1. Supplementary Information:

Item	Present?	Filename This should be the name the file is saved as when it is uploaded to our system, and should include the file extension. The extension must be .pdf	A brief, numerical description of file contents. i.e.: Supplementary Figures 1-4, Supplementary Discussion, and Supplementary Tables 1-4.
Supplementary Information	Yes	Meijaard et al. Oil palm and biodiversity (Supporting Information) – final.pdf	Supplementary materials. Figures S1-S2. Table S1-S3.
Reporting Summary	No		

5 A. Additional Supplementary Files

Туре	Number If there are multiple files of the same type this should be the numerical indicator. i.e. "1" for Video 1, "2" for Video 2, etc.	Filename This should be the name the file is saved as when it is uploaded to our system, and should include the file extension. i.e.: Smith_ Supplementary Video 1.mov	Legend or Descriptive Caption Describe the contents of the file
			List of species on the IUCN Red List of Threatened Species for which oil
Supplementary Table	1	Table S4.xlxs	crops are one of the threats to the

	survival (1=impacted by the crop;
	0=not impacted by the crop).

The environmental impacts of palm oil in context

- 11 Erik Meijaard^{1,2,3*}, Thomas Brooks^{4,5,6}, Kimberly M. Carlson^{7,8}, Eleanor M. Slade⁹, John Garcia Ulloa¹⁰,
- 12 David L.A. Gaveau¹¹, Janice Ser Huay Lee⁹, Truly Santika^{1,2}, Diego Juffe-Bignoli^{2,12}, Matthew J.
- 13 Struebig², Serge A. Wich^{13,14}, Marc Ancrenaz^{1,15}, Lian Pin Koh¹⁶, Nadine Zamira¹⁷, Jesse. F. Abrams^{18,19},
- 14 Herbert H.T. Prins²⁰, Cyriaque N. Sendashonga²¹, Daniel Murdiyarso^{10,22}, Paul R. Furumo²³, Nicholas
- 15 Macfarlane⁴, Rachel Hoffmann²⁴, Marcos Persio²⁵, Adrià Descals²⁶, Zoltan Szantoi^{27,28}, Douglas Sheil²⁹
- 16 ¹ Borneo Futures, Bandar Seri Begawan, Brunei Darussalam.
- ² Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, UK.
- ³ School of Biological Sciences, University of Queensland, St Lucia, Australia.
- ⁴ Science and Knowledge Unit, IUCN, Gland, Switzerland.
- ⁵ World Agroforestry Center (ICRAF), University of The Philippines Los Baños, Laguna, Philippines.
- ⁶ Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Australia.
- ⁷ Department of Natural Resources and Environmental Management, the University of Hawai'i at
- 23 Mānoa, HI, USA.

8

- ⁸ Department of Environmental Studies, New York University, New York, NY, USA.
- ⁹ Asian School of the Environment, Nanyang Technological University of Singapore, Singapore.
- ¹⁰ Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
- 27 ¹¹Center for International Forestry Research, Bogor, Indonesia.

28 ¹² UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge,

29 UK.

- ¹³ School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
- ¹⁴ Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The
- 32 Netherlands.
- ¹⁵ Kinabatangan Orang-Utan Conservation Programme, Kota Kinabalu, Sabah, Malaysia.
- ¹⁶ Department of Biological Sciences, National University of Singapore, Singapore.
- 35 ¹⁷ Rainforest Alliance, Washington, DC, USA.
- ¹⁸ Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin,
- 37 Germany.
- ¹⁹ Global Systems Institute and Institute for Data Science and Artificial Intelligence, University of
- 39 Exeter, Exeter, United Kingdom.
- 40 ²⁰ Animal Sciences Group, Wageningen University, the Netherlands.
- 41 ²¹ IUCN Policy and Programme Group, IUCN, Gland, Switzerland.
- 42 ²² Department of Geophysics and Meteorology, IPB University, Bogor, Indonesia.
- 43 ²³ Earth System Science, Stanford University, CA, USA.
- 44 ²⁴ Department of Veterinary Medicine, University of Cambridge, UK.
- 45 ²⁵ Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.
- 46 ²⁶ Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Barcelona, Spain.
- 47 ²⁷ European Commission, Joint Research Centre, Ispra, Italy.
- 48 ²⁸ Stellenbosch University, Stellenbosch, South Africa.

²⁹ Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences,
Ås, Norway.

51 *e-mail: emeijaard@gmail.com

52 Abstract

53	Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between
54	agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular
55	palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% ¹ of the
56	current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons ²
57	(Mt)), but planted oil palm covers less than 5-5.5% ³ of total global oil crop area (ca. 425 Mha) ⁴ , due
58	to oil palm's relatively high yields ⁵ . Recent oil palm expansion in forested regions of Borneo,
59	Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced ⁵ , has led to substantial
60	concern around oil palm's role in deforestation. Oil palm expansion's direct contribution to regional
61	tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia ⁶ . Oil palm is
62	also implicated in peatland draining and burning in Southeast Asia. Documented negative
63	environmental impacts from such expansion include biodiversity declines, greenhouse gas
64	emissions, and air pollution. However, oil palm generally produces more oil per area than other oil
65	crops ⁷ , is often economically viable in sites unsuitable for most other crops, and generates
66	considerable wealth for at least some actors ⁸ . Global demand for vegetable oils is projected to
67	increase by 46% by 2050 ⁹ . Meeting this demand through additional expansion of oil palm versus
68	other vegetable oil crops will lead to substantial differential effects on biodiversity, food security,
69	climate change, land degradation, and livelihoods. Our review highlights that, although substantial
70	gaps remain in our understanding of the relationship between the environmental, socio-cultural and
71	economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address
72	these, there has been little research into the impacts and trade-offs of other vegetable oil crops.

73 Greater research attention needs to be given to investigating the impacts of palm oil production

compared to alternatives for the trade-offs to be assessed at a global scale.

Over the past 25 years, global oil crops have expanded rapidly, with major impacts on land use⁹. The 75 76 land used for growing oil crops grew from 170 million ha (Mha) in 1961 to 425 Mha in 2017⁴ or ~30% of all cropland world-wide¹⁰. Oil palm, soy, and rapeseed together account for >80% of all vegetable 77 78 oil production with cotton, groundnuts, sunflower, olive, and coconut comprising most of the 79 remainder (Table 1, Figure 1). These crops, including soy (125 Mha planted area⁴) and maize (197 80 Mha planted area⁴), are also used as animal feed and other products. 81 Oil palm is the most rapidly expanding oil crop. This palm originates from equatorial Africa where it 82 has been cultivated for millennia, but it is now widely grown in Southeast Asia. Between 2008 and 2017, oil palm expanded globally at an average rate of 0.7 Mha per year⁴, and palm oil is the leading 83 84 and cheapest edible oil in much of Asia and Africa. While it has been estimated that palm oil is an ingredient in 43% of products found in British supermarkets¹¹, we lack comparable studies for the 85 86 prevalence of other oils. 87 As a wild plant, the oil palm is a colonising species that establishes in open areas. Cultivated palms 88 are commonly planted as monocultures, although the tree is also used in mixed, small-scale and 89 agroforestry settings. To maximize photosynthetic capacity and fruit yields, oil palm requires a warm 90 and wet climate, high solar radiation, and high humidity. It is thus most productive in the humid 91 tropics, while other oil crops, except coconut, grow primarily in subtropical and temperate regions 92 (Table 1). Moreover, because oil palm tolerates many soils including deep peat and sandy substrates, 93 it is often profitable in locations where few other commodity crops are viable. The highest yields from planted oil palm have been reported in Southeast Asia⁵. Yields are generally lower in Africa¹² 94 and the Neotropics⁵, likely reflecting differences in climatic conditions including humidity and cloud 95

96 cover¹², as well as management, occurrence of pests and diseases, and planting stock¹³.

