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Abstract—Convolutive non-negative matrix factorization
(CNMF) is a promising method for extracting features from
sequential multivariate data. Conventional algorithms for CNMF
require that the structure, or the number of bases for expressing
the data, be specified in advance. We are concerned with the
issue of how we can select the best structure of CNMF from
given data. We first introduce a framework of probabilistic
modeling of CNMF and reduce this issue to statistical model
selection. The problem is here that conventional model selection
criteria such as AIC, BIC, MDL cannot straightforwardly be
applied since the probabilistic model for CNMF is irregular
in the sense that parameters are not uniquely identifiable.
We overcome this problem to propose a novel criterion for
best structure selection for CNMF. The key idea is to apply
the technique of latent variable completion in combination
with normalized maximum likelihood coding criterion under
the minimum description length principle. We empirically
demonstrate the effectiveness of our method using artificial and
real data sets.

I. INTRODUCTION

Fig. 1. The intuitive interpretation of convolution process from bases and
their activations to data. In this example, the number of bases K is 2.

A. Motivation and Purpose

In this paper we are concerned with the issue of how we

can estimate the best structure for convolutive non-negative
matrix factorization (CNMF)[11]. The task of CNMF is to

decompose matrix X ∈ R
Ω×T into convolution of a num-

ber of bases Θ
def
=
(
Θ(m)

)M−1

m=0
= Θ(0),Θ(1), . . . ,Θ(M−1)

Fig. 2. The intuitive interpretation of extracting time sequential features from
data. In this example, Ω = 6, K = 2, T = 12, and M = 3, respectively.
Given data X , CNMF gets bases Θ and their activation matrices Z.

(Θ(m) ∈ R
Ω×K for m = 0, 1, . . . ,M−1) and their activations

Z ∈ R
K×T as X ≈ ∑M−1

m=0 Θ(m)
m→
Z . We let

m→· (
←m· )

denote a right (left) column shift operator that moves its

argument m places to the right (left); as each column is

shifted off to the right (left), the leftmost (rightmost) columns

are filled by zeros. Here Θ and Z consist of K latent

factors, where we denote the kth component of Θ(m) as θ
(m)
k

(m = 0, 1, . . . ,M − 1) and the kth row of Z as zT
k .

An example of the convolution process is illustrated in

Fig. 1. An impulse response is generated as a convolution of

a number of bases when a single impulse signal is input. For

an individual system, a sequence of responses is generated

as a convolution of a number of bases when a sequence of

multi impulses is input as an activation. For the overall system,

the data is observed as a linear combination of the individual

systems’ responses. CNMF is a process of decomposing the

data into the convolution of bases and activation.

We may conduct CNMF for a data sequence to extract K
underlying time sequential features from it. We may think of{
θ
(0)
k ,θ

(1)
k , . . . ,θ

(M−1)
k

}
as the kth sequential features. We

refer to K as the number of bases of CNMF. An example of

extracting 2 features with CNMF is illustrated in Fig. 2.



The conventional non-negative matrix factorization (NMF)

can be thought of as a special case of CNMF with M = 1.

CNMF with M ≥ 2 is more appropriate for analyzing

sequential data than NMF in the case where time sequential

features may underlie the given data. This is because CNMF

views the original data as the sum of the K latent factors

and time-dependent natures may be represented through the

differences of
(
Θ(m)

)M−1

m=0
.

The most critical issue with CNMF is how we can determine

the number of bases for CNMF. All of the conventional algo-

rithms for CNMF have been designed under the assumption

that the number of bases is given in an ad hoc way. However,

it is reasonable to select the best number on the basis of given

data. The purpose of this paper is to propose a novel method

for selecting the best structure of CNMF from the view of

statistical model selection.

