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Abstract 

Existing evidence on the impact of R&D on productivity is heterogenous and does not 

address the question of whether different types of R&D are complements or substitutes. The 

aim of this research is to open the R&D black box by providing fresh insights about how 

different R&D types affect productivity in different industrial and technological contexts in 

the UK. The model adopted allows for non-linearities between R&D and productivity and 

interactions between R&D types. The analysis makes use of micro data from the Office of 

National Statistics, comprising 8,284 firms from 1998 to 2012. The results show evidence of 

diminishing marginal returns to total R&D. This concave relationship also holds for 

intramural R&D, applied/experimental R&D and private R&D. These findings suggest that 

studies which do not allow for non-linear relationships between R&D and productivity could 

suffer from specification bias. The results also indicate complementarity between intramural 

and extramural R&D and between basic and applied/experimental research. Returns to 

publicly funded R&D are insignificant and there is neither complementarity nor substitution 

between publicly and privately funded R&D. The findings strengthen the case for modelling 

the sources of heterogeneity explicitly by taking account of non-linearities in and interactions 

between the productivity effects of different R&D types.  

Key words: firm productivity, R&D, Pavitt class, basic research, applied research, 

experimental research, in-house research, extramural research, privately funded R&D, 

publicly funded R&D.  

 

1. Introduction 

The relationship between research and development (R&D) and productivity has been of 

major interest to researchers and policy makers for several decades. The relevance of R&D is 

highlighted in a recent study by Pieri, Vecchi, and Venturini (2018) who estimated that R&D 

and ICT accounted for about 95% of Total Factor Productivity (TFP) growth in 14 OECD 

countries from 1973 to 2007. R&D may be defined as “creative work that is undertaken on a 

systematic basic in order to increase the stock of knowledge, including the knowledge of 

man, culture and society and the use of this stock of knowledge to devise new applications.” 

(ONS 2005, 1). R&D has been identified as an important source of firm growth through its 

contribution to knowledge and innovation (Aiello and Cardamone 2005) and its links with 

investments in tangible assets (Carboni and Medda 2019). Moreover, R&D enables firms to 

build their absorptive capacity which is essential for knowledge spillovers to occur (Cohen 

and Levinthal 1989).  

 

The pioneering works in the literature on R&D and productivity were Minasian (1969), 

Griliches (1973) and Terleckyj (1974), but empirical studies expanded significantly after 

Griliches (1979) who articulated a lasting framework for the measurement, modelling and 

estimation issues in R&D analysis. Despite the vast amount of work in this field, the 

literature has mixed findings on how R&D affects firm productivity. This is partly because 
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most studies treat R&D as a homogenous activity that is measured by a single variable, 

usually total R&D intensity or total R&D capital. In reality, R&D is much more complex 

involving several types (basic, applied, experimental) that can be conducted either in-house 

(intramural) or contracted to other firms (extramural) and can be funded either privately by 

the firm/private organisations or from public sources. In addition, the productivity effects of 

R&D seem to vary widely across different technological sectors and firm sizes (Ortega-

Argiles, Piva, and Vivarelli 2015; Spescha 2019). The aim of this research is to open the 

R&D black box by taking a detailed approach to understanding how different forms of R&D 

affect productivity in different sectoral and technological contexts. No other study has 

conducted such a comprehensive investigation on R&D and productivity which considers 

several sources of heterogeneity. 

This paper contributes to the literature along three key dimensions. First, to the best of my 

knowledge, this is the first study that examines the impact of various types of R&D 

expenditures (basic, applied/experimental, intramural, extramural, privately funded R&D and 

publicly funded R&D) on productivity in a single comprehensive study, and explicitly tests 

whether there is a nonlinear relationship between each type of R&D and productivity. Much 

of the literature treats R&D as a linear function of productivity. However, recent studies have 

found diminishing marginal returns to R&D due to difficulties in obtaining new ideas and 

innovative opportunities over time and diseconomies of scale arising from bureaucracy and 

managerial slack in large firms (Kancs and Silverstovs 2016; Furman, Porter, and Stern 2002; 

Hagedoorn and Wang 2012). Hence, studies that do not allow for non-linearities in R&D 

could suffer from specification bias. However, to the best of my knowledge, only three 

empirical studies have accounted for non-linearities between R&D and productivity: Lokshin, 

Belderbos, and Carree (2008) and Kancs and Silverstovs (2016) used quadratic R&D terms to 

capture the non-linear relationship between R&D productivity while Montresor and Vezzani 

(2015) employed quantile regressions. This study contributes to the limited research on non-

linearities in R&D by modelling each R&D type as quadratic functions of productivity. 

 

The second contribution of this study is to examine whether the different R&D types are 

complements or substitutes in the production process. In other words, does an increase in one 

type of R&D increase or reduce the marginal effect of another type of R&D on productivity? 

This is important because each R&D type has different characteristics. For instance, basic 

and intramural research build up the absorptive capacity of firms (Czarnitzki and Thorwarth 

2012; Lokshin, Belderbos, and Carree 2008) and extramural R&D enables firms to tap into 

knowledge from outside the firm (Brossard and Moussa 2016). However, both basic and 

extramural research are riskier forms of investment (Higon 2016). The rationale for public 

funding of R&D is to stimulate private R&D spending and hence productivity because 

market failure leads to underinvestment in R&D (Belitz and Lejpras 2016). While recent 

research has examined whether R&D types are complementary or substitutes, much is 

unknown about these relationships. For instance, although studies such as Lokshin, 

Belderbos, and Carree (2008) have explored whether intramural and extramural R&D are 

complements, to the best of my knowledge, no study has examined whether basic research is 

complementary with applied or experimental research. In addition, studies on public R&D 

mainly focus on whether public R&D funding crowds in or crowds out private R&D but few 

examine either the impact of privately funded R&D on productivity or whether private and 

public R&D are complementary or substitutes in affecting productivity. This study extends 

the literature by investigating whether complementarity exists between basic and 
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applied/experimental research; intramural and extramural research; and privately funded and 

publicly funded research.     

 

Finally, this research contributes to the literature by examining whether the non-linearities of 

each R&D type and the linkages between them are affected by the size and sector of the firm. 

R&D intensity is positively related with firm size (Ugur, Solomon, and Trushin 2015) but 

smaller firms have the advantage of greater efficiency and better incentive structures 

(Spescha 2019). Recent research shows that large firms benefit from intramural basic 

research rather than extramural basic research but, for smaller firms, who have less R&D 

capacity, basic intramural research and basic external R&D involving collaborations with 

universities are complementary (Higon 2016). Public funding seems to be particularly useful 

when targeted at small and medium enterprises (SMEs) due to the weaker financial position 

of these firms (Szucs 2020). With respect to sector, most studies focus on the manufacturing 

sector due to data availability, an absence of a direct link between research and innovation in 

the service sector and because fewer firms in the service sector have historically devoted 

resources to research (Doloreux, Shearmur, and Rodriguez 2016). However, in several OECD 

countries and the UK specifically, the non-manufacturing sector dominates the economy. 

Hence, focusing on the manufacturing sector alone neglects a large part of the UK economy. 

Finally, it is not entirely clear how the level of technology affects the relationship between 

R&D and productivity. Although several studies show that the marginal effect of R&D on 

productivity is higher in high-tech manufacturing and knowledge intensive service sectors 

(e.g. Ortega-Argiles, Piva, and Vivarelli 2015), other studies show that the difference 

between them is much more muted (Pieri, Vecchi, and Venturini 2018). Moreover, very little 

is known about whether nonlinearities and the relationships among different types of R&D 

are affected by the technological intensity of sectors.  In this study, the impacts of the 

different R&D types on productivity are examined in the manufacturing and service sectors, 

by firm size and Pavitt class.  

 

This research draws from three firm-level UK databases: the Annual Respondents Database 

(ARD) and its successor, the Annual Business Survey (ABS), and the Business Expenditures 

on Research and Development (BERD) to provide detailed evidence on the relationship 

between R&D and firm productivity for 8,284 UK firms from 1998 to 2012 using a dynamic 

panel data model. The findings show strong evidence that the rate of return to total R&D is 

subject to diseconomies of scale, although the diminishing effect is small. The rates of return 

of some R&D types (intramural R&D, applied and experimental R&D and private R&D) are 

also subject to diminishing scale effects. There is evidence of complementarity between 

certain types of R&D – basic and applied/experimental R&D and between intramural and 

extramural R&D, but considerable heterogeneity in the results depending on the sector and 

size of firms.  

 

The rest of the paper is organised as follows. In section 2, the literature is reviewed. Section 3 

introduces the empirical specification and discusses the data and empirical technique. In 

section 4, the results are presented and section 5 concludes. 

 

2. Related Literature 

R&D is widely regarded as a key determinant of economic growth. Pieri, Vecchi, and 

Venturini (2018) identify four mechanisms by which R&D can contribute to productivity 

growth: capital deepening (i.e. productivity enhancements through investment in knowledge 
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capital), spillovers (through the diffusion of knowledge across firms), shifts in technical 

change and reducing technical inefficiency. R&D also raises productivity by lowering costs 

(Lang 2009), increasing the level of innovation output (Raymond et al. 2015) and the stock of 

knowledge. The literature on the impact of R&D on productivity is large, and several 

narrative reviews exist (e.g. Mairesse and Mohnen 1994; Hall 1996; Hall, Mairesse, and 

Mohnen 2010) but report varied conclusions with a wide range of estimated elasticities from -

0.262 to 0.810. A recent meta-analysis by Ugur et al. (2016) confirms that R&D has a 

positive, but small effect on productivity, with an estimated average elasticity of R&D capital 

on productivity of 0.07, and a gross private rate-of-return from R&D of around 14%.  

A major shortcoming of the older R&D literature is that it treats R&D as a homogenous 

activity but, in reality, R&D is a more complex activity. The more recent literature has begun 

to examine the impacts of the different aspects of R&D on productivity because each R&D 

type has distinctive features. Research work can be categorised into basic, applied and 

experimental. Basic R&D is research conducted at an early stage purely for the advancement 

of scientific knowledge without any specific application. Applied research is conducted for a 

specific application. Experimental research builds on basic and applied research and is 

directed to the production of new products or processes (ONS 2015). R&D can be conducted 

“in-house” (intramural R&D), i.e. within the firm or can be contracted out by firms to other 

entities such as universities or government establishments (extramural R&D). In addition, 

R&D can be funded either privately or by governments, usually through subsidies or R&D 

tax credits.   

 

2.1 R&D and Productivity: Non-linearities 

A recent strand of the literature has suggested a non-linear relationship between R&D and 

productivity. According to Furman, Porter and Stern (2002), current R&D is positively 

related with the stock of existing knowledge through past R&D investments to increase 

productivity. This is the “standing-on-shoulders” effect. However, as R&D discovers ideas, it 

becomes more difficult to discover newer ideas which reduces the marginal effect of R&D on 

productivity. This is the “fishing out” effect. The combination of the two effects suggests 

diminishing marginal returns of R&D to productivity. Kancs and Silverstovs (2016) provided 

evidence of these effects. Among OECD firms from 2006-2007, they found that the 

relationship between R&D and productivity was insignificant until a minimum level of R&D 

beyond which productivity increased at a decreasing rate. Hence, a sufficient level of existing 

knowledge was required by firms to make productive use of new knowledge from R&D 

(standing-on-shoulders effect) but the marginal effect of R&D on productivity increased at a 

decreasing rate due to the fishing out effect. 

Hagedorn and Wang (2012) found significant diminishing marginal returns to internal R&D 

on innovation output from a panel of 83 Pharmaceutical firms from 1986-2000. They 

proposed two explanations for this. The first reason linked to Hitt, Hoskisson, and Ireland 

(1990) arose from the lower innovative efficiency of larger firms due to bureaucracy and 

managerial slack. The second reason, drawn from Griliches (1990) and Hausman, Hall and 

Griliches (1984), was attributed to a decline in innovative output as R&D increased because 

of a reduction of inventive opportunities over time.       
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Diseconomies of scale from both internal and external R&D on labour productivity was also 

discovered by Lokshin, Belderbos, and Carree (2008) for 6 Dutch manufacturing firms from 

1996 to 2001 using dynamic panel data modelling. Finally, using quantile regressions on a 

panel of 1000 top R&D investing firms from the EU between 2002 and 2010, Montresor and 

Vezzani (2015) provided evidence of non-linear effects between R&D and productivity. They 

found increasing returns to scale for firms in high and medium high-tech sectors but 

decreasing returns to scale for the largest firms in low-tech sectors. 