97	Palm oil is controversial due to its social and environmental impacts and opportunities. Loss of
98	natural habitats, reduction in woody biomass, and peatland drainage that occur during site
99	preparation are the main direct environmental impacts from oil palm development ¹⁴ . Such
100	conversion typically reduces biodiversity and water quality and increases greenhouse gas emissions,
101	and, when fire is used, smoke and haze ^{5,15} . Industrial oil palm expansion by large multi-national and
102	national companies is also often associated with social problems, such as land grabbing and conflicts,
103	labour exploitation, social inequity ¹⁶ and declines in village-level well-being ¹⁷ . In producer countries,
104	oil palm is a valued crop that brings economic development to regions with few alternative
105	agricultural development options ⁸ , and generates substantial average livelihood improvements
106	when smallholder farmers adopt oil palm ¹⁸ . Here we review the current understanding of the
107	environmental impacts from oil palm cultivation and assess what we know about other oil crops in
108	comparison. Our focus is on biodiversity implications and the environmental aspects of
109	sustainability, and we acknowledge the importance of considering these alongside socio-cultural,
110	political, and economic outcomes.

111 DEFORESTATION AND OIL PALM EXPANSION

112 A remote sensing assessment found that oil palm plantations covered at least 19.5 Mha globally in 113 2019 (Figure 2), of which an estimated 67.2% were industrial-scale plantings and the remainder smallholders³. With 17.5 Mha, Southeast Asia has the largest area under production, followed by 114 115 South and Central America (1.31 Mha), Africa (0.58 Mha) and the Pacific (0.14 Mha). However, the 116 actual area under oil palm production could be 10–20% greater than the area detected from satellite 117 imagery, i.e. 21.5–23.4 Mha, because young plantations (< ca. 3 years), open-canopy plantations, or mixed-species agroforests were omitted³. Estimates suggest that the proportion of oil palm area 118 under smallholder cultivation (typically less than 50 ha of land per family¹⁹) varies from 30–60% in 119 parts of Malaysia and Indonesia¹⁷ to 94% in Nigeria⁵. 120

121 The overall contribution of oil palm expansion to deforestation varies widely and depends in part on 122 assessment scope (temporal, spatial) and methods. We reviewed 23 studies that reported land use 123 or land cover change involving oil palm (Table S1 and S2). In Malaysian Borneo, oil palm was an important contributor to overall deforestation²⁰. Here, new plantations accounted for 50% of 124 125 deforestation from 1972 to 2015 when using a 5-year cut-off to link deforestation and oil palm development²¹ (Figure 3, Figure S2, Table S3). In contrast, one global sample-based study suggested 126 127 that between 2000 and 2013, just 0.2% of global deforestation in "Intact Forest Landscapes" was 128 caused by oil palm development²².

129 The degree to which oil palm expansion has replaced forests (defined as naturally regenerating 130 closed canopy forests) varies with context. From 1972 to 2015, around 46% of new plantations 131 expanded into forest, with the remainder replacing croplands, pasturelands, scrublands (including 132 secondary forest regrowth), and other land uses⁵. Individual studies reported forest clearance 133 ranging from 68% of tracked oil palm expansion in Malaysia and 44% in the Peruvian Amazon, to just 134 5–6% in West Africa, Central America, and South America excluding Peru (Figure 3). In general, oil 135 palm expansion in the Neotropics is characterized by the conversion of previously cleared lands instead of forests^{23,24}, although the extent to which oil palm displaces other land uses into forests 136 137 remains uncertain. In Indonesia and Malaysian Borneo, industrial plantation expansion and associated deforestation have declined since ca. 2011^{6,25}. However, smallholder plantings developed 138 139 to support demand by industrial palm oil mills may be increasing. To date, only two studies have 140 clearly differentiated between forest clearing by smallholders and industrial plantations (Table S2). In Peru, 30% of smallholder plantings resulted in deforestation²⁶, while in Sumatra, Indonesia 39% of 141 smallholder expansion was into forest²⁷. While we still lack broader understanding of the 142 143 deforestation impacts of smallholders²⁷, recent studies from Indonesian Borneo show that like 144 industrial actors, smallholders sometimes convert fragile ecosystems such as tropical peatlands into

oil palm plantations²⁸. Other oil crops have not yet been mapped globally with similar levels of
 accuracy, precluding detailed assessments and comparisons.

147 OIL PALM'S DIRECT IMPACTS ON SPECIES

148 The International Union for the Conservation of Nature (IUCN) Red List of Threatened Species²⁹ 149 documents 321 species for which oil palm is a reported threat, significantly more than for other oil 150 crops (Figure 4, Table 1). Species threatened by oil palm made up 3.5% of the taxa threatened by 151 annual and perennial non-timber crops (9,088 species) and 1.2% of all globally threatened taxa 152 (27,159 species) in 2019 (Supplementary Materials, Table S4). These species include orangutans 153 Pongo spp., gibbons Hylobates spp. and the tiger Panthera tigris. Species threat lists, however, are 154 incomplete as most plant groups have not been comprehensively assessed, and the focus of threat 155 studies may be biased toward certain oil crops. For example, perennial crops (oil palm, coconut, 156 olive) might be more easily identified as a threat to a species than annual crops, because perennial 157 crops facilitate long-term studies that are more difficult with annual crops that may not be planted 158 every year. Also, the IUCN Red List focuses on threats in the recent past, and is thus biased toward 159 crops with recent rapid expansion. Better information is needed for all oil crops about where they 160 are grown, and how their expansion has affected and could affect natural and semi-natural 161 ecosystems and biodiversity. We note that because coconut is primarily grown in tropical island nations it stands out as a particular threat for rare and endemic species with small ranges³⁰ (Table 1). 162 163 Oil palm plantations contain lower species diversity and abundance for most taxonomic groups 164 when compared to natural forest^{31,32}. Plant diversity in some plantations is less than 1% of that in natural forests³¹, but because oil palm is perennial, associated plant diversity may exceed that of 165 annual oil crops (Table 1). One study found 298 plant species in the oil palm undergrowth³³, and 166 another found 16 species of fern on oil palm trunks³⁴, while a meta-analysis of plant diversity in a 167 range of annual crops, including oil crops, found between one and 15 associated plant species³⁵. 168

Plant diversity in any oil croplands also depends on management choices such as tillage, weedingand the use of herbicides or other chemicals.

171	Recorded mammal diversity in oil palm is 47–90% lower than in natural forest ^{36,37} , and strongly
172	depends on the proximity of natural forests. Oil palm plantations generally exclude forest specialist
173	species ^{38,39} , which are often those species of greatest conservation importance. For example, forest-
174	dependent gibbons (Hylobatidae) cannot survive in stands of monocultural oil palm, but can make
175	use of interspersed forest fragments within an oil palm matrix ³¹ . Some species, although unable to
176	survive solely in oil palm, will utilise plantations. For instance, planted oil palm in Malaysian Borneo
177	supported 22 of the 63 mammal species found in forest habitats ³⁶ , and 31 of 130 bird species ⁴⁰ , most
178	of them relatively common species. Oil palm in Guatemala and Brazil supported 23 and 58 bird
179	species, respectively ^{39,41} , while 12 species of snakes were found in a Nigerian oil palm plantation ⁴² .
180	Various species will enter plantations to feed on oil palm fruit, including Palm-nut Vultures
181	<i>Gypohierax angolensis</i> ⁴³ and Chimpanzee <i>Pan troglodytes</i> ⁴³ in Africa and porcupines (Hystricidae),
182	civets (Viverridae), macaques (Cercopithecidae), elephants (Elephantidae) and orangutans in
183	Southeast Asia ⁴⁴ . The highest diversity of animal species in oil palm areas, however, is generally
184	found in the wider landscape that includes remnant patches of native vegetation ^{45,46} . Factors that
185	are likely to positively influence biodiversity values in both industrial-scale and smallholder
186	plantations include higher landscape heterogeneity, the presence of large forest patches and
187	connectivity among these ⁴⁷ , and the plant diversity and structure of undergrowth vegetation. For
188	example, in palm areas where there is systematic cattle grazing, bird and dung beetle abundance
189	and diversity increase ^{48,49} .
100	Oil palm cultivation involves the introduction and spread of invasive species including the oil palm