B. Novelty and Significance of This Paper
We summarize our contributions as follows:

a) Proposing algorithm for selecting the best structure
of CNMF: Our theoretical contributions are listed as follows:

a-1) Developing a new framework for selecting the best
structure of CNMF:

We first introduce a framework of probabilistic modeling

of CNMF. This is necessary for taking a statistical approach

into the structure selection for CNMF. Our modeling can be

thought of as a natural extension of Virtanen et al.’s latent

variable model for NMF [12]. Within our framework we derive

an efficient algorithm for estimating both parameters and latent

variables using the auxiliary function method.
a-2) Novel base selection criterion using normalized maxi-

mum likelihood coding:
Conventional statistical model selection criteria such as

AIC[1], BIC[9], or MDL[7] cannot straightforwardly be ap-

plied into our framework as above. This is because our model

CNMF is specified by latent variables, which makes the

model irregular in the sense that there are some parameter

values which cannot uniquely be identified. Meanwhile most

of statistical model selection criteria are designed under the

condition that the central limit theorem holds. This condition

is not fulfilled when the model is irregular.
To overcome this difficulty, we first apply the technique of

latent variable completion (LVC) [3], [4] into our probabilistic

model to obtain a regular model. In LVC the likelihood of

the joint distribution of data and latent variables is calculated

where the values of latent variables are estimated from data.

We then select the number of bases in the resulting regular

model on the basis of the minimum description length (MDL)

principle. That is, we select the number of bases so that the

total code-length required for encoding latent variables and

the underlying regular model as well as data is minimum. We

employ the MDL principle because it 1) has consistency [8],

and 2) is guaranteed rapid convergence in the framework of

probably approximately correct (PAC) learning [16].
We derive a novel MDL criterion formula for CNMF

structure selection by employing the normalized maximum

likelihood (NML) coding with LVC. Note that it is critical

what kind of coding is used for calculating code-lengths. The

reason why we employ the NML coding is that it is optimal

in the sense that it attains Shtarkov’s minimax criteria [10] .

To the best of the authors’ knowledge, this is the first work on

selecting the number of bases as well as the parameter values

for CNMF.

b) Empirical demonstration of effectiveness of CNMF in
data mining: We empirically demonstrate the effectiveness of

our method through artificial data and real data.

For artificial data sets, we investigate how well our method

can estimate the number of bases as the temporal length of data

increases. We show that our method significantly outperforms

the state of arts; AIC, BIC with LVC. As for experiments

with real data sets, we employ price fluctuation data set.

We show that our proposed method is able to estimate the

most reasonable number of bases, and eventually to discover

important features underlying the time-varying real data.

C. Related Works

Since the original framework of CNMF was developed by

[11], any probabilistic modeling has not been made for it.

There exist a number of works on probabilistic modeling for

NMF (e.g. Vitranen et al. [12], Cemgil [2], Ito et al. [4]). Our

modeling can be thought of as a natural extension of Virtanen’s

one into the case where the convolution of NMFs is made.

The base selection problem for CNMF can be reduced to

statistical model selection once the probabilistic framework

is build. There exist a number of effective statistical model

selection methods including Akaike’s information criterion

(AIC) [1], the Bayesian information criterion [9], the minimum

description length (MDL) [7] criterion, and the minimum

message length (MML)[13]. The problem is that these criteria

cannot straightforwardly be applied to the probabilistic model

of CNMFs, because it is irregular as previously discussed.

There exist a number of recent works which tackle with this

problem. Watanabe derived the widely-applicable Akaike’s

information criterion (WAIC) [14] as an unbiased estimator

of the generalized loss, and the widely-applicable Bayesian

information criterion (WBIC) [15] as an asymptotically con-

sistent estimator of the marginal log-likelihood, for irregular

models respectively. However, these criteria work only when

a datum is independently generated. Hence we cannot apply

them to the CNMF structure selection because a datum at a

moment depends on that at different moments in CNMF.

We solve this problem by employing a technique of latent

variable completion (LVC) in combination with the normal-

ized maximum likelihood (NML) code-length criterion in the

scenario of the MDL principle. LVC has been applied to model

selection for latent variable models. Ito et al.[4] proposed

a rank selection method for NMF by employing LVC with

NML where the independence assumption is made. It cannot

straightforwardly be applied to the structure selection for

CNMF because the convolutive structure of CNMF makes the

computation of NML more difficult.



II. CONVOLUTIVE NON-NEGATIVE MATRIX

FACTORIZATION

A. Conventional Formulation

Convolutive non-negative matrix factorisation (CNMF) is

is formulated as follows. Given a non-negative matrix X ∈
R

Ω×T
+ , the goal is to approximate X as a convolution of bases

Θ(m) and their activity Z,

X ≈
M−1∑
m=0

Θ(m)
m→
Z ,

where Θ(m) ∈ R
Ω×K
+ (m = 0, 1, . . . ,M−1) and Z ∈ R

K×T
+ .

