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Abstract: Agricultural direct energy use is responsible for about 1–2% of global emissions and is the
major emitting sector for methane (2.9 GtCO2eq y−1) and nitrous oxide (2.3 GtCO2eq y−1). In the last
century, farm mechanisation has brought higher productivity levels and lower land demands at the
expense of an increase in fossil energy and agrochemicals use. The expected increase in certain food
and bioenergy crops and the uncertain mitigation options available for non-CO2 emissions make of
vital importance the assessment of the use of energy and the related emissions attributable to this
sector. The aim of this paper is to present a simulation framework able to forecast energy demand,
technological diffusion, required investment and land use change of specific agricultural crops.
MUSE-Ag & LU, a novel energy systems-oriented agricultural and land use model, has been used for
this purpose. As case study, four main crops (maize, soybean, wheat and rice) have been modelled in
mainland China. Besides conventional direct energy use, the model considers inputs such as fertiliser
and labour demand. Outputs suggest that the modernisation of agricultural processes in China could
have the capacity to reduce by 2050 on-farm emissions intensity from 0.024 to 0.016 GtCO2eq PJcrop

−1

(−35.6%), requiring a necessary total investment of approximately 319.4 billion 2017$US.

Keywords: energy; agriculture; modelling; mechanisation; land use; China

1. Introduction

1.1. Emissions and Energy Use in Agriculture

Agricultural lands, due to their sheer proportion of overall land use and rigorous management,
have a significant environmental impact on the earth’s carbon and nitrogen cycles. Houghton and
Nassikas [1] estimated that since 1850, over 145 ± 16 GtC (µ ± 1σ) from biomass and soils has been
emitted worldwide as a consequence of land-use and land-use changes. Deforestation due to crop and
pastureland expansion accounted for 77% of the total emissions. Additionally, the sector is responsible
for 2.9 GtCO2eq y−1 emissions of methane (CH4) due to manure management and enteric fermentation,
and around 2.3 GtCO2eq y−1 of nitrous oxide (N2O) due to widespread use of fertiliser, increasing rice
cultivation, manure inputs and soil degradation [2,3]. As a whole, the agriculture, forestry and land
use sector is responsible for around 10–12 GtCO2eq y−1, which represents 25% of net anthropogenic
greenhouse gas (GHG) emissions [4]. These estimates have an inherent high uncertainty and might
vary considerably from study to study depending on the selected system boundaries.
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Agricultural and land use emissions are especially critical for developing countries, where it is
estimated that to cover the future food demand by 2050, productivity will have to increase to at least
the double [5]. According to the Food and Agriculture Organization [6], current average daily energy
food intake is about 11.6 MJ day−1 (2770 kcal day−1). Projections suggest that by 2050, due to an
increase in population income, average daily intake could reach about 12.8 MJ day−1 (3050 kcal day−1)
and 12.4 MJ day−1 (2970 kcal day−1) per person for developed and developing economies, respectively.
Considering an increase in global population, it is estimated that the global food demand will increase
by 60%–110% [5,7–9]. Moreover, it is expected that livestock production will increase driven by
meat-based demand in developing countries. Thornton [10] expects that by 2050 food demand for
livestock products will double in South Asia and sub-Saharan Africa, followed by South American
and former-Soviet Union countries, while developed OECD countries will experience minimal change.
In the case of China, He et al. [11] projects that with current diet patterns, by 2032, demand for land and
water could increase around 14%; however, if recommended nutrition is followed, it is expected that
China’s existing land would be insufficient to meet future demand, especially if appropriate measures
and technological change is in place. If current trends of food production are kept (by intensification in
developed economies and land clearing in developing economies), about 1 Gha of land would need to
be cleared by 2050 for agricultural purposes only [7]. This represents emissions of about 3 GtCO2eq y−1

and 250 Mt y−1 of Nitrogen (N) from land management only.
Depending on the country, agricultural direct energy demand is between 2–8% [6,12] of the

country’s demand. If the entire food supply chain is considered, this means including inputs for food
processing, manufacturing and transport, this figure could increase to up to 30% [13]. Globally, in 2014
the sector was responsible for the consumption of 8.2 EJ or 0.46 GtCO2eq y−1. The main energy sources
were electricity and diesel, representing three quarters of the whole consumption (Figure 1). In the past,
several authors have investigated the impact of energy-related greenhouse gas (GHG) emissions in the
sector [14–20]. Robaina-Alves and Moutinho [21] and Li et al. [22] found that two main cost-efficient
paths exist to reduce sectoral emissions: (i) increase use of improved machinery (efficiency) and
farming practices and (ii) promotion of production and utilisation of renewable energy sources.
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Energy Inputs in Agricultural Crops

The agricultural sector is being and will be even more affected by climate change: even in a 2 ◦C
world, the chance of major heatwaves will go to 49% with risk for maize heat damage equal to 18%,
compared to 5% chance in 1981–2010 [23]. Global and regional impacts of climate change at different
levels of global temperature increase). However, it is still missing a framework encompassing energy,
environmental, and economic aspects in a single tool supporting effectively policy decision-making
in the field. In this respect, the lack of comprehensive datasets is worsened by high heterogeneity of
the sector.

On the energy use accounting side, although national energy balances publish the amount of
energy demand and related emissions in the agriculture sector, the lack of disaggregated data by crop
type is the main problem for a reliable understanding of the sector’s dynamics. Researchers have tried
to disaggregate the impacts on GHG emissions due to individual crops. For example, Woods et al. [24]
described the importance of a precise analysis of agricultural products, especially if emissions are to
be modelled. Camargo et al. [25] used the ’Farm Analysis Tool’ to compare direct energy use and
emissions for different crops in the north-east of the USA. Similarly, Pimentel [26] analysed the required
direct and indirect energy inputs for twelve different crops in developed and developing nations.

As each crop is characterised by specific farming practices and machinery, the lack of crop
disaggregation in the statistics generate a huge variability also in the labour inputs. For example,
employment from the agricultural sector could make up anywhere within 50% to 90% of the population
in developing economies [27], represented mainly by small independent farming operations with
variation due to factors such as weather, technology diffusion and other geographical factors [28,29].
This variability reflects differences between developed and developing countries. For example, it has
been estimated that the average input of human labour in the USA is around 11.4 h ha−1, while in
developing countries such as India and Indonesia are about 634 h ha−1 [26].

Overall, the lack of comprehensive databases limits the modelling capabilities and in turn limits
agricultural energy policy design.

1.2. Agricultural Mechanisation

In the last century, mechanisation in developed economies has dramatically reshaped the
agricultural landscape [30]. Farm mechanisation have also brought higher yields and lower demand
for land at the expense of higher inputs in the form of fossil-based energy and fertilisers. As the sector
is very sensitive to social impacts and energy prices, rising prices usually force producers to seek
new technological advances or methods to stay competitive, especially for large farms. The sector is
very sensitive to environmental and social impacts as well as energy prices. Population and demand
increase, diet change behaviour, impacts of climatic variability and weather extremes and rising energy
prices usually force producers to seek new technological advances or methods to stay competitive [31].
Effects are more relevant for large farms as they have a more flexible structure which enables them to
respond to market dynamics faster [32].

Economic growth and the commercialisation of agricultural systems is leading to further
mechanisation of agricultural systems in developing countries in Asia and Latin America [33].
Over recent decades and mainly due to the introduction of new technologies, yields for most crops
have been increasing between 1–2% y−1 [6]. Nevertheless, it is likely that these rates will be reduced
for the foreseeable future [5]. The FAO [6] forecasts that crop yields will continue to grow at an average
rate of 0.8% y−1; this value is half compared to previous decades (1.7% y−1). In fact, the appropriate
mechanisation planning and the use of improved and efficient machinery and farming practices
have the potential to enhance crop productivity while reducing energy intensity, land use and
related emissions [22,34]. For instance, the European Commission [35] has developed a series of
28 agri-environmental indicators. One of those, number 12 refers to intensification/extensification.
This indicator not only showcases the current farming intensity and agricultural productivity of
each country members, but also provides an index that could be used for planning for sustainable
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agricultural practices in the region as well as to show the potential future socioenvironmental impacts
of the sector.

