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A B S T R A C T   

For thousands of years, arches have been used as durable structures that are easy to build and that rely on gravity 
for their inherent stability. Since then, many researchers and engineers have studied their stability either when 
subjected to gravity or inertial loading. Currently, given the Insight mission to Mars and the ambitious Artemis 
program to the Moon, it has become apparent that there will soon be the need to design and build the first 
resilient extraterrestrial structures and arches represent an ideal option for such structures. This paper focuses on 
the stability of parabolic arches with different embrace angles subjected to different levels of equivalent inertial 
loading in low-gravity conditions. The results are contrasted with the well-studied circular arches. More spe-
cifically, this investigation employs variational principles to identify the imminent mechanisms and numerical 
methods based on the limit thrust line concept in order to estimate the minimum required thickness of parabolic 
arches for a given loading and in different gravitational fields. The paper shows that although parabolic arches 
can be much more efficient than their circular counterparts for gravitational-only loading, this is not the case for 
different combinations of inertial loading and embrace angles where the opposite can be true. It highlights the 
dominant effect of low-gravity conditions on the minimum thickness requirements for both types of arches and 
considers the effect of a potential additional infill for radiation shielding. Furthermore, this study reveals a self- 
similar behaviour, introduces a “universal” inertial loading and showcases, through the use of master curves, the 
areas where the parabolic arches are more efficient than their circular counterparts and those where the opposite 
is true. These areas can be used for the preliminary design of such structures. Additionally, the paper identifies 
hidden patterns associated with the developed mechanisms between the two different geometries for the 
different gravitational fields. Finally, it presents a case study where the need to optimise the structural form of 
extraterrestrial structures becomes evident.   

1. Introduction 

Nowadays, following the new space era towards the exploration and 
potential human settlement in other planetary bodies, various space 
agencies (NASA, ESA, ISRO, etc) and private firms (SpaceX, Virgin 
Galactic, Blue Origin, etc) are investing in ambitious missions such as 
“Artemis” amongst others. Hence, it is only a matter of time before 
designing and building the first extraterrestrial habitats [43], initially on 
the Moon and later on Mars. There have been many concepts and ideas 
proposed in the past, as summarised by Kalapodis et al. [24], but the 
most prevalent is the need for an external resilient shielding structure 
that would protect valuable assets (energy fuel tanks, robotic elements, 
future inflatable modules, etc) from extreme radiation [38] and 

temperature fluctuations [5,23]. These structures can be made from 
local soil called regolith [12,44] in line with the In-Situ Resource Uti-
lisation (ISRU) framework [37], as shown in Fig. 1a. This is proposed to 
be an arch-like structure in order to: (a) span large distances as a po-
tential storage facility and (b) act mainly in compression since regolith is 
not expected to exhibit significant tensile strength as a structural ma-
terial [8], while it will be able to provide the necessary compressive 
strength [9,18]. At the same time, this structure will need to be resilient 
against strong ground motions generated by shallow moonquakes 
[31,34] and marsquakes with epicentres close to the structure or 
generated by meteoroid impacts [14,13]. 

Arches are curved structural forms that have proven to be very 
resilient and durable as structures since ancient Egypt with the famous 
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adobe Ramesseum vaults in 1250BC [15], ancient Greece with masonry 
vaults as entrances to stadiums (Olympia, Nemea) and ancient Rome 
with masonry bridges and aqueducts as shown in Fig. 1b,c. The common 
advantage between these structures is that their stability depends 
mainly on compression and therefore gravity. Some widely-adopted 
assumptions for masonry arches are: (a) that they act as rigid, (b) they 
have infinite compressive strength and (c) zero tensile strength 
([12,36,10,30,22,30;1–3] amongst others), and thus can be analysed by 
utilising a well-known concept: the thrust-line. Furthermore, the use of 
the funicular polygon from thrust line analysis can reveal important 
aspects about the effect of the shear force on masonry structures with 
voissoirs. 

