirectional) social relations and 

is frequently of substantive interest in studies of organizations and management (Caimo & Lomi, 

2015).  

When the attribute of interest is not present in every member of the population, 

Contagion captures the tendency of directly connected actors to share the attribute. Mutual 

contagion is a stronger form of contagion that involves the presence of the attribute of interest in 
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actors that are connected by a reciprocated relation. Particularly important when modeling social 

contagion, is to entertain the possibility that the direct social connection between two actors 

sustaining social contagion be embedded in more complex (i.e., extra-dyadic) local structures. 

For example, contagion may operate more strongly between connected individuals when they 

also share common contacts. This happens because closed structures reinforce norms, and 

strengthen reputational effects and tendencies toward conformity (Coleman, 1988). In 

consequence, contagion may be more likely to be observed in closed clusters of individuals 

sharing attributes (Flynn et al., 2010). In the empirical part of the paper we will refer to this 

behavioral consequence of network closure as Contagion clustering. As we will see, when social 

relations are directed (i.e., they involve clearly distinguishable roles where one individual is the 

sender, of for example advice, and the other individual is the receiver) contagion clustering may 

present itself in a number of empirical guises like, for example, Contagion cycles. 

Equally important when modeling contagion is to account for rival mechanisms that do not 

assume direct contact, but are capable of producing observationally similar outcomes. Perhaps the 

non-social contagion mechanism with the strongest theoretical roots is Structural equivalence 

(Boorman & White, 1976; Burt, 1987; Lorrain & White, 1971; White et al., 1976). If diffusion is 

driven by structural equivalence, then actors who may not be directly connected, but are connected 

to the same individuals, will be more likely to be similar, i.e., share the same attributes, 

perceptions, interests, and behavioral orientations (Burt, 1980; Padgett & Ansell, 1993). Structural 

equivalence represents a testable hypothesis about contagion not driven by direct contact. As such, 

the possibility of testing for structural equivalence is particularly valuable in empirical research.  

Table 1 provides an intuitive summary of the network-attribute configurations that we have 

outlined and that are a good starting point for modeling contagion with ALAAMs. We included 
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each of them in the empirical model specification discussed in the next section. Each configuration 

summarizes a testable hypothesis about the mechanisms that may be driving social contagion. In 

Table 1, circles (or “nodes”) represent actors and arrows indicate the presence of a social relation 

between them. Gray nodes indicate that the actor possesses the attribute of interest (y)—a term that 

in ALAAMs is used to indicate a variety of potential actor-specific characteristics that may or may 

not be directly observable. White nodes are actors who do not possess that attribute. For structural 

equivalence, the vertex node is patterned to indicate a node that may or may not possess the 

attribute of interest. 

------------------------------------- 

Insert Table 1 about here 

------------------------------------- 

 When developing ALAAMs we suggest including parameters, such as the configurations 

outlined above, based upon theoretical considerations. In addition, descriptive statistics and 

visualizations of the network may provide useful guidance as they reveal the extent to which 

there are isolated nodes, reciprocal ties and distinctive degree distributions, such as certain actors 

having a high number of incoming (Popularity) or outgoing ties (Activity). Where these are 

notable, it is useful to include them as starting parameters. Furthermore, it is important to take 

into account covariate effects that are an important part of the relational social setting within 

which contagion of behaviors might occur. For example, there are demographics of individuals 

such as gender, age or organizational tenure that might influence the extent to which actors 

exhibit a behavior. Likewise, covariate matching variables should be included if ties that might 

influence behavior are likely to form, for instance, between individuals being in the same 

location (Reagans, 2011) or instances of homophily such as having the same gender (McPherson, 

Smith-Lovin, & Cook, 2001). 
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Empirical Illustration  

Educational settings as organizational settings 

Educational settings are organizational settings where students are core organizational 

participants. Their performance and the social relations they develop with peers significantly 

affect their career choices (Kilduff, 1990; Robertson & Symons, 2003). Their academic 

performance, and their participation depend on a complex mix of individual achievement, 

collaboration with others, and status emerging from social interaction (Coleman et al., 1966; 

Stadtfeld et al., 2019; Torló & Lomi, 2017). In the empirical illustration that we develop, we do 

not examine a random sample of students, but a cohort of graduate students in management. In 

other words, we examine a convenience sample of managers-in-training. Claiming that the 

results of the illustrative analysis we present extend immediately to work settings would 

probably be overstating our case. However, it is not unrealistic to think that management 

students will eventually bring with them to their jobs at least part of what they have learned 

during their academic experience about patterns of socialization with their peers and potential 

competitors. 

 With their distinctive tension on individual achievement and socialization (Akerlof & 

Kranton, 2002), educational settings are particularly appropriate for developing and testing 

hypotheses about social contagion. Academic performance has been shown to be partly based on 

an individual’s peers (Coleman et al., 1966; Robertson & Symons, 2003). There has been a 

tendency to examine whether average test scores of people in the same dormitory influence a 

student’s own test scores, or whether introducing high or low achievers into a classroom 

influences average test scores (Sacerdote, 2011). These studies, however, do not explicitly model 
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how contagion of performance can occur through an individual’s network. We draw from 

research in organizations to examine how the people an individual goes to for advice can 

influence their performance (Cross & Cummings, 2004; Sparrowe et al., 2001). While most 

studies focus on the contagion of high performance we suggest that there may be differences 

between the contagion of high and low performance through advice networks. In the specific 

context of educational settings, Rambaran et al. (2016) have argued and shown that peer 

influence may be positive as well as negative. In organizations, diffusion of positive as well as 

negative influences is routinely produced by superstitious learning—a kind of dysfunctional 

subjective learning experience taking place when “connections between actions and outcomes 

are misspecified” (Levitt & March, 1988: p. 325).  