2.2 R&D and Productivity: Linkages between R&D types.  

2.2.1: Internal and Extramural R&D  

Recent research has examined the impact of intramural and extramural R&D on innovation 

and productivity, and whether intramural and extramural R&D are complements or 

substitutes. Intramural R&D is regarded as essential for building the knowledge base and 

absorptive capacity of firms. The impact of extramural R&D is more debatable. On the one 

hand, extramural R&D is beneficial to firms in reducing costs and for tapping into external 

knowledge (Brossard and Moussa 2016) but can lead to the appropriation of  knowledge 

assets by rivals (Tamayoa and Huergob 2017) which increases transaction costs (Ceccagnoli 

et al. 2010). Brossard and Moussa (2016) found that intramural rather than extramural R&D 

had a significant effect on innovation. Similarly, Bianchini, Pellegrino, and Tamagni (2018) 

showed that internal R&D had a positive and significant effect on sales growth for Spanish 

manufacturing firms from 2004 to 2011, due to its complementarity with product and process 

innovations. These findings led the authors to conclude that knowledge was inherently firm 

specific and that firms probably faced difficulties in integrating external innovations. 

Radicic and Balavic (2019) synthesised the theoretical perspectives that explain 

complementarity or substitutability between internal and external R&D expenditure. The 

transaction cost theory suggests that internal and external R&D are substitutes, so firms 

choose one type or the other depending on which has lower transaction costs. On the other 

hand, when a firm combines internal R&D with external knowledge sourcing, then the 

innovation capacity (knowledge-based view) and comparative advantage (Resource based 

view) of the firm increases leading to complementarities between the two R&D types. In a 

panel of Spanish manufacturing firms from 2001 to 2011, they found a U-shaped relationship 

between internal R&D and product innovation. However, only the quadratic term in external 

R&D was positive and significant, suggesting that significant returns from external R&D 

only occurred at sufficiently high levels. Complementarity between internal and external 

R&D was conditional on having a minimum number of cooperative partners.  

 

Complementarity between intramural and extramural R&D in raising the levels of innovative 

output was found by Catozzella and Vivarelli (2014) for a panel of 3,045 Italian firms 

between 1998 and 2000. In contrast, Higon (2016) and Ceccagnoli et al. (2010) found 

intramural and extramural R&D to be substitutes, arguing that firms with stronger internal 

R&D capabilities were unlikely to pursue external sources of knowledge to prevent 

knowledge leakages. Other studies show that complementarities between internal and 

external R&D are conditional upon a minimum level of internal R&D, and emphasise that 

internal R&D is crucial for developing absorptive capacity in firms to enable them benefit 

from knowledge sourced from outside the firm (Lokshin, Belderbos, and Carree  2008; 

Hagedoorn and Wang 2012). In a study of Pharmaceutical companies by Hagedoorn and 

Wang (2012), the interaction between internal and external R&D was U-shaped in affecting 
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innovation output, with both R&D types substitutes at low levels of internal R&D and 

complements at higher levels of internal R&D. Finally, internal R&D has been found to be 

complementary with external R&D involving collaborations with firms and universities 

rather than the contracting out of research (Higon 2016; Schmiedeberg 2008; Radicic and 

Balavic 2019).      

 

2.2.2: Basic, applied and Experimental R&D 

Basic R&D is important for building the absorptive capacity of firms and contributing to first 

mover advantages. Higon (2016) found that in-house basic research increased the propensity 

of firms to pioneer new products in the market by about 5-6 percentage points. Basic research 

is, however, a risker form of R&D due to its lack of specificity and higher tendency of 

appropriation (Czarnitzki and Thorwarth 2012). Exploratory research (basic and applied 

R&D) have been shown to increase the risk of innovative failure, albeit at a diminishing rate 

as firms learn how to reduce failure over time (D’Este, Marzucchi, and Rentocchini 2018). In 

a panel of 23 OECD countries from 1996 to 2010, Sun, Wang, and Li (2016) showed that 

basic, applied and experimental R&D all increased TFP. While applied and experimental 

R&D had both contemporaneous and lagged effects on TFP, basic R&D had a lagged effect 

of 2 to 3 years on TFP. Using data envelopment analysis to separate the sources of TFP, they 

showed that basic R&D had a positive effect on technical change (i.e. shifts in the production 

frontier) whereas applied and experimental R&D increased technical efficiency change (i.e. 

enabled firms to catch up with the technological frontier).  

2.2.3 Private and Public funded research 

R&D can be distinguished by source of funding – either from private or public sources. 

Public funding of R&D is usually justified because of market failure (See e.g. Gonzalez, 

Jaumandreu, and Pazo 2005 and Ugur, Solomon, and Trushin 2015). The public good 

characteristic of knowledge means that it can spillover to other firms which incentivises firms 

to invest in R&D below the socially optimal level. There is some evidence that private R&D 

has fallen over time. For instance, although privately funded R&D was found to have a 

positive effect on productivity in German manufacturing firms, its level had fallen 

significantly by about 70% between 1960 and 2005. R&D is also a risky type of investment 

because of uncertainty in the success of generating new knowledge and risk of failure in 

product and process innovations (D’Este, Marzucchi, and Rentocchini 2018).  Public funding 

is therefore meant to induce private R&D spending to boost innovative output and hence 

productivity. However, this mechanism cannot be taken for granted (Czarnitzki and 

Hussinger 2018). First, firms might substitute public funding for private R&D investment, i.e. 

public funding could crowd out private R&D which would not increase innovative output.  

Second, firms might choose to fund projects with the highest expected returns privately but 

use public funding for projects with lower expected returns. Third, public subsidies might go 

to firms that would have conducted research projects even in the absence of receiving the 

subsidies (Gonzalez, Jaumandreu, and Pazo 2005), which would lead to a none-sizeable 

effect of public R&D in stimulating private R&D. 

 

Empirical evidence on the value of public R&D and whether public and private R&D are 

complementary are mixed. Chen et al. (2020) examined the impact of public R&D on stock 

returns among US firms from 1987 to 2010 using a matching estimator. Their findings 

revealed that firms in US states with higher public R&D spending earned higher abnormal 

stock returns due to reductions in innovation costs and productivity spillovers from public 
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R&D spending. Although R&D spending tends to be procyclical (Ouyang 2011), Spanish 

firms that received public funding before a crisis were persistent in intramural R&D spending 

during crisis periods (Cruz-Castro et al. 2008). Hud and Hussinger (2015) showed that public 

R&D raised private R&D spending among German SMEs between 2006 and 2010 except 

during crisis periods where crowding out effects arose as firms relocated normal R&D 

spending to other business areas. Nevertheless, there has been evidence of crowding out 

between private R&D and public subsidies for French firms especially among SMEs 

operating in low R&D intensive industries (Marino et al. 2016). There were no additionality 

effects from public R&D in a recent study involving the largest R&D performing firms 

worldwide with average yearly sales of €800 million (Szucs 2020). However, when the 

sample was split by size and R&D intensity, crowding in of private R&D occurred for 

smaller sized firms with higher R&D intensity who received smaller grants, but crowding out 

effects were found for firms with lower R&D intensities. Finally, other studies have linked 

complementarity to the type of public funding or to the funder. A rise in R&D tax credits by 

10% was predicted to increase labour productivity growth by 0.4% per year for US firms 

between 1975 and 2000, but there were no returns from direct funding of R&D via the 

Federal funds to R&D (Minniti and Venturini 2017). Among 44,000 research active UK 

firms from 1998 to 2012, there were additionality effects from EU subsidies on private R&D 

intensities by about 2% but no additionality effects from UK subsidies (Ugur, Solomon, and 

Trushin 2015). 

 
2.3 R&D and Productivity: Impact of firm size and sectoral heterogeneities 

Apart from differences in the productivity effects of the different R&D types, there is some 

evidence of heterogeneity in the returns to R&D from the literature, depending on the size of 

firm and type of industry. 

2.3.1 Firm size 

The importance of firm size in the relationship between R&D and productivity has been 

acknowledged by the literature. Smaller firms have greater efficiency, stronger incentive 

structures and can respond rapidly to market needs, so have an advantage in product 

innovation (Tsai and Wang 2005; Spescha 2019). On the other hand, large firms have higher 

productivity levels, bigger R&D resources and can benefit from economies of scale, although 

the high levels of bureaucracy could reduce the efficiency of R&D (Tsai and Wang 2005). 

Among 126 Taiwanese manufacturing firms from 1994 to 2000, Tsai and Wang (2005) found 

that firm size had a U-shaped moderating effect between R&D and TFP, with the marginal 

effect of R&D on TFP falling for smaller firms but rising for larger firms. Using micro data 

on large UK establishments from 1997-2008, Bond and Guceri (2017) showed that R&D 

performing establishments were 14% more productive than non-R&D performing 

establishments. In contrast, the average difference in mean productivity levels between R&D 

performing and non-R&D performing manufacturing firms in Spain were higher in SMEs 

compared with larger firms (Doraszelski and Jaumandreu 2013). Similarly, Spescha (2019) 

found positive and significant returns from R&D on sales growth for SMEs but insignificant 

returns from larger firms in Switzerland from 1995 to 2012. 

Regarding the R&D types, Higon (2016) argues that large firms benefit more from basic 

research activities than smaller firms because their larger market shares and greater product 

diversification improves their ability to exploit the results from basic research. In their study 

of Spanish manufacturing firms, complementarity between internal and external basic R&D 
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(through cooperation in basic research with universities) was limited to small firms only. 

Large firms benefitted from internal basic R&D only, suggesting that internal and extramural 

R&D were substitutes for larger firms (since these firms have greater internal R&D capability 

and would want to minimise knowledge leakages). In contrast, Tamayoa and Huergob (2017) 

found that larger firms, firms that engaged in continuous internal R&D and firms in medium 

to high-tech sectors were more likely to offshore R&D services. Finally, recent literature has 

suggested that public subsidies are more effective when targeted at smaller firms (Szucs 

2020, Belitz and Leipras (2016) due to financial constraints which hinders their engagement 

in R&D. Public funding to small firms improves their access to external financing 

(Meuleman and De Maeseneire 2012)). Using a regression discontinuity method, Bronzini 

and Piselli (2016) examined the impact of R&D subsidies on innovation in Emilia-Romagna 

of Northern Italy. R&D subsidies increased the number of patent applications for small firms 

only. Similarly, Vanino et al. (2019) showed that UK research council grants to participating 

firms in the UK from 2004 to 2016 had a significant effect on turnover growth for SMEs but 

not for large firms.  

 
2.3.1 Sectoral heterogeneities 

 

Studies relating R&D to productivity are mostly concentrated in the manufacturing sector 

where more data exists and the relationship between R&D and firm innovation is stronger 

(Morris, 2018). However, R&D in service sectors have become more significant. For 

instance, among Finish firms, Leiponen (2012) found that R&D was as important for service 

innovation as they were in the manufacturing sector, although the service sector lacked strong 

R&D management capabilities. 

 

Ortega-Argiles, Piva, and Vivarelli (2015) synthesise the literature on why the technological 

capacity of industries might influence the impact of R&D on productivity. On the one hand, 

the productivity effect of R&D is expected to be stronger in high-tech sectors and R&D user 

services, which are characterised by more technological opportunities, radical innovations, 

and “innovative complementarities and synergies between R&D, higher skills and 

organisational change”. On the other hand, the latecomer hypothesis suggests that R&D and 

productivity growth would be stronger in low-tech firms and traditional service sectors with 

lower R&D and incremental investments due to a “latecomer” advantage. Other reasons for a 

higher productivity premium from R&D in high-tech sectors are higher persistence in 

innovative activities and stronger knowledge spillovers (Kancs and Siliverstov 2016).  