Oil palm cultivation involves the introduction and spread of invasive species including the oil palm
 itself (noted in Madagascar and Brazil's Atlantic Forests⁵⁰), as well as non-native cover crops and
 nitrogen-fixing plants (e.g., *Mucuna bracteata* or *Calopogonium caeruleum*). Similarly, management
 of oil palm plantations can increase the local abundance of species such as Barn Owls *Tyto alba*,

introduced into plantations to control rodents⁵¹. Oil palm plantations also support pests such as the 194 195 Black Rat Rattus rattus, pigs Sus spp., and beetles such as the Asiatic Rhinoceros Beetle Oryctes rhinoceros and the Red Palm Weevil Rhynchophorus ferrugineus⁵². Such species can impact palm oil 196 197 production negatively, for example in reducing oil palm yields through damage to the palm or fruit 198 predation⁵³. They also have a range of local effects, both positive and negative for biodiversity, including animals that prey on them, such as snakes, owls, monkeys and cats⁵⁴, while the extra food 199 200 provided by oil palm fruits can increase pig populations resulting in reduced seedling recruitment in 201 forests neighbouring oil palm⁵⁵.

202 Management within oil palm areas to retain riparian reserves and other set-asides containing 203 natural forest may contribute to pollination and pest control within the plantation, although they 204 may also harbour pests and disease⁵⁶. Studies to date suggest overall limited, or neutral, effects of 205 such set-asides on pest control services, spill over of pest species, or oil palm yield⁵⁷. There are also 206 plenty of unknowns, for example, the African beetle Elaiedobius kamerunicus has been introduced 207 as an effective oil palm pollinator and is now widely naturalised in Southeast Asia and America 208 where it also persists in native vegetation and visits the inflorescences of native palms but its 209 impacts, if any, are unexamined (DS pers. obs.). No systematic analysis has been conducted to assess 210 the impact of non-native and invasive species associated with other oil crops. 211 Smallholder plantations tend to be smaller and more heterogeneous than industrial developments, 212 which potentially benefits wildlife, but this remains poorly studied³². A handful of studies indicate 213 that smallholdings support a similar number of, or slightly more, bird and mammal species than industrial plantations, e.g. ⁵⁸. However, species in smallholder plantations may be more exposed to 214 other pressures, such as hunting, when compared to industrial plantations⁵⁸. 215

216 OTHER ENVIRONMENTAL IMPACTS

217 Oil palm plantations have a predominantly negative net effect on ecosystem functions when compared to primary, selectively logged or secondary forest¹⁵. The clearance of forests and drainage 218 of peatlands for oil palm emits substantial carbon dioxide⁵⁹. Oil palms can maintain high rates of 219 carbon uptake⁶⁰ and their oil can potentially be used to substitute fossil fuels, and thus contribute 220 221 towards sustainable energy (SDG 7) and climate change response (SDG 13). Yet, biofuel from oil 222 palm cannot compensate for the carbon released when forests are cleared and peatlands drained 223 over short or medium time-scales (<100 years)⁶¹. Moreover, the carbon opportunity cost of oil palm, 224 which reflects the land's opportunity to store carbon if it is not used for agriculture, is not very different from annual vegetable oil crops⁶¹ (Table 1). 225

Oil palm plantations, and the production of palm oil, can also be sources of methane⁶² and nitrous 226 oxide⁶³, both potent greenhouse gases that contribute further to climate change, although the 227 former is sometimes used as biogas, reducing net greenhouse gas release⁶⁴. Other emissions 228 229 associated with oil palm development include elevated isoprene production by palm trees, which 230 influences atmospheric chemistry, cloud cover and rainfall, although how this affects the 231 environment remains unclear⁶⁵. In addition, there is some evidence that emissions of other organic compounds, e.g., estragole and toluene⁶⁶, are also higher in oil palm plantations than in forest, but 232 these emissions appear minor compared to isoprene⁶⁷. 233

234 Forest loss and land use conversion to oil palm impact the local and regional climate, although the 235 extent of these impacts remains debated⁶⁸. For example, increased temperatures and reduced 236 rainfall recorded over Borneo since the mid-1970s are thought to relate to the island's declining 237 forest cover which is partly due to the expansion of oil palm, with climate changes being greater in areas where forest losses were higher⁶⁹. Indeed, oil palm plantations tend to be hotter, drier and 238 239 less shaded than forests due to their less dense canopy, and often have higher evapotranspiration 240 rates than forests⁷⁰. A drier hotter climate increases the risk of fire and concomitant smoke pollution, especially in peat ecosystems⁷¹. In addition to human health consequences (e.g., 241

respiratory diseases, conjunctivitis), such fires can impact wildlife⁷² and atmospheric processes. For
 example, aerosols from fires can scatter solar radiation, disrupt evaporation, and promote drought⁶⁸.
 Few of these relationships are well-studied.

245 Conversion of natural forests to oil palm plantations increases run-off and sediment export due to loss or reduction of riparian buffers, reduced ground cover, and dense road networks⁷³. Streams 246 247 flowing through plantations tend to be warmer, shallower, sandier, more turbid, and to have 248 reduced abundances of aquatic species such as dragonflies (Anisoptera) than streams in forested areas⁷⁴. Fertilizers, pesticides, and other chemicals used on plantations also impact water quality and 249 aquatic habitats⁷⁵. The effluent from most modern mills is minimized, but release into local rivers 250 251 has caused negative impacts to people and to aquatic and marine ecosystems⁷⁶. Some hydrological 252 impacts may be viewed as positive: for example, construction of flood-control channels and 253 sedimentation ponds for palm oil effluent can benefit some water birds⁷⁷. 254 Drainage of peatlands and other wetlands to establish oil palm disrupts hydrological cycles, 255 potentially impacting neighbouring forests and other habitats⁷⁸. The protection and restoration of 256 riparian buffers and reserves within oil palm plantations is therefore key to preserving water quality, 257 with recent research also showing the importance of these landscape features for biodiversity and ecosystem function⁷⁹. Riparian reserve widths required by law in many tropical countries (20–50 m 258 259 on each bank) can support substantial levels of biodiversity, maintain hydrological functioning, and 260 improve habitat connectivity and permeability for some species within oil palm⁷⁹. However, research 261 is urgently needed regarding minimum buffer width and size requirements under different contexts, 262 for different taxa, and for different oil crops.

263 THE FUTURE OF OIL PALM

Demand for agricultural commodities is growing. Some predict that palm oil production will
 accelerate across tropical Africa⁸⁰. However, due to current socio-cultural, technical, political and

266 ecological constraints only around one-tenth of the potential 51 million ha in the five main producing countries in tropical Africa is likely to be profitably developed in the near future¹³, 267 although this might change as technological, financial and governance conditions improve⁸¹. The 268 269 expansion of oil palm in the Neotropics is also uncertain because of greater challenges the sector 270 faces compared to Southeast Asia, including lower yields, high labour costs, volatile socio-political contexts, and high investment costs⁵. Although the importance of these factors varies from country 271 272 to country, in general the expansion of the palm oil industry in the Americas depends heavily on 273 economic incentives and policies, and access to international markets.