Different types of arch geometries have been adopted throughout the 
centuries depending on many parameters such as aesthetics, function, 
target span, and the structural material utilised. The most common 
configurations are circular, elliptical, parabolic, catenary and pointed 
arches. A distinct advantage of parabolic arches is that they can span 
large distances given the appropriate set of parameters and hence, 
constitute a common practice in bridge design amongst other applica-
tions. However, such arches develop high amounts of thrust at the 
springing [4]. Yet, there is no extensive literature on finite-thickness 
parabolic arches, especially focussing on limit-state analysis [39]. 

Some of the greatest engineers and scientists of modern history have 
studied the stability of arches. Hooke [20] was the first to introduce the 
inverted chain concept through his famous anagram “as hangs the flexible 
line, so but inverted will stand the rigid arch” describing the catenary shape 
(alysoid). However, it was Couplet [11] who studied first the minimum 
thickness of semicircular arches with finite thickness (two-dimensional) 
under their self-weight. It was Milankovitch [30] that expressed the 
semicircular arch in polar coordinates and managed to estimate the 
exact locations of the “intrados” hinges at 54.48o from the crown of the 
arch, the minimum thickness of the arch as 0.1075 of the centreline 
radius, and that the catenary is not an admissible thrust line, by 
providing an analytical expression for the thrust line. These results were 
later confirmed by Makris and Alexakis [27] who discovered that not 
only is the catenary not an admissible thrust line, but that the arch’s 
stereotomy affects the shape of its thrust line and minimum thickness. 
Subsequently, Alexakis and Makris [1] investigated the minimum 
thickness of elliptical arches subjected to their self-weight and arrived to 
similar results; that the thrust line depends on the stereotomy and on the 
aspect ratio (rise over span) of the elliptical shape. Furthermore, they 
progressed with identifying the minimum thickness of semicircular 
arches when subjected to horizontal accelerations leading to four-hinge 
failure mechanisms [3], building on Clemente’s [9] and Oschendorf’s 
[35] pioneering work. 

In light of the above, this paper presents the results from the limit- 
state analysis of parabolic monolithic arches initially subjected to self- 
weight only and subsequently to equivalent lateral inertial loading. 
Given that the seismic hazard on the Moon or Mars can be a challenge for 
structures [31,34,24] and that self-weight is reduced due to the reduced 
gravitational acceleration (although the inertia of the structure remains 
the same), the structural response will change accordingly as high-
lighted in Kalapodis et al. [25,26]. Hence, the paper proceeds with the 

limit-state analysis of both circular and parabolic monolithic arches in 
low-gravity conditions, by assuming lower gravitational accelerations, 
αg = {0.17;0.38}g corresponding to the lunar and martian gravitational 
fields respectively. Finally, it concludes with a case study regarding the 
minimum thickness of a monolithic semicircular and parabolic arch on 
the lunar surface. It is out of the scope of this paper to assess the effect of 
shear forces on the minimum thickness of the arches in reference. 

2. Background of the problem 

Engineers and researchers in the past have investigated the static 
behaviour of masonry arches but mostly focussing on semicircular 
arches ([30,22,27,3,41,45,16], amongst others). However, there were 
researchers that progressed with the investigation of other geometries of 
arches such as parabolic [41,39], elliptical [1], pointed/gothic 
[32,42,39] and catenary arches [42,33]. Most of the studies concerned 
the static behaviour and stability of those arches through determining 
their corresponding upper and lower bound thrust lines. More specif-
ically, Sacco [41] reviewed the thrust line equation for semicircular and 
parabolic arches when they were subjected to uniform and non-uniform 
vertical loading through a nonlinear constrained minimisation algo-
rithm. His results focussed on the generation of different maximum and 
minimum thrust lines for both types of arches (amongst others) and, 
although he presented the catenary as an admissible thrust line for 
vertical loading, he arrived at the thrust line corresponding to a four- 
hinge mechanism for non-uniform vertical loading. Block [7] high-
lighted that there are infinite equilibrium states in an arch; however, the 
maximum and minimum thrust lines denote the upper and lower bounds 
for all the associated admissible thrust lines of any arch. More specif-
ically, they denote the thrust lines that correspond to the maximum and 
minimum thrust transferred to the abutments (horizontal component of 
the reaction force) and are associated with a statically determinate 
(three-hinge) arch as shown in Fig. 2. Ricci et al. [39] proceeded with a 
thorough analytical calculation of the thrust line of a semicircular arch 
subjected to both vertical and inertial loading and the numerical esti-
mation, through Point Collocation Method [21] and constrained opti-
misation, of the upper and lower limits of semicircular, parabolic and 
pointed (statically determinate) arches. 