 We focus on advice relations because extant research has consistently shown that both in 

educational as well as organizational settings knowledge sharing and social influence both travel 

through advice networks (Borgatti & Cross, 2003; Cross et al., 2001; Lomi et al., 2011). We 

examine four types of contagion: direct dyadic contagion, direct triadic contagion, reciprocal 

contagion, and contagion through structural equivalence. While existing research suggests that 

contagion of performance through advice networks is likely to occur, we have no a priori reason 

to hypothesize which contagion configuration is most likely to occur, therefore we include each 

of the configurations.    

Setting 

We collected data on 139 graduate students enrolled in a two-year, full-time Master in 

Management program. The class consisted of a highly international group of students, with 

different academic backgrounds, and a variety of prior work experiences. The data were 

collected during a first year course in the two-year graduate program. The students completed an 
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on-line survey instrument designed to elicit information on their advice relations. The response 

rate and the quality of the information provided were carefully monitored during the data 

collection process. General and personal reminders were sent to respondents when 

inconsistencies, duplications, or missing data in the questionnaires were discovered during the 

data collection process. Students were fully informed about the nature and objectives of the 

study, and could decide freely whether to participate. The response rate was 100 percent. Six 

students eventually dropped out from the master program and were excluded from the analysis. 

The final sample includes 133 students. 

The questionnaire included sections on demographics and network questions. Information 

was also collected on students’ academic performance in the mid-term exam, final exam, and 

overall course grade. The age range was 21-38 years (mean = 23.71) with 67.7 percent women. 

The students came from 32 countries and had varied academic backgrounds with 38.3 percent 

having undergraduate degrees in arts and humanities, 59.4 percent in the social sciences and 

management, and 2.4 percent in sciences and engineering.  

The primary goal of the analysis reported in this paper is to ascertain whether and how 

network-based contagion occurs for high levels of performance as well as for low levels of 

performance. We compare the two models for high and low performance, with the purpose to 

identify similarities and differences in social contagion mechanisms. Previous research on peer 

effects in education has tended to focus on assimilation toward group average outcomes (Lomi et 

al., 2011), and to identify peers based on random assignment of students to a-priori groups, such 

as classmates or roommates (Sacerdote, 2011), rather than on the basis of deliberate social 

selection choices (Arcidiacono et al., 2012). ALAAMs are not models for social selection, hence 

they do not model network formation. The network pre-exists behavioral outcomes. Therefore, 
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the effects of contagion mechanisms are conditional on a network that is non-stochastic, i.e., 

already observed when individual behavioral outcomes are recorded. Data used in previous 

studies using ALAAMs has tended to be collected at one point in time. We suggest that it is 

preferable that data used in ALAAMs be based on a research design that allows observation of 

the independent variable (the network) to precede observation of the dependent behavioral 

variable (the attribute of interest).  

Data  

In the empirical illustration that we present, the individual behavioral outcome—or more 

generically, the “attribute” of interest is academic performance, as measured by the student's 

overall grade in the course they attended. The grade was based upon a mid-term exam and a final 

exam held at the end of the course, and was calculated by computing the weighted average of the 

two grades. Information on social relations among the students was collected one week before 

the mid-term exam.4 We focus on advice relations among the students because prior research 

instructed us of the instrumental value of knowledge and information shared and exchanged 

thorough advice relations—and the implications of these knowledge flows for individual task 

performance (Gibbons, 2004). Prior research has also shown the specific relevance of advice 

relations in educational settings (Kilduff, 1990; Torló & Lomi, 2017), and their impact on the 

academic performance of individual students (Baldwin et al., 1997; Smith & Peterson, 2007).  

We collected social networks data through the well-established roster method (Kilduff & 

Krackhardt, 2008). Participants were asked to answer the following question: “Please indicate 

the names of your classmates to whom you would go for help and advice on course-related 

                                                           
4 The exact length of time between collecting the network data and the behavioral outcome data depends 

upon the contagion effect itself. Emotional contagion may occur in minutes, whereas the contagion of 

knowledge and learning leading to similar performance outcomes may take months.    
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issues. Examples of possible issues for which you might seek help and advice from your 

classmates include the need for notes about a class you have missed, help with course material 

that you find unclear or hard to understand, or borrowing books and other course-related 

materials.” Respondents were presented with a complete list of names in alphabetical order (by 

last name), and asked to check the box next to the classmates they went to for advice. Figure 1 

shows a graphical representation of the resulting advice network. 

------------------------------------- 

Insert Figure 1 about here 

------------------------------------- 

The color of the nodes indicates performance levels, with high-performing students 

represented by black nodes, low-performing students by white notes, and the remaining students 

by grey nodes. The advice network has 817 advice ties, 53% of which were reciprocated. The 

density of the network (i.e., proportion of existing ties relative to the total possible ties) is .05, a 

value consistent with those reported in similar studies (e.g., Torló & Lomi, 2017). On average, 

students ask for advice to six of their classmates. The standard deviation of the number of 

outgoing ties from a student (4.83) is greater than that of the number of incoming ties to a 

student (3.79), suggesting that asking for advice is common, but being asked for advice is more 

selective, i.e., confers centrality to a more restricted set of students (nodes in the network). In 

other words, many students ask advice, but fewer students are being asked. The clustering 

coefficient suggests that in 29 percent of the cases, two students who have an advice tie with the 

same student are also directly connected to each other. The measure of geodesic distance, i.e., the 

average number of links between any two students, indicates that students are, on average, four 

steps away from each other. In other words, any two students in the network selected at random 

are expected to be connected through three intermediaries. While the extent to which the students 
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are embedded in the network of advice relations varies, no student is an isolate, i.e., disconnected 

from the network. 

