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Abstract—Cyber attacks consisting of several attack actions
can present considerable challenge to forensic investigations.
Consider the case where a cybersecurity breach is suspected
following the discovery of one attack action, for example by
observing the modification of sensitive registry keys, suspicious
network traffic patterns, or the abuse of legitimate credentials. At
this point, the investigator can have multiple options as to what to
check next to discover the rest, and will likely pick one based on
experience and training. This will be the case at each new step.
We argue that the efficiency of this aspect of the job, which is the
selection of what next step to take, can have significant impact
on its overall cost (e.g., the duration) of the investigation and can
be improved through the application of constrained optimization
techniques.

Here, we present DISCLOSE, the first data-driven decision
support framework for optimizing forensic investigations of
cybersecurity breaches. DISCLOSE benefits from a repository
of known adversarial tactics, techniques, and procedures (TTPs),
for each of which it harvests threat intelligence information to
calculate its probabilistic relations with the rest. These relations,
as well as a proximity parameter derived from the projection of
quantitative data regarding the adversarial TTPs on an attack
life cycle model, are both used as input to our optimization
framework. We show the feasibility of this approach in a case
study that consists of 31 adversarial TTPs, data collected from 6
interviews with experienced cybersecurity professionals and data
extracted from the MITRE ATT&CK STIX repository and the
Common Vulnerability Scoring System (CVSS).

Index Terms—Cyber forensics, digital forensics, multi-stage
attacks, decision support, optimization

I. INTRODUCTION

AS adversaries advance their techniques, the impact of
cyber attacks on businesses grows [1]. The longer it takes

to discover and analyze an attack, the greater the impact on the
affected organization. Indicatively, the mean time to identify
a security breach in 2019 has been estimated to be 206 days
[2]. Naturally, this time also depends on the efficiency of the
cyber forensic investigation [3].

Consider a complex attack that consists of multiple attack
actions. When one of these is discovered, for example by ob-
serving the modification of sensitive registry keys, suspicious
network traffic patterns or the abuse of legitimate credentials,
a forensic investigation can be triggered to uncover the rest
of the attack. The sooner these remaining attack actions
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are uncovered, the lower the impact in terms of financial
or reputation loss and the better the technical and business
response of the targeted organization, especially if the attack
is ongoing [4].

Cyber forensic analysts face a number of challenges that
stem from the extensive amount of data that is being produced,
the new technologies that arise constantly and the increasing
complexity of attacks [5]. Even though there are guidelines and
general methodologies, such as [6] and [7], they focus on the
forensic soundness and general guidance on the methodology,
not on the efficiency of the investigation. The actual practical
methods followed are based on their own experience and
eagerness to update their knowledge on new technologies and
attack trends.

In practice, time is a limiting factor as to what an in-
vestigator is able to achieve given the large number and
variety of Tactics, Techniques, and Procedures (TTPs) used
by threat actors. Efficiency is an issue widely recognized by
practitioners in cyber forensics [8]. We argue that a decision
support framework based on constrained optimization can
help to increase the efficiency of the investigation process
by decreasing the duration of the investigation and taking in
consideration the likely impact of each attack action.

In this paper, we propose DISCLOSE, which is the first
data-driven decision support framework that offers these ca-
pabilities to a forensic investigator. DISCLOSE allows the in-
vestigator to navigate through the attack action space based on
evidence discovered up to that point, an available budget and
the expected benefit acquired by each available investigation
action. More specifically, DISCLOSE is the first data-driven
decision support framework for the optimization of multi-stage
cyber forensic investigations that utilizes:
• public knowledge bases of TTPs and all information

discovered in previous steps of the investigation,
• the probabilistic relations between TTPs, currently used

by threat actors, which are calculated via a threat infor-
mation exchange platform,

• a proximity parameter, which stems from the projection
of quantitative data regarding adversarial TTPs on an
attack life cycle model,

before calculating the next optimal inspection for the Defender
to accomplish.

We evaluate DISCLOSE using a case study of 9 attack sce-
narios (3 incidents and for each incident 3 different triggering
actions) that are based on real-world data gathered through:
• 6 interviews with experienced cybersecurity profession-

als,
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• the MITRE ATT&CK Structured Threat Information Ex-
pression (STIX) [9] repository, which is one of the most
popular threat intelligence knowledge bases. It utilizes
the widely known STIX language and format to make
publicly available adversarial TTPs based on real-world
observations,

• the Common Vulnerability Scoring System (CVSS).
The rest of the paper is organized as follows. Section II
presents the related work in the fields of correlation and
attribution of cybersecurity incidents, forensic soundness, and
reasoning support and investigation efficiency. Section III
presents the system model, while Section IV presents the
core methodology to generate optimal suggestions for the
investigator using the system model. Section V presents a
case study where DISCLOSE and three more policies are
applied on a set of real world TTPs and their performance is
compared and discussed. Section VI discusses the limitations
of the proposed method as well as future work, and Section
VII concludes the paper. Finally, Appendix A contains Table
IX with all the acronyms and abbreviations used in the rest of
this paper as well as their corresponding expansion.

II. RELATED WORK

Existing frameworks for assisting digital forensics can be
classified into those related to: (i) correlation and attribution,
(ii) the soundness of the forensic evaluation, and (iii) reasoning
support and efficiency. Below, we describe the most important
previous work in each category and highlight how DISCLOSE
differs or improves upon it. This section presents only those
works that are most relevant to our approach. The reader may
refer to [10], [11], [12], and [13] for further reading.

A. Correlation and attribution

Event correlation refers to the process of aggregating and
analyzing heterogeneous data from a number of different
sources with the aim of reconstructing malicious behaviors.
Event correlation differs from the classic intrusion detection
as it does not aim to simply produce potential malicious
indicators.

Milajerdi et al. have proposed HOLMES [14], which utilizes
the typical APT life-cycle and MITRE’s ATT&CK framework
to generate high-level graphs of potentially malicious events
for the investigator. The authors have created a TTP specifi-
cation to map audit log flows to TTPs and a number of noise
reduction methods to decrease the levels of false positives.
For the detection and construction of the audit log flows, they
have combined tag propagation and policies for backward and
forward analysis as per [15], [16]. However, the assumption
that all of the APT stages will be retrieved successfully,
which is what mainly drives the creation of the graph, is
not well-founded. Moreover, by considering only the TTPs in
ATT&CK, it misses the opportunity to utilize any other aspect
of the MITRE ATT&CK knowledge base. On the contrary,
while DISCLOSE uses the TTPs provided by ATT&CK, it
also utilizes the MITRE ATT&CK STIX repository in order
to extract relevant data and calculate the probabilistic relations
between those TTPs, as will be thoroughly discussed later.

Hossain et al. [17] have presented a tag-propagation graph
generation that aims to support the analyst in dealing with
the large amount of data. The authors have proposed two
new tag propagation techniques, namely tag attenuation and
tag decay, which are based on common behaviors of benign
Unix processes in order to generate a compact scenario graph
of the malicious behavior and decrease the number of false
positives. A different use of graphs in digital forensics for
attribution has been presented in [18] and [19]. The proposed
network forensics tool prototype uses a fuzzy reasoning mod-
ule based on evidence graphs in order to correlate hosts that
belong in the same attack. The prototype uses IDS alerts as
primary evidence and host logs as secondary evidence. Graph
based clustering has been used by Studiawan et al. [20] to
detect anomalies in access control logs. The proposed solution
uses an improved MajorClust algorithm on graph structures
produced by access logs and a dynamic threshold to identify
potential violations, which can then be inspected by an analyst.
The aforementioned approaches aim to detect or automatically
correlate parts of the attacks rather than help and guide the
investigator through the technical part of the investigation, i.e.
the analysis of the incident.

B. Forensic soundness

The soundness of a forensic investigation can affect both the
success of the investigation itself, i.e. mishandling evidence
may lead to their damage, as well as the ability to use the
findings of the investigation, i.e. for legal prosecutions in
a court of law. The investigation methodology has to be
reliable, repeatable and well documented [21] and follow
certain guidelines. The following works aim to assist the
investigator on performing forensic sound methodologies on a
range of different cases.

Horsman [22] has proposed the Digital Evidence Reporting
and Decision Support (DERDS) framework, which helps the
investigator assess the soundness of her inferences, assump-
tions or conclusions on each step of the investigation. A
similar approach has been presented by Beebe et al. in [23]
as a multi-tier objective framework for digital investigations.
The first tier provides more generic guidance while the rest
are more complex and specific to the investigator choices.
Both frameworks are based on a collection of guidelines
that are presented to the investigator while our approach is
a combination of data-driven methodology and cybersecurity
categorization. One commonality of our approach with the one
in [23] is that we are tailoring future suggestions on inspection
results so far.