Meeting the growing demand for palm oil, while adhering to new zero deforestation policies⁸², and 274 275 consumer pressure to be more sustainable, will likely require a combination of approaches, including increasing yields in existing production areas especially those managed by smallholders⁹, and 276 planting in deforested areas and degraded open ecosystems such as man-made pastures⁶⁰. These 277 278 strategies span a land-sparing and land-sharing continuum, with higher-yielding oil palm cultivation sparing land and perhaps reducing overall impacts on biodiversity³⁸, although intermediate 279 280 strategies on the sparing-sharing continuum may be better at meeting broader societal goals⁸³. 281 Irrespective of the optimal strategy, replanting with high-yielding palms or implementing land 282 sharing agroforestry techniques are challenging for smallholders, who often lack resources and technical knowledge, and may not be able to access improved varieties required to increase yields⁸⁴. 283 284 In such situations, provision of technical support from government agencies, non-government 285 organisations or private companies may help smallholders choose intensification over clearing more 286 land to increase palm oil production¹². 287 The extent to which biofuel demand by international markets will drive oil palm expansion remains 288 unclear. There is resistance from environmental non-governmental organizations and governments,

including the European Union, the second-largest palm oil importer after India⁵, to the use of palm

290 oil as a biofuel to replace fossil fuels and meet climate change mitigation goals. Such resistance is

related to the high CO₂-emissions from oil palm-driven deforestation and associated peatland
 development⁸⁵. Nonetheless, if oil palm is developed on low carbon stock lands, estimates suggest it
 may have lower carbon emissions per unit of energy produced than other oil crops like European
 rapeseed⁸⁶. Consistent and comparable information on the extent and consequences of other oil
 crops is urgently required to encourage more efficient land use⁶¹.

296 GOVERNANCE OPTIONS

297 Efforts to address the impacts of oil palm cultivation and palm oil trade have been the focus of 298 several initiatives. For example, the two main producer countries have set up the Malaysian 299 Sustainable Palm Oil and Indonesian Sustainable Palm Oil certification schemes, which mandate that 300 oil palm producers comply with a set of practices meant to ensure social and environmentally 301 responsible production. International concerns related to deforestation have been addressed through the High Carbon Stock and High Conservation Value approaches⁸⁷, which are methodologies 302 303 that guide identification and protection of lands with relatively intact forest or value for biodiversity, 304 ecosystem services, livelihoods and cultural identity. These frameworks are used by producers to 305 meet the requirements of palm oil sustainability initiatives including certification under the 306 Roundtable on Sustainable Palm Oil (RSPO) standard. This standard was recently expanded to 307 include protection, management, and restoration of riparian areas within certified plantations, a 308 prohibition on new planting on peat, and compliance with the standard is now being used to meet 309 corporate zero-deforestation commitments⁵. There is evidence for positive impacts of RSPO 310 certification achieved through improved management practices, including changes in agrochemical 311 use, improved forest protection, and reduced fires and biodiversity losses, although these effects remain small^{88,89}. 312

Many producers and traders of palm oil have now committed to "zero deforestation". A 2017 crosscommodity survey⁹⁰ found that companies in the palm oil sector have the highest proportion of no-

315 deforestation commitments across four commodity supply chains (palm oil, soy, timber and cattle) 316 linked to global deforestation. Although most of these commitments have been made by retailers and manufacturers⁹⁰, oil palm growers have also made such pledges. In 2018, 41 of the 50 palm oil 317 318 producers with the largest market capitalization and land areas had committed to address 319 deforestation, with 29 of them pledging to adhere to zero deforestation practices⁹¹. These 320 commitments have been identified as a factor in declining expansion of oil palm in Malaysia and 321 Indonesia^{6,25}, although low commodity prices have likely also contributed⁶. Such private supply chain 322 initiatives like certification and zero-deforestation commitments may be most effective in reducing 323 environmental impacts when leveraged with public and institutional support such as plantation moratoria for certain areas and national low-carbon rural development strategies⁹², as has been 324 demonstrated, for example, in Brazilian soy production⁹³. 325

326 LAND USE TRADE-OFFS AMONG VEGETABLE OILS

327 While the environmental impacts of oil palm on natural ecosystems are overwhelmingly negative, 328 such impacts also need to be considered in relation to other land uses, including competing 329 vegetable oil commodities, all of which have their own implications for biodiversity, carbon 330 emissions and other environmental dynamics (Table 1). Global vegetable oil production is expected to expand at around 1.5% per year between 2017 and 2027⁹⁴, while use is projected to expand at 331 332 1.7% per year globally between 2013 and 2050 from a baseline of 165 million tons (Mt), including for 333 use in food, feed and biofuel⁹. Unless demand for oil decelerates, this implies an additional 334 production of an average of 3.86 Mt of vegetable oil per year. If this production was delivered by oil palm alone, yielding ca. 4 tons of crude palm oil per ha^{5,7}, 31.3 Mha of additional vegetable oil 335 336 production land would be needed between 2020 and 2050. If, the addition instead all came from 337 soy, yielding about 0.7 tons of oil per ha⁹, 179 Mha of extra land, or nearly six times as much, would be required. This simple calculation glosses over nuances of substitutability⁹⁵ or differential vield 338

increases among crops, but illustrates the magnitude of differences between land needed by oil
 palm and other oil crops⁹⁶.

341	Understanding impacts is, however, not just a matter of comparing current and projected
342	distributions and yields of different crops and thus land needs, but also requires clarifying how each
343	hectare of land converted to an oil crop impacts both the environment and people. For example, soy
344	is known to have a large negative impact on biodiversity, with few vertebrates occurring in this
345	annual monoculture crop ⁹⁷ , and is responsible for loss of high biodiversity savanna and forest
346	ecosystems in South America ⁹⁸ . Thus, sustainable development, including simultaneous delivery of
347	SDGs 2 on agriculture and 15 on biodiversity (alongside contributions to SDG 7 on energy and SDG
348	13 on climate), must consider the wider trade-offs posed by sourcing global vegetable oils ⁹⁹ . One key
349	uncertainty is the extent to which demand can be met by increasing yields within established
350	vegetable oil croplands. An additional uncertainty is whether other options, for example microalgal-
351	derived lipids ¹⁰⁰ , may soon offer viable alternatives to meet demand for biofuel.

352 THE WAY FORWARD

353 The expansion of oil palm has had large negative environmental impacts and continues to cause deforestation in some regions. Nevertheless, oil palm contributes to economic development⁵, has 354 improved welfare for at least some people¹⁷, and can be consistent with at least some conservation 355 goals especially when compared to other oil crops⁸¹. There remain substantial gaps in our 356 357 understanding of oil palm and the interaction between environmental, socio-cultural and economic 358 impacts of the crop, and the scope, stringency and effectiveness of governance initiatives to address these⁵. None of these concerns and trade-offs are unique to oil palm: they also apply to other 359 360 vegetable oil crops^{30,98}, as well as other agricultural products¹⁰¹. Indeed, all land uses and not just those in the tropics have impacts on their environment⁸, that can either be prevented or restored¹⁰². 361 362 Pressure on the palm oil industry has, however, apparently resulted in more research on the impacts

of palm oil production compared to other oils resulting in an urgent need to better study these

- 364 alternatives.
- 365 In a world with finite land and growing demands, we must consider global demands for food, fuel
- 366 and industrial uses hand-in-hand with environmental conservation objectives. Oil palm's high yields
- 367 mean that it requires less land to meet global oil demand than other oil crops. However, minimising
- 368 overall vegetable oil crop impacts requires evaluation for their past, current and projected
- 369 distribution and impacts, and review of their yields and global trade and uses. This information is
- 370 needed to enable better planning and governance of land use for all oil crops, matching risks and
- 371 opportunities with local conditions and realities, and to optimize the simultaneous delivery of the
- 372 SDGs.