 

Ortega-Argiles, Piva, and Vivarelli (2015) examined the impact of intramural R&D on labour 

productivity in US and European manufacturing and service firms from 1990–2008. The 

elasticity of labour productivity with respect to knowledge stock per employee in the R&D-

user service sector (0.114) was double that of the manufacturing sector (0.073). Also, the 

productivity impact of R&D was higher in high-tech manufacturing than other manufacturing 

sectors. A higher productivity premium from R&D in high-tech and knowledge intensive 

sectors is consistent with several other studies (Doraszelski and Jaumandreu 2013; Kancs and 

Siliverstov 2016; Baum et al., 2017). In contrast, Pieri, Vecchi, and Venturini (2018) found 

that R&D had a positive and significant impact on productivity in high and low-tech sectors 

alike, with only marginal differences between them, because R&D played important, albeit 

different roles in both sectors.  In  high-tech sectors, where R&D is geared towards 

breakthrough innovations, it increased technical change (i.e. led to shifts in the production 
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frontier) but in low-tech sectors where R&D is more incremental and technology adoption 

rather innovations take place, it increased technical efficiency.  

Among Belgian manufacturing firms from 2002 to 2007, Czarnitzki and Thorwarth (2012) 

found that basic R&D generated a high productivity premium in high-tech sectors but no 

effect in low-tech sectors because the higher risk inherent in basic R&D disincentivised firms 

from engaging in basic R&D in low-tech sectors. There are differences in lag structure across 

sectors between in-house basic R&D and the propensity of firms to pioneer products. Higon 

(2016) showed that basic research had both immediate and long-term outcomes in enabling 

firms to introduce new products to the market, but there was a considerable lag of at least five 

years for firms in high and medium high technology sectors. The delay in realising innovative 

products from basic research in high-tech sectors was due to the complexity of knowledge in 

these sectors, whereas basic research in low-tech sectors tended to improve the absorptive 

capacity of firms to enable them “to be more effective in searching for applied solutions” 

(Higon 2016, 824).  

 
2.4 Conclusion  

The impact of R&D on productivity has been well researched with the general consensus that 

R&D has a positive effect on growth. However, most studies treat R&D as a homogenous 

activity and model it as a linear function of productivity. Recent research has begun to 

address these limitations. This section has undertaken a detailed reviewed of the recent 

literature on R&D regarding non-linear relationships, the impact of different R&D types and 

their linkages and how these effects are moderated by firm size and sector.  

 

This study provides additional insights on the R&D-productivity nexus in several ways. First, 

it examines non-linear effects between different R&D types and productivity. Research on 

non-linear effects are few and limited to either total R&D or intramural and extramural R&D. 

In this study, non-linear effects between R&D and productivity are estimated not only for 

total R&D but also for intramural, extramural, basic, applied/experimental, private and public 

R&D. Second, it examines whether different R&D types are complementary or substitutes. 

To the best of my knowledge, no study has examined whether basic and applied/experimental 

R&D are complementary as other studies have focused on links between intramural and 

extramural R&D. Also, while much of the literature has examined whether public R&D 

crowds in or crowds out private R&D, this study contributes to the handful of studies that 

tests whether public and private R&D are complementarity in affecting firm productivity. 

Finally, the study examines whether the non-linear effects and interactions between the 

different R&D types are affected by firm size and sector.     

 

 

3. Methodology 

3.1 Empirical framework and Estimation technique 

To investigate the impact of R&D on productivity, the model of Lokshin, Belderbos, and 

Carree (2008) is adopted as it allows for the testing of economies or diseconomies of scale 

from R&D and interactions between different types of R&D.  

The model begins with a Cobb-Douglas production function, augmented with knowledge 

(R&D) capital under the usual assumptions: perfect competition in factor markets, and the 

separability of factor inputs (capital and labour) from knowledge capital: 
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𝑄𝑖𝑡 =  𝛼𝑖𝐿𝑖𝑡
𝛽

𝐶𝑖𝑡
𝛿𝐾𝑖𝑡

𝛾
𝑒𝜎𝑖𝑡  … (1)  

where Q is output, L is labour, C is physical capital stock, K is knowledge stock, 𝛽, 𝛿 𝑎𝑛𝑑 𝛾 

are elasticities with respect to labour, physical capital and knowledge stock respectively. The 

subscripts i and t refer to firm and time respectively. The parameter 𝜎 is a firm specific 

efficiency parameter.  

Dividing both sides by labour, taking the logarithms and first differencing equation (1) yields 

(2) below: 

∆𝑞𝑖𝑡 = (𝛽 − 1)∆𝑙𝑖𝑡 + 𝛿∆𝑐𝑖𝑡 + 𝛾∆𝑘𝑖𝑡 + ∆𝜎𝑖𝑡 … (2) 

To allow for convergence in the efficiency levels between firms, and hence, persistence in 

productivity (see e.g. Raymond et al. 2015), the changes in firm specific efficiency is modelled 

as a function of past productivity.   

∆𝜎𝑖𝑡 = 𝜃𝑞𝑖𝑡−1 + 𝜀𝑖𝑡 … (3) 

where 𝜃 ranges from 0 (no convergence) to -1 (complete convergence). The error term, 𝜀𝑖𝑡 

consists of a firm specific term (𝜇𝑖) to capture firm specific factors that have a permanent 

impact on productivity such as managerial abilities, a year specific term (𝜆𝑡) to capture 

unobserved time specific shocks to productivity that is common across all firms such as 

exchange rate shocks, and a serially uncorrelated measurement error (𝑣𝑖𝑡):  

𝜀𝑖𝑡 = 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 … (4) 

As indicated by Hall et al. (2010), the specification in equation (2) is based on the assumption 

of factor share equalisation across firms. However, this assumption may be too restrictive if 

firms adjust their factor use to technological and/or demand conditions in their industries. 

Therefore, a large body of the R&D-productivity literature adopts the assumption of rate-of-

return equalisation. In such specifications, the elasticity of the R&D capital is decomposed in 

accordance with (5) below.  

𝛾∆𝑘𝑖𝑡 ≈
𝜕𝑌

𝜕𝐾

𝐾𝑖𝑡−1

𝑌𝑖𝑡−1

∆𝐾𝑖𝑡

𝐾𝑖𝑡−1
≈ 𝜌

∆𝐾𝑖𝑡

𝑌𝑖𝑡−1
… (5) 

where 𝜌 =
𝜕𝑌

𝜕𝐾
 is the rate of return to R&D investment and is the coefficient of interest. 

Following Lokshin, Belderbos, and Carree (2008), the change in knowledge capital intensity, 
∆𝐾𝑖𝑡

𝑌𝑖𝑡−1
  can be expressed as a function of R&D investment intensity. Four alternative functions 

are specified to allow for interactions between different R&D types: Hence, changes in 

knowledge capital stock is a function of: total R&D intensity in (6a), intramural and extramural 

R&D intensities in (6b); basic and applied/experimental R&D intensities in (6c); and private 

and public R&D intensities in (6d)1. 

 
1 Lokshin, Belderbos, and Carree (2008) specified changes in knowledge capital stock as a function of Internal and External R&D only.  I expand this to include 

other types of R&D.  
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∆𝐾𝑖𝑡

𝑌𝑖𝑡−1
= 𝑓 (

𝑅𝑖𝑡−1

𝑌𝑖𝑡−1
) = 𝑓(𝑟𝑖𝑡−1) … (6𝑎) 

∆𝐾𝑖𝑡

𝑌𝑖𝑡−1
= 𝑓 (

𝑅𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎

𝑌𝑖𝑡−1
 ,

𝑅𝑖𝑡−1
𝑒𝑥𝑡𝑟𝑎

𝑌𝑖𝑡−1
) = 𝑓(𝑟𝑖𝑡−1

𝑖𝑛𝑡𝑟𝑎, 𝑟𝑖𝑡−1
𝑒𝑥𝑡𝑟𝑎) … (6𝑏) 

∆𝐾𝑖𝑡

𝑌𝑖𝑡−1
= 𝑓 (

𝑅𝑖𝑡−1
𝑏𝑎𝑠𝑖𝑐

𝑌𝑖𝑡−1
 ,

𝑅𝑖𝑡−1
𝑎𝑝𝑝𝑒𝑥𝑝

𝑌𝑖𝑡−1
) = 𝑓(𝑟𝑖𝑡−1

𝑏𝑎𝑠𝑖𝑐 , 𝑟𝑖𝑡−1
𝑎𝑝𝑝𝑒𝑥𝑝

) … (6𝑐) 

∆𝐾𝑖𝑡

𝑌𝑖𝑡−1
= 𝑓 (

𝑅𝑖𝑡−1
𝑝𝑟𝑖

𝑌𝑖𝑡−1
 ,

𝑅𝑖𝑡−1
𝑝𝑢𝑏

𝑌𝑖𝑡−1
) = 𝑓(𝑟𝑖𝑡−1

𝑝𝑟𝑖
, 𝑟𝑖𝑡−1

𝑝𝑢𝑏
) … (6𝑑) 

 

Finally, as in Lokshin, Belderbos, and Carree (2008), equations 7𝑎 to 7𝑑 allow for both 

complementarity/ substitution between different types of R&D and for non-linearities that 

may indicate economies or diseconomies of scale. Recent research that control for non-

linearities in the relationship between R&D and productivity in a knowledge capital model 

finds evidence of diseconomies of scale from in-house and external R&D which they ascribe 

to the cost spreading argument of Cohen and Klepper (1996). In this argument, firms with 

larger R&D budgets pursue more marginal R&D projects which leads to diminishing scale 

effects in R&D productivity. In a sample of 1500 top innovating firms in the OECD, Kancs 

and Siliverstovs (2016) also find evidence of non-linear effects of R&D on productivity. A 

minimum level of R&D was necessary to reap significant productivity rewards, but after this 

minimum threshold, the relationship between R&D and productivity became concave. At low 

levels of R&D, the accumulation of additional knowledge was beneficial for productivity as 

firms built up absorptive capacity and know-how. However, at higher levels of R&D, the 

capacity to find new ideas declined and hence the fall in productivity.  

 

𝛾∆𝑘𝑖𝑡 = 𝜑[𝜂1𝑟𝑖𝑡−1 + 𝜂2(𝑟𝑖𝑡−1)2] … (7𝑎) 

𝛾∆𝑘𝑖𝑡 = 𝜑[𝜂1𝑟𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎 + 𝜂2𝑟𝑖𝑡−1

𝑒𝑥𝑡𝑟𝑎 + 𝜂3(𝑟𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎)2 + 𝜂4(𝑟𝑖𝑡−1

𝑒𝑥𝑡𝑟𝑎)2 + 𝜂5𝑟𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎𝑟𝑖𝑡−1

𝑒𝑥𝑡𝑟𝑎] … (7𝑏) 

𝛾∆𝑘𝑖𝑡 = 𝜑[𝜂1𝑟𝑖𝑡−1
𝑏𝑎𝑠𝑖𝑐 + 𝜂2𝑟𝑖𝑡−1

𝑎𝑝𝑝𝑒𝑥𝑝
+ 𝜂3(𝑟𝑖𝑡−1

𝑏𝑎𝑠𝑖𝑐)2 + 𝜂4(𝑟𝑖𝑡−1
𝑎𝑝𝑝𝑒𝑥𝑝

)2 + 𝜂5𝑟𝑖𝑡−1
𝑏𝑎𝑠𝑖𝑐𝑟𝑖𝑡−1

𝑎𝑝𝑝𝑒𝑥𝑝
] … (7𝑐) 

𝛾∆𝑘𝑖𝑡 = 𝜑[𝜂1𝑟𝑖𝑡−1
𝑝𝑟𝑖

+ 𝜂2𝑟𝑖𝑡−1
𝑝𝑢𝑏

+ 𝜂3(𝑟𝑖𝑡−1
𝑝𝑟𝑖

)2 + 𝜂4(𝑟𝑖𝑡−1
𝑝𝑢𝑏

)2 + 𝜂5𝑟𝑖𝑡−1
𝑝𝑟𝑖

𝑟𝑖𝑡−1
𝑝𝑢𝑏

] … (7𝑑) 

Apart from allowing for testing of economies/diseconomies of R&D from each type of R&D, 

equations 7𝑏 to 7𝑑 also allow for testing whether different types of R&D are complements or 

substitutes. Equation 7𝑏 allows for interactions between intramural and extramural R&D. 