Finally, a more technical approach that aims to ensure the
soundness of an investigation has been proposed in [24].
The authors have presented an inference system that detects
the use of anti-forensic attacks on the case data and reverts
their effects. All aforementioned frameworks of this subsection
focus on assisting or ensuring the forensic soundness of the
investigation, while DISCLOSE aims to assist the technical
part of the forensic analysis and help the investigator overcome
the technological and adversarial challenge.
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C. Reasoning and efficiency

The following works focus on either enhancing the reason-
ing process or the efficiency of an investigation. Increasing
the efficiency of an investigation refers to decreasing the time
or resources required for the investigation without negatively
affecting the objectivity and the quality.

Similarly, reasoning is the process that the forensic inves-
tigator follows to create logical links between the uncovered
evidence in an objective and logical manner. Having a robust
and sound reasoning process is a crucial part of any forensic
investigation as the opposite may lead to misinterpretations
and ultimately false conclusions. However, not all frameworks
that assist the reasoning process have the same focus or aim to
support the same types of investigation. Some may be focused
on the technical analysis part of an investigation while others
may support a higher abstraction level. A popular category of
reasoning frameworks is case-based reasoning, which includes
frameworks that aim to assist utilizing the solutions of previous
similar problems [25]. This can be achieved with the use of
predefined rules, models, previous data or a combination of the
above. Frameworks that use predefined rules are ruled-based,
while the ones that utilize past data are called data-driven.

Turnbull et al. [26] have presented a multi-ontology frame-
work for digital forensics as well as SPARQLer, a forward-
chain rule-based reasoning system that aims to assist the
investigator to move from computer-specific information to
a higher abstraction. Similarly, the authors of [27] have
presented a framework that models the initial and current
state of a system as a transition system in order to allow
the investigator to verify if a specific reasoning hypothesis
is possible on this system. Both works aim to assist a higher
abstraction level of the investigation than DISCLOSE, namely
the general reasoning process of the investigator and not the
technical analysis reasoning.

Saad and Traore [28] have proposed an ontology-based
knowledge representation framework for network forensic
investigations. The framework consists of an ontology, which
has different classes to describe network forensics domain
objects and their relations, and a reasoning system. The
ontology can be used manually by the investigator as a model-
based reasoning framework or as input to a system, which
reconstructs an attack. Nieto has proposed JUDAS, a tool
for extracting unique objects, i.e. users and devices, from
case data and correlate them using rules, additional data and
OSINT [29]. Both works propose reasoning frameworks that
are based on pre-defined rules and objects that need to be
manually populated. On the contrary, DISCLOSE provides
data-driven case-based reasoning support and combines both
data from a well-known knowledge base (or any other base
that the investigator might choose to use) and two established
cybersecurity attack life cycle models.

Horsman et al. [30] have presented CBR-FT, a reasoning-
based technique for more efficient device triage. Similarly to
our approach, CBR-FT uses a knowledge base of past cases
to calculate a similarity rating for file system paths, which
is then used to offer predictions for the triage process of
the current case. The knowledge base has to be populated

by the investigators with previous cases and some of the
input variables have to be defined by the current investigator.
CBR-FT provides a general probability for a path of a file
system to contain evidence. On the contrary, DISCLOSE
uses Tactics, Techniques, and Procedures (TTPs) instead of
paths, which allows for more flexibility and the analysis of
different data sources and mediums. Furthermore, DISCLOSE
is an interactive data-driven case-based reasoning framework,
which instead of simply providing a probabilistic ranking at
the start of an investigation irrespective of the investigation
itself as CBR-FT, it takes in consideration the progress of
the investigation and re-calculates the probabilistic relations
between TTPs at each step.

Likewise, Nassif et al. in [31] have proposed the use of
clustering techniques to tackle the problem of processing large
amount of unstructured documents during a forensic inves-
tigation. The authors have evaluated a variety of clustering
algorithms and identified hierarchical algorithms as the best
in terms of time and effectiveness. Although this work aims
to decrease the investigation time and increase the efficiency,
similarly to DISCLOSE, it does it in a different way by
proposing a tool that decreases the required time of crucial
task of the technical analysis.

De Braekt et al. [32] have presented a framework that—
similarly to our work—aims to increase the efficiency of a
forensic investigation. While [32] aims to achieve this by
providing guidelines to the investigator on how to streamline
the workflow and make more efficient use of the available
resources, DISCLOSE uses known TTPs and previous data to
guide the investigator on each step. An approach much more
similar to ours has been presented in [33]. While our aim is to
prioritize the inspections of the attack actions to increase the
efficiency of the investigation, the authors focus on database
auditing prioritization which is modelled as a Stackelberg
game between the adversary and the auditor. Evaluated in
two real medical alert datasets, the proposed approach outper-
formed traditional non-game-theoretic approaches. While the
authors optimize the auditing policy of the auditor as a single
process, DISCLOSE works at a step by step basis utilizing
the previous inspections performed and their results to offer
optimized suggestions to the investigator.

Finally, evidence graphs have been proposed in the past in
order to support an investigation and increase its efficiency.
Liu et al. [34], [35], [36] have proposed the use of evidence
graphs for broader context to the investigator, while Barrère
et al. [37] have used core graphs, ‘condensed’ or ‘induced’
versions of attack graphs for increased efficiency. Contrary to
the aforementioned approaches, which all use vulnerabilities to
model the investigation, DISCLOSE uses TTPs from MITRE
ATT&CK. This offers a more pragmatic and representative
approach, as incidents under investigation are modelled against
the current real adversarial techniques, which is the state-of-
the-art in the cybersecurity industry.

In conclusion, although a number of frameworks for digital
forensics have been proposed, none had the same aim or
followed the same method as DISCLOSE. More specifically:
• All the reviewed methods aimed to support the investiga-

tion and increase its efficiency in a different way, either
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by presenting a set of guidelines, a reasoning system or
an automated correlation tool.
Contribution 1: No related work has presented a frame-
work like DISCLOSE that follows and supports the
investigation process in a stepwise manner by suggesting
possible attack actions to be analyzed.

• Previous works present general guidelines/suggestions to
the user and do not tailor it either to the investigation
or its progress. Contribution 2: DISCLOSE ingests the
feedback of the investigator at the beginning and at
each step of the investigation and uses it to tailor future
suggestions based on the ongoing results.

• All previous reasoning frameworks model a single attack
instance as a vulnerability which is not representative of
the current threat landscape, as (a) many attack actions do
not include the exploitation of a vulnerability, (b) many
attack actions include more than one vulnerability, and
(c) a vulnerability is not able to capture the adversarial
behavior and contextual information but rather just a
weakness on the system. Contribution 3: DISCLOSE
improves upon this by using adversarial TTPs that align
with the current threat landscape allowing for a represen-
tative modelling of the investigation and increasing the
applicability of the framework to a wider range of cases.
A TTP is more abstract and has the ability to describe the
adversarial behavior, its objective and execution. For this
reason, the use of TTPs allows DISCLOSE to overcome
shortcomings such as zero-day vulnerabilities.

• Even though some works utilized the MITRE ATT&CK
TTPs, similarly to DISCLOSE, they do not utilize any
other aspect of the knowledge base, such as the attributes
and relationships contained in it.
Contribution 4: DISCLOSE improves on this by using
the ATT&CK STIX repository to extract a range of fields,
which are used to calculate the probabilistic relations
between TTPs providing data-driven decision support to
the investigator.

• Contribution 5: Finally, contrary to previous works DIS-
CLOSE does not simply use a data-driven approach but
combines some of the fields extracted from the ATT&CK
STIX repository with a well-known attack life cycle
model. Thus our framework is not simply data-driven but
also aware of the internal structure of an incident, which
allows it to optimize its suggestions even further as will
be shown in Section V.

III. SYSTEM MODEL

We assume that a digital forensic investigator, henceforth
called the Defender, has been assigned by an organization
to analyze a cyber incident after one or more signs of an
intrusion have been detected. Her goal is to reconstruct the
steps performed by an adversarial entity referred to as the
Attacker. To achieve this, the Defender must collect and
analyze data in order to uncover evidence that will lead to the
disclosure of as many attack actions performed by the Attacker
as possible. This may lead to the potential attribution of the
Attacker and enable the organization to strengthen its defenses

preventing any further damage and obtaining evidence to take
legal actions against the Attacker.