373 LITERATURE CITED

- USDA. Oil Seeds: World Markets and Trade. November 2019. (Foreign Agricultural Service, United States Department of Agriculture, Washington, DC, 2019).
- USDA-FAS. Oilseeds: World Markets and Trade. Circular Series FOP 8-10 August. (United
 States Department of Agriculture Foreign Agricultural Service, Washington, DC, 2010).
- 378 3 Descals, A. *et al.* High-resolution global map of smallholder and industrial closed-canopy oil
 379 palm plantations. Preprint at <u>https://essd.copernicus.org/preprints/essd-2020-159/</u>.
 380 doi:10.5194/essd-2020-159 (2020).
- 3814FAOSTAT. Food and Agriculture Data. http://www.fao.org/faostat/en/#home. (Food and382Agriculture Organization of the United Nations, Rome, Italy, 2019).
- 3835Meijaard, E. et al. Oil Palm and Biodiversity A Situation Analysis. DOI:38410.2305/IUCN.CH.2018.11.en. (IUCN Oil Palm Task Force, 2018).
- Gaveau, D. L. A. *et al.* Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). *Cons. Lett.* **0**, e12622, doi:10.1111/conl.12622 (2019).
- Johnston, M., Foley, J. A., Holloway, T., Kucharik, C. & Monfreda, C. Resetting global
 expectations from agricultural biofuels. *Env. Res. Lett.* 4, 014004, doi:10.1088/17489326/4/1/014004 (2009).
- 3908Meijaard, E. & Sheil, D. The Moral Minefield of Ethical Oil Palm and Sustainable391Development. Front. Forests Glob. Change 2, doi:10.3389/ffgc.2019.00022 (2019).
- Byerlee, D., Falcon, W. P. & Naylor, R. L. *The Tropical Oil Crop Revolution: Food, Feed, Fuel, and Forests.* (Oxford University Press, 2017).
- 39410Ramankutty, N. *et al.* Trends in Global Agricultural Land Use: Implications for Environmental395Health and Food Security. *Ann. Rev. Plant Biol.* **69**, 789-815, doi:10.1146/annurev-arplant-396042817-040256 (2018).
- Independent. The guilty secrets of palm oil: Are you unwittingly contributing to the
 devastation of the rain forests?. <u>https://www.independent.co.uk/environment/the-guilty-</u>

399		secrets-of-palm-oil-are-you-unwittingly-contributing-to-the-devastation-of-the-rain-
400		<u>1676218.html</u> . (2009).
401	12	Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in
402		oil palm: A quantitative review of contributing factors. Europ. J. Agron. 83, 57-77,
403		doi:10.1016/j.eja.2016.11.002 (2017).
404	13	Feintrenie, L., Gazull, L., Goulaouic, R. & Miaro III, L. Spatialized production models for
405		sustainable palm oil in Central Africa: Choices and potentials. Presented at Scaling Up
406		Responsible Land Governance Annual World Bank Conference on Land and Poverty
407		Washington DC March 14-18 2016 (2016)
102	1/	Sheil D et al. The impacts and opportunities of oil palm in Southeast Asia. What do we
400	14	know and what do we need to know? CIEOR Occ. Paper, no. 51 (2000)
409	15	Dislich C at al. A review of the access from functions in all nalm plantations, using forests as
410	13	a reference system Riel Rey 03 1520 1560 doi:10.1111/bry.12205 (2017)
411	4.0	a reference system. Biol. Rev. 92 , 1539-1569, doi:10.1111/biv.12295 (2017).
412	16	LI, I., M. Evidence-based options for advancing social equity in indonesian paim oil:
413		Implications for research, policy and davocacy. (Center for International Forestry Research
414		(CIFOR), 2018).
415	17	Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional
416		counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105-117,
417		doi:10.1016/j.worlddev.2019.04.012 (2019).
418	18	Krishna, V., Euler, M., Siregar, H. & Qaim, M. Differential livelihood impacts of oil palm
419		expansion in Indonesia. Agric. Econ. 48, 639-653, doi:10.1111/agec.12363 (2017).
420	19	RSPO Smallholders Task Force. Smallholders. Retrieved from
421		https://rspo.org/smallholders#definition. (2012).
422	20	Gaveau, D. L. A. et al. Four decades of forest persistence, loss and logging on Borneo. PLOS
423		ONE 9 , e101654, doi:10.1371/journal.pone.0101654 (2014).
424	21	Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades
425		of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017, doi:10.1038/srep32017
426		(2016).
427	22	Potapov. P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes
428		from 2000 to 2013. Sc. Adv. 3 . e1600821. doi:10.1126/sciady.1600821 (2017).
429	23	Vijav V Pimm S I Jenkins C N & Smith S I The Impacts of Oil Palm on Recent
430	20	Deforestation and Biodiversity Loss PLOS ONE 11 e0159668
430 //21		doi:10.1371/journal.none.0159668 (2016)
431	24	Eurumo D. P. & Aido T. M. Characterizing commercial oil nalm expansion in Latin America:
432	24	land use change and trade Env. Res. Lett 12 024009 doi:10.1099/1749.0226/aa5902
455		(2017)
434	25	(2017). Austin K. C. Schwanter, A. Cu, Y. & Kasikhatla, D. S. What source deforestation in
435	25	Austin, K. G., Schwantes, A., Gu, Y. & Kasionalia, P. S. What causes deforestation in
436	•	Indonesia? Env. Res. Lett. 14, 024007, doi:10.1088/1748-9326/aaf6db (2019).
437	26	Gutierrez-Velez, V., H. <i>et al.</i> High-yield oil palm expansion spares land at the expense of
438		forests in the Peruvian Amazon. <i>Env. Res. Lett.</i> 6 , 044029, doi:10.1088/1748-
439		9326/6/4/044029 (2011).
440	27	Lee, J. S. H. et al. Environmental Impacts of Large-Scale Oil Palm Enterprises Exceed that of
441		Smallholdings in Indonesia. <i>Cons. Lett.</i> 7 , 25-33, doi:10.1111/conl.12039 (2014).
442	28	Schoneveld, G. C., Ekowati, D., Andrianto, A. & van der Haar, S. Modeling peat- and
443		forestland conversion by oil palm smallholders in Indonesian Borneo. Env. Res. Lett. 14,
444		014006, doi:10.1088/1748-9326/aaf044 (2019).
445	29	IUCN. The IUCN Red List of Threatened Species. Version 2019-2.
446		https://www.iucnredlist.org. (Gland, Switzerland, 2019).

- Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation
 and the conscientious consumer. *Curr. Biol.* **30**, R757-R758, doi:10.1016/j.cub.2020.05.059
 (2020).
- 450 31 Foster, W. A. *et al.* Establishing the evidence base for maintaining biodiversity and
 451 ecosystem function in the oil palm landscapes of South East Asia. *Phil. Trans Roy. Soc. B: Biol.*452 Sc. **366**, 3277, doi:10.1098/rstb.2011.0041 (2011).
- 453 32 Savilaakso, S. *et al.* Systematic review of effects on biodiversity from oil palm production.
 454 *Env. Evidence* 3, 4, doi:10.1186/2047-2382-3-4 (2014).
- 455 33 Germer, J. U. Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in
 456 West Sumatra, Kommunikations-, Informations- und Medienzentrum der Universität
 457 Hohenheim, (2003).
- 458 34 Sato, T., Itoh, H., Kudo, G., Kheong, Y. S. & Furukawa, A. Species Composition and Structure
 459 of Epiphytic Fern Community on Oil Palm Trunks in Malay Archipelago. *Tropics* 6, 139-148,
 460 doi:10.3759/tropics.6.139 (1996).
- 461 35 Letourneau, D. K. *et al.* Does plant diversity benefit agroecosystems? A synthetic review.
 462 *Ecol. Appl.* 21, 9-21, doi:10.1890/09-2026.1 (2011).
- 463 36 Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H. & Ewers, R. M. Grain-dependent 464 responses of mammalian diversity to land use and the implications for conservation set-465 aside. *Ecol. Appl.* **26**, 1409-1420, doi:10.1890/15-1363 (2016).
- 46637Pardo, L. E. *et al.* Land management strategies can increase oil palm plantation use by some467terrestrial mammals in Colombia. *Scient. Rep.* **9**, 7812, doi:10.1038/s41598-019-44288-y468(2019).
- Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling Food Production and
 Biodiversity Conservation: Land Sharing and Land Sparing Compared. *Science* 333, 12891291, doi:10.1126/science.1208742 (2011).
- 47239Almeida, S. M. *et al.* The effects of oil palm plantations on the functional diversity of473Amazonian birds. *J. Trop. Ecol.* **32**, 510-525, doi:10.1017/S0266467416000377 (2016).
- 474 40 Edwards, D. P. *et al.* Selective-logging and oil palm: multitaxon impacts, biodiversity 475 indicators, and trade-offs for conservation planning. *Ecol. Applic.* **24**, 2029-2049, 476 doi:10.1890/14-0010.1 (2014).
- 41 Nájera, A. & Simonetti, J. A. Can oil palm plantations become bird friendly? *Agrofor. Syst.* 80, 203-209, doi:10.1007/s10457-010-9278-y (2010).
- 479 42 Akani, G. C., Ebere, N., Luiselli, L. & Eniang, E. A. Community structure and ecology of snakes
 480 in fields of oil palm trees (*Elaeis guineensis*) in the Niger Delta, southern Nigeria. *Afr. J. Ecol.*481 46, 500-506, doi:10.1111/j.1365-2028.2007.00885.x (2008).
- 482 43 Humle, T. & Matsuzawa, T. Oil palm use by adjacent communities of chimpanzees at Bossou 483 and Nimba Africa. Int. J. Primatol. 25, Mountains, West 551-581, 484 doi:10.1023/B:IJOP.0000023575.93644.f4 (2004).
- 48544Ancrenaz, M. *et al.* Of pongo, palms, and perceptions A multidisciplinary assessment of486orangutans in an oil palm context. *Oryx* **49**, 465–472, doi:10.1017/S0030605313001270487(2015).
- 488 45 Mitchell, S. L. *et al.* Riparian reserves help protect forest bird communities in oil palm 489 dominated landscapes. *J. Appl. Ecol.* **55**, 2744-2755, doi:10.1111/1365-2664.13233 (2018).
- 46 Deere, N. J. *et al.* Implications of zero-deforestation commitments: Forest quality and
 491 hunting pressure limit mammal persistence in fragmented tropical landscapes. *Cons. Lett.*492 **13**, e12701, doi:10.1111/conl.12701 (2020).
- 49347Knowlton, J. L. *et al.* Oil palm plantations affect movement behavior of a key member of494mixed-species flocks of forest birds in Amazonia, Brazil. *Trop. Cons. Sc.* 10,4951940082917692800, doi:10.1177/1940082917692800 (2017).

