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Abstract

Semi-supervised representation-based subspace clustering is
to partition data into their underlying subspaces by finding
effective data representations with partial supervisions. Es-
sentially, an effective and accurate representation should be
able to uncover and preserve the true data structure. Mean-
while, a reliable and easy-to-obtain supervision is desirable
for practical learning. To meet these two objectives, in this
paper we make the first attempt towards utilizing the order-
ly relationship, such as the data a is closer to b than to c, as
a novel supervision. We propose an orderly subspace clus-
tering approach with a novel regularization term. OSC en-
forces the learned representations to simultaneously capture
the intrinsic subspace structure and reveal orderly structure
that is faithful to true data relationship. Experimental results
with several benchmarks have demonstrated that aside from
more accurate clustering against state-of-the-arts, OSC inter-
prets orderly data structure which is beyond what current ap-
proaches can offer.

Introduction
Subspace clustering, which aims at partitioning high dimen-
sional data into multiple low-dimensional subspaces with
each subspace corresponding to one class or subject, has
been widely used in machine learning, computer vision and
pattern recognition area (Rao et al. 2010; Liu et al. 2013;
Zhou et al. 2014; Zhang et al. 2018).

Recently, several subspace clustering methods have been
proposed to explore the relationships among data with self-
representation (Wu et al. 2015; Zhang et al. 2017). These
representation-based methods can be roughly divided into
two categories: the unsupervised and the semi-supervised.
The former (Liu, Lin, and Yu 2010; Lu et al. 2012; Hu et
al. 2014) mainly focuses on the intrinsic structure of da-
ta, while the later (Zhou et al. 2014; Fang et al. 2015;
Wang et al. 2017a) utilizes a small amount of supervision
information on top of data structure as a valuable guidance.
The pairwise information, including must-link constraints
and cannot-link constraints which specify whether the data
must be or cannot be in the same cluster, has been demon-
strated that it helps to improve performance (Wagstaff et al.
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2001). However, the pairwise relationships only characterize
the relationships between data and cluster, yet the relation-
ships among data are far beyond what they can describe. Al-
so, it is often difficult to identify whether two objects must
or cannot belong to the same cluster if there is no cluster cat-
egories known in advance. To remedy this, we are inspired
to seek for and utilize novel supervision information, so as
to exploit data information more deeply and further achieve
more accurate clustering.

In reality, one may easily observe that orderly relation-
ships are ubiquitous among data. An orderly relationship
represents that the data a is closer to b than to c. For ex-
ample, an image of “apple” is often more related to that of
“banana” than to that of “ball”; a frame of a video sequence
is often more related to its neighbouring frames than to those
far way. Such relative order naturally exists among data
and it is reliable (Kendall 1948; Amid and Ukkonen 2015;
Wang et al. 2018b). Preserving such relative relationships
enables us to find a good representation that uncovers the
true data relationship. With these advantages, the orderly re-
lationship has been widely used in various applications, such
as ordinal classification (Liu, Tsang, and Müller 2017), ordi-
nal embedding (Terada and Luxburg 2014), hashing (Liu et
al. 2016) and social networks (Song, Meyer, and Tao 2015;
Wang et al. 2017b). Unfortunately, existing subspace clus-
tering approaches have largely ignored the orderly relation-
ship.

In this paper, we propose an orderly subspace clustering
(OSC) approach by using the orderly relationship as a novel
constraint to learn orderly representations. Compared with
pairwise subspace clustering approaches, OSC works quite
differently and is more advanced in three aspects. Firstly,
the must-link/cannot-link is limited to paired data which be-
long to the same class or two different ones, but the orderly
relationship is a triplet information among three data with-
in one class or across multiple ones. Secondly, with must-
link/cannot-link, the pairwise subspace clustering enforces
representations to be close/far away, while OSC takes a step
further by preserving relative order among data, even when
they are from the same cluster. Thirdly, two pairwise rela-
tions may derive an orderly relationship, such as if the da-
ta a is must-link to b but cannot-link to c, we can derive
that a is more related to b than to c. However, the reverse
derivation may not hold. That is to say, the pairwise rela-