Many authors have tried to characterise a mechanisation index to define the level of
adoption of agricultural technologies. Nevertheless, the definition of a mechanisation index
remains highly uncertain due to the simplification of the agricultural production process and
the impact of other biophysical factors such as weather, water availability and soil characteristics.
Conforti and Giampietro [18] defined a mechanisation index based on output-input ratio of global
crop production, which was then later used by Ozkan et al. [36] for Turkey. Later, Singh [37] proposed
a mechanisation index based on the ratio of cost of use of machinery to the total cost of use of human
labour, draught animals and machinery.

Mechanisation has mainly concerned land preparation [38,39], tractorisation [40] and harvesting
practices (crop rotation management [41]), but also the integration of reforestation practices [42–45]
and which have led to energy consumption reduction. Finally, for the case of China, for example,
Yang et al. [46] investigated the rapid mechanisation diffusion in China in in the previous decade;
they show a five-fold increase in horsepower stock for medium and large tractors, and 25-fold for
small tractors. Considering farms of around 133 ha of size, the study shown that the implementation of
mechanisation and tractorisation has allowed farms to reduce harvesting time to only 2–3 h per farm.

1.3. Agricultural-Based ESM and Relevance for Policy Makers

To properly implement any energy-related technological measure in the sector, a rigorous analysis
must be undertaken by simulation models to estimate the projected value of technical advances
that would aid in the implementation of informed decisions by key actors in the sector. Generally,
the agriculture sector has been neglected in energy systems modelling (ESM) due its lack of adequate
direct and indirect energy use and emissions data that could aid to better characterise production
processes in the sector. The increased role of bioenergy in the last years has been the main reason
that a handful of ESMs started to consider the agricultural sector in its modelling approaches [47].
The sector’s interactions with other energy vectors as well with ecosystems makes it important for the
inclusion in climate change mitigation studies and policies. For example, important dynamics exist
such as the indirect energy input from fertilisers and other agrochemicals as well as the amount of total
emissions related to the entire food, forestry products and bioenergy production processes [48].

Walker [15] described a method for modelling integrated energy systems in agriculture.
The modelling algorithm helped identify the different classes of an agricultural process (including
the material’s transformation, transport and storage). Each class is also associated with a cost,
which can be monetary, labour, energy or land. Uri [49] provided a model to address fuel substitution
between alternative types of energy focusing in the US agricultural sector. The author found the
responsiveness of the sector to fuel price change. Later, he provided similar studies focusing on sectoral
price responsiveness on diesel, gasoline, LPG and natural gas [16,17]. More recently, some authors
have linked energy system models and detailed agricultural modelling to provide answer to specific
questions [50–53].

Daioglu et al. [54] used the IMAGE, a spatial model with the capability of determining supply
and demand of biomass and bioenergy products and its potential effect on the wider energy system
by 2050. The model has been used to determine the future share of bioenergy in a 1.5 ◦C scenario.
Results show that biomass could represent up to 20% (180 EJ/year) of the global energy consumption;
nevertheless, for this to be achieved significant improvement in agricultural production and land
zoning is needed. Similarly, Wu et al. [55] estimated bioenergy potential under carbon constrained
scenarios and societal transformation measures. The authors based the analysis using a Computable
General Model combined with a spatial Land Use and Environmental model. Authors found similar
results for bioenergy production (up to 200 EJ/year by 2050) to the previous paper, with supply prices
between USD 5/GJ and USD 10/GJ.
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Other efforts where the modelling of the agricultural sector is essential is on the water-food-energy
nexus research area. For instance, Li et al. [56] develop a stochastic model to optimise irrigated
agriculture. This allows policy makers to develop programmes to optimise land, energy and
water resources while maximising environmental and economic benefits of the agriculture sector.
Elkadeem et al. [57] presented a techno-economic optimisation analysis for renewable energy
integration aiming at agriculture and irrigation electrification. This study has the ability to
present different technological systems structure that minimise environmental impact and maximise
economic returns.

While the ESMs which integrate the agricultural sector, have a simplified description of
the mechanisation in terms of emissions, energy demand and land use for specific crop types,
the agriculture-oriented models include specific crops [58] but lacks of the integration with the rest of the
energy system. To the best of the authors’ knowledge, there is no ESM which integrates a technology-rich
agricultural sector modelling with a dynamic modelling of the whole energy sector. This modelling
approach guarantees a comprehensive assessment of the energy use, agrochemical demand, land use
as well as the emissions associated to the agricultural sector.

1.4. Study’s Aim

The aim of the paper is to assess the potential decarbonisation in the agricultural sector by
proposing a comprehensive methodology in which mechanisation levels diffusion interplays with
food and feed demand. The methodology is based on a modelling framework, the MUSE-Ag & LU
model [59] which belongs to the MUSE modelling suite [60]. The proposed approach allows us to model
the cross-dependencies between (i) socio-economic development, driving an expectedly high growth
in demand of agricultural commodities, (ii) the energy demand linked to the technology development
in agriculture, as represented by mechanisation levels, low-carbon fuels, and agrochemicals demand,
and (iii) the sector emissions.

In addition, this tool has the capability to model the techno-economics as well as the environmental
benefits of mechanisation on the harvest of specific crops. The main difference of MUSE-Ag & LU with
other agricultural energy models is that energy technologies in the sector are represented by different
levels of mechanisation; therefore, the model is capable to model and inform future mechanisation
adoption in the sector. The model is part of a broader ESM which considers all the sectors in the
economy, providing straightforward connections to model the dynamics between agriculture and the
rest of energy vectors in the wider energy system. To demonstrate the model’s capabilities, this study
will focus on analysing the following: (i) future specific crop demand for maize, soybean, wheat and
rice under different scenarios (such as low and high food and feed demand and population growth),
(ii) modelling of mechanisation adoption, labour and necessary investment, and (iii) analysing energy
demand, land use change and related emissions for the selected crops.

To demonstrate the applicability of the novel framework, China has been selected as case study
mostly due to data availability from the FAO [6] and USDA [61]. Another reason for the selection
has been due to their importance in global food production, the potential for modern agricultural
mechanisation and the expected dietary increases for the population. According to the FAO [6], currently
the average vegetable-based daily food production for China is 9.9 MJ day−1 (2382 kcal day−1), and 58.4
and 37.1 g day−1 for protein and fat, respectively. However, if feed demand is also considered,
these figures would increase by 803 kcal day−1 or 25%. As comparison, the USA food production
stands at stands at 11.3 MJ day−1 (2697 kcal day−1), with supplies of 39.8 and 93.9 g day−1 of protein
and fat, respectively; if feed demand is considered, the total value would increase by 23%. Usually a
low share in feed demand (>20%) can be related to ruminants-based production systems, while larger
shares is due non-ruminants fed production systems. Additionally, Pradhan et al. [62] considers that
for the case of China, if the expected diet changes projections take place, feed demand share could
increase to 1203 kcal day−1, representing 33% of the crop production share.
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The paper is organized as follows. First the advancement compared to the MUSE-Ag & LU is
described. Secondly, an overview of the modelled scenarios is presented. Next, the paper showcases
the results, followed by discussions and conclusions.

2. Materials and Methods

2.1. MUSE-Ag & LU Additions

The general MUSE framework aims to simulates future decarbonisation scenarios in regional
energy systems [63]. The Agriculture and Land Use (Ag & LU) module [59] is a model within the MUSE
framework [63]. MUSE-Ag & LU, similar to other demand sectors in MUSE (buildings, transport and
industry), contains investment decisions, as well as energy technologies representation with a particular
land-use oriented modelling approach. Furthermore, the model determines the impact of the sector
on global warming, quantifying emissions due to direct and indirect energy use as well as land use
management and land use change. In doing so, the model applies a bottom-up approach and assesses
the effects of technology innovation. The model produces a time series of fuel, agrochemicals and
land demand to meet four general agricultural services: (a) crops, (b) animal-based food, (c) forestry
products and (d) bioenergy [59]. The model accounts for CO2 emissions linked with on-farm energy use
as well as N2O emissions (e.g., from fertiliser utilisation) and CH4 emissions (e.g., from rice production
or manure management). The Ag & LU module generic simulation framework and integration with
MUSE is represented in Figure 2.
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The model has been expanded to model specific agricultural crops. In this sense,
demand projections are necessary. To cover this demand, new mechanisation technologies have
been characterised using cluster analysis and optimisation techniques. It is to this mechanisation
processes, that data on energy inputs, yields, fertiliser demand, costs and related emissions have to
be defined.
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The modelling approach proposed does not explicitly model regional soil, climate,
and non-technological factors affecting farming practices, but uses crop yields as a proxy which
reflect the abovementioned factors. Crop yields are based on datasets which reflect the variability
of local soil, climate and farming practices at an aggregated level. This paper will focus on the land,
energy, emissions, and cost implications related to four main crops. However, land implications include
constraints which refer the use for animal food, forest-based products, and bioenergy.