- 49648Tohiran, K. A. *et al.* Targeted cattle grazing as an alternative to herbicides for controlling497weeds in bird-friendly oil palm plantations. *Agron. Sust. Dev.* **37**, 62, doi:10.1007/s13593-498017-0471-5 (2017).
- 49 49 Slade, E. M. *et al.* Can cattle grazing in mature oil palm increase biodiversity and ecosystem
 500 service provision? . *The Planter* **90**, 655-665 (2014).
- 50150IUCN. Global Invasive Species Database (GISD). Species profile *Elaeis guineensis*. Available502from: http://www.iucngisd.org/gisd/species. [Accessed 27 February 2018]. (2015).
- 503 51 Wan, H. The introduction of barn owl (*Tyto alba*) to Sabah for rat control in oil palm 504 plantations. *Planter* **76**, 215-222 (2000).
- 50552Bessou, C. et al. Sustainable Palm Oil Production project synthesis: Understanding and506anticipating global challenges. (Center for International Forestry Research (CIFOR), 2017).
- 53 Puan, C. L., Goldizen, A. W., Zakaria, M., Hafidzi, M. N. & Baxter, G. S. Relationships among
 508 rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation.
 509 *Intergr. Zool.* 6, 130-139, doi:10.1111/j.1749-4877.2010.00231.x (2011).
- 51054Holzner, A. *et al.* Macaques can contribute to greener practices in oil palm plantations when511used as biological pest control. *Curr. Biol.* **29**, R1066-R1067, doi:10.1016/j.cub.2019.09.011512(2019).
- 513 55 Luskin, M. S. *et al.* Cross-boundary subsidy cascades from oil palm degrade distant tropical 514 forests. *Nature Comms.* **8**, 2231, doi:10.1038/s41467-017-01920-7 (2017).
- 51556Mayfield, M. M. The importance of nearby forest to known and potential pollinators of oil516palm (*Elaeis guineensis* Jacq.; Areceaceae) in southern Costa Rica. *Econ. Botany* **59**, 190,517doi:10.1663/0013-0001(2005)059[0190:TIONFT]2 (2005).
- 518 57 Woodham, C. R. *et al.* Effects of replanting and retention of mature oil palm riparian buffers 519 on ecosystem functioning in oil palm plantations. *Front. Forests Glob. Change*, 520 doi:10.3389/ffgc.2019.00029 (2019).
- 521 58 Azhar, B. *et al.* The influence of agricultural system, stand structural complexity and 522 landscape context on foraging birds in oil palm landscapes. *Ibis* **155**, 297-312, 523 doi:10.1111/ibi.12025 (2013).
- 524 59 Wijedasa, L. S. *et al.* Denial of long-term issues with agriculture on tropical peatlands will 525 have devastating consequences. *Glob. Change Biol.* **23**, 977-982, doi:10.1111/gcb.13516 526 (2016).
- 52760Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of528oil palm plantations in the Neotropics. Sc. Advan. 5, eaaw4418, doi:10.1126/sciadv.aaw4418529(2019).
- 530 61 Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes
 531 in land use for mitigating climate change. *Nature* 564, 249-253, doi:10.1038/s41586-018532 0757-z (2018).
- 53362Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse534gases. J. Cleaner Prod. 16, 477-482, doi:10.1016/j.jclepro.2006.07.054 (2006).
- Murdiyarso, D., Van Noordwijk, M., Wasrin, U. R., Tomich, T. P. & Gillison, A. N.
 Environmental benefits and sustainable land-use options in the Jambi transect, Sumatra. J. *Veget. Sc.* 13, 429-438, doi:10.1111/j.1654-1103.2002.tb02067.x (2002).
- 538 64 Harsono, S. S., Grundmann, P. & Soebronto, S. Anaerobic treatment of palm oil mill 539 effluents: potential contribution to net energy yield and reduction of greenhouse gas 540 emissions from biodiesel production. J. Cleaner Prod. 64, 619-627, 541 doi:10.1016/j.jclepro.2013.07.056 (2014).
- 542 65 Hewitt, C. N. *et al.* Nitrogen management is essential to prevent tropical oil palm plantations
 543 from causing ground-level ozone pollution. *Proc. Natl. Acad. Sc. USA* **106**, 18447,
 544 doi:10.1073/pnas.0907541106 (2009).