Investment in intramural R&D builds the absorptive capacity of firms, allowing them to 

positively exploit external knowledge (Lokshin, Belderbos, and Carree 2008; Catozzella and 

Vivarelli 2014). Similarly, although the high risk and generality of basic research might not 

yield immediate productivity returns, investment in basic research stimulates other types of 

R&D and builds up the absorptive capacity of firms (Green and Scotchmer 1995). Hence, 

equation 7𝑐 tests whether basic R&D is complementary with applied and experimental R&D. 

Lastly, equation 7𝑑 allows for the testing of complementarity between private and public 

funding of R&D. Reviews of the literature on whether public R&D have increased private 

R&D spending are mixed (David, Hall, and Tootle 2000; Dimos and Pugh 2016) but there has 

been some evidence of additionality between public and private R&D in continental European 

countries (See, for instance, Hussinger 2008). Among UK firms, Ugur, Solomon, and Trushin 



12 
 

(2015) do not find evidence of additionality between UK subsidies and privately funded R&D 

but find complementarity between EU subsidies and private R&D spending. Aiello, Albanese, 

and Piselli (2019) find complementarity between firms that receive public financial support 

and private R&D spending among Italian manufacturing SMEs, although the complementarity 

does not translate into higher innovation output. In fact, firms who received public financial 

support had less innovative output than firms who did not receive such support. 

Combining equations 2, 3, 4, 7a-7d, adding control variables and rewriting ∆𝑞𝑖𝑡 = 𝑞𝑖𝑡 − 𝑞𝑖𝑡−1 

with 𝑞𝑖𝑡−1 moved to the right hand side yields equations 8a to 8d:  

𝑞𝑖𝑡 = (1 + 𝜃)𝑞𝑖𝑡−1 + (𝛽 − 1)∆𝑙𝑖𝑡 + 𝛿∆𝑐𝑖𝑡 + 𝜑[𝜂1𝑟𝑖𝑡−1 + 𝜂2(𝑟𝑖𝑡−1)2] + ∅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜆𝑡 + 𝜇𝑖

+ 𝑣𝑖𝑡 … (8𝑎) 

𝑞𝑖𝑡 = (1 + 𝜃)𝑞𝑖𝑡−1 + (𝛽 − 1)∆𝑙𝑖𝑡 + 𝛿∆𝑐𝑖𝑡 + 𝜑[𝜂1𝑟𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎 + 𝜂2𝑟𝑖𝑡−1

𝑒𝑥𝑡𝑟𝑎 + 𝜂3(𝑟𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎)2 +

𝜂4(𝑟𝑖𝑡−1
𝑒𝑥𝑡𝑟𝑎)2 + 𝜂5𝑟𝑖𝑡−1

𝑖𝑛𝑡𝑟𝑎𝑟𝑖𝑡−1
𝑒𝑥𝑡𝑟𝑎] + ∅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 … (8𝑏) 

𝑞𝑖𝑡 = (1 + 𝜃)𝑞𝑖𝑡−1 + (𝛽 − 1)∆𝑙𝑖𝑡 + 𝛿∆𝑐𝑖𝑡 + 𝜑[𝜂1𝑟𝑖𝑡−1
𝑏𝑎𝑠𝑖𝑐 + 𝜂2𝑟𝑖𝑡−1

𝑎𝑝𝑝𝑒𝑥𝑝
+ 𝜂3(𝑟𝑖𝑡−1

𝑏𝑎𝑠𝑖𝑐)2 +

𝜂4(𝑟𝑖𝑡−1
𝑎𝑝𝑝𝑒𝑥𝑝

)2 + 𝜂5𝑟𝑖𝑡−1
𝑏𝑎𝑠𝑖𝑐𝑟𝑖𝑡−1

𝑎𝑝𝑝𝑒𝑥𝑝
] + ∅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 +𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 … (8𝑐) 

𝑞𝑖𝑡 = (1 + 𝜃)𝑞𝑖𝑡−1 + (𝛽 − 1)∆𝑙𝑖𝑡 + 𝛿∆𝑐𝑖𝑡 + 𝜑[𝜂1𝑟𝑖𝑡−1
𝑝𝑟𝑖

+ 𝜂2𝑟𝑖𝑡−1
𝑝𝑢𝑏

+ 𝜂3(𝑟𝑖𝑡−1
𝑝𝑟𝑖

)2 +

𝜂4(𝑟𝑖𝑡−1
𝑝𝑢𝑏

)2 + 𝜂5𝑟𝑖𝑡−1
𝑝𝑟𝑖

𝑟𝑖𝑡−1
𝑝𝑢𝑏

] + ∅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 … (8𝑑) 

The control variables include: the Herfindahl index computed at the 2-digit level, a UK 

ownership dummy, wage ratio and the knowledge gap as a measure of absorptive capacity or 

technological distance.  

Equations 8𝑎 to 8𝑑 are dynamic panel data models, so are estimated using the System GMM 

estimator (SYSGMMM) by Arellano and Bover (1995) and Blundell and Bond (1998). The 

SYSGMM is particularly suitable for estimating short dynamic panels that would render the 

pooled Ordinary Least squares and fixed effects estimators biased in the presence of the lagged 

dependent variable (Bond, Hoeffler, and Temple 2001). The SYSGMM has the advantage of 

controlling for unobserved heterogeneity, endogeneity and measurement error (Blundell & 

Bond 1998; Bond, Hoeffler, and Temple 2001; Roodman 2009b). There are three conditions 

to ensure the validity of the SYSGMM: (a) absence of serial correlation in the error term, (b) 

exogeneity of the instruments and (c) exogeneity of the extra instruments used in the SYSGMM 

compared with the first-differenced GMM estimator.2 The first condition is tested using the 

AR tests for first and second differences of the residuals. There must be a significant negative 

correlation in the first differences of the residuals but no correlation in the second differences 

of the residuals. The second condition can be tested using the Hansen test (Bowsher 2002; 

Parente and Santos Silva 2012). The third condition can be tested using the Difference-in-

Hansen test (Roodman 2009b). The null hypothesis for both the Hansen and Difference-in-

Hansen tests is exogeneity of the instruments. One problem with the SYSGMM is the 

 
2 The first-differenced GMM estimator of Arellano and Bond (1991) is constructed by taking the first 
differences of all variables and instrumenting them using the lagged level values of the series. However, the 
first differenced estimator suffers from bias in short persistent panel because the lagged values become poor 
instruments of the first differenced series (Bond, Hoeffler, and Temple 2001). The system GMM estimator was 
created to overcome this problem. The estimator augments the first differenced series in the first differenced 
estimator with the original level series instrumented with the lagged first differences of the series. It is the 
validity of these extra instruments (lagged first differences) that the third condition tests. 
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proliferation of instruments which can lead to bias and render the specification tests unreliable. 

Hence, the SYSGMM with a collapsed instrument set is used, as recommended by Roodman 

(2009a, 2009b).  

3.2 Data  

Data was obtained from two key databases: The Annual Respondents Database (ARD) which 

was succeeded by the ABS database (ABS) from 2008 and the Business Expenditure on 

Research and Development (BERD) database. The ARD/ABS is a census of large UK firms 

and a sample of smaller ones. Selected firms are sent a detailed annual survey (the Annual 

Business Inquiry) asking about productivity related measures. Hence, it contains key data on 

productivity and employment measures for UK firms. The BERD is a repeated annual survey 

on R&D expenditure and employment from UK businesses.  

 

After merging the datasets, firms that lacked key productivity measures such as value added 

were dropped. All observations with negative capital stock were also dropped. Only firms 

with data on at least three consecutive periods on output, capital stock, employment and R&D 

were kept. Finally, due to the extreme skewness of R&D intensity, the dataset was restricted 

to observations with R&D intensity less than 1. The final panel dataset consists of 8,284 

firms and 27,588 observations from 1998 to 2012.3  

 

Table 1 provides a summary of the variables in the model and their definitions.  

Table 1: Definitions of Variables 

Variable Definition 

Dependent variable 

𝒒 Log of gross value added per employee in constant 2008 prices. 

Independent variables 

∆𝒍 Log growth of employment, Full time equivalent (FTE). 

∆𝒄 Log growth of physical capital stock in constant 2008 prices.  

𝒓𝒊𝒕−𝟏 Lagged total R&D intensity (i.e. the lagged value of total R&D expenditure 

divided by gross value added). 

𝒓𝒊𝒕−𝟏
𝒊𝒏𝒕𝒓𝒂 Lagged intramural R&D intensity (i.e. the lagged value of intramural R&D 

expenditure divided by gross value added). 

𝒓𝒊𝒕−𝟏
𝒆𝒙𝒕𝒓𝒂 Lagged extramural R&D intensity (i.e. the lagged value of extramural 

R&D expenditure divided by gross value added). 

𝒓𝒊𝒕−𝟏
𝒊𝒏𝒕𝒓𝒂𝒓𝒊𝒕−𝟏

𝒆𝒙𝒕𝒓𝒂 𝑟𝑖𝑡−1
𝑖𝑛𝑡𝑟𝑎 × 𝑟𝑖𝑡−1

𝑒𝑥𝑡𝑟𝑎 

𝒓𝒊𝒕−𝟏
𝒃𝒂𝒔𝒊𝒄 Lagged basic R&D intensity (i.e. the lagged value of basic R&D 

expenditure divided by gross value added). 

𝒓𝒊𝒕−𝟏
𝒂𝒑𝒑𝒆𝒙𝒑

 Lagged applied and experimental R&D intensity (i.e. the lagged value of 

applied and experimental R&D expenditures divided by gross value 

added). 

𝒓𝒊𝒕−𝟏
𝒃𝒂𝒔𝒊𝒄𝒓𝒊𝒕−𝟏

𝒂𝒑𝒑𝒆𝒙𝒑
 𝑟𝑖𝑡−1

𝑏𝑎𝑠𝑖𝑐 × 𝑟𝑖𝑡−1
𝑎𝑝𝑝𝑒𝑥𝑝

 

 
3 Unfortunately, I was not able to extend the data set due to funding limitations and the prohibitive time cost 
involved in drawing data from the two sources. In addition, access to the database through the Secure Data 
Service was disrupted between March and April 2020 which was the period when the paper was being revised. 
Note that there are several cases in the literature where there is a time lag between the year of publication 
and the end year of the data. E.g. the sample period of Grillitsch, Schubert, and Srholec (2019) was from 2004 
to 2011. 
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𝒓𝒊𝒕−𝟏
𝒑𝒓𝒊

 Lagged private R&D intensity (i.e. the lagged value of privately funded 

R&D divided by gross value added).  

𝒓𝒊𝒕−𝟏
𝒑𝒖𝒃

 Lagged public R&D intensity (i.e. the lagged value of publicly funded 

R&D divided by gross value added).  

𝒓𝒊𝒕−𝟏
𝒑𝒓𝒊

𝒓𝒊𝒕−𝟏
𝒑𝒖𝒃

 𝑟𝑖𝑡−1
𝑝𝑟𝑖

× 𝑟𝑖𝑡−1
𝑝𝑢𝑏

 

Control variables 

UK 

ownership 

dummy 

Dummy variable =1 if firm is UK owned; =0 if foreign owned.  

Knowledge 

gap 

Ratio of total R&D intensity of each firm to the firm with the largest R&D 

intensity at the 3-digit sector.  

Herfindahl 

index 

the Herfindahl index at the two-digit sector level 

Wage ratio The real average wage for each firm divided by average wage at the 3- digit 

level. 

 

The dependent variable is labour productivity, which is measured by real gross value added at 

factor cost per employee. Mairesse and Hall (1996) reports that elasticity estimates based on 

value-added do not differ from those based on sales without including materials as an additional 

input. However, Griliches and Mairesse (1981) indicate that elasticity estimates based on value 

added tend to be smaller than those based on sales without materials. Gross value added was 

obtained from the ARD/ABS and deflated using two-digit output deflators from the ONS. To 

control for double counting, total current R&D expenditure was added to gross value added 

(Hall, Mairesse, and Mohnen 2010).  

Labour is measured by the number of full-time equivalent employees. It was constructed by 

deducting 0.5 *part time employees from the total number of employees for each firm. Part-

time employment was approximated by multiplying the number of full-time employees by the 

proportion of part time workers by year and two-digit sector. Data on full time employees was 

obtained from the ARD/ABS.  