Finally, Figures 2a and 2b show the networks of advice relations among high performing 

(Figure 2a), and low performing students (Figure 2b). The network of the high performing 

students is denser and more clustered. Whereas, the network for the low performing students is 

sparser and significantly more fragmented.   

------------------------------------------- 

Insert Figure 2 (a and b) about here 

------------------------------------------- 

Variables and Measures  

ALAAMs specify how network ties and actor attributes jointly affect an outcome variable (more 

generally, the individual “attribute”) of interest through relational and positional mechanisms 

that may be driving social contagion. The dependent variable of interest is the probability of 

observing the presence of an attribute in actors directly or indirectly linked by the relevant 

network ties. The models estimated in the next section involves specifications that include both 

network effects and actor-specific attribute effects.  

Dependent attribute of interest  

We started by constructing a binary indicator variable for high performance, which assigned the 

value 1 to students with grades greater than one standard deviation above the mean (9.19 out of 

10 or above), and 0 otherwise. For the illustrative purposes of the application we present, this 

cut-off point seems to capture well the qualitative differences among students based on the 

distribution of the measure of their performance. This is the attribute that we use to identify high-

performing students. As we were interested in explaining contagion for both high and low 

performance, we constructed a similar binary indicator variable for students whose grade was 



24 
 

less than one standard deviation below the mean (6.71 out of 10 and below). This attribute is 

used to identify low-performing students. There were twenty-six high- and twenty-nine low-

performing students in the sample. In the empirical part of the study, we examine the propensity 

of high and low performance to spread through social contact among the students.  

Incidence, network-attribute configurations, and actor-specific attributes.  

Incidence simply reflects the distribution of the attribute of interest in the sample, in our case 

high or low performance. Network-attribute configurations include Activity and Popularity 

which indicate the tendency of students possessing the attribute of interest respectively to be 

senders or receivers of social relations (i.e., to ask or be asked for advice, in our case). 

Reciprocity indicates the tendency of students with high or low performance to entertain 

reciprocated advice relations.  

 Our network-attribute configurations of interest specify alternative, but not mutually 

exclusive, diffusion mechanisms, including social contagion. The empirical model specification 

that we estimate includes five different network-attribute contagion configurations that are the 

focus of our analysis. The first is Contagion proper, included to reveal the tendency of nodes 

(students) with the same attribute (high or low performance) to be directly connected. When 

significant, it provides evidence of “epidemiological” diffusion, i.e., diffusion through direct 

social contact. The second is Mutual contagion, included to reveal the association between the 

presence of the attribute and the presence of reciprocated social relations (advice). The third and 

fourth types of contagion included in the models capture the possibility that contagion may 

spread beyond pairs of connected students (dyads). Contagion clustering indicates the tendency 

of connected students sharing the same alters to attain a similar level of (high or low) 

performance. Contagion cycle indicates the tendency of directly connected students who are 
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connected to the same alters in a cyclic cluster to attain a similar level of (high or low) 

performance. In both contagion clustering and contagion cycle, all members of the closed 

triangles have the same level of performance. Finally, the last type of contagion is Structural 

equivalence, included to entertain the hypothesis that academic performance spreads between 

students occupying the same network position with respect to sources of advice, regardless of the 

presence of direct connections. Structural equivalence may operate independently, or over and 

above Contagion sustained by direct personal contact (Burt, 1987). 

 The most distinctive feature of ALAAMs is their ability to incorporate detailed 

configurations of network ties and the attribute of interest that may reveal specific aspects of 

social contagion. In actual empirical research, however, it is typically necessary to control for a 

variety of actor-specific factors that may affect the distribution of the attribute of interest—as 

demanded by theory, or suggested by prior empirical research. For example, extant research 

instructs us that academic performance of students in graduate business programs may be 

affected by a number of socio-demographic characteristics of the students (Eddey & Baumann, 

2009; Lomi et al., 2011; Ren & Hagedorn, 2012). Descriptive statistics of the control factors are 

included in Table 2. 

------------------------------------- 

Insert Table 2 about here 

------------------------------------- 

 We control for the Age of the students measured in number of years, and for Gender—an 

indicator variable coded as 1 for females, and 0 for men. At the beginning of the class, students 

were randomly assigned to two streams. We created a binary variable to control for membership 

to Stream A = 0 and B = 1. We control for whether a student has Work experience. This is a 

binary variable coded as 1 for students with work experience and 0 otherwise. We control for 
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prior academic performance at undergraduate level by creating the variable Student aptitude 

taking the value 1 if the student graduated with the highest possible grade, and 0 otherwise5. 

 We also include three control factors that allow us to account for characteristics of 

network partners that could be associated with academic performance. First, we control for Same 

academic program as a matching variable for both outgoing ties (sender) and incoming ties 

(receiver) to take into account the likelihood of people on the same academic program having 

advice ties that influence their academic performance. Same academic program = 1 when there 

is a match and = 0 when the programs do not match. The academic programs students are 

enrolled in are Communication, Management & Health, Corporate Communication, Visiting 

Erasmus student, Financial Communication, and Management. Second, we include Same 

academic background as a matching variable for both outgoing ties (sender) and incoming ties 

(receiver). This controls for the likelihood of people with the same academic background seeking 

or receiving advice from each other. The students’ academic backgrounds are Arts and 

Humanities, Sciences, Engineering, Economics and Management, Computer Science, Social and 

Political Sciences, and Law and Legal Studies. Finally, we also control for the possibility that 

Sociability affects academic performance by creating a variable recording the number of friends 

that each student identified among their classmates.  