The next step is the estimation of their minimum thickness given a 
specific loading through limit-state analysis. Makris and Alexakis [27] 
confirmed Milankowitch’s [30] results about the dimensionless mini-
mum thickness of semicircular arches which is t/R = 0.1075 (t: thick-
ness, R: radius) using radial ruptures and t/R = 0.1095 using vertical 
ruptures when subjected to self-weight. This was achieved by the 
calculation of the limit thrust line that corresponds to a five-hinge 
mechanism (a four-hinge mechanism would not be possible due to 
symmetry) as shown in Fig. 3a. Subsequently, Alexakis and Makris [3] 
determined the minimum thickness of circular arches with different 
embrace angles subjected to both self-weight and inertial loading. 
Interestingly, this was found through a variational formulation and the 
application of the principal of potential energy which enabled the esti-
mation of the minimum horizontal acceleration levels that convert the 
arch into a four-hinge mechanism as shown in Fig. 3b. Furthermore, 

Fig. 1. (a) Section of a lunar module with a regolith arch shield from De Kestelier et al. [12]; (b) Ramesseum adobe vaults from AVN (2015); (c) Ancient Roman 
masonry aqueduct in Segovia from Rodrigues [40]. 

G. Kampas et al.                                                                                                                                                                                                                                



Engineering Structures xxx (xxxx) xxx

3

another important contribution was made by Nikolić [32] who managed 
to estimate the minimum thickness of pointed/gothic arches under self- 
weight just before turning into a five-hinge mechanism, using the thrust- 
line method. 

After Hooke [20], the catenary shape symbolised the perfect arch 
shape as it represented the optimal thrust line. Gregory [19] proposed 
also the catenary shape as the thrust line that needs to fit within the 
intrados and extrados of any arch in order to stand. Nikolić [33] pre-
sented his work on the analytical expression of the thrust line of a 
catenary arch while he provided important insights into the equilibrium 
analysis of catenary arches with finite thickness subjected to their self- 
weight. In his thorough work, he highlighted the deviation of the 
resulting thrust line from the catenary centreline, however, he admits 
that there is no minimum thickness for a catenary arch under self- 
weight. When the thickness tends to zero (one-dimensional arch), the 
thrust line tends to follow a catenary shape and therefore will always be 
within the arch’s geometry (intrados and extrados) –a very significant 
result, opposed to the other types of arches. Hence Nikolić [33] 
confirmed the idea of Hooke [20] and Gregory [19] that the catenary 
arches could potentially be the optimal arches under self-weight. 

Subsequently, the scope of this paper is to implement limit-state 
analysis to parabolic arches, since they resemble to and are more com-
mon than catenary arches, for both self-weight and inertial loads. The 
investigation will be extended to low-gravity conditions as there is a 
need to provide useful insights and solid information about the stability 
and resilience of “extraterrestrial” arches acting as shielding structures 
for valuable assets on the Moon and Mars [44,24]. These regolith-based 
arches are assumed to work as monoliths independent of the 

construction method (additive manufacturing, interlocking bricks, etc) 
at this stage. Therefore, limit-state analysis is an appropriate method 
since the new material will most probably be brittle, with adequate 
compressive strength but low tensile strength as mentioned above 
[9,18]. Additionally, no shear failure of the material is considered 
(including sliding at the base) and therefore only formation of radial 
hinges is allowed to take place anywhere along the arch. The effect of 
stereotomy is out of the scope of this paper, although it is an important 
factor affecting the minimum thickness required for the protection from 
extreme radiation. 