Figure 1: The comparison of existing pairwise subspace clustering methods and the proposed OSC for finding representations
in low-dimensional spaces. The original dataset contains images of two classes, where the dog images (e.g., a, b and c ) are
in red and the wolves (e.g., d ) are in blue. In particular, both a and b are Husky dogs and c is a Teddy dog. Existing pairwise
approaches are infeasible to utilize orderly relationship as supervisions for semi-supervised learning, but OSC incorporates the
orderly relationship effectively and enforces the learned representations to have the orderly structure which is faithful to the
relationship.

tions could be utilized by OSC, but the pairwise approaches
cannot incorporate the orderly relations effectively. We out-
line these differences and OSC’s advantages in Figure 1. As
shown in 1(i), given a set of orderly relationships such as
a is closer to b than to c, i.e., S(a, b) > S(a, c), an intu-
itive way to incorporate the relationship by existing pairwise
approaches is to split the orderly relationship into two pair-
wise relations: (1) a and b are must-link and (2) a and c
are cannot-link. However, this implies that a and c belong to
different classes, which is incorrect. And from the relation-
ship S(a, c) > S(a, d), it can be derived that a is must-link
to c and cannot-link to d, which is correct. However, while
enforcing the representation of data a, i.e., Ha to be close
to Hc and far away from Hd), the pairwise approaches are
not able to quantify the distance among their corresponding
representations. As a result, it may end up with the relation
D(Ha,Hc) > D(Ha,Hd), which is apparently inconsis-
tent with the true data relationships. This error may likely
lead to a wrong clustering, e.g. it is not b but d which is clus-
tered into the “Dog”. In contrast, as shown in Figure 1(ii),
OSC enforces representations to be faithful to the true data
relationship, such as it learns D(Ha,Hb) < D(Ha,Hc)
with S(a, b) > S(a, c). Moreover, from Figure 1(ii), we
can easily deduce S(a, b) > S(a, c) > S(a, d). Accord-
ingly, Ha is enforced to be the closest to Hb and the furthest
from Hd, i.e., D(Ha,Hb) < D(Ha,Hc) < D(Ha,Hd).
As a result, a more discriminative representation matrix H
is achieved with orderly structure preserved.

The main contribution of our work is that, to our best

knowledge, OSC is the first approach to incorporate the or-
derly relationship as a novel supervision into subspace clus-
tering for semi-supervised learning. Due to the natural avail-
ability of the orderly relationship, OSC is practical for re-
al applications. With the orderly relationship, OSC ranks
the learned representations effectively according to the true
structure of data so that more discriminative representations
are obtained. In fact, this strategy is not limited to one spe-
cific approach only but can also be easily adopted by several
existing representation-based subspace clustering approach-
es such as SSC and LRR. Extensive experiments on several
benchmark datasets have demonstrated the effectiveness of
OSC against state-of-the-arts, not only in terms of accuracy,
but also the interpretation of orderly data structure.

Related Work
Several representation-based subspace clustering method-
s have been proposed. To a large extent, unsupervised ap-
proaches all tend to exploit intrinsic data structure by adding
regularization terms on the representations under differen-
t assumptions. For example, the sparse subspace clustering
(SSC) (Elhamifar and Vidal 2009) seeks the sparse solu-
tion of data representation, which tends to be block diag-
onal. The low-rank representation (LRR has two versions:
LRR1 and LRR2,1) (Liu, Lin, and Yu 2010) aims to take the
correlation structure of data into account for finding a low-
rank representation instead of a sparse representation. The
least squares regression (LSR) (Lu et al. 2012) is more ef-
fective than than SSC and LRR for subspace clustering. It is



also efficient due to its closed form solution. The correlation
adaptive subspace segmentation (CASS)(Lu et al. 2013) si-
multaneously performs automatic data selection and groups
correlated data, which can adaptively balance SSC and L-
SR. Based on LSR, the smooth representation (SMR)(Hu et
al. 2014) incorporates a weight matrix that measures the s-
patial closeness of data. Given a dataset with multiple types
of features, (Cao et al. 2015) proposed a diverse multi-view
subspace clustering (DiMSC) which learns a complemen-
tary representation shared by multiple features. (Zhang et al.
2017) then proposed latent multi-view subspace clustering
(LMSC) method, which clusters data points with latent rep-
resentation and simultaneously explores underlying comple-
mentary information from multiple views.