A. Attack actions and inspections

The organization has detected an incident, but it is not aware
of which attack actions have been executed. The Defender’s
goal is to uncover these steps. The Defender knows that the
attack actions used by the Attacker must be a subset of all
available attack actions A. Let AP ⊂ A denote the set of
attack actions performed by the Attacker. With the exception
of at least one attack action, which as mentioned earlier has
triggered the investigation, these are unknown to the Defender
at the beginning of the investigation, but they are gradually
discovered as the Defender takes successful inspection actions.
We assume that the Defender has a set of available inspection
actions (henceforth called inspections) to choose from and
that there is one-to-one correspondence between attack actions
and inspections, i.e., each of the inspections is capable of
revealing one and only one attack action and this attack
action can be revealed only by that particular inspection. Thus,
the Defender’s problem can be formulated using only attack
actions, as each attack action that has potentially be performed
by the attacker equals to an inspection action of this attack
action for the Defender.

We also assume that the efficacy of any inspection in
disclosing whether the associated attack action was part of
the incident equals one, i.e. the probability of successfully
discovering if the attack action was performed or not equals
one, as considering partially efficient inspections is out of
scope of this paper. In other words, whenever the Defender
inspects an attack action, she always successfully discover if
the attack action is part of the incident or not. The investigation
process takes place in a stepwise manner. In each step of the
investigation process, the Defender chooses an attack action
and performs investigation to discover whether this attack
action was executed or not as part of the incident. We denote
by Y(k) ⊂ A the set of attack actions that the Defender
has discovered until step k and by N (k) ⊂ A the ones
that were found as non-executed. Note that Y(k) ⊆ AP and
N (k) ⊆ A \ AP .

1) Inspection actions analysis: For every attack action
i ∈ A, there is a cost Ci of undertaking the inspection that
discovers this step. This cost expresses the resources that the
Defender has to spend to undertake it. For example, this could
represent the time required for the inspection or hardware and
software resources, or a combination of them. The inspection
cost increases with the complexity of the corresponding attack
action and the heterogeneity of the data sources required to
perform the inspection, while it is lower when there are tools
available to automate aspects of the inspection.

Similarly, for every attack action i ∈ A, we define Bi as
the benefit of the Defender when it is discovered that i was
executed during the incident. We consider Bi to be gained
only when attack action i was actually executed during the
investigated incident. Our model can also capture loss that
derives from not discovering an executed attack, which is
reflected on the collected benefit; but we choose not model this
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explicitly for the sake of simplicity. Moreover, the loss from
inspecting a non-executed attack action is indirectly captured
in our model, as spending budget on non-executed attack
actions may lead to exhausting the budget before uncovering
all the performed attack actions.

This benefit expresses the value to the organization from: (i)
recovering after the incident, and (ii) increasing their defenses
to prevent future damages caused by similar incidents. In
the first case, uncovering the exploitation of a vulnerability
might cause the organization to patch it or a spear-phishing
email with a malicious attachment might motivate better staff
awareness training. In the second case, uncovering the data
exfiltration of confidential client data might allow the orga-
nization to do better damage control and therefore minimize
both financial and reputational losses.

TABLE I: List of symbols.

Symbol Description

Constants

A set of all possible attack actions

D set of all previous incidents

Ci inspection cost of attack action i

Bi benefit from inspection of attack action i

R investigation budget

T attack actions dependency table

ni number of previous incidents with attack action i

nij number of previous incidents with both attack actions i, j

dij distance between attack actions i and j

Choice Variables

Y(k) set of executed attack actions inspected until step k

N (k) set of attack actions inspected until step k but not executed

Variables

AP set of attack actions taken by the Attacker

C(k) overall investigation cost until step k

B(k) overall investigation benefit until step k

P
(k+1)
i payoff of inspection step i at step k + 1

Γ(k) investigation’s results vector at step k

w(k) proximity vector at step k

C(k) overall investigation cost until step k

B. Attack actions dependencies

We assume that the Defender has access to a representative
number of past incidents (i.e., public dataset of real-world
cyber incidents). For each past incident, we know exactly
which attack actions were executed and which were not. We
let D denote the set of incidents (i.e., our dataset). For each
attack action i ∈ A, we let ni denote the number of incidents
that attack step i appears in: ni = | {I ∈ D | i ∈ I} |.

Further, given i, j ∈ A, we let nij denote the num-
ber of incidents in which both i and j appear: nij =

| {I ∈ D | i ∈ I ∧ j ∈ I} |. We then define and approximate
the conditional probability for j ∈ AP given that i ∈ AP as

tij = Pr [j ∈ AP | i ∈ AP ] = (1)

=
Pr [j ∈ AP ∧ i ∈ AP ]

Pr [i ∈ AP ]
≈ nij

ni
. (2)

By analyzing previous incidents, we can calculate all the
conditional probabilities between each pair of attack actions.
We assume that all incidents follow a probability distribution,
which can be obtained from historical data using past incident
reports to calculate their empirical probabilities. To aggregate
these probabilistic connections of attack actions, we define
the dependency table T =

[
t∗1 t∗2 . . . t∗|A|

]
= [tij ] ∈

[0, 1]|A|×|A|. The dependency table is created and constantly
populated from forensic reports and knowledge bases, such as
MITRE [38] and SANS1, formed by previous incidents.

IV. THE FRAMEWORK

In this section, we present the core methodology of DIS-
CLOSE, which allows it to generate optimal attack action
suggestions for the investigator.

A. Problem Formulation

The Defender’s goal is to maximize the benefit collected
during the investigation, that is, maximizing

∑
i∈Y(k) Bi,

without exceeding a given budget R, that is, ensuring that∑
i∈Y(k) ∪N (k) Ci ≤ R. Note that while the Defender knows

in advance which sets of investigation actions are feasible with
respect to the budget, she does not know which investigations
will be productive since it does not know which attack
actions were executed. Thus, the Defender has to maximize
its expected benefit from the investigation.

In each investigation step, the Defender must select an
inspection that she has not selected before. After each step
k of the investigation, the Defender derives Y(k) and N (k).
For each i ∈ Y(k), the Defender can use the information
provided by ti∗ to estimate the probabilities of all other non-
inspected attack actions. These probabilities are leveraged
by the Defender in the algorithm used to select the next
inspection.

B. Investigation

To represent these probabilities, we define the investigation
results vector Γ, which holds the probabilities of inspections
to discover an attack action in the next investigation step.
We denote by Γ(k) = [Γ

(k)
j ] the state of the vector Γ at

the investigation step k, where Γ
(k)
j is the probability of

inspection j to discover an attack action given all attack actions
discovered until step k. If j ∈ A \

{
Y(k) ∪N (k)

}
, then

Γ
(k)
j ∈ [0, 1] else Γ

(k)
j = 0 as j has already been selected

by the Defender during the first k investigation steps.
The Defender can leverage the information stored in Γ(k);

but in order for the information to be meaningful, the De-
fender must update Γ(k) after each inspection. In essence,

1https://www.sans.org/



A. NISIOTI ET AL. 6

Attack Life Cycle
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Fig. 1: Distance of attack actions when positioned on attack life cycle. dij refers to the distance between attack action i and
j, while diz refers to the distance between attack action i and z. The smaller the distance, the more credible the probabilistic
information that i provides for j.

Γ(k) 6= Γ(k+1) if and only if the inspection taken in step
k + 1 discovers an attack action. A straightforward approach
to update Γ(k) is to assume that the Defender compares the
value that is already stored in the vector with the corresponding
value in the dependency matrix and keeps the maximum, as
follows:

Γ
(k)
j =

0, j ∈ {Y(k) ∪N (k)}

max {Γ(k−1)
j , tij}, otherwise

(3)

where i is the last successfully discovered attack action.
The aforementioned approach has a shortcoming that stems

from the fact that the criteria for updating vector Γ(k) is not
based on any digital forensic property but rather simply on
keeping the maximum value. This is true as table T holds
the probabilistic relations between attack actions that stem
from the observation of past incidents, but does not contain
their conceptual relationships with regards to the structure
of an attack. The structure of an attack refers to the logical
organization of the attack actions within an incident. As it is
widely accepted, attack actions within an incident do not hap-
pen in a random fashion, but instead follow a specific attack
life cycle [39]. For instance, the Spear-phishing Attachment
through email and the Replication Through Removable Media
techniques are both used at the early infection stage of an
incident thus being very close to each other on the attack life
cycle [38]. Similarly, the Pass-The-Hash lateral movement and
the Credential Access are both positioned on the later stages
of the attack life cycle and are close to each other [38]. On the
other hand, the Spear-phishing Attachment through email and
the Pass-The-Hash lateral movement are positioned far away
from each other on the attack life cycle.