Physical capital stock was computed using the perpetual inventory method (PIM). The initial 

capital stock was obtained from ONS estimates. For subsequent years, the PIM was applied as 

follows: 𝐾𝑡 = (1 − 𝑑)𝐾𝑡−1 + 𝐼𝑡, where 𝑑 is the depreciation rate of 9.3%4 and 𝐼𝑡 is real 

investment. Real investment was computed from net capital expenditure5, deflated using one-

digit gross fixed capital formation deflators from the ONS.  

R&D expenditure (and its components) were obtained from BERD. In BERD, total R&D 

expenditure consists of intramural R&D and extramural R&D. Intramural R&D is research 

carried out within the firm. Extramural R&D is research commissioned by the firm to 

external organisations either within or outside the UK. Intramural R&D consists of basic 

R&D (research without specific applications), applied R&D (research towards a particular 

application) and experimental R&D (research conducted for the development of new or 

 
4 The depreciation rate of 9.3% is the average depreciation rate of plant and machinery (6%), buildings (2%) 
and motor vehicles (20%).  
5 To control for double counting, R&D capital expenditure on land and building, and plant & machinery were 

deducted from net capital expenditure. 
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substantially improved products, processes, systems or services).6 Public R&D funding is 

defined as all intramural or extramural R&D funding that are provided by either the UK 

government or from EU sources. Private R&D funding refers to all other intramural and 

extramural R&D funding sourced either by the firm or other organisations from the UK or 

overseas.   

The control variables include: a UK ownership dummy that takes the value of 1 if the firm is 

UK owned and 0 if owned by a foreign firm, a knowledge gap variable which proxies for 

technological distance, defined as the ratio of R&D intensity of firm 𝑖 in period 𝑡 to the R&D 

intensity of the firm with the largest R&D intensity value at the 3 digit sector, the Herfindahl 

index at the two digit sector level and the wage ratio. The wage ratio is defined as real 

average wage for each firm divided by average wage at the 3- digit level. Nominal wages 

were deflated using two-digit output deflators. 

 

Table 2: Summary statistics: 1998- 2012 

Variable Mean  Standard Error  

Real value added  (£ million) 95.27 2451.51 

∆ Real value added 2.15 2848.59 

Employment: FTE (count)  361.73 3064.87 

∆ Employment (FTE) 0.006 0.263 

Capital stock (£ million) 36.928 396437.4 

∆ Capital stock -0.020 0.190 

Wage ratio 1.01 0.63 

Herfindahl index (2 digit) 0.044 0.060 

Knowledge gap 0.144 0.203 

Intramural R&D intensity 0.073 0.114 

Extramural R&D intensity 0.006 0.025 

Basic R&D intensity 0.005 0.022 

Applied R&D intensity 0.029 0.060 

Experimental R&D intensity 0.034 0.066 

Public R&D intensity 0.004 0.023 

Private R&D intensity 0.074 0.116 

 

Table 2 shows summary statistics of the key variables. Average value added across the 

sample was about £95.27 million and the average number of full-time employees was 361 

workers. The mean capital stock was £36.928 million. More research is undertaken within the 

firm rather than contracted to external organisations as average intramural R&D intensity 

exceeded average extramural R&D intensity by about 12-fold. The amount of applied and 

experimental R&D exceeded basic R&D which is in line with the literature that firms have 

more incentives to undertake applied and experimental R&D rather than basic R&D. Finally, 

private R&D intensity exceeded public R&D intensity by 18-fold on average.  

 

 

 

 
6 See ONS (2005) for more precise definitions.  
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4 Results 

4.1 Main Findings  

Table 3 presents the baseline results of the effect of total R&D intensity on labour 

productivity (measured as value added per worker).  It presents estimates from the System 

GMM (SYSGMM) in column 4 with the pooled OLS (POLS), fixed effects (FE) and first 

differenced GMM estimator (FDGMM) for comparison. The specification tests show the 

validity of the SYSGMM. The p-values of the AR(1) and AR(2) tests indicate a significant 

correlation in the first differences of the error term but no second order correlation showing 

the absence of serial correlation in the error term. The p-values of the Hansen and difference-

Hansen tests (p-values > 0.10) confirm the validity of the instruments. The coefficients on the 

lagged dependent variable lie between the pooled OLS and fixed effects estimates. This is as 

expected and shows the reliability of the SYSGMM, since the coefficient of the lagged 

dependent variable is known to be upwardly biased in POLS models and downwardly biased 

in FE (Bond, Hoeffler, and Temple 2001). The coefficient of the FDGMM is downwardly 

biased towards the FE estimates because of the weak instrument problem that the estimator 

suffers from in short persistent dynamic panels.  

Focusing on column 4, the coefficients on total R&D intensity and its square are highly 

significant and suggest diseconomies of scale. This is in line with several findings (Lokshin, 

Belderbos, and Carree 2008; Furman, Porter, and Stern 2002; Kancs and Siliverstovs 2016; 

Hagedoorn and Wang 2012). At lower levels of R&D, ideas and innovations are easier to find 

and current R&D builds on the stock of knowledge from prior R&D investments to increase 

productivity (standing-on-shoulder effect). But, at higher levels of R&D, diminishing 

marginal returns kick in because as ideas and innovations are discovered it becomes more 

difficult to find newer ideas and innovations (fishing out effect). Also, it is likely that 

diseconomies of scale from larger firms, who are more R&D intensive, take place so R&D is 

less efficient due to managerial slack and bureaucratic inefficiencies.   

 

Turning to the other variables, as expected, capital has a positive and significant effect on 

productivity, but the negative labour coefficient depicts decreasing returns to labour. None of 

the control variables are significant.  
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Table 3: Effect of Total R&D intensity on Productivity 

(Dependent variable: Log of value added per employee) 

Notes:  t statistics in parentheses, time dummies are included in all estimations. Two-digit sector dummies are included in 

the OLS and Fixed effects estimates. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, ** p < 

0.05, *** p < 0.01 

 

 (1) (2) (3) (4) 

 Pooled OLS Fixed Effects First Differenced 

GMM 

System GMM  

Log (Value added 

per employee)t-1 

0.825*** 

(62.15) 

0.344*** 

(16.09) 

0.446*** 

(5.95) 

0.536*** 

(12.47) 

∆ log of Capital 

stock 

0.177*** 

(9.17) 

0.136*** 

(6.00) 

0.456** 

(2.02) 

0.503** 

(2.53) 

∆ log of 

Employment 

-0.645*** 

(-23.91) 

-0.408*** 

(-12.51) 

-0.832*** 

(-2.77) 

-0.689*** 

(-4.35) 

Total R&D 

intensity 

0.222*** 

(6.49) 

0.0731*** 

(3.78) 

0.139** 

(2.33) 

0.110*** 

(5.15) 

Total R&D 

intensity squared 

-0.0012*** 

(-5.72) 

-0.0004*** 

(-3.05) 

-0.0018 

(-1.46) 

-0.0005*** 

(-4.14) 

UK ownership 

dummy 

-0.0274*** 

(-4.67) 

-0.00741 

(-0.64) 

0.106 

(1.12) 

0.0468 

(1.43) 

     

Knowledge gap 0.0117 

(0.60) 

0.0843*** 

(2.66) 

0.169 

(1.19) 

0.118 

(1.02) 

Herfindahl index 0.216*** 

(3.77) 

0.273** 

(2.55) 

0.998 

(1.30) 

-0.145 

(-0.65) 

Wage ratio 0.118** 

(2.32) 

0.177*** 

(2.75) 

0.271* 

(1.88) 

0.287 

(1.61) 

     

Constant 0.514*** 

(13.72) 

2.400*** 

(26.00) 

 1.575*** 

(9.78) 

Firm/year 

observations 

27588 27588 16130 27588 

Firms  8284 5411 8284 

Number of 

Instruments 

  125 135 

AR(1) test: p-

values 

  0.000*** 0.000*** 

AR(2) test: p-

values 

  0.401 0.350 

Hansen test: p-

values 

  0.879 0.447 

Difference 

Hanson test: p-

values 

   0.386 
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Table 4 examines the impact of the R&D types on productivity using the SYSGMM with 

estimates from intramural and extramural R&D in column 1, applied/experimental and basic 

R&D in column 2 and privately funded and publicly funded R&D in column 3. Column 1 

shows diseconomies of scale from intramural R&D, which is in line with Lokshin, Belderbos, 

and Carree (2008). Extramural R&D is not significant but the interaction term between 

intramural and extramural R&D is positive and significant, which shows complementarity 

between them. Investment in intramural R&D builds the absorptive capacity of firms to 

enable them to benefit from external R&D (Lokshin, Belderbos, and Carree 2008; Catozzella 

and Vivarelli 2014).  

Column 2 depicts diseconomies of scale from applied and experimental R&D, but the 

quadratic term is not significant on basic R&D. In fact, in terms of magnitude, the returns to 

applied/experimental R&D exceeds the returns from all other R&D types. However, there are 

negative returns from basic R&D, which could be because the generality of basic research is 

not immediately translatable into sales but longer time lags of at least 2 years are needed for 

basic research to translate into productivity growth. This contrasts with the more immediate 

benefits from applied research (Sun, Wang, and Li 2016). The interaction term between basic 

R&D and applied/experimental R&D is positive, showing complementarity between them. 

This is in line with the literature that basic R&D builds up the absorptive capacity of firms 

(Czarnitzki and Thorwarth 2012), stimulates other types of research (Green and Scotchmer 

1995) and, together with applied research, enables firms to learn from their own innovative 

failures (D’Este, Marzucchi, and Rentocchini 2018).  

Private R&D intensity displays diminishing marginal returns to productivity (column 3). In 

line with the very scanty literature, privately funded R&D is positively related to productivity 

(Lang 2009), but, like intramural and applied/experimental R&D, it follows an inverted U-

shaped relationship with productivity. Unfortunately, the square of public R&D had to be 

dropped due to collinearity. Therefore, it is not possible to test whether there are economies 

or diseconomies of scale on public R&D. However, neither publicly funded R&D nor its 

interaction with private R&D are significant. The lack of complementarity between public 

and private R&D is unsurprising since recent research shows no additionality effects between 

UK public subsidies and private R&D spending among UK firms (Ugur, Solomon, and 

Trushin 2015).  
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Table 4: Effect of R&D on productivity by type of R&D: (System GMM estimates) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added per 

employee)t-1 

0.712*** 

(15.26) 

0.519*** 

(8.94) 

0.563*** 

(10.46) 

    

∆ log of Capital stock 0.434** 

(2.37) 

0.0969 

(0.38) 

0.278 

(1.61) 

    

∆ log of Employment -0.653*** 

(-2.87) 

-0.547** 

(-2.43) 

-0.786*** 

(-4.07) 

    

Lagged R&D intensity 

type 1 

0.304*** 

(5.19) 

0.464*** 

(4.31) 

0.275*** 

(3.41) 

    

Lagged R&D intensity 

type 1 squared 

-0.0070*** 

(-2.92) 

-0.0122*** 

(-3.43) 

-0.0046*** 

(-2.84) 

    

Lagged R&D intensity 

type 2 

0.111 

(0.74) 

-1.267* 

(-1.95) 

0.0015 

(0.38) 

    

Lagged R&D intensity 

type 2 squared 

-0.0074 

(-0.73) 

0.197 

(1.03) 

- 

    

Lagged R&D intensity 

type 1 * 

Lagged R&D intensity 

type 2 

0.0119** 

(2.00) 

0.132*** 

(3.33) 

0.0421 

(0.14) 

    

Constant 1.133*** 

(5.98) 

1.584*** 

(6.61) 

1.514*** 

(8.31) 

Firm/year observations 30446 24029 24970 

Firms 8072 7863 8006 

Number of Instruments 123 177 177 

AR(1) test: p-values 0.0000*** 0.0000*** 0.0000*** 

AR(2) test: p-values 0.481 0.134 0.239 

Hansen test: p-values 0.715 0.0584* 0.231 

Difference Hanson test: p-

values 

0.260 0.114 0.728 

Notes: Column 1: R&D intensity 1 is intramural R&D and R&D intensity 2 is extramural R&D. Column 2: R&D intensity 1 

is applied/experimental R&D and R&D intensity 2 is basic R&D. Column 3: R&D intensity 1 is private R&D and R&D 

intensity 2 is public R*D.   T-statistics in parentheses, time dummies are included in all estimations. Standard errors robust 

to heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, *** p < 0.01. All estimations include the control variables 

(UK ownership dummy, Knowledge gap, Herfindahl index and wage ratio) but these have not been reported for parsimony.  
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4.2 Heterogenous Effects by size of firm, type of sector. 