As mentioned previously, in the absence of any network effect, an ALAAM model 

specified to include only actor-specific covariates (e.g., age, gender, stream, work experience, 

and student aptitude) is equivalent to a standard logistic regression model for independent 

observations. The observation that logit models assuming independent observations (i.e., with no 

                                                           
5 The diversity of educational systems represented in the sample made it impossible to standardize 

measures of performance attained in undergraduate degrees—our proxy for student aptitude. We could 

identify, however, when students attained maximum performance in their educational system of origin. 

Respondents were explicitly asked to report this piece of information.  
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network effects) are nested in ALAAMs allows us to treat the former as null models for the 

latter.   

Model Estimation and Evaluation 

Like ERGMs from which they derive, ALAAMs parameters may be estimated only by stochastic 

approximation methods based on Markov Chain Monte Carlo (MCMC) maximum likelihood 

(Kalish, 2020; Koskinen & Snijders, 2013; Snijders, 2002, Snijders et al., 2006). Recourse to 

stochastic approximation algorithms is necessary because the model contains an intractable 

normalizing constant that prevents exact computation of the likelihood (Amati et al., 2019). 

To produce the results reported in the next section we relied on MPNet (Wang et al., 

2014), a specialized software for the analysis of multilevel ERGMs that may also be used to 

estimate parameters of ALAAMs6. Stochastic approximation in MPNet is based on the Robbins-

Monro algorithm (Robbins & Monro, 1951). If statistically significant, a possible interpretation 

of parameter estimates is as a probabilistic tendency of the corresponding configuration of 

network ties and attributes to occur in the data more frequently (if the estimate is positive) or less 

frequently (if negative) than it would otherwise be expected by chance alone. For consistency, it 

is important to note that the interpretation of parameter estimates in ALAAMs should adhere to 

the interpretation of tie-oriented models like ERGMs from which they derive (Block et al., 

2019). This is the line we follow in our discussion of the effect of competing mechanisms of 

social contagion embodied in the configurations introduced earlier in the text and summarized in 

Table 1.  

When we ran our models in MPNet (Wang et al., 2014) we attained convergence 

relatively quickly. Acceptable convergence of the Robbins-Monro algorithm occurs when the 

                                                           
6 See chapter 5 of Wang et al. (2014) for a detailed description of how to carry out analysis in MPNet. 



28 
 

expected values of a parameter are close to the observed values. Acceptable convergence for a 

parameter occurs when the difference between the expected and observed values when divided 

by the variation gives a convergence statistic (t-ratio) of less than 0.1. In the model all 

parameters need to converge. If they do not then updating the model with the previous parameter 

estimates and rerunning can often bring about convergence. This can be automated by setting the 

maximum number of estimation runs to more than one. Other options include increasing the 

multiplication factor, especially for larger networks (see Wang et al., 2014 for additional details). 

Lack of convergence can also be due to poor model specification. Degeneracy in both ERGMs 

and ALAAMs occurs when the model cannot be fitted to the observed data, for example when a 

model includes an effect that is not observed in the data, such as including an effect for isolates 

when there are no isolates (Koskinen & Snijders, 2013).  

When convergent estimates can be obtained, it is possible to use their numerical values to 

simulate the distribution of networks implied by the model. Any feature of the data that are 

expressible as a network statistic may be compared to the estimated distribution of that feature 

that is implied by the model. If a network statistic measured on the data is sufficiently close to 

the corresponding mean value of the statistic produced by simulation, then we can conclude that 

the estimated model reproduces the observed data reliably. Parameters not included in the model 

play the role of auxiliary variables. Comparison of observed and simulated data can reveal the 

extent to which the fitted model is able to reproduce the effects corresponding to the omitted 

auxiliary variables. The Mahalanobis distance is used as a summary measure of fit. Smaller 

distances indicate better fit (Wang et al., 2009).  

In the empirical part of the paper, we follow this simulation-based analytical strategy to 

examine the ability of our models to reproduce salient features of the observed data. This 
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simulation-based approach to the goodness of fit of statistical models for networks was originally 

introduced for ERGMs by Hunter et al. (2008). More recent discussions may be found in Robins 

and Lusher (2013), Koskinen and Snijders (2013) in the context of ERGMs, and Lospinoso and 

Snijders (2019), and Wang et al. (2020) in the context of Stochastic Actor-Oriented Models 

(SAOMs). Zappa and Lomi (2015) present a practical example of this general simulation-based 

approach to model assessment in the context of multilevel ERGMs.   

 

Analysis  

Results  

The results are reported in Table 3. Models M1 and M3 represent the baseline models 

controlling only for attribute Incidence, and the set of student-specific attribute covariates 

described above. These logit models serve the useful function of “null models” because, unlike 

ALAAMs in which they are nested, they are based on assumptions of independent observations. 

Thus, comparing goodness of fit diagnostics (see model evaluation below) allows assessment of 

the empirical value of relaxing assumptions of independence among the observations in the 

sample. Our discussion is organized around M2 and M4 (Table 3) which represent the full 

models for high and low performance, respectively. 

In both models for the contagion of high performance (M2) and low performance (M4), 

the Incidence effect is negative as a consequence of the relative rarity of the attribute in the 

sample. For high performance, there is no significant association between the tendency to ask 

advice (Activity), to be asked for advice (Popularity) or mutuality (Reciprocity) and academic 

performance. For low performance, however, students are significantly more likely to ask for 

advice (Activity): other conditions being equal, low-performing students are approximately sixty 
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percent more likely to ask for advice (because exp[0.490] = 1.63). In addition, low-performing 

students are approximately forty percent less likely to be asked for advice (Popularity) (exp[-

0.562] = 0.57). Low-performing students are also significantly less likely to have a reciprocal tie 

(Reciprocity). 