The following subsections explain the main steps followed in the development of the model.

2.1.1. Crop Selection

Originally, MUSE-Ag & LU [59] only modelled four general agricultural services: (a) food crops,
(b) meat-based products, (c) forestry products and (d) bioenergy. In ESMs this simplification is a
common approach due to its low global share of direct energy consumption and related greenhouse
gas emissions [59]. In this study, the expansion of food crops is suggested. Table 1 displays the top
6 crops by global production for China as well as for the USA for comparison purposes.

Table 1. Crop production in 2016 [6].

Crop Global (Mt) USA (Mt)
Relative Importance

by Mt Produced
USA (Rank)

China (Mt)
Relative Importance

by Mt Produced
China (Rank)

Sugar cane 1891 30 5th 123 5th
Maize 1060 385 1st 232 1st
Wheat 749 63 3rd 132 4th

Rice, paddy 741 10 8th 211 2nd
Potatoes 377 20 6th 99 6th
Soybeans 334 117 2nd 12 27th

Although, sugarcane is the most produced crop is also very sensitive to temperature, humidity,
and other factors that vary largely by country. Thus, food has been disaggregated into four crops:
maize, wheat, rice, and soybeans, mainly because their price is highly correlated with oil prices [64].
In China, where these crops represent about 33% of Chinese crop production [6], this would potentially
have higher implications on food security.

2.1.2. Crop Demand Projections

MUSE uses exogenously given macrodrivers (population and GDP) [27] to project future demands
of services. Based on historical data, future crop demands are derived using regression models.
As demand services are specified in Joules in MUSE, data on total calorie production per crop collected
from the FAO [6] has been converted into Joules through the raw calorie density per crop type (Table 2).

Table 2. Energy densities per selected crops.

Crop kcal/kg MJ/kg

Maize 3650 15.27
Soybean 4460 18.66
Wheat 3390 14.18

Rice 3570 14.93

Following, and similarly to van Ruijven et al. [65], linearised regression models have been used
to identify that related economic activity (GDP per capita) to specific crops. In this case, four linear
regression models were tested and implemented to forecast future crop demand:

Linear(L): C = a + b × GDPpc (1)

Exponential(E): C = a × eb GDPpc (2)
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Semi-log(SL): C = a + b × ln(GDPpc) (3)

Log-log(LL): lnC = a + b × ln(GDPpc) (4)

In which a and b are constants estimated in the regression and serve as an input to the model.
Both the R2 value and the root mean square error (RMSE) on per capita consumption values for all
models are reported. The R2 values for the linear models are not all comparable, since some are for
absolute consumption levels and others are for logarithmic values (ln(C)). Hence, the lowest RMSE
model is selected for future predictions. The historical crop production per capita data, as well as
the regressions tables highlighting the selected linear function for each crop model, are presented in
Figure 3 and Table 3, respectively.
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China. Data: FAO [6].

Table 3. Correlations per crop for China.

Crop Equation Form R2 M C

Maize Linear 0.132 3.44 × 10−10 3.08 × 10−7

Maize Exponential 0.891 9.77 × 10−5 1.03 × 10−6

Maize Semi-Log 0.943 8.28 × 10−7
−5.33 × 10−6

Maize Log-Log 0.928 4.98 × 10−1
−1.75 × 10−1

Soybeans Linear 0.328 −9.53 × 10−12 2.63 × 10−7

Soybeans Exponential 0.301 −4.36 × 10−5 2.67 × 10−7

Soybeans Semi-Log 0.350 −4.92 × 10−8 6.33 × 10−7

Soybeans Log-Log 0.324 −2.26 × 10−1
−1.34 × 10−1

Wheat Linear 0.838 7.75 × 10−11 7.14 × 10−7

Wheat Exponential 0.826 7.18 × 10−5 7.66 × 10−7

Wheat Semi-Log 0.895 4.00 × 10−7
−2.29 × 10−6

Wheat Log-Log 0.885 3.71 × 10−1
−1.69 × 10−1

Rice, paddy Linear 0.718 6.98 × 10−11 1.71 × 10−6

Rice, paddy Exponential 0.698 3.44 × 10−5 1.74 × 10−6

Rice, paddy Semi-Log 0.763 3.59 × 10−7
−9.89 × 10−7

Rice, paddy Log-Log 0.746 1.77 × 10−1
−1.46 × 10−1

2.1.3. Mechanisation Levels

Similarly to [34], the model considers three levels of mechanisation: traditional, transitional and
modern, with distinct inputs for fuel use, costs and production efficiencies. A basic representation of
the agricultural mechanisation concept applied in the model is shown in Figure 4.
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Figure 4. MUSE-Ag & LU mechanisation production process [59].

Traditional mechanisation considers both manual and some level of mechanised agriculture
(e.g., tillers) with a minimum amount of direct and indirect energy. Transitional mechanisation presents
mechanisation in some parts of the agricultural production chain. Tractors, tilling machines, mechanical
heating/drying and irrigation using mainly electricity and other traditional fossil fuels are considered
in this process. The use of fertilizers and agrochemicals is also common in this level.

Modern mechanisation, apart from a fully mechanised supply chain, it is considered technologically
advanced equipment and other inputs in the form of irrigation water, fertilizers and pesticides.
Additionally, an extra mechanisation level called “modern renewable” is represented. This level
represents the data outliers or cutting-edge agricultural practices; therefore, it is assumed higher
efficiency levels (input/output), a larger share of renewable energy and an optimised fertiliser utilisation.

Modern mechanisation levels (with high production rates) would come at much higher capital
costs, representing how technical improvements are not attractive by default as farmers are al-ready
operating in an area of decreasing marginal return. In MUSE, the demand for higher farm mechanisation
emerges at the point when it becomes cost-effective for farmers to use it over other available options.

The identification of a mechanisation level and its characterisation requires the qualitative and
quantitative assessment of a mechanisation index, and its impact on agricultural production (yield)
and economic factors (cost of cultivation, deployment of mechanical power, agrochemical demand,
animal power, etc.). The index should incorporate the significance and economic utility of using
equipment with animate and electro-mechanical power for different farm operations in different
crops. To generate the modelling technologies, a pre-processing approach is required and detailed in
Appendix A. The characterisation of technologies has been obtained by applying the non-hierarchical
method approach [18], based on cluster analysis of different countries at different levels of data
observations from FAO [6].

To create technologies which adequately represent the heterogeneity of farming practices,
mechanisation, and the relationship between climate, energy and agrochemical inputs and yields and
mechanisation levels, cluster analysis has been conducted on national data. Among diverse economic
variables, we have used GDP agricultural share (%GDPagr) aiming at providing a more robust insight
into the agricultural technological development in a region. As described in [59] k-means clustering
was used to reduce heterogeneity. For this, the following Hartigan–Wong minimization algorithm [66]
was used:

W(Ck) =
∑

xi∈Ck

(Xi − µk)
2 (5)

where Xi is the actual cluster data, µk is the cluster k data mean value. To identify the optimal amount
of clusters, the Average Silhouette Method [67] was used:

Si =
bi − ai

max(bi, ai)
(6)
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where bi and ai is the lowest average distance and average distance of data i with respect to the entire
observations within one cluster, respectively.