4.2.1 Firm size 
 

The first two columns of Table 5 present results on the effect of total R&D on productivity by 

firm size and Tables 7 and 8 in the appendix display results by R&D type for SMEs and large 

firms respectively. The concave relationship between total R&D and productivity holds 

irrespective of firm size (Table 5) with the returns from total R&D for SMEs slightly stronger 

than for larger firms. The finding that total R&D is beneficial to both small and large firms is 

contrary to research such as Tsai and Wang (2005) and Spescha (2019) that predict 

significantly stronger productivity effects either small or large firms. 

 

When R&D is separated by type, the returns to intramural and extramural R&D, and their 

interactions are not significant for SMEs (Table 7, column 1). For large firms (Table 8, 

column 1), only the quadratic terms of intramural and extramural R&D are significant 

meaning that a minimum level of intramural or extramural R&D is necessary for large firms 

to reap positive returns from them R&D types. Larger firms tend to offshore R&D services 

more intensively than smaller firms since they have more contacts (Tamayoa and Huergob 

2017). However, the results suggest that intramural and extramural as substitutes which is 

line with the transaction cost theory that firms choose to engage in either internal or external 

research depending on which has lower transaction costs (Radicic and Balavic (2019) or 

might choose intramural rather than extramural R&D to reduce technology leakages 

(Tamayoa and Huergob 2017).  

 

There are decreasing marginal returns to applied/experimental R&D for SMEs (Table 7, 

column 2) but for large firms, the quadratic term is insignificant (Table 8, column 2). Basic 

R&D is insignificant for both SMEs and large firms. Complementarity exists between basic 

and applied/experimental R&D among SMEs (Table 8, column 2) but unfortunately, 

collinearity issues make it impossible to test for complementarity in the large firm sample.  

 

Privately funded R&D has an inverted U-shaped relationship with productivity for both 

SMEs and large firms (Tables 7 and 8, column 3). Among SMEs, public R&D and the 

interaction terms between private and public R&D are insignificant, even though in the UK, 

smaller firms are more likely to receive public funding (Ugur, Solomon, and Trushin 2015). 

The lack of significance on publicly funded R&D among SMEs is surprising and contrary to 

the recent literature (Szucs 2020; Belitz and Leipras 2016; Vanino, Roper, and Becker 2019) 

that suggest that public research funding are more fruitful in smaller firms due to their 

financial constraints. Unfortunately, results relating to public R&D and its interaction with 

private R&D are very unstable in the large firm sub-sample due to collinearity issues. 
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Table 5: Effect of Total R&D intensity on Productivity, by size of firm and Pavitt class 

(System GMM estimates) 

(Dependent variable: Log of value added per employee) 

 1 2 3 4 5 6 

 SMEs Large 

firms 

Pavitt class 

1 

Pavitt class 

2 

Pavitt class 

3 

Pavitt class 

4 

Log (Value added 

per employee)t-1 

0.318*** 

(6.63) 

0.550*** 

(8.46) 

0.773*** 

(10.02) 

0.288*** 

(3.56) 

0.521*** 

(5.40) 

0.519*** 

(7.67) 

       

∆ log of Capital 

stock 

0.084 

(0.58) 

0.294 

(1.44) 

0.801*** 

(4.12) 

-0.013 

(-0.08) 

-0.371 

(-1.06) 

0.235 

(1.03) 

       

∆ log of 

Employment 

-0.262 

(-1.12) 

-0.526* 

(-1.92) 

-1.287*** 

(-4.39) 

0.019 

(0.09) 

-0.191 

(-0.60) 

-0.470** 

(-2.11) 

       

Total R&D 

intensity 

0.141*** 

   (2.78) 

0.103*** 

   (3.12) 

0.377*** 

(6.11) 

0.580** 

(2.36) 

0.639** 

(2.21) 

0.254** 

(2.39) 

       

Total R&D 

intensity squared 

-0.0023* 

   (-1.78) 

-0.0005** 

   (-2.47) 

-0.006*** 

(-4.14) 

-0.0248** 

(-2.18) 

-0.013* 

(-1.73) 

-0.0014** 

(-2.20) 

       

Constant 2.603*** 

(11.94) 

1.807*** 

(7.71) 

0.990*** 

(2.71) 

1.999*** 

(4.74) 

0.955** 

(2.31) 

1.542*** 

(6.66) 

Firm/year 

observations 

11135 11246 5234 5021 5291 10469 

Firms 5041 3053 1628 1686 1538 3460 

Number of 

Instruments 

136 135 136 126 127 135 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 0.000*** 0.0009*** 0.000*** 

AR(2) test: p-

values 

0.846 0.870 0.883 0.0997 0.561 0.494 

Hansen test: p-

values 

0.679 0.537 0.684 0.685 0.761 0.170 

Difference Hanson 

test: p-values 

0.175 0.436 0.592 0.660 0.201 0.114 

Notes: Column 1: Estimations for Small and medium sized enterprises (SMEs). SMEs are defined as firm with 250 or less 

employees. Column 2: Estimations for large firms. Large enterprises are defined as firms with more than 250 employees. 

Column 3: Estimations for Pavitt class 1, which consists of science-based industries. Column 4: Estimations for Pavitt class 

2, which consists of sectors that are specialized suppliers of technology. Column 5: Estimations for Pavitt class 3, which 

consists of scale-intensive industries. Column 6: Estimations for Pavitt class 4, which consists of industries dominated by 

technology suppliers. T statistics in parentheses, time dummies are included in all estimations. Standard errors are robust to 

heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, *** p < 0.01. All estimations include the control variables 

(UK ownership dummy, Knowledge gap, Herfindahl index and wage ratio) but these have not been reported for parsimony. 

 

 

4.2.2 Sectors 

 

Table 6 in the appendix presents the impact of total R&D intensity by broad sector. The 

concave relationship between R&D intensity and productivity holds only in the 

manufacturing sector. In the service sector, the returns to R&D is positive and linear. The 

results might suggest that firms in the service sector benefit more from R&D than 

manufacturing sector firms due to the higher rates of return, which supports the finding of 

Leiponen (2012). Tables 9 and 10 in the appendix display results for the manufacturing and 

service sectors respectively by type of R&D. Intramural R&D is positive and linear in the 

manufacturing sector but insignificant in the service sector. Extramural R&D is not 
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significant in either sector, nor is the interaction term between extramural and intramural 

R&D. Basic R&D is not significant in the service sector but is negative in the manufacturing 

sector. The negativity of basic R&D could be due to the longer time lag that it takes for basic 

research to affect innovation and productivity (Sun, Wang, and Li 2016; Higon 2016), 

Applied/experimental R&D is insignificant in the manufacturing sector and there is no 

evidence of complementarity between basic and applied/experimental R&D. However, in the 

service sector, applied and experimental R&D exhibits diseconomies to scale and the 

quadratic term in basic R&D is positive and significant. Moreover, there is complementarity 

between basic and applied/experimental R&D. These results lend support to the effect of 

product innovation being strongest in the service sector (Hall and Sena 2017) but might even 

be negative in the manufacturing sector (Aboal and Garda 2016). Private R&D exhibits 

diseconomies of scale in both the manufacturing and service sectors, with public R&D and 

the interaction term between private and public R&D insignificant. 

 

Columns 3 to 6 of Table 5 present results for the effects of total R&D on productivity by the 

Pavitt technological classes. The inverted U-shaped relationship between total R&D and 

productivity holds regardless of Pavitt technological class. The highest returns to R&D are 

from Pavitt class 3, which consists of scale intensive industries. Hence, the results might 

suggest that the returns to R&D increases with market power. Tables 11 to 14 in the appendix 

depicts results of R&D types for Pavitt classes 1 to 4 respectively 7. Pavitt class 1 for firms in 

science-based industries (Table 11) consists of large, research intensive, high-tech firms 

(Pavitt 1984). The quadratic terms of intramural and extramural R&D are both positive, 

showing that higher levels of intramural and extramural R&D expenditures are necessary to 

obtain a positive effect on productivity, which is consistent with the standing-on-shoulder 

effect (Furman, Porter and Stern 2002), where R&D builds on existing knowledge to 

stimulate output. There does not seem to be any evidence of the fishing-out effect in this 

Pavitt class. Intramural and extramural R&D are substitutes which is in line with Ceccagnoli 

et al. (2010) that firms with strong internal R&D capabilities are unlikely to engage in 

extramural R&D to prevent knowledge leakages. None of the other R&D types are significant 

(Table 11, columns 2 and 3). Pavitt class 2 (Table 12) consists of specialised suppliers. These 

are small sized firms that operate in very competitive sectors and rely on firm specific 

knowledge and quick responses to the needs of customers (Pavitt 1984). Hence, it is 

unsurprising that intramural and privately funded R&D are important to this class of firms. 

Results show diminishing marginal returns to intramural R&D but private R&D has a linear 

effect on productivity. Other R&D types are not significant. Pavitt class 3 (Table 13) are 

scale-intensive industries that are characterised by economies of scale (Pavitt, 1984). This 

group consists of low-tech and medium-tech firms. Only the quadratic term of extramural 

R&D is significant, showing that higher levels of extramural R&D are important for 

productivity. Intramural R&D is insignificant, and the negative interaction term shows that 

intramural and extramural R&D are substitutes. This finding supports the fact that larger 

rather than smaller firms tend to offshore R&D (Tamayoa and Huergob 2017). Given the low 

technological intensity of these firms, they are likely to have low levels of internal R&D and 

hence substitute extramural R&D for intramural R&D (Hagedoorn and Wang 2012). 

Privately funded R&D is characterised by an inverted U-shaped relationship with 

productivity. Basic, applied/experimental and public R&D are all insignificant.  Pavitt class 4 

(Table 14) consist of mainly low-tech manufacturing and traditional service sectors. Most of 

the R&D types are insignificant which is consistent with the literature that suggests that the 

 
7 There is a fifth Pavitt class consisting of unclassified industries which is not report, but is available upon 
request .  
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returns to R&D are less prevalent in low-tech sectors (see e.g. Kancs and Silverstovs 2016; 

Czarnitzki and Thorwarth 2012). Applied R&D, however, has a significantly positive linear 

effect, which supports the findings of Pieri, Vecchi, and Venturini (2018)  that applied and 

experimental R&D are important in increasing TFP in lower tech sectors by reducing 

technical efficiency.  Interesting, this sector is the only group where public R&D funding is 

significant, which might be partly explained by the fact that UK firms with low R&D capital 

are more likely to attract public subsidies (Ugur, Solomon and Trushin (2015). However, 

privately funded and publicly funded research are substitutes, which supports the findings of 

Marino et al. (2016) that public and private R&D are substitutes in low-tech sectors so would 

not increase innovation output (Czarnitzki and Hussinger 2018) and hence productivity.   

 

5. Conclusion 

This research has examined the returns of R&D on labour productivity using detailed UK 

firm level data from 1998 to 2012. Most of the literature regards R&D as a homogenous 

activity that is a linear function of productivity, which might explain the very varied results in 

the literature on the impact of R&D on productivity. This article aimed to provide fresh 

insights on the R&D-productivity nexus by analysing three key objectives: First, it 

investigated whether a non-linear relationship existed between R&D (and its various types) 

and productivity. Second, it examined the impact of the different R&D types on productivity 

and whether various R&D types were complements or substitutes. Third, it analysed whether 

the relationship between R&D and productivity was affected by firm size, broad sector 

(manufacturing or service) and the technological intensity of sectors.  

The dynamic panel data model of Lokshin, Belderbos, and Carree (2008) was adopted to 

allow for non-linearities and interactions between different types of R&D. Estimations were 

conducted using the system GMM estimator. The main findings and their implications can be 

summarised as follows:  

First, R&D has a positive impact on productivity with strong evidence of diseconomies of 

scale from total R&D intensity, intramural R&D, applied/experimental R&D and private 

R&D. The finding of an inverted U-shaped relationship is consistent with the limited 

literature (Lokshin, Belderbos, and Carree 2008; Kancs and Silverstovs 2016) that have 

accounted for non-linearities in R&D. This study contributes to the literature by evidencing 

the existence of diminishing returns to scale for other types of R&D beyond total R&D and 

intramural R&D. Therefore, an implication for future research is that it is necessary to control 

for non-linearities in R&D-productivity models to avoid a potential source of omitted 

variable bias.      