The inspiration behind this section lies in Fig. 4. This figure shows 
roughly the same thrust line (black dashed line) which is expressed with 
a catenary shape (that bears great resemblance to the real thrust lines, 
even though it is not an admissible one) marginally fitted within both a 
semicircular and a parabolic (grey-scaled lines) arch under self-weight 
only. Evidently, there are two main qualitative conclusions that can be 
drawn from Fig. 4: (a) the five-hinge mechanism of the parabolic arch is 
exactly opposite than that of the semicircular and (b) the parabolic arch 
is much thinner compared to the semicircular. This latter point was an 
anticipated result following Nikolić’s [33] insightful conclusions, since 
the parabolic resembles the catenary arch [17]. Hence, the structure in 
reference is a parabolic arch with c = 1/2 (as shown in Fig. 5a). This 
aspect ratio is particularly of interest, since it is directly comparable to 
semicircular arches. 

Section 2.1 presents the analytical formulation of the symmetric five- 
hinge mechanism due to self-weight for the parabolic arch as shown in 
Fig. 5a. Due to the lack of pertinent literature, the results were validated 
using an independent numerical method developed by the authors in 

Fig. 2. Semicircular arch with its (a) maximum and (b) minimum thrust lines that correspond to a statically determinate structure under its’ self-weight.  

Fig. 3. (a) Right part of the five-hinge symmetrical mechanism for semicircular arches when subjected to their self-weight; (b) asymmetric four-hinge mechanism for 
circular arches with embrace angle β when subjected to both self-weight and inertial loading. 
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MATLAB for producing thrust lines as described in Section 2.2. 

2.1. Analytical formulation 

2.1.1. Equation of the parabolic arch 
The generic equation that describes a parabola is: 

y = a − bx2 (1) 

By assuming, c: rise over span ratio (this is valid only for an embrace 
angle β = 180o) and R: the rise of a parabolic arch, the Cartesian co-
ordinates of the arch will be described by the following equation. 

y = R −
4c2

R
x2 (2) 

The first step is to convert Eq. (2) into polar coordinates: 

x = r cos(φ) (3)  

y = r sin(φ) (4)  

where r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
and tan(φ) =

y
x,x ∕= 0. 

By substituting Eqs (3), (4) into (2), 

r sin(φ) = R −
4c2

R
r2cos2(φ)⇒

r
R

sin(φ) = 1 − 4c2
(r

R

)2
cos2(φ)

and by setting ρ = r
R as the dimensionless radius, the following quadratic 

equation is found: 

4c2ρ2 cos2(φ) + ρ sin(φ) − 1 = 0⇒ρ =
− sin(φ)±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin2(φ)+16c2 cos2(φ)

√

8c2cos2(φ)

Finally, after rejecting the negative root of the above quadratic equation, 
the parabolic arch is expressed as (shown in Fig. 5b): 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(φi) =

{
− sin(φi) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2(φi) + 16c2 cos2(φi)

√

8c2cos2(φi)

}

R∀φi ∈
[
0,

π
2

)
∪
(π

2
, π
]

r(φi) = Rfor φi =
π
2

(5)  

Fig. 4. Qualitative illustration presenting the differences between the symmetric five-hinge mechanism of a semi-circular and a parabolic arch under self-weight. The 
thrust line is represented by a catenary (black dashed line) and the two optimal arches with continues grey-scaled lines. 

Fig. 5. Parabolic arch: (a) symmetric five-hinge mechanism of the arch with c = 1
2 and embrace angle β, when subjected to its self-weight and (b) reference system 

used in this study. 

G. Kampas et al.                                                                                                                                                                                                                                



Engineering Structures xxx (xxxx) xxx

5

2.1.2. Weight of an arbitrary segment of the parabolic arch 
The next step is to consider a parabolic arch (r, t, β) with mid- 

thickness radius r, thickness t and embrace angle β. There are three 
different approaches for describing the geometry of a parabolic arch; 
however, this is not the case for elliptical and circular arches as they 
conclude to the same arch geometry. According to the first approach, 
each point of the intrados/extrados of the arch maintains a constant 
distance t/2, perpendicular to the centreline. The second approach 
(which is adopted in this work) considers the intrados/extrados lines to 
be radially proportional to the centreline (see Eqs. (A1), (A2) in the 
Appendix A) and therefore retains a constant t/r for all the range of φi 
angles. Finally, based on the third approach, each point of the extrados/ 
intrados is at a constant radial distance t/2 from the centreline (not 
constant t/r for all the range of φi angles). As a result, for the first and 
third case, the intrados/extrados are not described by a purely parabolic 
shape. The three aforementioned approaches are depicted in Fig. 6. 