The estimates provide evidence that high performance diffuses through direct advice 

relations (Contagion): on average the odds for a student to have high performance increase by 

over 140 percent when they receive advice from a high-performing peer (because exp[0.894] = 

2.44). High performance does not spread through reciprocated relations (Mutual contagion), and 

does not seem to spread beyond direct personal interaction through clusters involving more than 

two students (Contagion clustering and Contagion cycle). Contagion through direct social 

contact dominates contagion through jointly occupied advice network positions (Structural 

equivalence). 

The contagion of low performance happens through a distinctively different mechanism 

(M4 in Table 3). Individual performance is dragged down by relations with low-performing 

peers, but only when such relations are reciprocated. In other words, low performance spreads 

through Mutual contagion: on average, a student entertaining mutual advice relations with low-

performing peers sees his or her odds of having low performance increase by approximately a 

factor of seven (because exp[2.075] = 7.96). No such effect was found in the model for the 

diffusion of high performance, so it seems that contagion of high and low performance is 

associated with detectably different social structures. Finally, there is a significant negative effect 

for Contagion cycle, indicating that contagion of low performance does not occur within closed 

triangles (or “clusters”).  
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------------------------------------- 

Insert Table 3 about here 

------------------------------------- 

The estimated parameters of control variables are generally statistically weak. Exceptions 

include individuals in Stream B who are significantly more likely to attain higher levels of 

performance than those in Stream A. A significantly negative association is found between high-

performance and Sociability, as measured by the self-reported number of friends, and between 

low performance and Same academic program for outgoing ties. We note that Gender is 

significant in the null model (M3) but not in the full model (M4). Female students are more likely 

to have a low level of performance only if their embeddedness in the network of advice relations 

with peers is not accounted for (M3 vs M4).  

Model Evaluation  

In our commentary so far, we have focused the attention on individual parameters because we 

wanted to learn about potential differences in how social contagion mechanisms work both 

“upward” (for students with high performance), as well as “downward” (students with low 

performance). Now we need to probe the model further by examining its ability to reproduce 

important features of the data. Specifically, we compare the full models (M2 and M4) with null 

models (M1 and M3). The null models include the attribute Incidence and student-specific 

attribute covariates and are logit models based on assumptions of independent observations. We 

use goodness of fit to examine how well the model explains the “incidence” of the attribute in 

both the null and final models. The test for goodness of fit is critical in the evaluation of whether 

a model is appropriately specified.     

For a set of selected statistics, Tables 4a and 4b report the observed (measured) sample 

values, and their estimates based on a sample of datasets simulated based on the empirical 
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estimates. Our discussion of goodness of fit follows the simulation-based general model 

evaluation procedure proposed by Hunter et al. (2008) for ERGMs from which ALAAMs derive. 

A goodness of fit (GOF) t-ratio is computed to assess the ability of the models to reproduce 

salient features of the observed data.  

The GOF t-ratios are calculated for differences between the statistics describing the 

observed data and the mean value computed on the sample of simulated data. There is some 

debate in the literature as to the appropriate t-ratio value for unfitted parameters. Robins and 

Lusher (2013) suggest the t-ratio should be less than two in absolute value for unfitted 

parameters (i.e., for parameters corresponding to auxiliary variables not included in the model). 

Kashima et al. (2013) and Daraganova and Pattison (2013) use one instead of two as a threshold 

for parameters of auxiliary variables. We have opted to use 1.645 as this signifies statistical 

significance at the 5% level (one-tailed test). When the t-ratio of an unfitted parameter is below 

1.645, the null hypothesis that the observed data and the data simulated based on empirical 

estimates are the same cannot be rejected. The conclusion would be that the observed statistic is 

not unusual in the simulated distribution or, in other words that the model reproduces with 

accuracy the specific feature of the data summarized by the statistic. The model fit would not 

improve by fitting the excluded parameter. For fitted parameters (i.e., for parameters 

corresponding to variables included in the model) a GOF t-ratio smaller than 0.1 is typically 

considered as a reliable sign of good fit (Robins et al., 2009).  

Table 4a reports the GOF diagnostics needed to assess the fit of the model for the 

contagion of high performance (M2 in Table 3). The auxiliary statistics are selected for 

illustrative purposes to demonstrate the ability of the fitted model both to capture and to miss the 

effects of auxiliary variables omitted from the model specification. In-2 star and Out-2star are 
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associated with the tendency of high-performing students to entertain non-exclusive advice 

relations with their peers (receive from, and ask to multiple others, respectively). Brokerage is 

associated with the tendency of the best students in class to occupy intermediary positions in the 

network of advice relations, i.e., to be connected to peers who are not themselves directly 

connected. Finally, Balance captures the tendency of the best students in the class to provide 

advice to the same peers. Thus defined, Balance may be viewed as a form of structural 

equivalence in outgoing ties that complements the effect of Structural equivalence in incoming 

ties already included in the model.  

------------------------------------- 

Insert Table 4a about here 

------------------------------------- 

 In Table 4a, the shaded cells highlight the parameters that are not well captured in 

the model in its current specification and that suggests specific opportunities to improve the 

ability of the current model to reproduce the data accurately. For example, in the null model 

(M1) the GOF t-ratio for the Contagion parameter is above 1.645, which suggests that the null 

model is not capturing these effects. In addition, the t-ratio for Contagion clustering parameter is 

also very close to 1.645. The ALAAM specification in the full model (M2) seems to fit the data 

reasonably well. The GOF t-ratios associated with the covariates included in the full model (M2) 

are below the 0.1 threshold. The In-2 star and Balance auxiliary variables not included in the 

model have GOF t-ratios above 1.645 in the null model (M1), but they are well below 1.645 in 

the full model (M2), suggesting that the model for the diffusion of high performance fits all the 

auxiliary effects.  