Second, the R&D types that are positively linked with productivity in the UK are intramural 

R&D, applied/experimental R&D and privately funded R&D. These are largely in line with 

existing literature (Lokshin, Belderbos, and Carree 2008; Sun, Wang, and Li 2016; Czarnitzki 

and Hussinger 2018; Lang 2009). Intramural R&D, and to some extent, private R&D have 

been linked positively with innovation output (Higon 2016; Czarnitzki and Hussinger 2018) 

and building the absorptive capacity of firms (Lokshin et al. 2008) while 

applied/experimental research are linked to more immediate productivity gains for firms 

(Sun, Wang, and Li 2016). The lack of significance in basic R&D could be due to the 

substantial lags that exist between basic R&D and productivity or innovation output (Sun, 
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Wang, and Li 2016; Higon 2016) or the very low investment in basic R&D in the UK. The 

average basic R&D intensity in the sample was 0.5% with applied and experimental R&D 

intensity being 2.9% and 3.4% respectively. This is in stark contrast to the mean basic R&D 

intensity of 2.05% across 23 OECD countries from 1996 to 2010 (See Sun, Wang, and Li 

2016). Public R&D is not significantly related to productivity.   

Third, consistent with Lokshin, Belderbos, and Carree (2008) and Catozzella and Vivarelli 

(2014), complementarity exists between intramural and extramural R&D among UK firms. 

There is also complementarity between basic and applied/experimental R&D. To the best of 

my knowledge, no other study has tested for interactions between basic and 

applied/experimental R&D and this finding is therefore a contribution to the literature and a 

potential area of further research. The interaction between private and public R&D is not 

significantly related to productivity, which is an implication of the lack of additionality 

between public and private R&D found in studies such as Szucs (2020). The fact that the 

various R&D types contribute differently to productivity and that complementarity exists 

between at least some R&D types implies that R&D should not be treated as a homogenous 

unit because the returns to productivity depend on the type of R&D. Hence, if different R&D 

types are treated as substitutes and excluded from the model (which is usually the case), then 

it is unsurprising that different studies yield very different estimates on the returns to R&D, 

because their total R&D may consist of different combinations of complementary R&D 

types.   

Fourth, diminishing marginal returns between total R&D intensity and productivity holds 

regardless of firm size. Moreover, total R&D is important to both SMEs and large firms with 

similar rates of return which is contrary to studies such as Tsai and Wang (2005) or Spescha 

(2019) that suggests that the impact of R&D significantly differs by size of firm. However, 

the results are very heterogenous when R&D is analysed by type. For instance, while 

intramural and extramural R&D are insignificant for SMEs, only the quadratic terms of both 

R&D types are significant for large firms. Intramural and extramural R&D are substitutes for 

large firms only, most probably to reduce the risk of technology leakages (Tamayoa and 

Huergob 2017).  

Fifth, the inverted U-shaped relationship between total R&D and productivity holds in the 

manufacturing sectors and all Pavitt classes but not in the service sector where R&D has a 

positive but linear effect on productivity. Nevertheless, there is a lot heterogeneity in the 

relationship across sectors when R&D is distinguished by type, and a few results are worth 

emphasising: One finding is that basic and applied/experimental R&D are complementary in 

the service sector but not in the manufacturing sector. This is an interesting result that 

deserves further investigation, especially given the limited research of the R&D-productivity 

relationship in service sectors. A second finding is that R&D has small returns in low-tech 

industries (Pavitt class 4) as most R&D types were insignificant, which is in accordance with 

the literature (Kancs and Silverstovs 2016; Czarnitzki and Thorwarth 2012). A third finding 

is that internal and external R&D are substitutes in technological classes where large firms 

dominate (i.e. Pavitt classes 1 and 3), which suggests that large firms regard internal and 

external R&D as substitutes to reduce transaction costs (Radicic and Balavac 2019) 

especially were the risk of knowledge leakage is high. A fourth finding is that publicly 

funded R&D is generally insignificant except in low-tech sectors (Pavitt class 4), which 
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might reflect the fact that UK firms with lower R&D capital have a higher propensity of 

attracting public funding (Ugur, Solomon, and Trushin 2015). 

A policy implication of the results is that public funding of R&D in the UK is not effective in 

increasing productivity even among SMEs that have limited financial resources. Choi and 

Lee (2017) suggest that public funding is best targeted at projects were market failure is more 

prevalent, such as sectors with lots of new product innovations (Pavitt classes 1 and 2). 

Second, there is some evidence that SMEs might be hindered more by non-financial 

challenges (such as the supply of skilled personnel and competition regulation) than by 

financing problems (Belitz and Lejpras 2016). This suggests that, in addition to providing 

subsidies and tax credits, R&D policies should also be targeted at improving the innovation 

environment for SMEs. Finally, basic R&D in the UK is very low compared with OECD 

countries and should be increased. Although, basic research is a riskier type of research that 

does not yield immediate returns, it is vital for growth since it shifts production frontiers 

(Sun, Wang, and Li 2016).   

A caveat of this study is that the timing of the sample (1998 to 2012) includes the period of 

the global financial crisis in 2008 and initial recovery from it. Ugur, Solomon, and Trushin 

(2015) show that R&D intensity among UK firms fell during the 2008-2012 period.  

Finally, there are two limitations of this study which provide fruitful areas of further research. 

First, it does not explore the lag structure of the different types of R&D. This is important 

since certain types of R&D, such as basic research, have longer time lags in affecting 

productivity. Second, extramural R&D was mainly insignificant, which is in line with several 

other findings such as Brossard and Moussa (2016). Recent studies suggest that external 

R&D involving cooperation with other firms and universities is beneficial (Schmiedeberg 

2008; Hagedoorn and Wang (2012). However, the dataset used in this study does not allow 

for identification of external research involving R&D collaborations. A more detailed 

examination of the impact of R&D cooperation between firms and universities would be 

insightful.  
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Appendix 

Table 6: Effect of Total R&D intensity on Productivity, by broad sector (System GMM 

estimates) 

(Dependent variable: Log of value added per employee) 

 (1) (2) 

 Manufacturing sector Service sector 

Log (Value added per 

employee)t-1 

0.385*** 

(8.29) 

0.565*** 

(10.76) 

   

∆ log of Capital stock 0.022 

(0.09) 

0.065 

(0.36) 

   

∆ log of Employment 0.051 

(0.25) 

-0.812*** 

(-3.67) 

   

Total R&D intensity   0.079*** 

      (4.70) 

0.196** 

(2.48) 

   

Total R&D intensity 

squared 

-0.0004*** 

    (-3.81) 

-0.0028 

(-1.37) 

   

Constant 1.733*** 

(9.17) 

1.756*** 

(7.08) 

Firm/year observations 20198 6529 

Firms 3.650 2592 

Number of Instruments 135 135 

AR(1) test: p-values 0.000*** 0.000*** 

AR(2) test: p-values 0.273 0.408 

Hansen test: p-values 0.121 0.618 

Difference Hanson test: 

p-values 

0.131 0.195 

Notes: Column 1: Estimations for the manufacturing sector. Column 2: Estimations for the service sector. T statistics in 

parentheses, time dummies are included in all estimations. Standard errors are robust to heteroskedasticity and serial 

correlation. * p < 0.10, ** p < 0.05, *** p < 0.01. All estimations include the control variables (UK ownership dummy, 

Knowledge gap, Herfindahl index and wage ratio) but these have not been reported for parsimony. 

 

 

Table 7: Effect of R&D by type on productivity: Small and Medium Sized Enterprises 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.368*** 

(3.12) 

0.571*** 

(10.75) 

0.583*** 

(11.03) 

    

∆ log of Capital 

stock 

0.163 

(0.82) 

0.397** 

(2.12) 

0.240 

(1.32) 
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∆ log of 

Employment) 

0.0742 

(0.28) 

-0.704*** 

(-3.45) 

-0.697*** 

(-4.10) 

    

Lagged R&D 

intensity type 1 

0.241 

(1.20) 

0.158* 

(1.69) 

0.257*** 

(3.27) 

    

Lagged R&D 

intensity type 1 

squared 

-0.0147 

(-0.61) 

-0.00448* 

(-1.76) 

-0.00528** 

(-2.05) 

    

Lagged R&D 

intensity type 2 

0.806 

(1.52) 

-1.271 

(-1.47) 

0.00551 

(0.13) 

    

Lagged R&D 

intensity type 2 

squared 

-0.348 

(-1.33) 

0.0232 

(0.07) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

0.124 

(0.49) 

0.0683* 

(1.87) 

0.964 

(0.74) 

    

Constant 2.516*** 

(4.79) 

1.415*** 

(5.62) 

1.530*** 

(6.77) 

    

Firm/year 

observations 

6070 8771 9266 

Firms 2330 2725 2782 

Number of 

Instruments 

165 178 164 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 

AR(2) test: p-

values 

0.337 0.928 0.820 

Hansen test: p-

values 

0.633 0.784 0.000*** 

Difference 

Hanson test: p-

values 

0.218 0.115 0.000*** 

Notes: SMEs are defined as firm with 250 or less employees. Column 1: R&D intensity 1 is intramural R&D and R&D 

intensity 2 is extramural R&D. Column 2: R&D intensity 1 is applied/experimental R&D and R&D intensity 2 is basic R&D. 

Column 3: R&D intensity 1 is private R&D and R&D intensity 2 is public R*D.   T statistics in parentheses, time dummies 

are included in all estimations. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, 
*** p < 0.01.   
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Table 8: Effect of R&D by type on productivity: Large Enterprises 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.368*** 

(3.12) 

0.571*** 

(10.75) 

0.583*** 

(11.03) 

    

∆ log of Capital 

stock 

0.163 

(0.82) 

0.397** 

(2.12) 

0.240 

(1.32) 

    

∆ log of 

Employment) 

0.0742 

(0.28) 

-0.704*** 

(-3.45) 

-0.697*** 

(-4.10) 

    

Lagged R&D 

intensity type 1 

-0.526 

(-1.02) 

0.716*** 

(4.02) 

0.372** 

(2.39) 

    

Lagged R&D 

intensity type 1 

squared 

0.0609* 

(1.88) 

-0.00507 

(-0.94) 

-0.00638** 

(-2.09) 

    

Lagged R&D 

intensity type 2 

0.299 

(0.86) 

-0.273 

(-0.21) 

0.0026** 

(2.12) 

    

Lagged R&D 

intensity type 2 

squared 

0.482*** 

(3.30) 

-0.393 

(-0.25) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

-0.347*** 

(-2.64) 

0 0 

    

Constant 2.516*** 

(4.79) 

1.415*** 

(5.62) 

1.530*** 

(6.77) 

    

Firm/year 

observations 

6070 8771 9266 

Firms 2330 2725 2782 

Number of 

Instruments 

165 178 164 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 

AR(2) test: p-

values 

0.337 0.928 0.820 

Hansen test: p- 0.633 0.784 0.000*** 
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values 

Difference 

Hanson test: p-

values 

0.218 0.115 0.000*** 

Notes: Large enterprises are defined as firms with more than 250 employees. Column 1: R&D intensity 1 is intramural R&D 

and R&D intensity 2 is extramural R&D. Column 2: R&D intensity 1 is applied/experimental R&D and R&D intensity 2 is 

basic R&D. Column 3: R&D intensity 1 is private R&D and R&D intensity 2 is public R*D.   T statistics in parentheses, 

time dummies are included in all estimations. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, 
** p < 0.05, *** p < 0.01. 