Therefore, through the course of an incident, some attack
actions are closer than others and thus more relevant. In other
words, the closer two attack actions are the more credible
is the probabilistic information they can provide for each
other. For instance, in the aforementioned example Spear-
phishing Attachment through email is closer to the Repli-
cation Through Removable Media than Pass-The-Hash. Let
us now consider that we have discovered the Spear-phishing
Attachment through email and the Pass-The-Hash, and the
probabilistic value for Replication Through Removable Media

that the Spear-phishing Attachment through email provides
is smaller than the one the Pass-The-Hash provides. Based
on the attack life cycle models, it is clear that both the
Spear-phishing Attachment through email and the Replication
Through Removable Media are TTPs that are used for the same
purpose, i.e. the initially infection. Moreover, they are least
likely to be used together in the same incident, which will be
reflected on table T. Based on the simple approach previously
presented in (3), which does not take in consideration any
attack life cycle model, the Defender would mistakenly keep
the larger value for the Replication Through Removable Media.
This could potentially lead to the inspection of this action and
unnecessary spending of the budget on an action that is less
likely to have happened.

For this reason, we introduce a proximity parameter that
utilizes the distance between two attack actions in the attack
life cycle model. This parameter will be used on each step k
when updating vector Γ(k). We define the distance dij between
two attack actions i and j as their distance if we positioned
them on an abstract attack life cycle, as presented on Figure 1.
If attack action i is positioned on the first phase of the attack
life cycle and attack action j is positioned on the second phase,
their distance would be dij = 1. Similarly, if attack action z
is positioned on the N -th phase of the attack life cycle, the
distance from i would be diz = N−1. The smaller the dij the
more credible is the probabilistic information that i provides
for j, i.e. tij . Therefore, the probabilistic information that j
provides for i is more credible than the one provided by z,
because dij < diz . It is worth noting that this does not affect
in any way the contents of the dependency table T, it just
affects the way they are prioritized during the update of Γ(k).

We now revise the previous update process based on the
above, so that instead of prioritizing larger values, it prioritizes
ones that are closer. Similar to vector Γ(k), we define the
proximity vector w(k) that at any step k holds for each j the
distance from the attack action that provided the value Γ

(k)
j .

Essentially w
(k)
j shows how trusted is the value Γ

(k)
j . After

a successful inspection of an attack action i, we choose the
probability that is most trusted based on the corresponding
distance value. If for an attack action j the current value
w

(k−1)
j in the proximity vector is greater than the dij we set

Γ
(k)
j = tij . On the other hand, if w(k−1)

j is smaller than dij we
keep Γ

(k)
j = Γ

(k−1)
j . Finally, if the two values are equal, we
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choose to keep the maximum of the two as they are both of
the same proximity. Therefore each vector Γ(k) can be updated
as:

Γ
(k)
j =



0, j ∈ {Y(k) ∨N (k)}

tij , dij < w
(k−1)
j

Γ
(k−1)
j , dij > w

(k−1)
j

max {Γ(k−1)
j , tij}, otherwise

(4)

After updating vector Γ(k) we update also the distance
vector w(k) in a similar way. If Γ

(k)
j = Γ

(k−1)
j then w

(k)
j =

w
(k−1)
j . Likewise, if Γ

(k)
j was updated through the dependency

matrix T then w
(k)
j would be updated with the relevant

distance value dij .

C. Optimal inspection actions

We define the aggregated cost of the entire investigation
until step k as:

C(k) =
∑

h∈{Y(k)∨N (k)}

Ch. (5)

Likewise, the overall benefit of the investigation until step k is
B(k) =

∑
h∈Y(k) Bh, as the Defender gains the benefit value

only from inspecting attack actions that have been performed
by the Attacker. In each step k, in order to choose the next
inspection step of the investigation, we calculate the expected
payoff of each available inspection and choose the action that
maximizes it. We denote by P

(k+1)
j , the expected payoff of

inspection j at step k + 1 and we define this as P
(k+1)
j =

Γ
(k)
j

Bj

Cj
, ∀j /∈ {Y(k) ∨N (k)}.

Algorithm 1 Action Selection Function

1: Input: G,Γ(k)

2: function INSPECTIONSELECTION(R,Γ(k))
3: selected← arg max

∀x∈Γ(k)

Px

4: while (C(k) + Cselected) > R do
5: Γ

(k−1)
selected ← 0

6: if (Γ(k) = 0) then
7: selected← −1
8: break
9: end if

10: selected← arg max
∀x∈Γ(k)

Px

11: end while
12: return selected
13: end function

However, as stated in the formulation of the problem, there
is a constraint that affects the choice of the Defender in each
step. During any investigation, the Defender has a fixed budget
of resources R (e.g., time) that can be utilized. Thus, the
cost of the chosen inspection cannot exceed the remaining
budget of the investigation. From the beginning until the end

Algorithm 2 DISCLOSE

1: Input: attack action z that triggered the investigation,
R,C,B,d, c

2: Initialization: Γ(0) ← tz; w(0) ← [dczcj ]; P (0) = 0

3: while (AP ⊆ Y(k) AND Γ(k) 6= 0) do
4: selected← INSPECTIONSELECTION(R,Γ(k))
5: if selected=-1 then
6: break
7: end if
8: C(k)← C(k) + Cselected

9: Γk
selected ← 0

10: if selected ∈ A then
11: Append selected to Y(k)

12: B(k + 1)← B(k) + Bselected

13: P (k + 1)← P (k) + Bselected

14: for j ← 1, |A| do
15: if j ∈ Y(k) then
16: Γ

(k)
j ← 0

17: else if dcselectedcj < w
(k−1)
j then

18: Γ
(k)
j ← tselectedj

19: w
(k)
j ← dcselectedcj

20: else if dcselectedcj > w
(k−1)
j then

21: Γ
(k)
j ← Γ

(k−1)
j

22: w
(k)
j ← w

(k−1)
j

23: else
24: Γ

(k)
j ← max{Γ(k−1)

j , tselectedj}
25: w

(k)
j ← w

(k−1)
j

26: end if
27: end for
28: else
29: Append selected to N (k)

30: end if
31: end while

of the investigation, the Defender chooses inspection actions as
described above with the aim of maximizing the overall benefit
given the budget constraint. The investigation is terminated
when: (i) budget is depleted, (ii) or there are none available
inspection actions. The DISCLOSE framework, which has
been presented in this section, can be found in Algorithm
2, while the attack action selection process is depicted as a
separate function in Algorithm 1 for readability reasons.

V. CASE STUDY

This section presents a case study where DISCLOSE is
assessed using three attack scenarios, which are based on the
TTPs of the MITRE ATT&CK knowledge base and corre-
sponding probabilistic relations. These relations originate from
publicly available reports [38], which have been processed and
made available through the MITRE ATT&CK STIX reposi-
tory. First, we present the attack action space A and data for
each attack action i that includes: (i) its probabilistic relation
tij with the rest of the attack actions, (ii) its corresponding cost
Ci and benefit Bi, (iii) as well as the proximity parameter
dij . Then, we define the attack actions in AP , which were
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TABLE II: Subset of TTPs used in the case study labeled with the original IDs from the MITRE ATT&CK framework.

# Attack action # Attack action # Attack action

0 Credential Dumping (T1003) 11 Registry Run Keys / Startup Folder (T1060) 22 Credentials in files (T1081)

1 Custom C&C Protocol (T1094) 12 Scripting (T1064) 23 Remote System Discovery (T1018)

2 Data from Local System (T1005) 13 Spearphishing Attachment (T1193) 24 Windows Remote Management (T1028)

3 Data from Network Shared Drive file (T1039) 14 Spearphishing Link (T1192) 25 Brute Force (T1110)

4 Drive-by Compromise (T1189) 15 Standard Application Layer Protocol (T1071) 26 External Remote Services (T1133)

5 Exfiltration Over Alternative Protocol (T1048) 16 System Service Discovery (T1007) 27 Network Service Scanning (T1046)

6 Exfiltration Over C&C Channel (T1041) 17 User Execution (T1204) 28 Create Account (T1136)

7 Network Share Discovery (T1135) 18 Replication Through Removable Media (T1091) 29 Web Shell (T1100)

8 New Service (T1050) 19 Data Encrypted for Impact (T1486) 30 Exploit Public-Facing Application (T1190)

9 Pass the Hash (T1075) 20 Virtualization/Sandbox Evasion (T1497)

10 PowerShell (T1086) 21 DLL Search Order Hijacking (T1038)

performed by the Attacker against the organization, during the
three different attack campaigns.

The scope of this is to apply DISCLOSE and measure its
performance as well as compare it with CBR-FT [30], which
was firstly mentioned in Section II, and a baseline approach.

The baseline approach is a version of DISCLOSE that
does not take into consideration any attack life cycle model
and thus does not use the proximity parameter, which was
introduced in Section IV. In order to compare DISCLOSE with
a past related framework from the literature we have chosen
to implement two different version of CBR-FT, mentioned in
Section II. Both are reasoning frameworks, that aim to focus
the technical part of the analysis of an investigation and utilize
past incidents.