It is element-wisely written as follows:

xωt ≈
K−1∑
k=0

M−1∑
m=0

θmωkzk(t−m).

Let Λ ∈ R
Ω×T
+ denote the approximated value:

Λ
def
=

M−1∑
m=0

Θ(m)
m→
Z .

It is element-wisely written as follows:

λωt =
K−1∑
k=0

M−1∑
m=0

θ
(m)
ωk zk(t−m).

B. Approximation Criterion

Let fωt ∈ {0, 1} denote the presence of the datum fωt ∈
{0, 1} (fωt = 0 if the datum is missed and fωt = 1 otherwise)

and set F
def
= (fωt).

We employ the Kullback-Leibler divergence as a criterion

or evaluating the goodness of approximation between two

matrices X and Λ as follows:

DKL (X‖Λ) def=
Ω−1∑
ω=0

T−1∑
t=0

(
fωtxωt ln

xωt

λωt
− fωtxωt + fωtλωt

)
.

The values of Λ in CNMF are estimated by minimizing this

criterion for given X . This is the conventional formulation of

CNMF introduced by Smaragdis [11]. Note that we cannot

apply statistical model selection criteria to CNMF of this

formulation, since no probabilistic assumption is made there.

III. PROBABLISTIC MODELING

A. Probabilistic Formulation

In order to consider CNMF from the view of statistical

model selection, we introduce a framework of its probabilistic

modeling. This is based on the Bayesian approach to non-
negative matrix factorization (NMF) developed by [12]. We

interpret the bases Θ as the parameters of the probabilistic

model, and re-interpret the activities Z as a latent variable
generated by

zkt ∼ Gamma (zkt; a, b) .

We further introduce an intermediate latent variable S ∈
R

Ω×K×M×T
+ , which is assumed to be generated as follows:

sωktm ∼ Poisson
(
sωktm; θ

(m)
ωk zk(t−m)

)
.

It is specified by a parameter vector Θ and is conditioned on

Z. We further assume that the data X is generated as follows:

xωt ∼ δ

(
xωt −

K−1∑
k=0

M−1∑
m=0

sωktm

)
.

The goal of CNMF is to estimate (Z,Θ) so that the joint

probability of X and Z parametrized by Θ is maximized

with respect to Z and Θ. That is, the problem is reduced to

the maximization problem:

argmax
Z,Θ

p (X,Z;Θ) .

This is equivalent with the problem of minimizing the follow-

ing loss function:

L (X;Z,Θ)

def
=

Ω−1∑
ω=0

T−1∑
t=0

(
fωtxωt ln

xωt

λωt
− fωtxωt + fωtλωt

)
+R (Z) ,

(1)

where R (Z)
def
= zkt

a +lnΓ(b)ab−∑K−1
k=0

∑T−1
t=0 (b− 1) ln zkt.

Here R (Z) has a role of regularizing the scale of Z. With-

out this term (Z,Θ) would give the same probability as(
cZ, 1

cΘ
)
.

B. Parameter Estimation Algorithm

The minimization problem for the loss function (1) is in-

tractable because its partial differential coefficient with respect

to an element includes other elements. We take the auxiliary

function approach to this problem. The effectiveness and

stability of this approach have been demonstrated in many

of previous works; e.g. [6], [5] etc. We propose an efficient

optimization method for this loss function on the bases of the

auxiliary function approach. Minimizing (1) is equivalent to

minimizing L0 (X;Z,Θ) defined as

L0 (X;Z,Θ)
def
=

Ω−1∑
ω=0

T−1∑
t=0

(−fωtxωt lnλωt + fωtλωt)

+
K−1∑
k=0

T−1∑
t=0

[
−(b− 1) ln zkt +

zkt
a

]

We introduce an auxiliary function L+ (Z,Θ,μ;X) such that

L+ (Z,Θ,μ;X)

def
=

Ω−1∑
ω=0

T−1∑
t=0

(
−fωtxωt

K−1∑
k=0

M−1∑
m=0

μωktm ln
θ
(m)
ωk zk(t−m)

μωktm

+fωt

K−1∑
k=0

M−1∑
m=0

θ
(m)
ωk zk(t−m)

)
−

K−1∑
k=0

T−1∑
t=0

[
(b− 1) ln zkt − zkt

a

]
,

where μ = (μωktm) is an auxiliary variable. It is proved that

by Jensen’s inequality, we have

L0 (X;Z,Θ) = min
μ

L+ (Z,Θ,μ;X) .