 

Table 9: Effect of R&D by type on productivity: Manufacturing sector 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.367*** 

(5.54) 

0.312*** 

(3.86) 

0.431*** 

(9.30) 

    

∆ log of Capital 

stock 

-0.588** 

(-2.01) 

-0.189 

(-0.88) 

0.0400 

(0.16) 

    

∆ log of 

Employment) 

0.237 

(1.08) 

0.173 

(0.61) 

-0.119 

(-0.59) 

    

Lagged R&D 

intensity type 1 

0.377** 

(2.06) 

0.325 

(1.60) 

0.269*** 

(4.26) 

    

Lagged R&D 

intensity type 1 

squared 

-0.0061 

(-0.55) 

-0.0089 

(-1.34) 

-0.0048*** 

(-3.82) 

    

Lagged R&D 

intensity type 2 

-0.358 

(-1.33) 

-1.886* 

(-1.91) 

0.00228 

(0.56) 

    

Lagged R&D 

intensity type 2 

squared 

0.0180 

(0.44) 

0.0095 

(0.03) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

- 0.117 

(1.53) 

-0.0101 

(-0.03) 

    

Constant 1.827*** 

(7.24) 

2.024*** 

(8.29) 

1.637*** 

(8.04) 

    

Firm/year 

observations 

13821 17874 18526 
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Firms 2.801 3.371 3.452 

Number of 

Instruments 

163 177 163 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 

AR(2) test: p-

values 

0.789 0.467 0.260 

Hansen test: p-

values 

0.496 0.185 0.348 

Difference 

Hanson test: p-

values 

0.060 0.094 0.101 

Notes: Column 1: R&D intensity 1 is intramural R&D and R&D intensity 2 is extramural R&D. Column 2: R&D intensity 1 

is applied/experimental R&D and R&D intensity 2 is basic R&D. Column 3: R&D intensity 1 is private R&D and R&D 

intensity 2 is public R*D.   T statistics in parentheses, time dummies are included in all estimations. Standard errors robust 

to heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Table 10: Effect of R&D by type on productivity: Service sector 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.542*** 

(6.80) 

0.515*** 

(10.30) 

0.489*** 

(8.41) 

    

∆ log of Capital 

stock 

0.498* 

(1.95) 

-0.125 

(-0.64) 

-0.0705 

(-0.29) 

    

∆ log of 

Employment) 

-0.874*** 

(-4.21) 

-0.757*** 

(-3.84) 

-0.656*** 

(-2.66) 

    

Lagged R&D 

intensity type 1 

0.145 

(1.26) 

0.375*** 

(3.31) 

0.265*** 

(4.04) 

    

Lagged R&D 

intensity type 1 

squared 

-0.0022 

(-0.46) 

-0.023** 

(-2.02) 

-0.0037*** 

(-2.68) 

    

Lagged R&D 

intensity type 2 

-0.172 

(-0.40) 

-0.948 

(-1.25) 

-0.479 

(-1.17) 

    

Lagged R&D 

intensity type 2 

squared 

0.029 

(0.59) 

0.171* 

(1.74) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

0.012 

(1.03) 

0.261* 

(1.69) 

0.271 

(0.38) 
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intensity type 2 

    

Constant 1.790*** 

(6.10) 

1.864*** 

(8.16) 

2.011*** 

(7.62) 

    

Firm/year 

observations 

3936 5334 5598 

Firms 2062 2363 2443 

Number of 

Instruments 

177 177 163 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 

AR(2) test: p-

values 

0.941 0.899 0.832 

Hansen test: p-

values 

0.247 0.450 0.407 

Difference 

Hanson test: p-

values 

0.511 0.133 0.297 

Notes: Column 1: R&D intensity 1 is intramural R&D and R&D intensity 2 is extramural R&D. Column 2: R&D intensity 1 

is applied/experimental R&D and R&D intensity 2 is basic R&D. Column 3: R&D intensity 1 is private R&D and R&D 

intensity 2 is public R*D.   T statistics in parentheses, time dummies are included in all estimations. Standard errors robust 

to heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Table 11: Effect of R&D by type on productivity: Pavitt class 1 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.432*** 

(3.47) 

0.331*** 

(2.82) 

0.494*** 

(3.15) 

    

∆ log of Capital 

stock 

-0.0707 

(-0.24) 

0.622*** 

(2.61) 

0.554 

(1.16) 

    

∆ log of 

Employment) 

-1.053*** 

(-2.88) 

-0.730*** 

(-3.05) 

-0.916 

(-1.06) 

    

Lagged R&D 

intensity type 1 

-0.465 

(-1.36) 

-0.624 

(-1.34) 

-0.468 

(-0.62) 

    

Lagged R&D 

intensity type 1 

squared 

0.061*** 

(2.70) 

0.130 

(1.27) 

0.0698 

(1.17) 

    

Lagged R&D 

intensity type 2 

-1.066 

(-0.91) 

-1.269 

(-0.58) 

4.708 

(0.48) 
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Lagged R&D 

intensity type 2 

squared 

1.437* 

(1.92) 

6.891 

(1.14) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

-0.475*** 

(-3.15) 

-0.724 

(-0.25) 

-1.487 

(-0.22) 

    

Constant 2.332*** 

(4.40) 

2.695*** 

(5.08) 

2.027** 

(2.54) 

    

Firm/year 

observations 

3256 4332 4483 

Firms 1327 1502 1532 

Number of 

Instruments 

166 166 153 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 

AR(2) test: p-

values 

0.176 0.526 0.691 

Hansen test: p-

values 

0.807 0.220 0.604 

Difference 

Hanson test: p-

values 

0.148 0.0032 0.0344 

Notes: Pavitt class 1 consists of firms in science-based industries. Column 1: R&D intensity 1 is intramural R&D and R&D 

intensity 2 is extramural R&D. Column 2: R&D intensity 1 is applied/experimental R&D and R&D intensity 2 is basic R&D. 

Column 3: R&D intensity 1 is private R&D and R&D intensity 2 is public R*D.   T statistics in parentheses, time dummies 

are included in all estimations. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, 
*** p < 0.01. 

 

Table 12: Effect of R&D by type on productivity: Pavitt class 2 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.563*** 

(5.42) 

0.288*** 

(3.56) 

0.329*** 

(3.31) 

    

∆ log of Capital 

stock 

0.0399 

(0.21) 

-0.0128 

(-0.08) 

0.221 

(0.94) 

    

∆ log of 

Employment) 

-0.245 

(-1.01) 

0.0190 -0.271 

(-1.08) 

  (0.09)  

Lagged R&D 

intensity type 1 

1.794*** 

(3.60) 

0.281 

(0.84) 

1.285*** 

(2.61) 
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Lagged R&D 

intensity type 1 

squared 

-0.272** 

(-2.56) 

-0.114 

(-0.38) 

-0.431 

(-1.33) 

    

Lagged R&D 

intensity type 2 

-1.046 

(-0.50) 

1.254 

(0.88) 

3.473 

(0.90) 

    

Lagged R&D 

intensity type 2 

squared 

3.062 

(1.36) 

-1.096 

(-0.60) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

-2.066 

(-1.11) 

1.015 

(0.50) 

-1.912 

(-1.30) 

    

Constant 1.035*** 

(2.59) 

2.647*** 

(7.46) 

2.246*** 

(5.66) 

    

Firm/year 

observations 

3586 4453 4639 

Firms 1569 1599 1644 

Number of 

Instruments 

165 165 152 

AR(1) test: p-

values 

0.000*** 0.000*** 0.000*** 

AR(2) test: p-

values 

0.118 0.353 0.411 

Hansen test: p-

values 

0.313 0.824 0.624 

Difference 

Hanson test: p-

values 

0.247 0.487 0.0537 

Notes: Pavitt class 2 consists sectors that are specialized suppliers of technology. Column 1: R&D intensity 1 is intramural 

R&D and R&D intensity 2 is extramural R&D. Column 2: R&D intensity 1 is applied/experimental R&D and R&D intensity 

2 is basic R&D. Column 3: R&D intensity 1 is private R&D and R&D intensity 2 is public R*D.   T statistics in parentheses, 

time dummies are included in all estimations. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, 
** p < 0.05, *** p < 0.01. 
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Table 13: Effect of R&D by type on productivity: Pavitt class 3 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.357*** 

(3.82) 

0.183* 

(1.76) 

0.441*** 

(4.45) 

    

∆ log of Capital 

stock 

-0.257 

(-0.86) 

-0.123 

(-0.40) 

-0.333 

(-0.94) 

    

∆ log of 

Employment) 

-0.0612 

(-0.21) 

0.235 

(0.90) 

0.104 

(0.50) 

    

Lagged R&D 

intensity type 1 

-0.748 

(-0.76) 

0.259 

(0.38) 

0.964* 

(1.91) 

    

Lagged R&D 

intensity type 1 

squared 

1.535 

(1.64) 

0.0497 

(0.24) 

-0.023** 

(-2.19) 

    

Lagged R&D 

intensity type 2 

1.628** 

(1.98) 

-12.79 

(-1.35) 

1.336 

(0.54) 

    

Lagged R&D 

intensity type 2 

squared 

0.940 

(1.47) 

56.97 

(1.13) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

-3.195* 

(-1.83) 

11.70 

(1.09) 

0.671 

(0.27) 

    

Constant 2.065*** 

(5.80) 

2.400*** 

(5.58) 

1.396*** 

(3.23) 

    

Firm/year 

observations 

3574 4538 4765 

Firms 1334 1445 1479 

Number of 

Instruments 

166 166 152 

AR(1) test: p-

values 

0.0049*** 0.0003*** 0.000*** 

AR(2) test: p-

values 

0.449 0.816 0.750 

Hansen test: p-

values 

0.668 0.596 0.320 
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Difference 

Hanson test: p-

values 

0.212 0.399 0.0738* 

Notes: Pavitt class 3 consists of scale-intensive industries. Column 1: R&D intensity 1 is intramural R&D and R&D 

intensity 2 is extramural R&D. Column 2: R&D intensity 1 is applied/experimental R&D and R&D intensity 2 is basic R&D. 

Column 3: R&D intensity 1 is private R&D and R&D intensity 2 is public R*D.   T statistics in parentheses, time dummies 

are included in all estimations. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, ** p < 0.05, 
*** p < 0.01. 

 

 

Table 14: Effect of R&D by type on productivity: Pavitt class 4 

 (System GMM estimations) 

(Dependent variable: Log of value added per employee) 

 (1) (2) (3) 

Log (Value added 

per employee)t-1 

0.368*** 

(4.11) 

0.479*** 

(6.38) 

0.525*** 

(6.10) 

    

∆ log of Capital 

stock 

-0.149 

(-0.77) 

-0.0394 

(-0.16) 

0.237 

(0.93) 

    

∆ log of 

Employment) 

-0.142 

(-0.50) 

-0.506** 

(-1.98) 

-0.576*** 

(-2.60) 

    

Lagged R&D 

intensity type 1 

0.137 

(0.32) 

0.572* 

(1.88) 

0.469 

(1.63) 

    

Lagged R&D 

intensity type 1 

squared 

-0.0145 

(-0.91) 

-0.0093 

(-0.28) 

-0.0116 

(-1.33) 

    

Lagged R&D 

intensity type 2 

0.811 

(1.50) 

-1.750 

(-0.50) 

0.0143** 

(2.01) 

    

Lagged R&D 

intensity type 2 

squared 

-0.428 

(-1.61) 

0.081 

(0.16) 

- 

    

Lagged R&D 

intensity type 1 * 

Lagged R&D 

intensity type 2 

0.242 

(1.62) 

0.039 

(0.07) 

-0.626** 

(-2.38) 

    

Constant 1.619*** 

(3.99) 

1.222*** 

(6.74) 

1.578*** 

(6.15) 

 7244 9369 9673 

Firm/year 

observations 

3026 3278 3330 
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Firms 165 165 163 

Number of 

Instruments 

0.000*** 0.000*** 0.000*** 

AR(1) test: p-

values 

0.206 0.295 0.463 

AR(2) test: p-

values 

0.370 0.221 0.342 

Hansen test: p-

values 

0.333 0.248 0.281 

Difference 

Hanson test: p-

values 

   

Notes: Pavitt class 4 includes industries dominated by technology suppliers. Column 1: R&D intensity 1 is intramural R&D 

and R&D intensity 2 is extramural R&D. Column 2: R&D intensity 1 is applied/experimental R&D and R&D intensity 2 is 

basic R&D. Column 3: R&D intensity 1 is private R&D and R&D intensity 2 is public R*D.   T statistics in parentheses, 

time dummies are included in all estimations. Standard errors robust to heteroskedasticity and serial correlation. * p < 0.10, 
** p < 0.05, *** p < 0.01. 