However, the original CBR-FT presented in [30] differs in
some ways from DISCLOSE thus we chose to create two
versions of CBR-FT that are inspired but not identical to the
original. These follow the same procedures and formulas and
they are also comparable to DISCLOSE. More specifically, we
have identified the following differences between DISCLOSE
and CBR-FT and coped with them in the following ways:
• CBR-FT aims to help the investigator by providing a list

of popular filesystem paths that might contain evidence.
Similarly, DISCLOSE aims to suggest to the investigator
attack actions to be inspected that might contain and re-
veal evidence. Therefore the original CBR-FT is suitable
for filesystem investigations while DISCLOSE does not
utilize only a specific type of evidence (filesystem, mem-
ory dumps, network traffic etc). To bridge this difference,
we simply treated the attack actions as paths but kept the
logic and formulas used by CBR-FT.

• CBR-FT does not formalize a multistage investigation,
i.e. does not use a stepwise approach to follow the
investigation, but can still be used for one. Therefore, we
utilized the CBR-FT formula to calculate the probabilities
at the start of the investigation and at each step we
allowed the Defender to select the attack action with the
highest probability until the end of the budget.

• Finally, we decided to implement two versions of CBR-
FT, where the first (CBR-FT v1) utilizes the trigger action

that DISCLOSE uses, while the second (CBR-FT v2) one
does not, in order to allow more comparison. Therefore,
we respected this characteristic and implemented CBR-
FT without a cost benefit element as well, to stay as close
as possible to the original framework. framework.

The main purpose of this case study is to demonstrate the
applicability of DISCLOSE on an investigation, to advise the
Defender on optimal selection actions to take during the case
investigation.

A. Attack action space

To evaluate DISCLOSE, we use a subset of TTPs from
the MITRE ATT&CK Enterprise matrix as the attack space
A, presented in Table II. This is a representative manage-
able in size sample of the available TTPs that is used for
demonstration and evaluation purposes. The usage of the
whole TTP space was avoided for simplicity and readability
reasons. Despite this being a small scale case study choosing
an optimal inspection action during the dedicated time of the
investigation is not trivial. The evaluation of the objective
function that solves the investigator’s optimization problem,
i.e. the maximization of their potential payoff, makes this task
significantly complex. This is because a number of variables,
such as the number of available reports, TTPs used by threat
actors, relationships between those TTPs etc., change daily.

For the Defenders to be able to make informative and
optimal choices, they would need to be able to keep up with
these changes. However, the large amount of data that can
must be considered during the investigation’s decision making
process, the complexity of their processing and the fast pace
of the aforementioned changes make the task unachievable.
For instance, it is impossible for a human to ingest all the
new data that are being made available daily or to be aware
and research every technique used by threat actors. Even by
taking in consideration the specialization that a Defender may
have, i.e. only work with Unix systems, this is an extremely
hard task. This is simply due to the fact that a human cannot
ingest and process a large amount of data and variables as
efficiently as a computer. In order to help Defenders overcome
these challenges, DISCLOSE automated the aforementioned
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tasks uses a data-driven approach to ingest and process all the
necessary data in order to offer guidance and allow for faster
and more efficient investigation.

B. Dependency matrix

As presented in Section III, one of the main components of
DISCLOSE is the dependency matrix T, which contains the
probabilistic relationships between the available attack actions.

In order to calculate the probabilities of the the dependency
matrix T, we have utilized the STIX 2.0 GitHub repository2

of the ATT&CK knowledge base to collect the relationship
objects for each TTP and correlate them. More specifically,
MITRE has made available through their TAXII 2.0 server
and STIX 2.0 GitHub repository all the information that they
collect and process on adversarial TTPs and APT groups.
Using the STIX 2.0 standardized language they have created
STIX Domain Objects (SDOs) for APT group, TTPs, software
etc. Each object contains information such as name, reference
IDs and a number of object specific fields. For example, a
technique SDO has fields for the platform that this TTP can
be used on, required permissions etc, while a group SDO has
a field for known aliases. SDOs are “connected” with other
SDOs using STIX Relationship Objects (SROs) that consist of
at least three mandatory fields: relationship type, source ref
and target ref. For instance, if a TTP has been observed being
used by a group, there will be a SRO connecting the TTP SDO
to the group SDO, which, except from the three main fields,
will also contain a list of publicly available reports that support
this relationship.

To access this information, we have developed a number
of Python scripts making use of the python-stix23 library,
which allows users to query either a TAXII 2.0 server or a
STIX 2.0 GitHub repository. We firstly, constructed queries to
retrieve all the available TTP SDOs and for each of them all
the corresponding SROs. We then extracted from each SRO
the available report names and URLs and created a dictionary
of TTPs and the reports they are referenced in. Finally, using
this, we correlate the TTPs and create our dependency table
using the corresponding formula for tij from Section III. For
readability reasons, the contents of the dependency table, along
with the rest of the evaluation data, can be found in the relevant
repository4.

We note that each inspection of an attack action i does not
equal to a single action for the Defender, as this would be
unrealistic. On the contrary it often includes the inspection of
one or more data sources while searching for evidence of the
same malicious action. This does not affect DISCLOSE, as
we model each attack action as a TTP and thus the inspection
of this attack action includes all activities related its analysis.
For instance, to uncover evidence for the attack action 18,
“Replication Through Removable Media”, the Defender may
inspect three different data sources namely: (i) events from
process monitoring, (ii) a copy of the registry of the victim’s
computer, (iii) and events from monitoring file access within

2https://github.com/mitre/cti
3https://github.com/oasis-open/cti-python-stix2
4https://github.com/isec-greenwich/disclose

removable media devices, such as USBs. Ideally, the Defender
should inspect all three sources in order to properly validate
her findings.

This case study assumes that the victim organization collects
the following data on an every day basis: (i) events by mon-
itoring processes with command line (cmd) logging enabled,
(ii) network connections, (iii) registry changes, (iv) PowerShell
usage, (v) the access of crucial utilities in each computer in
the infrastructure, (vi) network flow information as well as
vii) a number of security event IDs from the Active Directory.
Moreover, we assume that the organization has given to the
Defender access to the victim computer, for the purpose of
this investigation.

C. Proximity parameter
In this case study, we have chosen to calculate the prox-

imity parameter dij , which was presented in Section IV, by
combining the Cyber Kill Chain [4], which is one of the
most well-known and accepted attack life cycle models, and
the categories provided for each TTP by MITRE ATT&CK.
MITRE splits their TTP categories and the TTP themselves
under three different matrices: PRE-ATT&CK, Enterprise,
Mobile and ICS [38]. The PRE-ATT&CK matrix contains
adversarial activities that take place outside the infrastructure
of the organization before the attack and are related to its
preparation. This may include activities (TTPs) such as infor-
mation gathering and preparation and testing of the adversarial
infrastructure. The Enterprise matrix contains activities (TTPs)
used by adversaries against enterprise networks during the
attack campaign and covers most popular operating systems
and platforms. Finally, the Mobile matrix contains TTPs
against mobile devices while the ICS matrix is focused on
Industrial Control Systems. The matrix that is relevant and
used in the rest of this paper is the Enterprise, while the other
three are considered out of scope.

The TTP categories in the Enterprise matrix are5: Initial
Access, Execution, Persistence, Privilege Escalation, Defense
Evasion, Credential Access, Discovery, Lateral Movement,
Collection, Command and Control, Ex-filtration and Im-
pact. Similarly, the Kill Chain phases are: Reconnaissance,
Weaponization, Delivery, Exploitation, Installation, Command
and Control and Actions on Objectives. Table III presents
the mapping of the MITRE TTP categories on the Kill
Chain phases. Essentially, each MITRE TTP Category, and
thus the TTPs that fall under this, is mapped to the Kill
Chain phase that is used for. For instance, the Initial Access
category is mapped to the Delivery phase as it contains TTPs
that enable the Attacker to deliver malicious software to the
victim infrastructure and penetrate it. The first two kill chain
phases, namely Reconnaissance and Weaponization, which are
represented by the MITRE PRE-ATT&CK matrix, are greyed
out because as explained are out of the scope of this paper.

D. Cost-benefit parameters
Table IV presents the benefit Bi and cost Ci values for each

attack action i. Here we consider that the benefit depends on

5https://attack.mitre.org/techniques/enterprise/



A. NISIOTI ET AL. 10

TABLE III: MITRE ATT&CK categories mapped to kill chain phases with greyed out boxes corresponding to phases and
categories that are out of DISCLOSE’s scope.