This study adopts the second definition as described above where the 
parabolic arch keeps a constant t/r along its arc. 

2.1.3. Moment equilibrium at the onset of the five-hinge mechanism 
It has been shown graphically that a parabolic arch subjected to only 

self-weight, develops an opposite five-hinge mechanism to the corre-
sponding semicircular arch as depicted in Fig. 4. More specifically, it is 
evident that the imminent hinges (at a state of equilibrium) of the 
collapse mechanism of the parabolic arch will appear at the intrados, 
where they would appear at the extrados for a semicircular arch and vice 
versa (Figs. 3a and 5a). This result follows Coulomb’s [10] observation 
that the hinging mechanism depends on the upper and lower limits of 
the thrust force exerted at the crown. The symmetric right part of the 
collapse mechanism is depicted in Fig. 7a. 

Furthermore, there is a need to define the gravitational multiplier, 
α = g’/g, as the ratio of the gravitational acceleration on other planetary 
surfaces, g’, over the reference gravitational acceleration on Earth, g =

9.81 m/s2, in order to account for the different gravitational environ-
ments. Additionally, the factor, L = m’total/minertial, is defined as the ratio 
between the total mass of the structure and the additional infill, mtotal =

mstructure + minfill, over the mass that accounts for the inertial loading, 
minertial, which is part of mtotal. This ratio seems to play a key role in the 
response of the arch. However, for terrestrial applications (α = 1) the 
total mass, mtotal = mstructure = minertia, is structural (no extra infill) and 
therefore it contributes fully to the inertial loads, L = 1. 

By applying a moment equilibrium on the half-arch about the point 
A, the minimum horizontal thrust at the intrados of the crown, T, is 
determined. In order to take low gravity (α) and additional vertical 
(shielding) loading (L) factors into consideration, the weight of the 
segment (1–2) is taken equal to αLW12. The equation of moment equi-
librium is presented below as, 

Segment(1 − 2) : T
({

R −
t
2

}
− sin(β0)

{
r0 −

t
2

})

− αLW12

(
cos(β0)

{
r0 −

t
2

}
− xc12

)

= 0  

⇒T =
αLW12

(
cos(β0)

{
r0 −

t
2

}
− xc12

)

{
R − t

2

}
− sin(β0)

{
r0 −

t
2

} , β0 ∕=
π
2

(6)  

where W12 (weight of half the arch) and xc12 (abscissa of the center of 
gravity of the half arch) are evaluated by the Eq. (A5) and Eq. (A6a) (of 
the Appendix A) respectively, with the assumption of φi = β0 and φi+1 =
π
2. Furthermore, r0 (radius at an angle β0) is evaluated by the Eq. (5) for 
φi = β0. 

When assuming a radial rupture as shown in Fig. 7a, moment equi-
librium of the upper portion (segment 2) of the arch about hinge B 
yields: 

Fig. 6. Three different definitions for the description of a parabolic arch.  
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Segment(2) : − αLW2

(
cos(φ1)

{
r(φ1) +

t
2

}
− xc2

)
+ T

(
sin(φ2)

{
r(φ2) −

t
2

}

− sin(φ1)
{

r(φ1) +
t
2

})

= 0⇒ − αLW2

(
cos(φ1)

{
r(φ1) +

t
2

}
− xc2

)

+
αLW12

(
cos(β0)

{
r0 −

t
2

}
− xc12

)

{
R − t

2

}
− sin(β0)

{
r0 −

t
2

}
({

R −
t
2

}
− sin(φ1)

{
r(φ1)

+
t
2

})

(7)  

where W2 (weight of segment 2) and xc2 (abscissa of the center of gravity 
of the segment 2) are evaluated by the Eq. (A5) and Eq. (A6a) (of the 
Appendix A) respectively, with the assumption of φi = φ1 and φi+1 = π

2. 
Furthermore, r(φ1)

, (radius at an angle φ1) is evaluated by Eq. (5) for φi =

φ1. 
By solving Eq. (7) with respect to t, a transcendental equation which 

relates the unknown rupture angle φ1with the unknown minimum 
thickness t is found. The general form of this equation is given below: 

t = f (φ1) (8) 