- 54566Misztal, P. K. *et al.* Direct ecosystem fluxes of volatile organic compounds from oil palms in546South-East Asia. *Atmos. Chem. Phys.* **11**, 8995-9017, doi:10.5194/acp-11-8995-2011 (2011).
- 547 67 Guenther, A. *et al.* The Model of Emissions of Gases and Aerosols from Nature version 2.1 548 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. 549 (2012).
- 550 68 Ellison, D. *et al.* Trees, forests and water: Cool insights for a hot world. *Glob. Env. Change* 43,
 551 51-61, doi:10.1016/j.gloenvcha.2017.01.002 (2017).
- 552 69 McAlpine, C. A. *et al.* Forest loss and Borneo's climate. *Env. Res. Lett.* **13**, 044009, doi:10.1088/1748-9326/aaa4ff (2018).
- 554 70 Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency 555 in the community land model for simulating evapotranspiration of rainforests and oil palm 556 plantations in Indonesia. J. Advan. Model. Earth Syst. 11, 732-751, 557 doi:10.1029/2018MS001490 (2019).
- 558 71 Crippa, P. *et al.* Population exposure to hazardous air quality due to the 2015 fires in 559 Equatorial Asia. *Sci. Rep.* **6**, 37074, doi:10.1038/srep37074 (2016).
- 560 72 Nichol, J. Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. *Atmosph. Env.*561 **31**, 1209-1219, doi:10.1016/S1352-2310(96)00260-9 (1997).
- 562 73 Carlson, K. M. et al. Consistent results in stream hydrology across multiple watersheds: A 563 Chew and J. Geophys. Res. Biogeosci. 120, reply to Goh. 812-817, 564 doi:10.1002/2014JG002834 (2015).
- 56574Luke, S. H. *et al.* The effects of catchment and riparian forest quality on stream566environmental conditions across a tropical rainforest and oil palm landscape in Malaysian567Borneo. *Ecohydrol.* **10**, e1827, doi:10.1002/eco.1827 (2017).
- 56875Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. Meta-Analysis of Nitrogen569Removal in Riparian Buffers. J. Env. Qual. **36**, 1172-1180, doi:10.2134/jeq2006.0462 (2007).
- 570 76 Chellaiah, D. & Yule, C. M. Effect of riparian management on stream morphometry and 571 water quality in oil palm plantations in Borneo. *Limnologica* **69**, 72-80, 572 doi:10.1016/j.limno.2017.11.007 (2018).
- 573 77 Sulai, P. *et al.* Effects of water quality in oil palm production landscapes on tropical 574 waterbirds in Peninsular Malaysia. *Ecol. Res.* **30**, 941-949, doi:10.1007/s11284-015-1297-8 575 (2015).
- Anda, M., Siswanto, A. B. & Subandiono, R. E. Properties of organic and acid sulfate soils and
 water of a 'reclaimed' tidal backswamp in Central Kalimantan, Indonesia. *Geoderma* 149, 54doi:10.1016/j.geoderma.2008.11.021 (2009).
- 57979Luke, S. H. *et al.* Riparian buffers in tropical agriculture: Scientific support, effectiveness and
directions for policy. J. Appl. Ecol. 56, 85-92, doi:10.1111/1365-2664.13280 (2019).
- 581 80 Wich, Serge A. *et al.* Will Oil Palm's Homecoming Spell Doom for Africa's Great Apes? *Curr.* 582 *Biol.* 24, 1659-1663, doi:10.1016/j.cub.2014.05.077 (2014).
- 58381Sayer, J., Ghazoul, J., Nelson, P. & Boedhihartono, A. K. Oil palm expansion transforms584tropical landscapes and livelihoods. Glob. Food Secur. 1, 114–119,585doi:10.1016/j.gfs.2012.10.003 (2012).
- 58682RSPO. RSPO and HCSA Collaborate to Implement No Deforestation in High Forest Cover587Landscapes.<u>https://rspo.org/news-and-events/news/rspo-and-hcsa-collaborate-to-</u>588implement-no-deforestation-in-high-forest-cover-landscapes. (2018).
- 58983Law, E. A. *et al.* Mixed policies give more options in multifunctional tropical forest590landscapes. J. Appl. Ecol. 54, 51-60, doi:10.1111/1365-2664.12666 (2017).
- Budiadi *et al.* Oil palm agroforestry: an alternative to enhance farmers' livelihood resilience. *IOP Conf. Ser.: Earth Env. Sc.* **336**, 012001, doi:10.1088/1755-1315/336/1/012001 (2019).

- 59385Valin, H. *et al.* The land use change impact of biofuels consumed in the EU. Quantification of594area and greenhouse gas impacts. (ECOFYS Netherlands B.V., Utrecht, the Netherlands,5952015).
- 596 86 Thamsiriroj, T. & Murphy, J. D. Is it better to import palm oil from Thailand to produce
 597 biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? *Appl. Energy*598 86, 595-604, doi:10.1016/j.apenergy.2008.07.010 (2009).
- 59987Rosoman, G., Sheun, S. S., Opal, C., Anderson, P. & Trapshah, R. The HCS Approach Toolkit.600(HCS Approach Steering Group, Singapore, 2017).
- 60188Carlson, K. M. *et al.* Effect of oil palm sustainability certification on deforestation and fire in602Indonesia. *Proc. Natl. Acad. Sci. USA* **115**, 121-126, doi:10.1073/pnas.1704728114 (2018).
- Furumo, P. R., Rueda, X., Rodríguez, J. S. & Parés Ramos, I. K. Field evidence for positive certification outcomes on oil palm smallholder management practices in Colombia. *J. Cleaner Prod.* 245, 118891, doi:<u>https://doi.org/10.1016/j.jclepro.2019.118891</u> (2020).
- 60690Donofrio, S., Rothrock, P. & Leonard, J. Tracking Corporate Commitments to Deforestation-607free Supply Chains, 2017. (Forest Trends, Washington, DC, 2017).
- 60891SPOTT. Palm oil: ESG policy transparency assessments. https://www.spott.org/palm-oil/.609(2018).
- 61092Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private611partnerships: A look inside post-conflict Colombia.62, 102055,612doi:https://doi.org/10.1016/j.gloenvcha.2020.102055 (2020).
- 61393Gibbs, H. K. et al. Brazil's Soy Moratorium. Science 347, 377, doi:10.1126/science.aaa0181614(2015).
- 615 94 OECD and FAO. OECD[®]FAO Agricultural Outlook 2018[®]2027. (2017).
- Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. *Nat. Sust.* 3, 412-418, doi:10.1038/s41893-020-0487-8 (2020).
- Qaim, M., Sibhatu, K. T., Siregar, H. & Grass, I. Environmental, Economic, and Social
 Consequences of the Oil Palm Boom. *Ann. Rev.* 12, 321-344, doi:10.1146/annurev-resource110119-024922 (2020).
- VanBeek, K. R., Brawn, J. D. & Ward, M. P. Does no-till soybean farming provide any benefits
 for birds? *Agricult. Ecosyst. Env.* 185, 59-64, doi:<u>https://doi.org/10.1016/j.agee.2013.12.007</u>
 (2014).
- 62498Green, J. M. H. *et al.* Linking global drivers of agricultural trade to on-the-ground impacts on625biodiversity. *Proc. Natl. Acad. Sci. USA* **116**, 23202, doi:10.1073/pnas.1905618116 (2019).
- 62699Strona, G. et al. Small room for compromise between oil palm cultivation and primate627conservation in Africa. Proc. Natl. Acad. Sci. USA 115, 8811, doi:10.1073/pnas.1804775115628(2018).
- Ajjawi, I. *et al.* Lipid production in *Nannochloropsis gaditana* is doubled by decreasing
 expression of a single transcriptional regulator. *Nature Biotech.* 35, 647,
 doi:10.1038/nbt.3865 (2017).
- 632101De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and633ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Env. 175, 1-7,634doi:10.1016/j.agee.2013.05.003 (2013).
- 635 102 Strassburg, B. B. N. *et al.* Global priority areas for ecosystem restoration. *Nature*,
 636 doi:10.1038/s41586-020-2784-9 (2020).
- Payán, E. & Boron, V. The Future of Wild Mammals in Oil Palm Landscapes in the Neotropics. *Front. Forests Glob. Change* 2, doi:10.3389/ffgc.2019.00061 (2019).
- Maddox, T., Priatna, D., Gemita, E. & Salampessy, A. The conservation of tigers and other
 wildlife in oil palm plantations Jambi Province, Sumatra, Indonesia. ZSL Conservation Report
 No.7. (The Zoological Society of London, London, UK, 2007).
- 642 105 Ancrenaz, M. et al. Pongo pygmaeus. IUCN Red List Threat. Sp., e.T17975A17966347 (2016).

643	106	Pangau-Adam, M., Mühlenberg, M. & Waltert, M. Rainforest disturbance affects population
644		density of the northern cassowary Casuarius unappendiculatus in Papua, Indonesia. Oryx 49,
645		735-742, doi:10.1017/S0030605313001464 (2014).
646	107	Alamgir, M. et al. Infrastructure expansion challenges sustainable development in Papua
647		New Guinea. PLOS ONE 14, e0219408, doi:10.1371/journal.pone.0219408 (2019).
648	108	Katiyar, R. et al. Microalgae: An emerging source of energy based bio-products and a
649		solution for environmental issues. Renew. Sust. Energy Rev. 72, 1083-1093,
650		doi:10.1016/j.rser.2016.10.028 (2017).
651	109	Nomanbhay, S., Salman, B., Hussain, R. & Ong, M. Y. Microwave pyrolysis of lignocellulosic
652		biomass—a contribution to power Africa. Energy Sust. Soc. 7, 23, doi:10.1186/s13705-017-
653		0126-z (2017).
654		

655 Correspondence and requests for materials should be addressed to emeijaard@gmail.com.

- 656 Acknowledgements The development of this situation analysis was supported by the IUCN project
- 657 "Global Commons: Solutions for a Crowded Planet", funded by the Global Environment Facility. DJB
- 658 received funding from the UK Research and Innovation's Global Challenges Research Fund under the
- 659 Trade, Development and the Environment Hub project (project number ES/S008160/1). MP was
- 660 supported by the CNPq research productivity fellowships (#308403/2017-7). JGU was funded by
- 661 SNSF R4D-project Oil Palm Adaptive Landscapes.