Inputs for labour and draught are based in hours per crop output obtained from [37]. Table 4
presents the input values per mechanisation process for each analysed crop used in this study.

Table 4. Fuel, animal and labour input per mechanisation level for each analysed crop in China.

Crop Mechanisation
Level

Biomethane
PJ/PJ

Biodiesel
PJ/PJ

Diesel
PJ/PJ

Electricity
GWh/PJ

Gas
PJ/PJ

Gasoline
PJ/PJ

Coal
PJ/PJ

Draught
hrs/GJ

Labour
hrs/GJ

Maize Traditional 0 0 0 0 0 0 0.002 0.9 150.0
Maize Transitional 0 0 0.023 0.097 0 0.001 0.015 0.1 16.3
Maize Modern Fossil 0 0 0.027 0.110 0.010 0.007 0.066 0 0.5
Maize Modern Renewable 0.004 0.007 0.012 0.120 0 0 0 0 0
Wheat Traditional 0 0 0.105 0 0 0 0 1.1 123.5
Wheat Transitional 0 0 0.198 0.366 0.003 0.005 0.129 0.1 16.3
Wheat Modern Fossil 0 0 0.262 0.636 0.102 0.073 0.648 0 6.6
Wheat Modern Renewable 0.031 0.062 0.104 0.727 0 0 0 0 0

Soybean Traditional 0 0 0.061 0 0 0 0 1.7 237.8
Soybean Transitional 0 0 0.063 0.103 0.001 0 0.041 0.4 55.1
Soybean Modern Fossil 0 0 0.063 0.195 0.024 0.001 0.155 0 6.6
Soybean Modern Renewable 0.010 0.020 0.033 0.278 0 0.020 0 0 0

Rice Traditional 0 0 0 0 0 0 0 44.9 286.2
Rice Transitional 0 0 0.133 1.272 0.002 0.003 0.087 20.6 131.6
Rice Modern Fossil 0 0 0.266 2.300 0.104 0.074 0.657 0 9.2
Rice Modern Renewable 0.030 0.060 0.100 2.600 0 0 0 0 0

2.1.4. Crop Yields

A yield needs to be assigned for each mechanisation level for each crop. The crop yield has been
obtained from historical data. For instance, Figure 5 displays the historical maize yields for three
different regions of interest demonstrating different levels of agricultural development. As presented
in [59], the ‘Least Developed Countries’ (countries considered have a %GDP agriculture share of
above 16%) can be found to have yields between 1000 and 1400 kg ha−1; thus in this study, it has
been assigned around 1200 kg ha−1 for traditional mechanisation for maize. On the other hand,
the highest levels (represented by countries with a %GDP agricultural share of below 2%) present yields
to around 8500 kg ha−1, which has been considered the yield for modern mechanisation processes The
same approach was applied to the four crops assessed in this work. Yields values for each crop and
mechanisation level is shown in Table 5.
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Table 5. Crop yields per technological level.

Technological Maize Yield Soybean Yield Wheat Yield Rice Yield
Level (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1)

Traditional 1200 1000 1750 1750
Transitional 5000 1900 3000 3000

Modern 8500 2500 6000 7000
Modern Renewable 11,000 3500 9000 9000

2.1.5. Fertiliser Demand

Modern synthetic fertilisers are usually a combination of three main nutrients: nitrogen,
phosphorous, and potassium (N, P2O5 and K2O). Levels of Nitrogen-based fertiliser per ton of
production were obtained from FAO data [6] and USDA [61]. Observing the trends of global fertiliser use
over the past century, a steady increase in total N-based fertiliser use for all crop types can be observed.
This increase is linear for countries in time periods determined as traditional to modern but then
lowers when a country reaches a cutting-edge level (above modern mechanisation levels). For instance,
maize and wheat production in the USA, have experienced constant production growth and fertiliser
use reductions. As time passes and yields increase with modern technologies, fertiliser application rates
could become even more efficient. As Calaby–Floody [68] suggest, the inclusion of biotechnology and
nanotechnology in the form of smart fertilisation with controlled nutrient release, could dramatically
improve fertiliser efficiency.

To represents nutrient input for each mechanisation level and crop type historical data [61] a
cluster analysis (using fertiliser input against crop yield) have been used. A full tabulated summary of
fertiliser use for each level can be found in Table 6. Data analysis shows that the progression from
traditional to modern is almost linear, but further modernisation to modern renewable lowers the
demand of fertiliser, as application is starting to be optimised [6].
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Table 6. N-based fertiliser Inputs by Crops and Mechanisation levels.

Mechanisation Maize Soybean Wheat Rice

Level (kg ha−1)

Traditional 139 42 82 32
Transitional 215 51 92 105

Modern 270 57 106 181
Modern Ren. 245 45 93 155

2.1.6. Integrating CH4 and N2O Emissions

FAO [6] data show that more than 70% of N2O emissions linked with farming are the result of
synthetic and organic N fertilisers and crop residues. The sources of N2O are extremely varied for crop
growth. To account for N2O emissions in the model, the following equation is used and highlights the
different factors used to estimate direct N2O emissions [69]:

N2Otot,emm = (Fsn + Fon + Fcr + Fvol + Fleach) × EF1 (7)

where N2Otot,emm is total emissions by crop, Fsn is the N input from fertiliser use, Fon is the organic N
applied as fertiliser (e.g., animal manure, compost, sewage sludge, rendering waste), Fcr is the above
and below-ground N content of each crop, Fvol is N volatilization, Fleach is N from leaching processes,
and EF1 is the emission factor per kg N fertiliser applied (assumed as 0.01 kg N2O-N). These concern
all nitrogen-related processes, such as synthetic and organic fertilisation and crop residues. The sum
of both direct and indirect emissions from these sources is then reduced to units of kt PJ−1 of crop
produced for each mechanisation level (which uses different fertilisation amounts) and entered as
a model input. For example, for transitional maize production, the Fsn = 215 kg ha−1; therefore,
the associated emissions due to fertiliser input are considered at 2.15 kg N2O ha−1, which in turn
converts to 0.027 kt N2O PJ−1 of maize.

Similarly, methane (CH4) emissions are considered due to their significance in the agricultural
sector’s contribution to global GHG releases. All modelled values for GHG per mechanisation level
are illustrated in Table 7.

Table 7. Nitrous Oxide and Methane emissions per mechanisation for China.

China (kt PJ−1)

N2O Maize N2O Wheat N2O Soybean N2O Rice CH4 Rice

Traditional 0.065 0.007 0.021 0.012 4.725
Transitional 0.027 0.007 0.024 0.027 2.756

Modern 0.021 0.006 0.020 0.026 1.181
Modern Ren. 0.016 0.006 0.015 0.020 0.919

2.1.7. Techno-Economics of Mechanisation

MUSE-Ag & LU uses a bottom-up approach for technology characterisation, on which the net
present value (NPV) is estimated to determine the investment in new technologies. In particular,
new investments would favour technologies with a higher NPV.

For a detailed techno-economic characterisation of each mechanisation level, data on costs and
return estimates from USDA [61] has been collected. The values are available in USD per planted acre.
These values have been converted into USD per hectare using historic yield data [6] and then to USD
per PJ y-1 to show unit price for installed capacity (also, USD values were scaled for inflation). The data
has been plotted against the achieved yield (for instance, maize yields in Figure 6), and by locating the
mechanisation level according to the yield, the capital, fixed and variable costs have been assigned.
The obtained costs per mechanisation level for each crop are displayed in Table 8.
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Table 8. Techno-economic data for different mechanisation levels per type of crop.

Crop Maximum Capacity Addition for China (PJ y−1)

Traditional Transitional Modern Modern Renew.

Maize 30.0 90.0 200.0 40.0
Soybean 15.0 20.0 140.0 50.0
Wheat - 0 3.0 1.0

Rice 4.0 30.0 200.0 80.0

Capital Costs (MUSD/PJ y−1)
Traditional Transitional Modern Modern Renew.

Maize 1.6 2.2 2.8 2.9
Soybean 2.8 6.3 6.6 6.9
Wheat 3.8 5.3 6.3 8

Rice 1.8 3.7 4.8 5.1

Fixed Costs (MUSD/PJ y−1)
Traditional Transitional Modern Modern Renew.