We show an outline of our matrix-form algorithm for

parameter estimation in Algorithm 1. Here � and � denote



Algorithm 1 CNMF Algorithm Based on Auxiliary Function

Approach (Matrix-form)
repeat

Z ←
[
(b− 1)1K×T +Z �

(∑M−1
m=0 Θ(m)T

←m

[F �X �Λ]

)]
�[

1
a
1K×T +

∑min{M−1,t}
m=0 Θ(m)T

←m
F

]

for m = 0, 1, . . . ,M − 1 do

Θ(m) ←
[
Θ(m) � (F �X �Λ)

m→
Z

T
]
�

[
F

m→
Z

]

end for
until it converges

elementwise multiplication and division, respectively. Note

that if b ≥ 1, the parameters remain positive during update.

Because this algorithm is derived on the auxiliary function

method, it is guaranteed that this algorithm monotonously

decreases the original loss function L (X;Z,Θ). The compu-

tational cost in a step in this algorithm is O(ΩKTM), while

it is O(ΩKT ) for NMF (CNMF with M = 1).

IV. STRUCTURE SELECTION

A. Irregularity Problem

Any of parameter estimation algorithms for CNMF requires

that the number of bases be specified in advance. To specify

the number of bases, statistical model selection would be

applied to our probabilistic framework for CNMF, but we may

suffer from the irregularity problem, as shown below.

We say that the model is irregular when the map from

a parameter to a probability distribution is not one-to-one.

In CNMF case, there exists (Z ′,Θ′) 	= (Z,Θ) such that∑M−1
m=0 Θ′(m)

Z ′ =
∑M−1

m=0 Θ(m)Z, which implies that pa-

rameters cannot be uniquely identified from X . Thus CNMF

is an irregular model.

When the model is irregular, the central limit theorem

for the maximum likelihood estimator does not hold. Thus,

conventional statistical model selection criteria such as AIC

[1], BIC [9], and the conventional form of MDL principle [7]

cannot straightforwardly be applied.

B. Normalized Maximum Likelihood Codes

To overcome the irregularity problem, we propose a new

method for structure selection for CNMF: combining the latent

variable completion with normalized maximum likelihood

code-length criterion under the MDL principle.

According to the MDL principle, we select the best model

so that the total code-length required for encoding both the

data and model is minimum. Specifically we employ the

normalized maximum likelihood (NML) coding in the calcula-

tion of code-lengths. We calculate the NML code-lengths for

X,Z,S relative to the complete variable model rather than

the marginal distribution of X . The complete variable model

is the joint distribution of data X and latent variables Z,S. It

is no longer an irregular model, since the parameter is uniquely

identifiable once the values of latent variables are specified.

The NML code-length for X,Z,S is defined as the negative

logarithm of the normalized maximum likelihood as follows:

− log
p
(
X,Z,S; Θ̂(X,Z,S);K,M

)
∫
dX ′ ∫ dZ ′ ∫ dS′p(X ′,Z ′,S′; Θ̂(X ′,Z ′,S′);K,M

) ,
(2)

where Θ̂(X,Z,S) is the maximum likelihood estimator of Θ
from X,Z,S. It is known [7] that it achieves the Shtarkov’s

minimax risk defined as follows:

min
L

max
X,Z,S

{
L(X,Z,S)−min

Θ
(− log p (X,Z,S;Θ;K,M))

}
,

where the minimum is taken over all the prefix code-length

function (i.e., the code-length function for uniquely decodable

coding) for X,Z,S.

Note that the value of latent variables Z,S are not ob-

served, hence we estimate them from observable data X
using the algorithm in Section 3.2, then plug them into the

joint distribution, for which we use to calculate the NML

code-length for X,Z,S. We call this process the NML

coding with latent variable completion (LVC). Let Ẑ(X) and

Ŝ(X) be the estimates of Z and S from X and rewrite

Θ̂(X, Ẑ(X), Ŝ(X)) as Θ̂(X). We define the NML code-

length for X,Z,S with LVC as follows:

L
(
X, Ŝ(X), Ẑ(X); Θ̂(X);K,M

)
def
= − log

p
(
X, Ŝ(X), Ẑ(X); Θ̂(X);K,M

)
∫
dX ′ ∫ dS′ ∫ dZ ′p(X ′,S′,Z ′; Θ̂

′
;K,M

) .
(3)

Here Θ̂
′

denotes the estimate of Θ from X ′,S′,Z ′. Note

that the denominator in the right-hand side is analytically

intractable. The following theorem yields an asymptotically

intractable form of the NML code-length with LVC.