To seek for more effective representations, several semi-
supervised approaches have been proposed by incorporating
pairwise information or labels as supervisions with graph-
based regularization. In particular, a graph consists of “n-
odes” (data) and “edges” that indicate the relationships of
data. If two data points are of must-link, a large positive
weight is assigned to the edge. Otherwise, a non-positive
weight is assigned. The graph is then incorporated into the
objective function as a regularizer. CS-VFC (Zhou et al.
2014) incorporates such a graph into SSC to explore the
unknown relationships among data, followed by adding the
constraints directly to the affinity matrix. Since the block-
diagonal structure is heavily desired for accurate sample
clustering, (Feng et al. 2014) proposed a graph Laplacian
constraint based SSC (BD-SSC) to construct exactly block-
diagonal affinity matrices. NNLRR (Fang et al. 2015) em-
ploys the graph to encode label information to seek low-rank
and sparse representation simultaneously with nonnegativi-
ty constraints on the matrices. Later, LRRADP (Wang et al.
2018a) was then proposed by using adaptive distance penal-
ty to construct an affinity graph, which enforces the repre-
sentations of every two consecutive neighboring data to be
similar. However, none of existing approaches can capture
the true data relationships, though the reflection of the true
data structure is in essence for an effective representation.

Orderly Subspace Clustering (OSC)
Preliminary
Given a set of data points X = [X1,X2, . . . ,Xn] ∈ Rm×n,
where each data vector Xi(1 ≤ i ≤ n) is a m-dimensional
vector and n is the number of data. In order to cluster the
data into their respective subspaces, we need to find effec-
tive representations for constructing an affinity matrix. To
achieve so, representation-based approaches assume that ev-
ery data point in a union of subspaces can be represented as a
linear combination of other data points, i.e., X = XH+E,
where H = [H1,H2, . . . ,Hn] ∈ Rn×n is the data repre-
sentation matrix and E ∈ Rm×n denotes errors. It can be
formulated as the following optimization problem to com-
pute the optimal data representation matrix H∗:

min
H

Θ(E) + αΩ(X,H),

s.t. X = XH+E,H ∈ T ,
(1)

where α is the tradeoff parameter, Θ(E) is the noise term.
Ω(X,H) and T are the regularizer and constraint set on H,
respectively. Under different assumptions, existing methods
differ mainly in the choice of norms1 for the noise term and
regularization on H.

As one of the most representative subspace clustering
method, LSR (Lu et al. 2012) solves the following objective
function:

min
H

∥E∥2F + α∥H∥2F , s.t.X = XH+E. (2)

Obviously, the representation learning process of LSR de-
pends on the intrinsic data structure only. Since the orderly
relationship reflects the true data relationships, which if in-
corporated, is of much help for more accurate learning. In
the following we present our OSC which embeds orderly re-
lationships to achieve more discriminative representations.

OSC-model
We use S(a, b) > S(a, c) to denote an orderly relationship,
i.e., the data a is closer/more similar to b than to c. The
objective of OSC is to enforce the distances among repre-
sentations of the data are in correspondence to the orderly
relationship, i.e.,

S(a, b) > S(a, c) ⇒ D(Ha,Hb) < D(Ha,Hc), (3)

where D denotes the distance measure. To achieve so, we
minimize the following term:

I(S+(a, b))I(D(Ha,Hb) ≥ D(Ha,Hc))I(S−(a, c)).
(4)

Here, S+(·)/S−(·) indicates a closer/less close relationship
between two data. I(·) is an indicator which equals to “1”
if the condition in the parenthesis is satisfied and “0” oth-
erwise. It is clear to see that given S(a, b) > S(a, c), i.e.,
I(S+(a, b)) = I(S−(a, c)) = 1, minimizing (4) enforces
D(Ha,Hb) < D(Ha,Hc).