Cyber Kill Chain Phases

Reconnaissance &

Weaponization
Delivery Exploitation Installation Command &

Control
Actions on Objectives

AT
T

&
C

K

PRE-ATT&CK Initial Access Execution

Defense Evasion

Persistence

Execution

Command and

Control

Credential Access

Discovery

Collection

Exfiltration

Lateral Movement

Privilege Escalation

Impact

Execution

TABLE IV: Calculated cost Ci and benefit Bi for each attack action i in the case study of this paper.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bi 47 63 71 71 75 71 71 33 61 78 88 55 88 88 68 63 33 47 36 57 36 53 47 33 78 72 74 33 63 64 65

Ci 8 8 6 5 6 8 7 5 3 7 7 3 7 5 5 6 5 3 5 6 7 9 5 5 7 4 7 6 6 5 7

the severity of the attack action that is uncovered. As such,
the values of the benefit vector have been calculated using the
Common Vulnerability Scoring System (CVSS) 6.

CVSS is an publicly available framework that enables
experts to access the characteristics and severity of software
vulnerabilities and it consists of three metrics: Base, Temporal,
and Environmental. In this paper we use the Base Score for
computing the benefit value Bi of each attack action, but the
rest of the metrics could be potentially used by investigators
to personalize the values to a specific victim organization, as
discussed later in Section VII.

In more detail, for each attack action we input its character-
istics, such as the required privileges or user interaction, the
vector of the action or its effect on each of the confidentiality,
integrity and availability (CIA) triad properties, to the CVSS
Base Score Calculator to obtain the relevant value. This value
then reflects the severity of a TTP or a vulnerability if realized
by the Attacker. For instance, attack action 6 (from Table II)
has a CVSS Base Score B6 = 71 as it uses the network as
the attack vector to ex-filtrate the data, does not necessarily
require high privileges or user interaction and affects both the
confidentiality and the integrity of the data. Here it should
be noted that although the Attacker aims to compromise the
confidentiality of the data, they also unintentionally affect
their integrity because just accessing any file they change the
relevant timestamps.

Furthermore, in the absence of a standardized metric that
can be used to valuate the cost Ci of an attack action, the
cost values have been assigned using a two-phase interviews
process of practitioners, similarly to [22] and [30]. During
the first phase, six structured interviews were conducted with
experienced cybersecurity professionals to identify the criteria
to be used for the cost valuation as well as the rating scale.

6https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

A range of different cybersecurity expertise were chosen for
the interviews in order to acquire indicative values for the
cost Ci. More specifically, the professionals chosen were: (i)
one digital forensic expert, (ii) one penetration tester, (iii) one
security consultant, (iv) two Security Information and Event
Management (SIEM) experts and (v) one academic in incident
response and digital forensics.

Further information regarding the background and experi-
ence of each interviewee can be found in Table V.

The criteria that were identified from the interviews were (a)
the analysis type, i.e. the level of automation that the available
tools provide for the analysis of a specific attack action, and
(b) the analysis complexity, which is affected by the technical
difficulty level of the analysis, the amount of data and the
number of different data sources to be examined. Moreover, a
rating scale from one to ten was chosen as a smaller scale was
not able to represent properly the cost differences between the
available attack actions.

At the second phase, cybersecurity practitioners were asked
to rate the analysis cost for each attack action in a scale
of one to ten the identified criteria were used in a second
round of interviews based on the previously identified criteria.
The participants’ answers were in all cases either identical
or no more than two values apart, which showcase that the
cost values collected are indicative as the experts opinions
converge. The results of this round can be found in Table IV.

E. Incidents overview

For the purposes of this case study we have chosen to
evaluate all the selected methods against three incidents.
Each incident consists of attack actions from Table II. We
have chosen incidents that are representative of the current
threat landscape by utilizing the data we have acquired from
the MITRE ATT&CK Repository in order to understand the
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TABLE V: Background information of experts interviewed for
gathering the cost values Ci used by DISCLOSE.

# Job Title Main Duties Experience
(Years)

1 Security Operations
Advisor

Strategic advisory on SecOps 12

2 Digital Forensics
Expert

DFI chapter leader for Advisory
firm

20

3 Senior Lecturer in
Incident Response
& Digital forensics

Research, Consulting & Teaching
in Incident Reponse / OWASP
Dorset Chapter Leader

13

4 Enterprise Security
Architect

Review/deploy of Security Archi-
tectures, PoC of identified solu-
tions, Security controls mapping

14

5 Senior Red Team
Analyst

Intelligence-led and objectives-
focused adversarial emulations.
OSINT, social engineering, C&C,
post-exploitation, physical attacks

10

6 Associate security
consultant

Penetration testing, reporting and
client scoping

2

popularity of each TTP and its usage. However, we did not
want to evaluate the performance of the selected methods
simply against the most common incidents and TTPs, but also
against less common but impactful ones. We would like to
see how the methods would perform against an incident that
includes TTPs that may not be amongst the most popular
but still are highly correlated with the rest of the incident’s
attack actions. Essentially this means that maybe a TTP is not
very popular in general, but it is performed with very high
probability after or before another TTP that has already been
uncovered.

The first cyber incident in this case study consists of a subset
of the attack actions A(1)

P that were presented in V-A. More
specifically, we assume that A(1)

P ={13, 17, 12, 10, 15, 8, 2,
6}.

Initially the Attacker crafts and sends a spearphising email
(A(1)

P1 = 13) to one of the employees of the target organization.
The spearphising email contains a malicious Word (docx) file
with a PowerShell payload that will be executed through the
exploitation of a Microsoft Office vulnerability when the file
is opened. When the employee receives the email, downloads
the malicious attachment and opens it, the payload is executed
(A(1)

P2 = 17). This allows a PowerShell script to run, which
initiates a connection from the victim to the Attacker and
therefore creates a channel of communication, i.e. a command
and control (C&C) channel (A(1)

P3 = 12 and A
(1)
P4 = 10).

The Attacker then uses the C&C channel (A(1)
P5 = 15) to

execute a number of malicious PowerShell commands and
scripts. Next, a new service is created through the established
C&C channel as a persistence mechanism for the Attacker
(A(1)

P6 = 8). Finally, the Attacker uses the C&C channel to
locate (A(1)

P7 = 2) and ex-filtrate the discovered data from the
victim computer (A(1)

P8 = 6).
For space reasons, even though DISCLOSE and the rest

of the selected frameworks will be used against three attack
scenarios in this section, we will only present here in detail

the description for one of them. Similarly, the other two attack
scenarios are A(2)

P ={14, 17, 10, 12, 15, 11, 23, 0, 24} and
A(3)

P ={30, 29, 15, 10, 12, 0}.

F. Evaluation

In this subsection, we evaluate DISCLOSE and compare its
performance to the rest of the selected policies, in two ways:
(i) using a range of budget values and (ii) using a fixed budget.
This allow us to compare the four methods in a higher level
and a more detailed way.

In both cases, all policies are evaluated against all three
incidents, i.e. A(1)

P , A(2)
P and A(3)

P . For each incident, we run
every policy three times, each time using a different trigger
action Y(1).

1) Evaluation against different budget values: Figure 2
presents the performance of all four policies, DISCLOSE,
baseline, CBR-FT v1 and CBR-FT v2, against different budget
values. Essentially, we have allowed each policy to run without
a budget limit until all performed attack actions are revealed.
Each of the four subfigures corresponds to one of the four
policies and depicts its performance in all nine performance
instances, i.e. three incidents with three different trigger ac-
tions. The group legend under the figure depicts which line
corresponds to each pair of incident and trigger action. Each
incident is depicted in a different color and each trigger action
uses a different line. A(1)

P is depicted in blue, A(2)
P in green and

A(3)
P in red. The first trigger of each scenario is depicted with

a dashed line, the second with a sold line and the third with
a dotted line. For instance, for all policies the green solid line
represents DISCLOSE’s performance in the second incident
when the trigger action is attack action 15, which is noted on
the legend as A(2)

P ,Y(1) = {15}.
Remark 1: As can be seen in all cases, both versions of

CBR-FT and the baseline required a larger budget for the
inspection of all the attack actions due to a high number of
attack actions that were not part of the attack incident.

More specifically, the largest budget spent by DISCLOSE
to fully investigate any scenario was 65, for the baseline 85,
for CBR-FT v1 and CBR-FT v2 177.

However, this does not mean that the suggestion of extra
attack actions is always ineffectual. It is expected that a
number of extra attack actions will be suggested to the
defender, as DISCLOSE does not detect the incident but
rather supports the decisions based on the dependency table
T the proximity parameter and the results of the previous
inspections. Thus the distinction between an effective and
an ineffectual extra suggestion depends on if the suggested
attack action could potentially fit in the incidents based on the
previously discovered actions. This will be further presented
and discussed in the next subsection, Section V-F2.