Theorem 1: Assume that each θ
(m)
ωk is restricted to be in

[0, θmax] for θmax <∞. The NML code-length (3) with LVC

is asymptotically expanded within error o(1) (limn→∞ o(1) =
0) as follows:

L
(
X, Ŝ(X), Ẑ(X); Θ̂(X);K,M

)
= − log p

(
X, Ŝ(X), Ẑ(X); Θ̂(X);K,M

)
+

ΩKM

2
log

Tθmax

π
+K logR(Ω, T,M),

(4)

where

R(Ω, T,M)

def
=

∫ T−1∏
t′=0

dz0t′Gamma (z0t′ ; a, b)
M−1∏
m=0

(
T−1∑
t=0

z0(t−m)

)Ω
2

.

The proof will be given in the full version.

We select the best number of bases so that the code-

length(4) is minimized. Note that R(Ω, T,M) is dependent on

Ω, T,M but independent of K. It can be computed with the

Monte Carlo method in advance (note: Ω, T,M are given in

advance), generating
{
z00, z01, . . . , z0(T−1)

} ∈ R
T . Theorem



Fig. 3. Left: the number of bases estimated in the true structure estimation
task, right: accuracy rates in the true structure estimation task

Fig. 4. The generalized Kullback Leibler divergence between the completed
data matrix and the original data matrix without missing values. missing rate:
0.4 (left), 0.7 (right)

1 states that we can compute the NML code-length with LVC

running the Monte Carlo simulation once in T dimensional

space, while computing it straightforwardly in accordance with

Equation (3) requires the Monte Carlo simulation in ΩT+KT
dimensional space for all candidates of K.

V. EXPERIMENT

We show experimental results on structure selection for

CNMF through synthetic data and real data. 1

A. Synthetic Data Set

a) Data Set: We generated synthetic data sets as follows:

• θωkm ∼ Uniform (θω,k,m; 0, 10)
• zkt ∼ Gamma (zk,t; 2, 2)

• xωt ∼ Poisson
(
xωt;

∑K−1
k=0

∑M−1
m=0 θωkmzk(t−m)

)
,

for ω = 0, 1, . . . , Ω−1, k = 0, 1, . . . ,K−1, t = 0, 1, . . . , T−
1, and m = 0, 1, . . . ,M − 1, where Ω = 12 and M = 3, and

K = 4 and T = 40, 80, . . . , 400.

We evaluated our method’s performance from the two

aspects; true model estimation and missing data completion.

b) Methods for Comparison: We employed for compar-

ison the following conventional statistical criteria: naiveAIC,

AIC applied naively by interpreting both of

Θ and Z as parameters, which is given by − ln p
(
X|Ẑ; Θ̂

)
+

(ΩKM +KM), naiveBIC, BIC applied naively by interpret-

ing both of

Θ and Z as parameters, which is given by − ln p
(
X|Ẑ; Θ̂

)
+

1
2 (ΩKM + KM) lnT , LVC-AIC: AIC applied with LVC,

1Python3 codes are available in https://github.com/atsushi-suzuki/cnmf mdl

which is given by − ln p
(
X, Ŝ(X), Ẑ(X); Θ̂;K,M

)
+

ΩKM , and LVC-BIC: BIC applied with LVC, which is given

by − ln p
(
X, Ŝ(X), Ẑ(X); Θ̂;K,M

)
+ 1

2 (ΩKM) lnT

Note that naiveAIC and naiveBIC are not designed for model

selection of irregular models. We did not consider the cross

validation (CV) for comparison. This is because CV requires

much more computation time than model selection criteria-

based methods. In particular, learning CNMF takes much

larger computational time than the conventional NMF, hence

CV is not realistic for CNMF structure selection.

c) Results: Let us first show results on experiment

of true model estimation. We took data matrices without

missing as inputs. We then evaluated how well any method

estimated the true number of bases, in terms of accuracy
A = 1

I

∑I−1
i=0 δKtrue,K̂(i) where I denotes the total number of

trials, Ktrue denotes the true number of bases for the model

generating synthetic data and K̂ denotes the number of bases

estimated by the respective methods. We set I = 20. The

accuracy A shows the mean rate of how exactly the respective

method was able to detect the true number of bases.