Use L to represent a set of orderly relationships, then (4)
could be extended for ∀(a, b, c) ∈ L as follows,∑

(a,b,c)∈L

I(S+(a, b))I(D(Ha,Hb) ≥ D(Ha,Hc))I(S−(a, c)).

(5)
Using Euclidean distance (Liu et al. 2018) for D, we can
rewrite (5) as∑
(a,b,c)∈L

I(S+(a, b))I(∥Ha−Hb∥22 ≥ ∥Ha−Hc∥22)I(S−(a, c)).

(6)
To ensure a distance between ∥Ha − Hb∥22 and ∥Ha −

Hc∥22, a tunable threshold δ > 0 is incorporated to regulate
the distances in-between as∑
(a,b,c)∈L

I(S+(a, b))I(∥Ha−Hb∥22 > (∥Ha−Hc∥22−δ))I(S−(a, c)).

(7)

1In this paper, Frobenius norm, L2 norm, L2,1 norm and nu-
clear norm are represented by ∥ · ∥F , ∥ · ∥2, ∥ · ∥2,1 and ∥ · ∥∗,
respectively.



Because (7) is non-continuous, we use a ReLU loss function
f(t) = max(0, t) and obtain our orderly structured term∑

(a,b,c)∈L

I(S+(a, b))max(0, t)I(S−(a, c)), (8)

where t = ∥Ha −Hb∥22 − (∥Ha −Hc∥22 − δ).
By incorporating (8) into (2), we propose a simple yet

effective objective function as follows:

F = min
H

∥X−XH∥2F︸ ︷︷ ︸
error

+ α∥H∥2F︸ ︷︷ ︸
smoothness

+ β
∑

(a,b,c)∈L

I(S+(a, b))max(0, t)I(S−(a, c))︸ ︷︷ ︸
orderly structure

, (9)

where β is the trade-off parameter of the orderly structured
term. Note that, without orderly relationship, the objective
function (9) becomes the same as that in LSR (Liu, Lin, and
Yu 2010); with relationships, for each S(a, b) > S(a, c), (9)
penalizes t to encourage ∥Ha−Hb∥22−∥Ha−Hc∥22 → −δ
for t > 0 or maintains the structure for t < 0.

Remarks. It is worth pointing that the orderly structured
term is not limited to LSR only. In this paper we base OS-
C on LSR simply because LSR not only achieves effective
performance, but also has been proved efficient due to its
closed form solution, which makes our approach more prac-
tical. In fact, any other representation-based subspace clus-
tering approach which satisfies (1) can also be extended to
the semi-supervised setting with the orderly structure term.
For example, LRR2,1 can be directly extended by incorpo-
rating the term as

min
H

∥X−XH∥2,1 + α∥H∥∗

+ β
∑

(a,b,c)∈L

I(S+(a, b))max(0, t)I(S−(a, c)).

Such extension unifies the process of low rank representa-
tion learning with the orderly structure preserving so that
more accurate performances are expected, which would be
our future work.

Optimizations
We rewrite the optimization problem (9) as

F = min
Hu,Ha,Hb,Hc

∑
u/∈L

∥Xu −XHu∥22 +
∑
a∈L

∥Xa −XHa∥22

+
∑
b∈L

∥Xb −XHb∥22 +
∑
c∈L

∥Xc −XHc∥22 + α
∑
u/∈L

∥Hu∥22

+ α
∑
a∈L

∥Ha∥22 + α
∑
b∈L

∥Hb∥22 + α
∑
c∈L

∥Hc∥22

+ β
∑

(a,b,c)∈L

I(S+(a, b))max(0, t)I(S−(a, c)),

(10)
where Xu indicates a data vector without prior information
and Hu is the corresponding representation. Since (10) is
non-convex, it is non-trivial to find the global minimum.