2) Evaluation with fixed budget: Tables VII and VIII
present the results of the four policies for all the three attack
scenarios and different trigger attack actions. Specifically,
for each policy the results depicted are the percentage of
uncovered attack actions, the extra suggested actions and the
collected payoff in each case. Similarly Table VI holds all the
attack actions that each of the four policies suggested in all
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P ,Y(1) = {29} A(3)

P ,Y(1) = {30}

Fig. 2: Performance of the four evaluated policies (one graph per policy) in terms of percentages of attack actions revealed,
towards the overall incident disclosure, given different budget values. For a given budget, the best policy is always the one that
unveils the highest, among all competing policies, percent of actions. Y(1) is the trigger attack action, while A(x)

P represents
incident x. In all graphs, DISCLOSE outperforms all other three policies.

nine cases to the investigator, i.e. Y(k) ∪ N (k), in the order
that they were selected starting with the trigger action. In each
case we note in bold the extra attack actions that are not part
of the incident under investigation but were suggested.

In all three, a fixed budget between 45 and 65 has been
used based on the average values of the overall cost and the
length of each scenario. This comparison aims to compare the
suggestions of each approach in greater detail than Figure 2,
so as to evaluate the amount of budget spent and assess why
the different policies suggest more extra attack actions that are
not part of the incident and if these are effective or ineffectual.

Remark 2: The Defender using the DISCLOSE policy
inspected all the performed attack actions in all cases before
running out of budget, while the Defender using the other
policies missed some of them. For instance the DISCLOSE
policy during the investigation of attack scenario 1 suggested
the inspection of attack action 11, which represents the Reg-
istry Run Keys / Startup Folder TTP. This is an acceptable
outcome for a number of reasons. Firstly, in every investigation
it is expected that the actions performed will not always reveal
evidence. For instance, the Defender can always reject one of
the proposed attack actions and the algorithm should provide

a new one. Secondly and most importantly, in the current
threat landscape, this attack action could potentially be part of
the attack scenario based on the previously discovered attack
actions.

In the same case the baseline and both versions of CBR-
FT suggested the inspection of attack action 14. However,
attack action 14 represents the Spearphishing Link TTP, which
does not fit with the rest of the performed attack actions in
scenario 1. This is another initial access TTP, attack action 13,
has already been uncovered as can be observed in Table VI.
Therefore, attack action 14 should have not been suggested
and would most probably be wasting the Defender’s budget.
Similarly, in scenario 2 attack action 29 (Web Shell) is
suggested by the baseline and attack action 13 (Spearphishing
Attachment) is suggested by CBR-FT v1 and v2. In the first
case (i) a persistence TTP has already been uncovered (attack
action 11) and (ii) it does not fit with the rest of the incident.
In the second case attack action 14 was already uncovered
which is also an initial access TTP and thus attack action 13
was not probable.

In all cases, baseline, CBR-FT v1 and v2 suggested a
higher number of extra attack actions to be inspected than
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TABLE VI: Comparison of inspected actions by each policy
for all investigated scenarios. Y(1) notes the trigger action,
A(x)

P represents incident x and Y(k) ∪N (k) notes all selected
actions. Extra attack actions are noted in bold.

Y(1) Policy Y(k) ∪N (k)

A(1)
P

6

Disclose 6, 11, 15, 2, 12, 13, 17, 10, 8

Baseline 6, 11, 15, 2, 12, 13, 17, 14, 10

CBR-FT1 6, 15, 11, 12, 9, 10, 13, 14, 17

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 16

13

Disclose 13, 12, 10, 17, 8, 2, 15, 6

Baseline 13, 17, 14, 12, 11, 10, 15, 8, 29, 2

CBR-FT1 13, 15, 11, 12, 9, 10, 14, 17, 8

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 16

10

Disclose 10, 11, 12, 13, 17, 15, 8, 2, 6

Baseline 10, 11, 12, 13, 17, 14, 15, 8, 29, 2

CBR-FT1 10, 15, 11, 12, 9, 13, 14, 17, 8, 2

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 16

A(2)
P

10

Disclose 10, 11, 13, 12, 15, 17, 14, 8, 4, 0, 24, 2, 23

Baseline 10, 11, 13, 12, 15, 17, 14, 8, 29, 4, 2, 0, 30

CBR-FT1 10, 15, 11, 12, 9, 13, 14, 17, 8, 2, 16, 0

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 0, 25

15

Disclose 15, 11, 12, 13, 17, 14, 10, 8, 4, 0, 24, 2, 23

Baseline 15, 11, 12, 13, 17, 14, 10, 8, 29, 4, 2, 0, 30

CBR-FT1 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 0

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 0, 25

24

Disclose 24, 10, 11, 13, 12, 2, 0, 15, 17, 14, 23

Baseline 24, 10, 11, 13, 12, 2, 0, 15, 17, 14, 1, 23

CBR-FT1 24, 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 0, 25

A(3)
P

0

Disclose 0, 11, 10, 12, 13, 17, 15, 8, 29, 30

Baseline 0, 11, 10, 13, 12, 17, 15, 8, 30, 26

CBR-FT1 0, 15, 11, 12, 9, 10, 13, 14, 17, 8, 2

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 25

29

Disclose 29, 30, 26, 15, 10, 12, 17, 28, 0

Baseline 29, 30, 26, 15, 11, 10, 12, 13, 17, 8

CBR-FT1 29, 15, 11, 12, 9, 10, 13, 14, 17, 8, 2

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 25

30

Disclose 30, 26, 0, 11, 10, 12, 17, 15, 8, 29

Baseline 30, 26, 0, 11, 10, 12, 13, 17, 15, 8

CBR-FT1 30, 15, 11, 12, 9, 10, 13, 14, 17, 8, 2

CBR-FT2 15, 11, 12, 9, 10, 13, 14, 17, 8, 2, 16, 25

the DISCLOSE policy (see Table VII and VIII).
More importantly, many of the suggested attack actions

cannot conceptually fit in the incident under investigation.
Remark 3: In most cases, this results in the exhaustion of
the available budget before the revelation of all the performed
attack actions. It is worth noting that the number of attack
actions that will be suggested and inspected but not reveal
evidence will vary based on the TTPs performed in the incident

and the current attack trends which are represented by the
dependency matrix T.

Remark 4: Another important observation from Table VIII
is that both versions of CBR-FT produce the same ordering
every time irrespective of the scenario under investigation.
This is being caused by the fact that the probabilities used by
CBR-FT for suggestions are calculated once at the start of the
investigation and represent the probability of each attack action
being taken by the attacker, not for this specific investigation,
but generally. More specifically, in the calculation the number
of reports that mention a specific TTP as part of an attack
is divided with the number of reports of all TTP, which
is a very large number. Thus, the produced information is
very generic and not able to capture the relations between
TTPs. On the contrary DISCLOSE uses the progression of
the investigation so far and the probabilistic relations between
actions to calculate the probabilities for each attack action
at each step, which is how it is able to achieve a better
performance.

Remark 5: Moreover, for the same reasons both versions of
CBR-FT are able to suggest only the parts of the incident that
correspond to popular TTPs. Thus less popular attack actions
will be missed. For instance, if an attack action is generally
not very popular but it is highly correlated with a previously
revealed action, it will be missed by CBR-FT. On the contrary,
DISCLOSE will be most probably able to suggest it for the
reasons explained in Remark 4.

Remark 6: Finally, in some instances (A(1)
P , Trigger action

10 or A(3)
P ) CBR-FT v2 achieves a slightly better performance

than CBR-FT v1, but still worse than both DISCLOSE and the
baseline. The reason for this increase is that in many cases the
initial trigger action, which is give to CBR-FT v2, would be
missed if it was not provided.

VI. DISCUSSION AND FUTURE WORK

In a real-world case, Defenders of any kind (security
analysts, forensic investigators, SIEM experts etc.) may use
DISCLOSE to assist their multi-stage investigations in order
to increase their efficiency and be able to cope with a larger
range of investigations. An investigator is expected to input
to DISCLOSE all the information known at the start of the
investigation, by selecting one or more trigger actions, as well
as an estimate of the available budget (time). DISCLOSE
uses this data, updates the relevant matrices, calculates the
payoff values for each attack action, suggests the next attack
action for inspection and prints all relevant data, such as
data sources, event ID, patterns, as it is pulled from the
MITRE ATT&CK repository. At the moment DISCLOSE only
suggests one attack action at each step but this can tailored
to offer more than one suggestions for inspection allowing
the investigator to choose from them. Further, DISCLOSE
assumes that the investigator takes up every recommended
inspection. However, in reality the investigator might choose
not to follow a suggestion for a number of reasons and
would like to receive another one. In the future, we plan
to expand DISCLOSE to ingest the inspector’s choice to
reject the proposed inspection and use this knowledge into the
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TABLE VII: Collected Payoff, Revealed and Extra Actions for DISCLOSE and Baseline using fixed budgets on different
incidents and trigger actions. Y(1) notes the trigger action, while A(x)

P represents incident x.