Table 4b reports the GOF diagnostics needed to assess the fit of the model for the 

contagion of low performance among the students (M4 in Table 3). The GOF t-ratios for all the 
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parameters included in the full model (M4) are comfortably below the recommended 0.1 

threshold indicating reliable fit. We note, however, that the null model (M3) already seems to fit 

the contagion parameters omitted from the model with none of the GoF t-ratios above 1.645. 

However, two of the auxiliary variables in the null model (M3) are more than 1.645. In the full 

model, the parameters associated with the auxiliary variables omitted from the model are all well 

below 1.645 indicating that the full model does a good job at capturing the effect of mechanisms 

that are not explicitly fitted. This could happen because these mechanisms (non-exclusivity and 

brokerage) operate at least in part through the mechanisms that are already represented explicitly 

in the model.  

------------------------------------- 

Insert Table 4b about here 

------------------------------------- 

In closing, we again attract attention to the fact that the full models for contagion 

accounting for some of the complex dependencies present in the data systematically outperform 

their baseline models that assume independence of the observations. In the specific case we are 

examining, the full models do not significantly outperform the corresponding null models over 

all possible dimensions. For example, null and full models produce similarly accurate estimates 

of the baseline incidence parameters for high and low performance among the students in the 

sample. Mechanism-oriented models like ALAAMs, however, require and afford more detailed 

comparison. As the figures reported in Tables 4a and 4b clearly demonstrate, estimates of models 

assuming independence among the observations (M1 and M3) can systematically fail to 

reproduce some of the most important features of the data. The null and full models for the 

contagion of low performance (Table 4b) make comparably accurate predictions for the 

attributes of interest in the sample. However, the null model that assumes independent 



35 
 

observations in the case of high performance (Table 4a) grossly underestimates the strength of 

contagion in the sample (68 Contagion configurations observed, and only approximately 39 

predicted by the null model). On average, however, the full model accounting for patterns of 

network dependence predicts virtually the same number (67) of Contagion configurations that 

are observed in the sample—configurations involving two high-performing students linked by a 

direct advice relation.  

The Mahalanobis distance estimate reported as a global measure of goodness of fit at the 

bottom of Tables 4a and 4b provide a heuristic summary measure of fit of the models (lower 

values represent a better goodness of fit). These global measures of fit provide qualitative 

support to the claim that (full) models accounting for network dependencies present in the data 

outperform their corresponding (null) models assuming independence among the observations.  

 

Discussion and Conclusions 

The concept of contagion has long transcended the narrower boundaries of its epidemiological 

origins (Ugander et al., 2012), to be adopted more generally to examine a wider range of social 

phenomena involving diffusion through networks of social contacts (Berry et al., 2019). In 

organizational and management research, the notion of social contagion has found broad 

application, from studies of how social networks affect individual intentions, perceptions and 

behavior within organizations (Felps et al., 2009; Kilduff & Krackhardt, 1994; Krackhardt & 

Porter, 1985; Tröster et al., 2019), to studies on the allocation of attention (Rao et al., 2001), and 

the role that inter-organizational networks play in the emulation, adoption, diffusion, and 

abandonment of strategies, technologies, practices, organizational forms, performance, and 

institutional logics (Fligstein, 1985; Gibbons, 2004; Greve, 1995; Pallotti & Lomi, 2011, 
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Shipilov et al., 2010; Strang & Meyer, 1993). However diverse are the empirical guises in which 

they appear, contagion processes share the same set of conceptual difficulties inherent in the 

statistical modeling of data characterized by complex dependencies linking the observations 

(Robins & Pattison, 2005). 

Autologistic Actor Attribute Models that we have discussed in this paper are a class of 

cross-sectional network models specifically engineered for the analysis of social contagion—or 

diffusion through social contact. The main objective of ALAAMs is to characterize the 

distribution of an individual outcome (or attribute) while accounting for the possibility that the 

outcome (or attribute) may have non-individual components, i.e., may be affected by the network 

of social relations that individuals construct—and in which they are embedded. 

The unique analytical advantage offered by ALAAMs is the flexibility they afford in 

specifying multiple mechanisms of social contagion that may then be framed as rival hypotheses 

to be tested on appropriate data. This feature distinguishes ALAAMs from alternative social 

influence models based on network autocorrelation that have one single generic parameter to 

represent social influence (Doreian et al., 1984; Leenders, 2002). ALAAMs are probabilistic 

models and, unlike mathematical models for social influence (Friedkin, 2006), they may be 

linked naturally and directly to empirical data. 

In an illustrative study of social networks and academic performance in a cohort of 

graduate management students, we found that the diffusion of high and low performance 

involves different mechanisms of social contagion. Specifically, we found that high performance 

diffuses through direct contact among the students. As such, contagion of high performance does 

not propagate beyond a narrow range of direct contacts. Diffusion of low performance is 

encouraged by strong ties (mutual contagion). We think these results illustrate well the new 
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analytical possibilities that ALAAMs offer not only to model social contagion within and 

between organizations, but also to distinguish among rival hypotheses about the mechanisms 

driving contagion, and to document asymmetries in contagion processes.   

However innovative and potentially promising, ALAAMs are not without limitations. 