Here we divide (10) into several subproblems for alternately
updating each subproblem with the others fixed.

The optimization of Hu-subproblem leads to the stan-
dard LSR formulation (Lu et al. 2012), so we obtain

Hu = (XTX+ αI)−1XTXu, (11)

where I is an identity matrix.
Ha-subproblem: Updating Ha with other subproblems

fixed leads to

min
Ha

F(Ha) = ∥Xa −XHa∥22

+ α∥Ha∥22 + β
∑

(b,c)∈L

I(S+(a, b))max(0, t)I(S−(a, c)).

(12)
Since max(0, t) is non-continuously differentiable with
respect to Ha, we relax the optimization by replacing
max(0, t) by I(t > 0)t and solve the modified problem in-
stead of directly optimizing (13). This modification leads to
the minimization of the following function:

min
Ha

F(Ha) = ∥Xa −XHa∥22

+ α∥Ha∥22 + β
∑

(b,c)∈L

I(t > 0)I(S+(a, b))tI(S−(a, c)).

(13)
Differentiating F(Ha) with respect to Ha and setting it to
zero, we get

XTXa −XTXHa + αHa

+ β
∑

(b,c)∈L

I(t > 0)I(S+(a, b))(Hc −Hb)I(S−(a, c) = 0.

(14)
This is the fixed point equation, and we can get the closed
form solution as

Ha = (XTX+ αI)−1(XTXa

+ β
∑

(b,c)∈L

I(t > 0)I(S+(a, b))(Hb −Hc)I(S−(a, c)).

(15)
Similarly, we obtain the closed solutions for

Hb-subproblem and Hc-subproblem as

Hb = (XTX+ αI+ β
∑

(a,c)∈L

I(t > 0)I(S+(a, b)II(S−(a, c)))
−1

· (XTXb + β
∑

(a,c)∈L

I(t > 0)I(S+(a, b)HaI(S−(a, c))),

(16)
and

Hc = (XTX+ αI− β
∑

(a,b)∈L

I(t > 0)I(S+(a, b)II(S−(a, c)))
−1

· (XTXc + β
∑

(a,b)∈L

I(t > 0)I(S+(a, b)HaI(S−(a, c))).

(17)

Since the alternating minimization relies on the compar-
ison between the initial values of t and 0, it is important to
have a sensible initialization. Here we initialize the whole



representations matrix H using LSR, which is a special case
of our method (when β = 0 in (9)).

After obtaining representations of each vector, the repre-
sentation matrix H∗ is formed. The affinity matrix is then
constructed and NCuts (Shi and Malik 2000) is applied onto
the affinity matrix to produce the final clustering results. The
whole procedure of OSC is summarized in Algorithm 1.

Algorithm 1 Solving OSC
Input: data matrix X, orderly relationship set L, number of

subspaces p, parameters λ, β and δ.
Output: Clustering result.

Initialize H by solving (2).
repeat

for i = 1 : n do
Obtain representations for each Xi by solving (11),
(15), (16) and (17), accordingly.

end for
until max iteration times or convergence
Construct the affinity matrix by (|H∗|+ |H∗T |)/2.
Segment the data into p groups by NCuts.

Experiments
To demonstrate the effectiveness of OSC, we conducted ex-
periments on a variety of datasets, including image dataset-
s (Extended-Yale B, USPS), a document dataset (20news-
groups) and a motion sequence (Hopkins 155).

Extended Yale B is a face clustering dataset which con-
tains 2414 frontal face images of 38 subjects, with approx-
imately 64 images per subject taken under different illumi-
nation conditions. We chose different numbers of subjects in
the experiment, ranging from the first 5, 10, 30, to 38 (i.e.,
all of the subjects in the dataset).