Fig. 3-left is a graph of the mean values of the estimated

numbers of bases versus the temporal length T . Our method

was able to detect the true numbers of bases more accurately

than the competitive ones. Fig. 3-right shows accuracy rates

for the respective methods. When the temporal length T
was long enough, our proposed method showed much better

performance than the competitive ones. This is because all

of the competitive methods tended to overestimate the true

numbers of bases as T increased. It also implies that when

T was small, the competitive methods temporally got higher

accuracy than our method because of their overestimation. We

may see that our method also tended to slightly overestimate

the true numbers of bases as T became sufficiently large. This

is because the dimension of latent variables increased as T
increased, hence the accuracy of estimating those variables as

well as parameters became lower, which affected the accuracy

of estimating the numbers of bases.

Next let us show results on experiment of missing data

completion. We took data matrix with missing values as

inputs. We then evaluated how well any method completed

missing data in terms of the generalized Kullback-Leibler

(KL) divergence as in Section II between the completed data

matrix and the original data matrix without missing values.

We conducted this test 20 times for each setting. The KL

divergence was averaged over 20 trials.

Fig. 4 shows how well the respective methods completed

missing value. In each graph, the horizontal axis shows the

sample size while the vertical axis shows the generalized KL

divergence. We observe that our method outperformed all of

the competitive ones.

Through the experiments, we see that the proposed method

worked better than the others both in the rank estimation

and missing data completion scenarios. The superiority of the

proposed method was more significant in the rank estimation

scenario than in the missing data completion scenario.



Fig. 5. Time sequential features in price fluctuation of dairy products in Japan extracted by CNMF

B. Price Fluctuation Data

Finally, we applied CNMF to price fluctuation data of dairy

products in Japan. This is the first application of CNMF into

the data sets other than acoustic data, as far as the authors

know. We got the data from the statistic bureau, the ministry

of internal affairs and communications of Japan2 We used the

price data of milk (delivered), milk (at a store), milk powder,

butter, cheese (Japanese), cheese (imported) and yogurt, from

January 2001 to March 2014. Note that we did not use the

data from April 2014 to exclude the effect of the increase of

Japan’s consumption tax in April 2014. We first normalized the

data by dividing them by the mean of each item’s price. Then

we obtained the absolute values of the difference between the

target month’s price and the last month’s one, and multiplied

1000 by it. We applied CNMF to the preprocessed data. We

set b = 1.00001, a = 2.0 and M = 8.

Fig. 5 shows 5 time sequential features extracted by CNMF.

The darker the color is, the larger fluctuation it means.

The first base extracted by CNMF as in Fig. 5 shows

the existence of the fluctuation of milk powder’s price as

a symptom of that of imported cheese’s price. The second

base shows a simultaneous fluctuation pattern among milk and

milk powder and the existence of the fluctuation of cheese’s

price as a symptom of the simultaneous fluctuation. The third

base shows the fluctuation of imported butter’s price and the

existence of the fluctuation of cheese’s price as its symptom.

The fourth and fifth bases show that the prices of butter and

yogurt tended to fluctuate independently of other products.

Each of the 5 features represents a clearly distinct time se-

quential pattern of price fluctuation. Through the time sequen-

tial patterns, we may find chain reaction of price fluctuation

among different products.

VI. CONCLUSION

This paper has proposed a novel methodology for selecting

best structures of CNMF. Our structure selection method has

been realized by 1) introducing a probabilistic structure with

latent variables into CNMF, 2) designing an efficient algorithm

for estimating both parameters and latent variables using the

auxiliary function method, and 3) deriving a criterion for

selecting the number of bases using the normalized maximum

likelihood coding with latent variable completion under the

minimum description length principle. Specifically, by 3), we

are able to overcome the difficulty on the irregularity of the

2Available in http://www.stat.go.jp/data/kouri/doukou/3.htm

probabilistic modeling of CNMF. We have empirically demon-

strated the effectiveness of our method using the synthetic and

real data sets. We have further emphasized the usefulness of

CNMF with our method in the scenario of data mining.
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