Maize 1.3 1.1 1 0.8
Soybean 1.2 2 2.1 1.8
Wheat 2.1 2.1 2 1.7

Rice 0.9 1.5 1.9 1.6

Variable Costs (MUSD/PJ y−1)
Traditional Transitional Modern Modern Renew.

Maize 1.4 2.2 3.1 2.5
Soybean 1.5 4.2 4.4 3.8
Wheat 1.3 2.7 3.6 3

Rice 4.8 5.4 5.8 4.9
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2.1.8. Model’s Inputs/Outputs

A summary of the main inputs used in the model as well as outputs provided by the model is
shown in Table 9.

Table 9. Main inputs and outputs from the model.

Ag & LU Key Inputs Ag & LU Key Outputs

Techno-economic characterisation for each agriculture crop Agricultural mechanisation detail outputs
• Input by energy source (PJ/PJ) • Fuel demand by source (PJ)
• Conversion efficiency (%) • Agricultural commodity production (PJ)

• Agrochemical input (N fertiliser) (kt PJ−1)
• Aggregated CAPEX and OPEX of new installed
technologies (mechanisation) (USD)

• Yields (Mha PJ−1) • Aggregated demand of agrochemicals (kt)
• Emissions (KtCO2eq PJ−1) • Land use demand by agricultural crop (Mha)

• Unit capital and operational cost (USD PJ−1)
• Aggregated Emissions due to direct energy use,
fertilisers and Land use change (KtCO2eq)

Existing stock for the base year including their retirement pro
le (PJ y−1)
Policy framework and fiscal regimes
Macro-economic drivers’ projections (e.g., GDPcap,
population, urbanisation)

2.2. Calibration and Validation

Values on agriculture energy use, emissions, and land use have been calibrated using 2010 as a
base year [6]. This year has been selected because of the existence and reliability of data for all the
sectors as well as being a year without unusual political, economic or environmental circumstances.
Additionally, the model has been validated by projecting values for 2010–2014 on food demand,
fuel consumption, fertiliser demand, and emissions [6].

Due to lack of explicit data to account for the base-year installed capacities of the proposed
mechanisation levels, a linear programming (LP) optimisation problem has been developed in the
General Algebraic Modelling System [70] aiming at minimising the difference between actual and
modelled sectoral emissions based on a set of constraints (share of mechanisation level and share of
fuel per technology). To obtain modelled sectoral emissions, this pre-processing procedure considers
the generated mechanisation levels by the LP, its fuel input share and the related emissions factors
given by the [4]. By minimising the difference between modelled and actual emissions in the sector,
the optimisation model is capable to calculate installed capacity of mechanisation levels per technology
(t), crop (s) and region (r). The model mathematical formulation is presented in Appendix B. By solving
this constrained optimisation problem, all structural alternatives are evaluated, and the programme
identifies the best solution. The installed capacities by mechanisation level and its production shares
by crop and by country obtained by the optimisation model are displayed in Table 10.

Table 10. Existing capacity per mechanisation Level for China.

Crop
Installed Capacity

PJ y−1 (GW)
Annual Avg. Yield

[6] (kg ha−1)
Share of Production (%)

Traditional Transitional Modern Modern Ren. Traditional Transitional Modern Modern Ren.

Maize 27.1
(0.9)

2395.5
(76.0)

153.3
(4.9)

135.6
(4.3) 5460.0 1.0% 88.3% 5.7% 5.0%

Soybean 42.3
(1.3)

236.5
(7.5)

2.8
(0.1)

0.0
(0.0) 1771.0 15.0% 84.0% 1.0% 0.0%

Wheat 0.0
(0.0)

681.5
(21.6)

952.1
(30.2)

0.0
(0.0) 4748.0 0.0% 41.7% 58.3% 0.0%

Rice 147.3
(4.7)

272.2
(8.6)

2261.4
(71.7)

265.2
(8.4) 6548.0 5.0% 9.2% 76.8% 9.0%
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2.3. Scenarios

A set of three main scenarios have been developed to test the model:

• Reference: To drive service demands, the SSP2 narrative, which describes a middle-of-the-road
development for mitigation and adaptation [71], has been considered. The scenario considers a
carbon price that is endogenously calculated by MUSE.

• Low development: In this scenario, the SSP3 narrative, which describes a fragmented world,
failing to achieve sustainable development goals, with little efforts in reducing fossil fuel utilisation
and negative environmental effects has been considered. In this scenario, higher population
growth (resulting in higher food and feed demand), as well as increases in technological costs and
fuel prices, and a reduction in yield growth rates have been varied considering a 20% deviation
from the Reference scenario. Additionally, no carbon price is considered.

• High development: In this scenario, the SSP1 narrative, which describes a sustainable pathway,
with constant efforts in reaching development goals and reducing dependency on fossil fuels
mainly driven by rapid technological development, has been considered. In this scenario,
lower population growth (resulting in lower food and feed demand), as well as reduction
in technological costs and fuel prices, and increase in yields growth rates have been varied
considering a 20% deviation from the Reference scenario. Apart from a carbon price for CO2

emissions, a specific tax has been imposed also on N2O and CH4. However, an imposed tax on
these emissions needs to be weighted. Simulations have shown that a tax similar to the existing
carbon level is too low, not only since N2O and CH4 are considerably more potent than CO2 but
also due to the lower level of emissions; therefore, a low tax would be insignificant. On the other
hand, applying a tax that reflects the global warming potential (e.g., N2O 298 times as strong
as CO2) pushes technology levels back down to traditional agricultural practices and thus has
an important impact on predicted land use and food security. At high GHG price rates, it is of
interest for a farmer to revert to cheap, traditional technologies and use significantly more land
to make up for the emissions costs. Therefore, compared to CO2 prices, a tax range between
0–300 times larger for N2O and 0–50 times larger for CH4 has been studied. After a sensitivity
analysis, outputs suggest an optimal emission price of 10 times larger for CH4 and 25 times larger
for N2O.

A linear decommissioning profile of existing technologies (existing mechanisation levels) has
been applied. The imposed decommissioning profile implies that the capacity is totally renewed by
2040, 10 years ahead of the modelling horizon. Capital and operational costs of modern technologies
are varied to understand the importance of price/subsidies in modern efficient technologies. Finally,
yields annual growth rates are varied for both scenarios. A summary of each scenario is presented in
Table 11.

Table 11. Summary of analysed scenarios for Chinese crops.

Scenario
Population/

Food Demand
Growth by 2050

Fossil Fuel Price Carbon Price Modern Mechanisation
Costs

Yields
(Annual Growth)

Reference SSP2 metrics [71] IEA [72]/EIA [73]
reference scenario

EMF27 [74]
reference scenario No changes +0.8%

Low Development
(high population

growth/food demand)

SSP3 metrics
+20% −20% No carbon tax +20% +0.5%

High Development
(low population

growth/food demand)

SSP1 metrics
−20% +20%

High price EMF 27
[74] 10 times larger
tax—CH4 25 times
larger tax—N2O

−20% +1.3%
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3. Results

3.1. Reference Scenario

3.1.1. Mechanisation Adoption and Investment

The reference scenario estimates that by 2050, China’s overall demand (PJ y−1) for the analysed
crops is projected to increase by 71%. Based on the modelling outputs, the technological shift in Chinese
agriculture by 2050 is illustrated in Figure 7. The shift towards technologies with higher efficiencies is
exhibited for maize, wheat and rice. The overall crop supply increases constantly until 2035 when
population starts declining and crop production stabilises.
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Overall, and considering all analysed crops, in the base year, “transitional” mechanisation is still
responsible for 47.4% of the production, while “modern” and “modern renewable” for 44.5% and 5.3%,
respectively. By 2050, “transitional” share decreases to 6.9%, overtaken by “modern” mechanisation
with 61.9% of the production, followed by “modern renewable” with 31.1%. The forecast for soybean
is rather different, but its low production compared to the rest of the crops, has barely any effect on the
sector’s performance. Nevertheless, soybean results show a steep decrease reducing crop production
as GDP per capita improves. This is in line with data from the previous decade, where soybean reached
a maximum production level of 17 Mt y−1 in 2004, followed by an average annual decrease rate of 2.7%
y−1. The main reason behind this was due to an increase in imports from Brazil, USA and Argentina
in the last two decades [6]. It is possible that the country has been replacing more of its soybean
production with other higher value crops. Additionally, in the short term it is not expected for soybean
to play an important role in biodiesel production as currently the feedstock for Chinese biodiesel is
mostly based on cotton, rapeseed and Jatropha [75].