USPS contains 9298 handwritten digit images (16 × 16
each). It consists of 10 classes corresponding to the 10 digits,
0 ∼ 9. We used the first 100 examples of each digit for this
experiment.

20 newsgroups is a collection of approximately 20,000
newsgroup documents, partitioned evenly across 20 differ-
ent newsgroups. Following (Breitenbach and Grudic 2005),
we used 3970 document vectors which belong to four topics
in an 8014-dimensional space.

Hopkins 155 contains 155 motion sequences, each of
which contains two or three motions (one motion corre-
sponds to one subspace). As in (Hu et al. 2014), we used
PCA to project the data into a 12-dimensional subspace.

Experimental settings
We compared OSC with several unsupervised baselines: k-
NN using heat kernel distance, SSC (Elhamifar and Vidal
2009), LRR (LRR1 and LRR2,1) (Liu et al. 2013), LSR
(Lu et al. 2012), CASS (Lu et al. 2013), SMR (Hu et al.
2014) and TSC (Heckel and Bölcskei 2015). Since exist-
ing semi-supervised approaches and OSC utilize different
supervision information, it is practically infeasible to com-
pare them. Nevertheless, to experimentally demonstrate that

the orderly relationship is infeasible to be implemented by
pairwise approaches (as in Figure 1), we split each orderly
relation into a pair of must-link and cannot-link and applied
the pair onto an existed approach CS-VFC and a construct-
ed approach SemiLSR2. The parameters for each compared
method were tuned to achieve the best performance for com-
parison. For OSC, we varied the regularization parameters
α and β within [0.1, 0.2, 0.3, 0.4, 0.5] and [0.01, 0.02, 0.03,
0.04, 0.05], respectively, and δ was fixed to be 0.002 for al-
l the experiments. To construct orderly relations for OSC,
we first randomly selected 10% data for each dataset, and
then constructed 30 orderly relations for each selected da-
ta as in (Chang et al. 2014). Without losing generality, the
orderly relations were constructed in two days. For image
and document datasets, we used the labels because they can
be directly used for constructing orderly relationships, al-
though the relationships can also be formed by observing
similarities among images/documents. In particular, one half
of the orderly relationships were constructed with labels for
data with the same label are more related than those with
different ones. The other half were constructed from the q-
nearest neighbouring graph since data are usually more re-
lated to their nearest neighbours than those far away and q
was set as 5 according to (Gong et al. 2017). For the mo-
tion dataset, we chose the first 15 relations with each con-
taining two frames from the same scene and one from an-
other. Each of the second 15 relations is formed by choosing
from a scene two neighbouring frames and one farther away.
To ensure a fair comparison, the affinity matrices of all ap-
proaches were conducted on the typical affinity measures
(Georghiades, Belhumeur, and Kriegman 2001) and NCut-
s (Shi and Malik 2000) was employed to produce the final
clustering results. The clustering performance is evaluated
by accuracy/error (Hu et al. 2014) and the best results are
highlighted in boldface. Since CASS requires a significant
amount of time to process some large datasets, the corre-
sponding results are not available but represented with N/A.
All the experiments are done using Matlab 2017 in an Intel
Core 2.50GHZ desktop.

Experimental results and analysis
Clustering results Tables 1 and 2 summarize the image
clustering results on Extended Yale B and USPS, respective-
ly. On both datasets, OSC not only outperforms LSR which
proves the effectiveness of the proposed orderly structured
term, but also achieves higher accuracies than all compared
methods consistently. Specifically, Table 1 shows that OSC
achieves the highest clustering accuracy on all four cluster-
ing tasks. For example, OSC outperforms the second best
results (SemiLSR) by 1, 75% and 4.59% for the 5 and 38
subjects tasks, respectively. Besides, note that CS-VFC per-
forms even worse than SSC in 5 subject tasks, which proves
that orderly relationships cannot be effectively used by pair-
wise approaches. In Table 2, we can see that the clustering

2SemiLSR is modified by incorporating pairwise information
onto LSR. Following (Liu et al. 2012), we have modified ∥H∥2F to
tr(HIHT ) by setting Iij = 1 if data are of must-link, or Iij = 0
for cannot-link.