Y(1) DISCLOSE approach Baseline

Revealed Extra Inspections Payoff Revealed Extra Inspections Payoff

A(1)
P

6 100% 11 577 88% 11, 14 516

13 100% 577 88% 14, 11, 29 506

10 100% 11 577 88% 11, 14, 29 506

A(2)
P

10 100% 13, 8, 4, 2 567 78% 13, 8, 29, 4, 2, 30 456

15 100% 13, 8, 4, 2 567 78% 13, 8, 29, 4, 2, 30 456

24 100% 13, 2 567 100% 13, 2, 1 567

A(3)
P

0 100% 11, 13, 17, 8 415 86% 11, 13, 17, 8, 26 351

29 100% 26, 17, 28 415 86% 26, 11, 13, 17, 8 368

30 100% 26, 11, 17, 8 415 86% 26, 11, 13, 17, 8 351

TABLE VIII: Collected Payoff, Revealed and Extra Actions for CBR-FT v1 and v2 using fixed budgets on different incidents
and trigger actions. Y(1) notes the trigger action, while A(x)

P represents incident x.

Y(1) CBR-FT v1 CBR-FT v2

Revealed Extra Inspections Payoff Revealed Extra Inspections Payoff

A(1)
P

6 75% 11, 9, 14 445 75% 11, 9, 14, 16 435

13 75% 11, 9, 14 435 75% 11, 9, 14, 16 435

10 88% 11, 9, 14 506 75% 11, 9, 14, 16 435

A(2)
P

10 78% 9, 13, 8, 2, 16 456 78% 9, 13, 8, 2, 16, 25 456

15 78% 9, 13, 8, 2, 16 456 78% 9, 13, 8, 2, 16, 25 456

24 78% 9, 13, 8, 2, 16 487 78% 9, 13, 8, 2, 16, 25 456

A(3)
P

0 66% 11, 9, 13, 14, 17, 8, 2 286 50% 11, 9, 13, 14, 17, 8, 2, 16, 25 239

29 66% 11, 9, 13, 14, 17, 8, 2 303 50% 11, 9, 13, 14, 17, 8, 2, 16, 25 239

30 66% 11, 9, 13, 14, 17, 8, 2 304 50% 11, 9, 13, 14, 17, 8, 2, 16, 25 239

calculations of the succeeding proposed inspections. Yet, upon
completion of the inspection of an attack, the inspector could
feedback information to DISCLOSE about the success of the
taken inspection improving the effectiveness of the framework
in each investigation step.

In its current version, DISCLOSE considers the efficacy of
the investigator as known. For ease of presentation, we have
assumed that the efficacy of the investigator equals 1, namely
she always discloses the attack action mapped to the selected
inspection as long as this actions was taken during the cyber
incident. Making a more realistic assumption, this efficacy
depends on the experience of the investigator. Nevertheless,
this is a straightforward addition to DISCLOSE and will be
presented in our future work.

Furthermore, in the presented case study the dependency
table T was calculated using the MITRE ATT&CK STIX
repository. However, it is expected that for a real world
application a number of different sources will be aggregated
for the calculation of T in order to align with prominent
cyber threats increasing the performance of DISCLOSE. For
instance, the values of the dependency table T could be
enhanced if combined with data about attack trends extracted
by social media, such as twitter. In many cases, information
regarding attack patterns and TTPs shared via social media

either does not appear in cybersecurity reports. Similarly, DIS-
CLOSE currently uses only the probabilistic relations between
the attack actions and the proximity parameter used to guide
the suggested inspections. In future work DISCLOSE can be
improved by using Indicators of Compromise (IoCs) by being
entered during the inspection and matched by DISCLOSE
against threat intelligence databases.

As a result of the dependency of table T on past incident
data, one could argue that DISCLOSE is limited to the investi-
gation of only previously published vulnerabilities. However,
the usage of TTPs makes DISCLOSE applicable across an
ample range of incidents, as TTPs are abstracted from specific
attack events or vulnerabilities and are focused on describing
the adversarial behavior itself. When the investigator inspects
a TTP, any relevant exploited vulnerabilities (including zero-
day ones) could be identified, depending on the investiga-
tor’s analytic capabilities and complementary, to DISCLOSE,
software tools. Thus, DISCLOSE supports investigators with
choosing TTPs optimally while the disclosure of any zero-day
exploitation is subject to the above factors.

One of the assumptions that was made in our case study was
that the incident involves a single host, nonetheless in most
real life scenarios this is not true. In the case of a real world
investigation, table T would act as a look up template table
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which would automatically be “duplicated” as many times as
needed during the investigation, based on the involved assets.
This allows the proposed method to be extendable and easily
applied to any investigation, regardless of the number of assets
involved.

Regarding the data sources to be inspected by the investiga-
tor, this depends on the availability of data at the time of the
investigation and it is linked to the forensic readiness of each
organization. Every organization collects data from different
sources and uses them for online detection through a number
of mechanisms, such as firewalls, IDS, SIEM, and Endpoint
Detection and Response. Ideally, the collection of more data
should equal greater visibility within the organization and
better forensic readiness. However, this suffers from the ex-
cessive data volume that infrastructures produce everyday. It
is also challenging for organizations to proactively collect
data, due to privacy legislations, while they have to justify
the intended purpose of this collection through its relevance
to cybersecurity decisions and systems. Data such as memory
dumps, copies of the registry of a computer and network traffic
could only be collected on request.

In our case study, the values of the benefit vector were
calculated using the CVSS Base Score for each attack action.
However, in many cases the benefit of some attack actions may
vary based on the organization’s operations, the nature, or the
importance of the inspected asset. For instance, an organization
may prioritize the confidentiality of its stored data over its
integrity determining uniquely the benefit values of available
inspections. Undoubtedly, the Defender should be able to eas-
ily modify the benefit vector according to their requirements.
This can be achieved by combining the CVSS Environmental
Score with the Base Score to calculate the overall CVSS
Score. We expect that in the beginning of the investigation the
analyst has access to information regarding the significance of
assets. This can be made available either from an inventory
of assets, via interviews with asset stakeholders who may
have perform asset pricing, and the Defender’s experience
with identifying impact based on previous incidents. Upon
capturing this data, the Defender can automatically revise the
benefit vector, based on the Environment Score of CVSS. In
the current model an inspection is beneficial to the Defender
only when discloses an attack action. In practice even when the
inspection of i is unsuccessful it will lead to some knowledge
acquisition enabling the Defender to realize what has not
happened narrowing down the number of inspection choices
for the rest of the investigation. Future work of ours will
use this knowledge acquisition as part of determining the
DISCLOSE’s recommended inspections. Finally, regarding the
cost vector we assigned values using structured interviews
with six experienced cybersecurity professionals. However, a
higher number of interviews would result in more generalized
cost values, which would make DISCLOSE more robust and
applicable in an ample variety of cases.

VII. CONCLUSION

A forensic analysis team will often have limited resources
to investigate incidents while trying to minimize the impact

to the organization’s assets in a timely and effective manner.
Analysts are required to constantly develop their skills and
expand their knowledge and methodology in order to address
the complexity that is stemming from the emergence of new
adversarial techniques and technologies.

To this end, this paper proposed a novel model for de-
cision support which aims to help the analyst overcome
these challenges. We based our model on the creation of an
attack action space created via public knowledge bases of
MITRE ATT&CK TTPs, as well as forensic methodologies
and resources. In this way we empower the analyst to progress
through the investigation in an efficient way based on the
recommended inspection actions of our model. We take into
consideration the probabilistic relation and proximity values
between the available attack actions, the ongoing findings of
an investigation, the benefit and cost of each inspection, and
the available budget of the investigator.

We demonstrate and evaluate DISCLOSE using three real-
istic incidents and data collected from the MITRE ATT&CK
STIX repository, six structured interviews with experienced
cybersecurity professionals and the Common Vulnerability
Scoring System (CVSS). Our evaluation suggests that: (a)
DISCLOSE is capable of supporting investigators, increasing
the efficiency of the investigation process while minimizing
the required budget and (b) the proximity parameter used by
DISCLOSE outperforms the approach that uses only extracted
probabilistic relations as well as both versions the CBR-FT
inspired policy.

APPENDIX A
TABLE IX: List of acronyms.

Acronym Description

APT Advanced Persistent Threats

C&C Command & Control

CIA Confidentiality, Integrity & Availability

CVSS Common Vulnerability Scoring System

IoC Indicators of Compromise

SDO STIX Domain Objects

SIEM Security Information and Event Management

SRO STIX Relationship Objects

STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Indicator Information

TTP Tactics, Techniques, and Procedures
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