In terms of investment and operational costs, the model suggests a necessary expenditure of
around 319.4 billion 2017US$ by 2050, each crop requiring the following investment share: rice, 38.2%;
maize, 35.3%; wheat, 25.2%; and soy, 1.3%. Modern technologies across the analysed crops would be
responsible for around 95.8% of the total cost.
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3.1.2. Energy/Fertiliser Demand and Related Emissions

Table 12 shows the regional fuel consumption aggregated for the four crops. Outputs show two
main drivers that impact the future projections: (i) the high prevalence of coal in the sector and (ii)
the current low mechanisation levels and high labour/draught inputs. In 2010, the analysed crops
demand 525 PJ y−1 of conventional energy (fossil and renewable), representing 39.1% of the total
national agriculture energy use of 1342 PJ y−1 [6]. Demand is similar to countries such as the USA;
however, for China, labour and animal input is higher, as it is estimated that 12.4 × 109 h y−1 and
182.7 × 109 h y−1 (or 88.9 million workers) comes from draught and labour work, a value estimated to
be 40 times higher than in the USA.

Table 12. Farm-related energy use and emissions in the reference scenario.

Fuel Use (PJ y−1)
Energy

Commodity 2010 2015 2020 2025 2030 2035 2040 2045 2050

Electricity 141 171 195 209 221 225 229 228 227
Diesel 206 243 288 296 309 310 308 297 285

Natural Gas 1 1 2 2 3 3 4 4 5
Gasoline 29 43 49 52 55 56 57 57 56

Coal 145 211 227 227 223 211 197 179 161
Biogas 1 3 2 4 5 6 7 8 9

Biodiesel 2 5 4 8 9 11 13 15 18
Draught [109 hrs] 17.22 11.17 6.33 3.42 0.57 0.43 0.36 0.28 0.50
Labour [109 hrs] 182.65 164.80 110.20 108.16 97.45 85.71 78.06 66.33 56.63

Total Emissions (Mt y−1) ¥

GHG (CO2eq) 2010 2015 2020 2025 2030 2035 2040 2045 2050

CO2 31 41 46 47 48 47 46 43 41
CH4 109 109 102 105 107 106 105 102 100
N2O 49 57 66 70 73 73 74 73 71

¥ CO2 emission from electricity production are not considered towards the agricultural sector emissions.

Regarding to conventional energy sources, diesel, coal and electricity are the major fuels,
representing 93.7% of the total fossil fuel inputs in the base year. By 2050, electricity and diesel
retain their dominance of the overall fuel share, with coal reaching its maximum demand by 2025 and
later being displaced by other energy sources used in modern technologies. Despite the growth in
biofuels, their overall share remains small by 2050 (<5%), as “modern renewable” mechanisation is
responsible of 31.1% compared to 61.9% of “modern” mechanisation that exclusively has fossil fuels as
inputs. In terms of labour, it is expected a reduction of 69% reaching 56.6 × 109 h y−1 or 27.9 million
workers. For emissions, CH4 related emissions due to rice production represent the highest share,
followed by N2O from fertiliser use and CO2 from fuel combustion. Overall emissions (CO2eq) grow
by 11.9%, with N-related emissions with the highest increase (+46.1%), followed by CO2 (+30.2%).
On the other hand, CH4 emissions due to rice cultivation are reduced by 8.6%, mainly due to the
installation of more efficient technologies. In terms of emission intensity, this is reduced from 0.025 to
0.016 GtCO2eq PJcrop−1 (−35.6%).

N-based fertiliser demand in Mt is shown in Figure 8. For comparison, a projected demand for the
USA has been included. In China, the consumption has been calculated at 16.2 Mt y−1, which represents
29.1% of the national demand. As seen, China’s fertiliser demand is higher than in the USA due to
differences in production. This difference becomes more pronounced as the Chinese agricultural sector
intensifies. By mid-century, China reaches 23.0 Mt y−1 of fertiliser demand (after peaking in 2040 to
24.2 Mt y−1).
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3.1.3. Land Use

Figure 9 shows the land use modelling outputs for the four crops. In the base year, the analysed
crops demand 106 Mha, with rice (33%) and maize (33%) as the as the largest croplands. Modelling
results suggest that land demand will peak in 2030, increasing by 23%, to then shrink to 119 Mha by
2050, thus liberating land that could be used for other crops or for reforestation purposes. Apart from
a reducing population at the end of the simulation period, the adoption of more efficient agricultural
mechanisation processes with higher yields produces a decrease in land demand. The crop with the
highest dynamism is maize, going from 35 Mha in 2010 to 51 Mha in 2050, while soybean gets reduced
from 9 to 3 Mha.Energies 2020, 13, x FOR PEER REVIEW 20 of 33 
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3.2. “Low” and “High” Development Scenarios

3.2.1. Mechanisation Adoption and Investment

In the “Low” development scenario, food demand increases due to higher population growth and
per capita food intake. Additionally, it is expected that fossil fuels are not hit by carbon prices and
advanced more efficient technologies become more expensive. Productivity diminishes due to the
decreased investment in modern efficient technologies, as both the NPV differential between modern
and transitional technologies is reduced. In the “High” development scenario, food demand reduces
due to lower population growth and food intake per capita. Additionally, fossil fuels become more
expensive as carbon tax is implemented (including CH4 and N2O), and advanced technologies become
more competitive, as capital cost reduces and fuel cost becomes cheaper than the traditional options.

As illustrated in Figure 10, China would take up to 2040 to decommission transitional
mechanisation, especially for maize and soybean. The outputs showcase the rate of adoption of
modern technologies, where “modern” mechanisation almost overtakes by 2050 in all analysed
scenarios. This result is expected as current trends in mechanisation diffusion in the country is
following modernisation, thus moving to a slight increase in efficiency and renewable fuel share.
However, modern efficient technologies with renewable energy share are not as predominant as
fossil-based modern, being the latter the preferred choice for investors. In 2030, renewable energy
starts to enter the sector, especially for maize and rice crops.Energies 2020, 13, x FOR PEER REVIEW 21 of 33 
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Figure 10. Technological diffusion for reference, low and high development scenarios in China.

Sector mechanisation and intensification is expected for all analysed crops. For the reference case
in China, in the base year, “transitional” mechanisation is still responsible of 47.4% of the production,
while “modern” is responsible of 44.5%. By 2050, a shift is expected as “transitional” will only be
responsible of 6.9%, while “modern” and “modern renewable” will be responsible for 61.9% and 31.1%
of the total production. In the “High” development scenario, the “modern renewable” share increases
to 35.2%.

The 2010–2050 investment required for the “Low” development scenario has been calculated at
around 361.6 billion 2017US$, while for the “High” development at 295.4 billion 2017US$. Apart from
a reduced installed capacity in the “High” development scenario which directly explains the lower
costs, other important cost difference is found in the higher investment in “transitional” mechanisation
processes in the “Low” development scenario (22.4 against 11.7 billion 2017US$), mainly due to lower
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fossil fuel prices and high cost of modern technologies. Figure 11 presents a cost comparison among
the analysed scenarios.
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3.2.2. Energy/Fertiliser Demand and Related Emissions

While in the “Low” development scenario, fuel use increases by 33.9% by 2050 (Table 13), in the
“High” development scenario, a reduction of 34.1% compared to the reference is observed. For the
reference and “Low” development scenarios, coal still represents the major energy source; however,
in the “Low” development scenario that coal has a predominant share. Electricity and diesel are
expected to still be major energy sources, but it is gasoline that has the highest growth rates regardless
the scenario. Moreover, outputs show a low share of biofuels in future Chinese agriculture. However,
if policies are made that promote the use of biofuels in the country’s energy system, this might
slowly replace the demand of fossil fuels. For example, biodiesel or biomethane-fuelled agricultural
technologies (e.g., farm machinery, farm equipment) could easily replace the demand of diesel in
agriculture, which currently accounts for 8% of the national diesel consumption.