Three, in particular, deserve mention in this concluding section. The first is that, for the moment 

at least, ALAAMs are only available for binary attribute variables. This is a constraint that 

ALAAMs inherited from Exponential Random Graph Models from which they derive (Robins et 

al., 1999). The extent to which this constraint is an actual limitation depends on the possibility of 

mapping observed behavioral outcomes onto a binary indicator variable. Outcomes of interest 

may be naturally binary. This happens when actors occupy discrete and mutually exclusive states 

like, for example, change or remain in the current residential neighborhood (Schelling, 1971), 

leaving a job or keeping it (Krackhardt & Porter, 1985), wearing or refusing to wear protective 

gear (Schelling, 1973). Binary outcome variables are also common in studies of diffusion, where 

actors decide whether to adopt or abandon technologies, practices, norms, or strategies. More 

generally, ALAAMs are directly applicable whenever individual preferences may be reasonably 

assumed to be defined over binary outcomes. When behavior is continuously measured, 

assumptions have to be made about how to partition a continuous measure into discrete classes, 

and this may limit the applicability of the model. We see this limitation as transient, however. 

Statistical models for networks capable of analyzing valued (Krivitsky, 2012) and continuously 

measured behavioral variables (Niezink et al., 2019) are progressively becoming available. 

Extending these results to ALAAMs is possible, at least in principle (Daraganova & Robins, 

2013), but it will require a larger community of scholars convinced of the value of ALAAMs as 
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models for social contagion. One objective of this paper was to contribute to making ALAAMs 

more generally known within the diverse community of organizational scholars. 

A second limitation of ALAAMs is inherent in their cross-sectional nature. As models for 

a single observation in time—and similarly to ERGMs—ALAAMs hinge on implicit equilibrium 

assumptions about the underlying contagion process. However, processes of social contagion are, 

almost by definition, disequilibrium processes that involve endogenous change and multiple 

feedback connections between networks and behavior. At most, parameters in empirical 

ALAAMs may be interpreted as being qualitatively consistent with the underlying mechanisms 

of social contagion that they represent. As the length of the observation period increases, 

assumptions that contagion processes unfold while network structures are frozen in time and 

never change become untenable. Stochastic Actor-Oriented Models (SAOMs) for the 

coevolution of networks and behavior have been available for at least a decade now (Steglich et 

al., 2010). These models are now very well established (Snijders, 2017; Snijders et al., 2017), 

and are becoming increasingly popular in organizational and management research both in 

studies of intra (Tröster et al., 2019) as well as inter-organizational networks (Amati et al., 2019). 

One important point to note is that in ALAAMs the network is fixed (exogenous), whereas in 

SAOMs the network co-evolves with behavior (and is therefore endogenous). Because ALAAMs 

are models for social influence and cannot be adopted to model network change, it is important 

that the network of social relations assumed to diffuse social contagion be observed at a suitable 

time before individual behavior is recorded. The amount of time between observation of the 

network and its effect on some aspect of individual behavior is not well researched and deserves 

greater attention. Our view is that the credibility of future empirical applications of ALAAMs 
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will be strengthened in studies where observed social networks may be reliably interpreted as 

proxies for longer-range, enduring relations among actors (Freeman et al., 1987).    

A third limitation of ALAAMs deserving consideration is their current inadequacy for the 

analysis of very large samples—a limitation once again inherited from ERGMS. Progress in 

snowball sampling methods for networks on the one hand (Stivala, Gallagher, et al., 2020; 

Stivala et al., 2016), and algorithmic innovation on the other (Byshkin et al., 2016; Stivala, 

Robins, & Lomi, 2020), represent future directions that promise to alleviate this specific 

constraint, and contribute to make ALAAMs more generally applicable to large datasets obtained 

from sampling open populations of interdependent social actors.     
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Table 1. Configurations (zI) used in ALAAMs to Represent Actor-Attribute Effects and 

Alternative Mechanisms of Social Contagion. 
 

Configuration (zI)  Explanation 

 

 

Activity 

 

  

Tendency of individuals possessing the attribute of 

interest to send social relations  

 

 

Popularity 

 

  

Tendency of individuals possessing the attribute of 

interest to receive social relations  

 

 

Reciprocity  

  

Tendency of individuals possessing the attribute of 

interest to entertain reciprocated social relations  

 

 

Contagion 

 

 

 

 

Tendency of the attribute of interest to be present in 

directly connected actors 

 

 

Mutual contagion 

 

 

  

Tendency of the attribute of interest to be present in 

actors connected by reciprocated relations 

 

 

 

Contagion clustering  

 

 

 

 

Tendency of attribute of interest to be present both in 

actors that are directly connected, as well as in the 

partners they share  

 

 

 

Contagion cycle 

 

  

Tendency of attribute of interest to be present in actors 

that are both directly connected, as well as connected 

to the same network partner within a cyclic cluster 

 

 

Structural equivalence 

 

  

Tendency of the attribute of interest to be present in 

actors with no direct connection, but having the same 

network partner in common 

 

Legend: 

Node with attribute (e.g., high or low performance) 

Node without attribute 

Node irrespective of attribute 
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Table 2. Variables Descriptive Statistics and Correlations (N = 133). 

Continuous variables 

              Mean  Std. Dev.            1.             2.            3. 