Table 1: Clustering accuracies (%) on Extended Yale B
Methods k-NN SSC LRR1 LRR2,1 LSR CASS SMR TSC CS-VFC SemiLSR OSC

5 subjects 71.56 92.19 81.88 86.56 92.19 94.03 85.31 89.69 88.81 92.31 94.06

10 subjects 49.59 63.97 60.56 65.00 73.59 81.88 72.50 62.19 74.34 75.24 87.19

30 subjects 52.59 50.19 58.23 61.24 58.38 N/A 56.94 56.20 63.57 62.65 66.67

38 subjects 47.53 45.89 55.11 57.39 57.73 N/A 56.88 54.18 54.35 58.21 62.80

Table 2: Clustering accuracies (%) on USPS
Methods k-NN SSC LRR1 LRR2,1 LSR1 LSR CASS SMR TSC CS-VFC SemiLSR OSC

10 subjects 77.70 73.72 74.40 74.40 72.40 72.20 82.40 84.20 73.10 84.57 85.52 88.00

Figure 2: OSC achieves a clearer affinity matrix with more
salient block diagonal than LSR and CS-VFC.

accuracies of the first four methods (k-NN, SSC, LRR, and
LSR) and TSC are very close, fluctuating between 72.20%
and 77.70%. The rest (CASS, SMR, CSVFC and SemiLSR)
achieve also similar but better accuracies which vary slight-
ly from 82.40% to 85.52%. Although these methods perform
well, OSC still gets the highest accuracy of 88.00%.

Table 3 shows the clustering accuracy on 20 Newsgroups
dataset. On this dataset, most approaches achieve promising
performance, but OSC still outperforms the rest significant-
ly. Table 4 tabulates the motion segmentation errors of ten
methods on the Hopkins 155 database. It shows that OSC
makes only 1.31% segmentation error, while the second best
is 2.25% by CS-VFC. Arguably, the improvement of OSC
on this dataset is moderate. This is mainly because most se-
quences are actually easy to segment. As a result, even with
big improvements on some challenging sequences, the over-
all improvement is limited, as the reported error is the mean
of all 156 segmentation errors.

Affinity matrix analysis. To intuitively demonstrate the
clustering results, we closely visualized the corresponding
derived affinity matrix, as a clearer block diagonal structure
of the affinity matrix leads to higher clustering performance.
Figure 2 shows the comparison of OSC with LSR and CS-
VFC on a challenging sequence of Hopkins 155 datasets, as
well as USPS. Clearly, the results on both figures show that
the affinity matrix obtained by OSC has much more salient
block diagonal structure compared with those by other meth-
ods, which undoubtedly will lead to more accurate results.
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Figure 4: Clustering accuracy of OSC w.r.t orderly relation-
ships.

Orderly relationship analysis. To further validate the ef-
fectiveness of the orderly relationships for the interpretation
of data structure, we examined H for LSR and OSC in Fig-
ure 3. Since the performance on each dataset has similar
tendency, due to page restriction, we only show the exper-
imental results on the first 5 clusters of Extended Yale B
for the following analyses. For clearer visualization, we on-
ly demonstrate 3 groups of images and sample 10 (out of
64) images from each selected group as example. In Figure
3, the different groups are represented by different colors. T-
wo examples of true relations among images, i.e., S(a, b) >
S(a, c) and S(a, c) > S(a, d), were given by observing
these images in terms of different subjects and expressions,
respectively. All representations displayed after the dimen-
sionalities of their features are reduced to 2-D by PCA. It can
be seen that the original image Xa is closer to Xd than to
Xc, although the ground truth should be S(a, c) > S(a, d).
LSR however gives D(Ha,Hc) > D(Ha,Hd), which ex-
perimentally proves that LSR cannot maintain the orderly
structure. Consequently, it leads Ha to be close to Hd which
belongs to a different group. In contrast, OSC effectively
enforces D(Ha,Hb) < D(Ha,Hc) < D(Ha,Hd) with
S(a, b) > S(a, c) > S(a, d). Apparently, both Ha and Hb

represent the faces of the same subject with the same expres-
sion, which are definitely of the highest relativity. Since Hd

represents a face of a different subject, it is the least related
to Ha. Therefore, the H learned through OSC demonstrates
a clearer structure of data.