Table 13. Fuel use and emissions for reference, low and high development scenarios.

Reference Low Development High Development
Fuel (PJ) 2010 2030 2050 2010 2030 2050 2010 2030 2050

Electricity 141 221 227 141 225 262 141 207 215
Diesel 206 309 285 206 310 308 206 294 255

Natural Gas 1 3 5 1 2 3 1 3 6
Gasoline 29 55 56 29 56 65 29 52 53

Coal 145 223 161 145 277 321 145 165 118
Biogas 1 5 9 1 5 12 1 4 10

Biodiesel 2 9 18 2 11 24 2 9 20
Draught [109 h] 17.22 0.57 0.50 17.22 5.48 3.20 17.22 5.05 0.28
Labour [109 h] 182.65 97.45 56.63 182.65 120.41 70.92 182.65 114.80 47.96

Emissions
(Mt CO2eq) 2010 2030 2050 2010 2030 2050 2010 2020 2050

CO2 31 48 41 31 53 58 31 41 34
CH4 109 107 100 109 116 117 109 109 90
N2O 49 73 71 49 74 79 49 70 67



Energies 2020, 13, 6636 21 of 31

In terms of total emissions, the model shows a range between 191.0 Mt y−1 and 211.2 Mt y−1.
Compared to the reference case base-year emission intensity of 0.025 GtCO2eq PJcrop

−1, even a “Low”
development would decrease the index to 0.019 GtCO2eq PJcrop

−1, while a “High” development has
the potential to reduce even further to 0.014 GtCO2eq PJcrop

−1.
Finally, the most striking output is the reduction of labour demand. In the “Low” development

scenario, labour is reduced by 61.1% (reaching 70.92× 109 h y−1 or 34.9 million workers), while in a highly
mechanised sector, the reduction is in the order of 73.6% (employing 23.6 million workers). These values
are important, as currently 20% of the Chinese workforce is employed in the agricultural sector [27].
To put this into perspective, the USA only employs 1.6% of its workforce for agricultural purposes.

Lastly, Table 14 shows the fertiliser demand for every scenario.

Table 14. Fertiliser demand for reference, low and high development scenarios.

Fertiliser Demand (Mt)
Reference Low Development High Development

2010 2030 2050 2010 2030 2050 2010 2030 2050
China 16 24 23 16 25 26 16 23 21

3.2.3. Land Use Change

Figure 12 illustrates the total land use demand projections for both scenarios compared to
the outputs from the reference case. As previously discussed, for the “Low” development case,
yields annual growth declines from 0.8% to 0.5%, thus putting more pressure on land. On the other
hand, a “High” development scenario explores a yield growth increase to 1.3%.
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Regardless of the scenario, it is expected an increase in land demand compared to the base year.
However, the peak demand of land is expected between 2030 and 2035 for the reference case, in 2045 for
the “Low” development, and in 2030 for the “High” development due to higher investment and more
accessibility to modern technologies. At the end of the “High” scenario, land requirements for the four
crops is expected to reach 112 Mha, compared to worst case of 136 Mha in the “Low” development.
The “High” development scenario in turn could reduce emissions due to lower levels of deforestation
and soil degradation.
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4. Discussion

It is expected that developing economies will follow mechanisation diffusions similar to the past
century trends experienced in developed economies. While some develop economies already have
reached peak yields and technological diffusion in the majority of their crops, developing economies still
have large potential for improvement, but also expect higher growth rates in food and feed demands
due to the increase in population and per capita income. However, the greatest barrier for sustainable
agricultural development is access to modern technologies, as most of the modern machinery is being
developed in advanced economies thanks to larger and constant investment in R&D in the sector.
As Safdar and Gevelt [76] discuss, developed economies are constantly strengthen its competitive
advantage by combining investment and political lobbying. This has caused substantial barriers to
local Chinese firms, that regardless of the state-support that the sector possesses, the technological gap
of state-of-the-art machinery and processes between advanced economies and those from Chinese
firms keeps widening.

Nevertheless, China keeps emphasising the development of the agricultural sector. The future
development of the sector is not without related challenges. Among others, food demand security
would require policies supporting smaller businesses and promoting advancements in production
practices [77,78]. In addition to the economic implications, the introduction of advanced practices in
agriculture becomes even more crucial when linked to emissions reduction from a perspective of low
carbon transition.

Modelling outputs suggest that for all four crops analysed for the case of China, a shift towards
modernisation is inevitable. The existence of some “transitional” agriculture is because in some rural
regions, farmers are cultivating on marginal lands, where the access to more efficient technology
might not be economically attractive. In this situation, it is the economic constraint that prevents the
movement to the “modern” mechanisation levels, and not the lack of technological availability.

Analysis of variations over the reference scenario illustrate the dependence of the results on the
made assumptions. In the “Low” development scenario, food demand is increased, fossil fuels are not
hit by carbon taxes, and advanced technologies become more expensive. As expected, by mid-century,
yields could decline in the range 10–14% for all crops compared to the reference scenario. This is due
to the lower investment in modern technologies, as both the NPV differential between modern and
transitional technologies is reduced, and the capacity gap is narrowed. On the other hand, in the “High”
development scenario, food demand is reduced, fuels become more expensive, a tax on CH4 and N2O
emissions is implemented, and advanced technologies become cheaper. In this case, yields improve
in the range 16–24% for all crops compared to the reference scenario. In terms of direct energy use,
despite the scenario, outcomes demonstrate that by 2050, electricity and diesel will still make up the
largest portion of overall fuel use. However, if low development occurs in China, coal could still have
a high share by 2050, hampering the national efforts to reduce economy-wide emissions.

The “High” development scenario shows a dramatic uptake of modern technologies in
2040—precisely when the current traditional and transitional technologies are fully decommissioned.
It would be highly beneficial if policies promoting an early retirement of the existing technologies,
when capital costs are outweighed by running costs, were put in place, accelerating decommissioning,
namely if the resultant increase in capital costs is outweighed by the decrease in running costs.

Carbon taxes can have a significant impact on resource use and emissions. However, countries
and relevant organisations are recommended to properly balance these taxes and subsidies. In the
2050 horizon, an optimal methane tax for controlling rice field emissions was observed at around USD
500/ton CH4, specifically for Chinese agriculture, contributing to around 20.1% emission reduction
compared to the base case. Due to the extremely high emissions linked with permanently flooded rice
fields, the pathways to reduce these emissions focus mainly on reducing the flooded period as much as
possible, close control of water levels on fields, new seeding techniques, and/or sequentially managing
wetting and drying of patties to prevent methane build-up [79]. Erda et al. [80] investigated potential
carbon reduction options in the Chinese agriculture sector. The author found a potential reduction of
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4–40% of CH4 emissions from better practice in rice, ruminants and animal waste, as well as reductions
of 20% of N2O from micro-dosing fertilisation.

New land use techniques such as precision agriculture [81], i.e., any form of agriculture that
changes conventions by utilizing new technologies, are expected in the future. As Stafford [82] suggests,
precision agriculture has the potential to reduce environmental impacts by providing better crop
and land management while increasing economic returns, thus providing a stronger market. In the
methodology, it was highlighted that fertiliser use and its subsequent emissions incur high investment
and pollution costs. The emergence of precision agriculture and the optimised outputs it promises are,
therefore, of high interest for policy makers. Considering the already high yields achieved by farms in
some countries, it is reasonable to assume that when this technology is made globally available, a high
increase in application efficiency could be observed. Although not analysed in this study, diet changes
towards less meat-based products (which in turn would reduce feed crop demand) combined with
waste minimisation could be the most cost-effective measure aiming at reducing sectoral emissions to
lower levels [83].