1. Performance  7.95 1.24 -   

2. Age 23.71 2.58 -.175* -  

3. Sociability (N. of friends) 12.23 9.02 .188* -.259** - 

Note: ** .01, * .05 (two-tailed tests)    

Categorical variables 

 Categories   Count % 

Gender 0 = male  43 32.3 

 1 = female  90 67.7 

Stream  0 = stream A  60 45.1 

 1 = stream B  73 54.9 

Work experience  0 = no work experience  35 26.3 

 1 = work experience  98 73.7 

Student aptitude 0 = did not obtain highest grade in 

previous degree 
125 94.0 

 1 = obtained highest grade in previous 

degree 

8 6.0 

Academic program 1 = Communication  9 6.8 

 2 = Management & Health  33 24.8 

 3 = Corporate Communication 6 4.5 

 4 = Visiting Erasmus student  3 2.3 

 5 = Financial Communication 51 38.3 

 6 = Management  31 23.3 

Academic background 1 = Arts and Humanities  51 38.3 

 2 = Sciences  1 0.8 

 3 = Engineering  1 0.8 

 4 = Economics and Management 66 49.6 

 5 = Computer Science  1 0.8 

 6 = Social and Political Sciences 12 9.0 

 7 = Law and Legal Studies  1 0.8 
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Table 3. Estimates of ALAAMs for the Contagion of High and Low Academic Performance. 

 High Performance Low Performance 

 M1 (Null) M2 (Full) M3 (Null) M4 (Full) 

Age -0.057  (0.114) -0.146  (0.158)     0.107  (0.080)  0.045  (0.118) 

Gender  -0.022  (0.541)     0.432  (0.722)  0.956 (0.517)* 0.994  (0.623) 

Stream   2.109  (0.651)*  2.099  (0.786)* - 0.530  (0.457) -0.288  (0.554) 

Work experience 0.011  (0.566) -0.221  (0.723) -0.092  (0.513) 0.078  (0.694) 

Student aptitude  0.538  (0.826) 0.161  (1.034)     -0.905  (1.071)     -0.452  (1.226) 

Sociability     -0.093  (0.043) *  0.031  (0.048) 

Same academic program (s)  -0.079  (0.225)  -0.689  (0.260)* 

Same academic program (r)  0.155  (0.255)  0.477  (0.302) 

Same academic background (s)   0.136  (0.204)  -0.020  (0.207) 

Same academic background (r)  -0.123  (0.209)  0.204  (0.278) 

Incidence  -1.600  (2.729) -1.113  (3.698)   -4.138  (1.909) * -1.569  (2.826) 

Activity    -0.205  (0.222)  0.490  (0.225)* 

Popularity       0.273  (0.262)   -0.562  (0.316)* 

Reciprocity  -0.140  (0.369)  -0.572  (0.338)* 

Contagion      0.894  (0.398) *  -0.524  (0.484) 

Mutual contagion  -1.237  (0.911)      2.075  (1.099)* 

Contagion clustering  -0.224  (0.175)      0.473  (0.308)  

Contagion cycle   0.332  (0.487)  -1.995  (1.129)* 

Structural equivalence   0.049  (0.064)  0.013  (0.091) 

Note: * = p< 0.05; (s) = sender; (r) = receiver 
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Table 4a. Contagion of High Performance: Goodness of Fit Diagnostics and Model 

Comparison (shaded cells highlight problems of fit). 

 

 M1 (Null) 

 

M2 (Full) 

 

 

Observed Average 

Simulated 

GOF 

t-ratio 

Average 

Simulated 

GOF 

t-ratio 

Fitted parameters in M2      

Incidence 

 
26 25.63 0.088 25.86 0.019 

Contagion 

 
68 39.17 1.834 67.11 0.027 

Mutual contagion 

 
15 10.76 0.863 14.93 0.009 

Contagion clustering 

 
63 26.30 1.575 61.82 0.026 

Contagion cycle 

 
13 6.64 0.978 12.98 0.002 

Structural equivalence 

 
202 147.12 0.889 198.43 0.031 

Auxiliary variables      

In-2star 1047 684.21 1.989 1099.75 -0.211 

Out-2star 

 
666 770.97 -0.355 684.32 -0.055 

Brokerage 

 
1281 1122.69 0.604 1253.05 0.067 

Balance 392 184.93 2.919 376.92 0.086 

Mahalanobis distance  1583 823 
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Table 4b. Contagion of Low Performance: Goodness of Fit Diagnostics and Model 

Comparison (shaded cells highlight problems of fit). 

 

 M3 (Null) 

 

M4 (Full) 

 

 

Observed Average 

Simulated 

GOF 

t-ratio 

Average 

Simulated 

GOF 

t-ratio 

Fitted parameters in M4      

Incidence 

 
29 29.05 -0.010 28.96 

 

0.010 

 

Contagion 

 
30 37.96 -0.497 30.23 

 

-0.016 

 

Mutual contagion 

 
9 10.64 -0.313 9.03 

 

-0.007 

 

Contagion clustering 

 
12 19.03 -0.367 12.53 

 

-0.030 

 

Contagion cycle 

 
2 4.92 -0.516 2.077 

 

-0.030 

 

Structural equivalence 

 
95 146.73 -0.788 96.61 

 

-0.028 

Auxiliary variables      

In-2star 303 591.60 -1.713 306.08 -0.022 

Out-2star 

 
527 823.35 -0.961 551.17 -0.126 

Brokerage 

 
532 1088.82 -1.933 580.33 -0.233 

Balance 71 151.67 -1.278 78.27 -0.147 

Mahalanobis distance  903 793 
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Figure 1. Network of Advice Relations. 

 

Note: Black nodes are high-performing students. White nodes are low-performing students. Gray 

nodes represent the remaining students included in the sample.  
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Figure 2. Networks of advice relations among high performing students (Figure 2a, left) and low performing students (Figure 2b, right) 

 

 

 

 

 

Note: Black nodes are high-performing students. White nodes are low-performing students. 