Since the number of orderly relationships may influ-



Table 3: Clustering Accuracies (%) on 20 Newsgroups
Methods k-NN SSC LRR1 LRR2,1 LSR CASS SMR TSC CS-VFC SemiLSR OSC

4 subjects 91.41 83.63 91.59 92.19 84.81 N/A 86.32 89.09 89.43 89.36 93.32

Table 4: Clustering Errors (%) on Hopkins 155
Methods k-NN SSC LRR1 LRR2,1 LSR CASS SMR TSC CS-VFC SemiLSR OSC

MAX 45.59 39.53 36.36 32.50 36.36 32.85 35.83 45.21 37.25 36.15 36.39
MEAN 13.44 4.02 3.23 3.13 2.84 2.42 2.27 12.04 3.24 2.25 1.31

STD 12.90 7.21 6.60 5.90 6.16 5.84 5.41 11.24 4.64 5.36 4.01

0.1 0.2 0.3 0.4 0.5

Parameter 

50

55

60

65

70

75

80

85

90

95

100

C
lu

st
er

in
g

 A
cc

u
ra

cy
(%

)

Extended Yale B

0.01 0.02 0.03 0.04 0.05

Parameter 

50

55

60

65

70

75

80

85

90

95

100

C
lu

st
er

in
g

 A
cc

u
ra

cy
(%

)

Extended Yale B

Figure 5: Parameters analysis.

ence the construction of the affinity matrix (and thus the
clustering performance), we also analyzed this in Figure
4 from two aspects. We first selected 10% data from Ex-
tended Yale B and varied the relations associated with
each selected data from 0 to 50 with 10 interval as in
Figure 4(a). We then varied percentages of data within
{0%, 1%, 5%, 10%, 20%, 50%} and fixed 30 orderly rela-
tions for each selected data in Figure 4(b). Both figures show
that the clustering accuracy generally increases with more
supervisions. This further proves the effectiveness of OSC
on incorporating the orderly relationships.

Parameters and convergence analysis. We tested the ef-
fect of parameters α and β of OSC with δ being fixed as
0.002. First, we fixed β = 0.05 to test α with varying from
0.1 to 0.5 with 0.1 interval, and then fixed α = 0.2 to test β
varying from 0.001 to 0.005. Figure 5 shows that the clus-
tering accuracy is relatively stable when α and β vary. This
well demonstrates the robustness of OSC.

We also experimentally demonstrated the convergence of
OSC in Figure 6, where the horizontal axis is the number
of iterations and the vertical axis is the value of objective
function. It can be seen that the objective function values are
non-increasing and drop sharply within 5 iterations, which
empirically validates its convergence.

Conclusion
In this paper we propose orderly subspace clustering (OSC),
which for the first time explores the orderly relations among
data points to learn subspace representations. OSC incorpo-
rates a novel ranking-based regularizer on the representa-
tions into the learning objective to make the subspace rep-
resentations truly reflect the data structure. As a regularizer,
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Figure 6: Convergence curves.

the proposed mechanism of orderly relation preserving can
also be utilized in other subspace clustering methods. We
have done experiments on several benchmark datasets and
demonstrated that OSC can not only preserve the true data
structure which beyond what existing methods can offer, but
also achieve more accurate clustering against the state-of-
the-arts. In the future, we will explore a more solid analysis
in theory on the preservation of the orderly relationship.
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