662

643

663 Author contributions

- 664 EM, DS, and TB conceptualized this study and developed the initial manuscript, with KC, JGU, DG,
- 665 JSHL, DJB, SAW, MA, SW, LPK, JFA, ZS and AD assisting in the acquisition, analysis, and interpretation
- 666 of the data and further writing. ES, TS, JA, HP, CS, DM, PF, NM, RH, MP, and MS provided substantial
- 667 input into the text revisions, and NZ, JA, DJB, KC, DG, AD and JFA designed the graphics.

668

669 **Competing Interests statement**

- 670 None of co-authors in this study, except DJB, MP, and JGU, received funding for conducting this
- 671 review, although the information was partly based on a study funded by the Global Environment

- 672 Facility. EM, TB, DG, MA, SW, LPK, JGU, KC, NM and DS are members of and have received funding
- 673 from the IUCN Oil Palm Task Force, a group tasked by the IUCN members to investigate the
- 674 sustainability of palm oil. TB, DJB, MA, CS and NM work for conservation organizations and EM, MA
- and MP have done work paid by palm oil companies or the Roundtable on Sustainable Palm Oil.

676 FIGURE LEGENDS

677

678 Figure 1. Main vegetable oil crops (see Table 1). (a) Harvested area from 1961 to 2017. (b)

679 Vegetable oil production from 1961 to 2014. Data from FAOSTAT⁴.

680

681	Figure 2. Maps of industrial and smallholder-scale oil palm from analysis of satellite imagery until
682	the second half of 2019 ³ , and examples of species it affects negatively: (a) <i>Panthera onca</i> (Near
683	Threatened) ¹⁰³ and Ara macao (Least Concern) ³⁹ ; (b) Pan troglodytes (Endangered) ⁸⁰ ; (c) Panthera
684	<i>tigris</i> (Endangered) ¹⁰⁴ , <i>Helarctos malayanus</i> (Vulnerable) ¹⁰⁴ , <i>Pongo pygmaeus</i> (Critically
685	Endangered) ¹⁰⁵ , Casuarius unappendiculatus (Least Concern) ¹⁰⁶ , and Dendrolagus goodfellowi
686	(Endangered) ¹⁰⁷ . The maps lack information on plantations < 3 years old and planted oil palm in
687	mixed agroforestry settings, but provide the most up-to-date estimates available. For each region
688	the percentages of intact (green) and non-intact forests (orange) are shown relative to the total
689	extent of forest ecosystems ²² .

690

691 Figure 3. Oil palm's estimated role in deforestation aggregated across studies, years, and regions. 692 Panel a depicts the contribution of oil palm to overall deforestation, while b shows the percentage 693 of all oil palm expansion that cleared forest (Supplementary Methods). There were no data for 694 Peru and South and Central America for panel a, and no global data for panel b. Southeast Asia (SE 695 Asia) excludes Indonesia and Malaysia, which are shown separately, while South America excludes 696 Peru. Each filled circle represents one time period from a single study, with individual studies 697 represented by distinct colours. The size of the circle corresponds to the relative number of area-698 years represented in that time period (larger circles represent a larger study area and longer time 699 period of sampling). Boxplot middle bars correspond to the unweighted median across study-time

700	periods; lower and upper hinges represent the 25 th and 75 th percentiles of study-time periods; and
701	whiskers extend from the upper (lower) hinge to the largest (smallest) value no further than 1.5
702	times the interquartile range from the hinge (Figure S2, Tables S2 and S3).

704	Figure 4 - Species groups with more than 8 threatened species with the terms "palm oil" or "oil
705	palm" in the threats texts of the IUCN Red List of Threatened Species Assessments ²⁹ . In total 321
706	species assessments had oil palm plantations as one of the reported threats (301 when excluding
707	groups with < 8 threatened species), which constitutes 3.5% of threatened species threatened by
708	annual and perennial non-timber crops (9,088 species) and 1.2% of all globally threatened species
709	(27,159 species) in 2019 (Supplementary Material and Table S4). CR = Critically Endangered; EN =
710	Endangered; VU = Vulnerable.

714 Table 1. Overview of the major oil crops, typical production cycle, yields, main production countries, biomes in which impacts primarily occur, carbon emissions, the number of threatened 715 species according to the IUCN Red List of Threatened Species²⁹ for which the specific crop is 716 717 mentioned as a threat, and the median species richness and median range-size rarity (amphibians, 718 birds and mammals) of species occurring within the footprint of each crop with first and third 719 quartile in brackets (IUCN Red List) (see Supporting Online Methods, Figure S1, Table S4). Carbon 720 emissions include carbon opportunity costs and production emissions⁶¹. "n/a" indicates that no 721 data are available.

		Oil yield	Main oil	Main biome	Kg	# species	Median	Median
		(t ha-1)	production	impacted	CO2e/MJ	threatened	Species	range-size
		108,109	countries		61	by crop ²⁹	Richness	rarity (ha
							(number	ha ⁻¹
							of	10e5) ²⁹
							species) ²⁹	
Oil palm	Perennial (25	1.9–4.8	Indonesia,	Tropical rainforest	1.2	321	472 [443,	36 [27,
Elaeis	years cycle)		Malaysia,				504]	57]
guineensis			Thailand					
Soybean	Annual (~6	0.4–0.8	China, USA,	Subtropical grass	1.3	73	278 [251,	10 [5, 14]
Glycine max	months		Brazil,	savanna,			462]	
	cycle),		Argentina	temperate steppe,				
	rotated with			and broadleaf				
	other crops			forest				
Rapeseed	Annual (~6	0.7–1.8	China,	Temperate steppe	1.2	1	227 [187,	4 [3, 10]
Brassica	months		Germany,	and broadleaf			308]	
napus and	cycle).		Canada	forest and taiga				
В.	Rotated with							
campestris	other crops							
Cotton	Annual (~6	0.3–0.4	China,	Subtropical	1.2	35	299 [234,	10 [7, 12]
Gossypium	months		India	monsoon, dry and			347]	
hirsutum	cycle).			humid forest and				
	Rotated with			temperate areas				
	other crops							
Groundnuts	Annual (4-5	0.5–0.8	China,	Subtropical	1.5	6	351 [308,	11 [7, 16]
or peanuts	months crop		India	monsoon, dry and			426]	
Arachis	cycle).			humid forest and				

hypogaea	Rotated with			temperate areas					
	other crops								
Sunflower	Annual (3-4	0.5–0.9	Ukraine,	Temperate steppe	1.0	1	189 [177,	3 [2, 9]	
Helianthus	months crop		Russia	and broadleaf			222]		
annuus	cycle).			forest					
	Rotated with								
	other crops								
Coconut	Perennial (30	0.4–2.4	Philippines,	Tropical and	n/a	65	317 [264,	73 [35,	
Cocos	– 50 y cycle)		Indonesia,	subtropical forest			414]	113]	
nucifera			India						
Maize	Annual (5-6	0.1–0.2	USA, China,	Temperate steppe	0.7	131	273 [222,	9 [5, 20]	
Zea mays	months crop			and broadleaf			427]		
	cycle).			forest					
	Rotated with								
	other crops								
Olive	Perennial,	0.3–2.9	Spain, Italy,	Mediterranean	n/a	14	n/a	n/a	
Olea	long lived.		Greece	vegetation					
europaea	Sometimes								
	inter-cropped								