5. Conclusions

In this paper, a specific crop model for the agricultural sector integrated in an energy systems
model has been proposed. This study proposed a simulation framework capable of modelling the
future energy use, production, fertiliser demand, land use and related emissions as a function of
mechanisation diffusion for specific crops. Four main crops have been studied to demonstrate the
model capabilities. The techno-economic inputs refined by crop type provided a deeper under-standing
of the value of technological advances within the sector and their implication in the wider energy
system and environment.

Agricultural and land use models are set to play a significant role in helping decision makers to
make informed decisions to ensure a future for the energy system, farming and global food production
in line with a sustainable development. Mechanisation planning allows for both a quantitative
assessment of advancement and serves as a tool for analysis in countries where specific data are lacking.

The current study presents scenarios of mechanisation in agriculture using China as a case study,
which represents about 20% of global crop production. The results obtained demonstrate the complex
variations by crop in technology investment, yields, fuel use, land demand and GHG emissions.
Additionally, it is expected that the energy demand in the sector will increase driven by projected
higher food demand, especially if more efficient technologies are not deployed. This can be seen in the
“Low” development scenario, where higher investments in “transitional” mechanisation processes
instead of “modern” mechanisation have been found, mainly driven by lower fossil fuel prices and
high cost of modern technologies. Although coal would remain as an important source for Chinese
agriculture, there would be room for electrification in the sector. On the other hand, biofuels would
merely increase their share from 0.5% to up to 4.4% by mid-century. Despite the increase in energy
demand expected across scenarios, outputs suggest a reduction in sectoral emissions compared to
the base year, mainly due to a larger share of renewable energy and more efficient use of fertilisers
and land.

The model also revealed important socio-economic implications in the reduction in dedicated
human labour. If the modelled trends of increased mechanisation are extrapolated to the entire
sector [27], a reduction of up to 114.5 million workers by 2050 could be expected. A workforce that
eventually would need to switch either the industry and/or the service economic sectors.

For future work, the characterisation of the majority of agricultural crops is envisioned, as well as
the different types of animal-based food production, forestry products and energy crops. Additionally,
we expect to integrate a spatially explicit model that will characterise land suitability based on several
biophysical characteristics such as temperature, soil, or water availability, aiming at understanding its
effects in crop productivity and reduce uncertainties in the outputs.
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Appendix A. Framework to Characterise Agricultural Processes Based on Qualitative and
Quantitative Approaches

A pre-processing six step approach combining qualitative and quantitative methods has
been developed.

Step 1. Data on total production by country has been collected for the main agricultural
commodities (crops, meat, and forestry products) and converted into energy units. Following, land use
demands have been obtained for each agricultural commodity per region.

Step 2. Finally, after aggregating total production and land use demand per type of commodity,
it is possible to obtain yields in energy units per area (PJ Mha−1). Distributions for each agricultural
product on a global scale has been obtained.

Step 3. The outputs have been used to get a first qualitative definition of mechanisation
levels depending on empirically observed yields (Step 3). In this case, as detailed in Section 2.1.3,
three different levels of mechanisation have been defined using the quartiles calculated from the
distributions. This technological classification is similar to mechanisation levels defined by the [6]
(traditional, transitional, and modern) and by [84] (low level, intermediate level, and high level).

Step 4. To provide fuel share and land demand for each mechanisation process per agricultural
product, a cluster analysis (k-means) has been implemented by locating countries with similar energy
input/output ratios and yields characteristics per agricultural product.

Step 5. After grouping countries accordingly for each agricultural product, data on energy,
fertiliser and land demand per unit product has been aggregated and probability distributions
have been assigned to the different inputs to characterise those specific groups. Therefore, for each
mechanisation level (traditional, transitional, and modern) and agricultural product (crops, meat,
and forest) per region, fuel share, agrochemicals demand, yields and investment parameters have been
defined with lower and upper bounds.

Step 6. To finalise the approach, it is necessary to calculate the total installed capacities by
mechanisation level and by agricultural product for each region. For this, an optimisation problem (OP),
based on integer linear programming (ILP) implemented in GAMS has been proposed, considering that
only data on total sectoral energy demand and emissions by region are available.
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Appendix B. Mechanisation Installed Capacity Optimisation Model

To quantitatively characterise mechanisation levels into modelling processes, an optimisation
problem (OP), based on linear programming (LP), has been implemented in GAMS [71]. The OP
model aims to minimise the difference between real emissions and estimated emissions values for 2010,
based on a series of constraints. As main modelling assumptions, different shares of mechanisation
level are allocated to every region based on regional yields and the level of economic development.
This means every country and region has some level of mechanisation level to greater or lesser extent.
Depending on the region’s GDP agricultural contribution, different mechanisation share by level are
characterize and used as bounds. Therefore, individual regions and crops would have to some extent a
mechanisation level share. These bounds are shown in Table A1.
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Table A1. Mechanisation share lower and upper bounds assumptions for different type of
economies [59].

Type of Economy Traditional Transitional Modern Modern Renewable

θtrad θtran θmod θmodern

Least Developed (%GDPagr share > 0.16) 50–70% 10–20% 10–20% 1–2%

Emerging (0.02 < %GDPagr share < 0.16) 10–20% 50–70% 10–20% 3–5%

Developed (%GDPagr share < 0.02) 10–20% 10–20% 50–70% 5–10%

Along upper and lower bounds in other input parameters, the optimisation problem is formulated
as follows:

Appendix B.1. Objective Function

The objective function minimises the difference between modelled emissions from real emissions
in the sector:

minZ =
∑

r
|∆Er|+

∑
r, f

∣∣∣slr, f
∣∣∣ (A1)

where Er is the difference in emissions, while the sum of slr, f represents the aggregation of all calculated
slack variables.

Appendix B.1.1. Emissions Difference

The difference in emissions (∆Er) can be obtained by:

∆Er = RE −ME (A2)

where RE represent the real emissions (obtained from FAO or IEA), and ME is the modelled emissions
obtained by the model.

Appendix B.1.2. Emissions of the Model

The modelled emissions are calculated as follows:

ME =
∑

f ,t
CNr, f ,txFE f (A3)

where CNr, f ,t is the fuel consumption for region r and technology t, and FE f is the emission factor for
fuel type f.

Appendix B.2. Constraints

The OP is subject to the following quality and inequality constrains:

Appendix B.2.1. Mass Balance

First, the mass balance must be satisfied for every region, technology and agricultural service:∑
t∈TSs

CPr,t > DMr,s ∀ ∈ TSs (A4)

where CP refers to installed capacity, DM to service demand, r refers to region, t to technology
mechanisation level, s to service type and TSs are the technology mechanisation levels available for
service s.
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Appendix B.2.2. Service Demand

The demand per service must be met by the sum of the share of production per mechanisation levels:

DMs =
∑

t
θs,t (A5)

where θ refers to the demand share covered by technology mechanisation level t.

Appendix B.2.3. Mechanisation Level Share

The share of production per mechanisation level (θs,t) is obtained by dividing the demand met by
specific mechanisation level over the total demand for service s:

θs,t =
DMs,t∑

t∈TSs DMs
∀ ∈ TSs (A6)

The share sum of mechanisation levels is constrained by the following equality:∑
θt = θs,trad + θs,tran + θs,mod + θs,mod_ren = 1 (A7)

Appendix B.2.4. Fuel Balance

The capacity per region and technology (CPr,t) is calculated from the total fuel consumption by
technology in PJ multiplied by the technology yield or efficiency (PJ/PJ):

CPr,t =
∑

f
CNr, f ,tx Yt,s (A8)

where f refers to fuel type, CNr, f ,t to fuel consumption per region and technology, and Y to efficiency
of technology t for service s.

Appendix B.2.5. Fuel Constraint

The sum of fuel consumption by region and technology (CNr, f ,t) is constrained by the total fuel
demand in the region: ∑

t
CNr, f ,t < (FDr, f + slr, f ) (A9)

where FDr, f is fuel demand f in region r, and slr, f is a slack variable added to make the problem feasible
and fulfil the fuel constraints. The aim of adding a slack variable to an inequality constraint is to
transform it into an equality constraint.

By solving the optimisation problem, all structural alternatives are evaluated, and the best solution
is identified. The obtained capacities for each technology are used as an estimate of the base year stock.
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