Adopting as a reference level the horizontal axis x(y = 0), the po-
tential energy of the parabolic arch with an embrace angle β(Fig. 7b) 
will be, 

V = Warch⋅y0 (9)  

where Warch (weight of the parabolic arch) and y0 (ordinate of the center 
of gravity of the parabolic arch) are evaluated by Eq. (A5) and Eq. (A6b) 
(of the Appendix A) respectively, with the assumption of φi = β0 and 
φi+1 = π − β0. By substituting Eq. (8) in Eq. (9), we have 

V(φ1) = Warch⋅y0 (10) 

According to the principle of stationary potential energy, the 

geometrically admissible hinge mechanism shown in Fig. 5a is in an 
equilibrium state if and only if the total potential energy is stationary, i. 
e., 

δV(φ1) = 0⇒
dV(φ1)

dφ1
δφ1 = 0⇒

dV(φ1)

dφ1
= 0 (11) 

The solution of the system of Eqs. (8) and (11) yields the unknown 
location of the rupture angle φ1 and the minimum width t of a parabolic 
arch with an embrace angle β. 

2.2. Numerical methodology 

An independent numerical method was developed to compute the 
corresponding limit thrust lines of different arches under different 
loading scenarios only in order to validate the analytical expressions 
presented above and to assist with the visualisation of the different 
failure mechanisms. To this end, an estimate of a monolithic arch’s 
thrust line can be obtained through finding the thrust line of a highly 
discretised voussoir arch. Makris and Alexakis [27] defined the thrust 
line as the geometrical locus of the application points of the resultant 
thrust-force that develops at any joints of the arch. Representing the 
geometry with discrete segments will enforce that these application 
points lie on adjacent edges between voussoirs. For direct comparison 
with and validation of the variational method’s results, radial cuts have 
been considered in this section. 

To obtain physically admissible thrust lines the assumed set of thrust 
forces must result in the thrust line remaining within the intrados and 
extrados of the arch throughout its length. A numerical approach to 
finding the correct set of resultant thrust forces corresponding to an 
arch’s limit thrust line has been developed following the graphic statics 
approach employed by Block et al [7], Michiels et al. [28], Michiels and 
Adriaenssens [29], among others. The method constructs a force poly-
gon from which a set of resultant thrust forces that satisfy horizontal and 
vertical equilibrium can be automatically obtained. A force polygon 
comprises of two components, the load line and the pole as shown in 
Fig. 8b. The load line represents the magnitude and direction of resultant 

Fig. 7. (a) System of reference of the right symmetric part of the collapse mechanism of a parabolic arch subjected only to its self-weight and (b) ordinate of the 
centre of gravity of a parabolic arch with the consideration of an embrace angle β. 
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forces acting at the centroid of each voussoir. The lines that connect the 
pole to the vertices of the load line will then define the magnitude and 
direction of the resultant thrust forces. The first and last of these lines 
will represent the reaction forces at the left and right hand supports, 
hence by estimating these forces a force polygon can be constructed. In 
this case, an initial estimate of the reaction forces is calculated using a 
virtual work method, by assuming a uniform flexural rigidity and that 
internal deformations are dominated by bending. By setting the pole of 
the force polygon at (0,0) in force space, the estimated reactions can 
then be used to trace the load line. 

Once the initial force polygon has been obtained, the resultant thrust 
forces can be inferred from it and an initial estimate of the thrust line can 
be obtained by assuming a starting position (right hand side). The es-
timate of the reactions is taken at the centre of the supports by assuming 
a flexural arch, with uniform flexural rigidity. As in reality the arch is 
closer to rigid, the initial estimate of the reaction forces is unlikely to 
yield an admissible thrust line. Thus, initially, the vertical position of the 
force polygon pole is adjusted such that the end point (left hand side) of 
the thrust line lands in the desired position. The horizontal thrust of the 
system is sought such by adjusting the horizontal position of the pole in 
order to ‘flatten out’ the thrust line until an admissible line is found. An 
outline of the algorithm employed to compute the limit thrust line is 
given in Fig. 9. 

2.3. Results 

Fig. 10 presents a comparison between the limit thrust lines for 
semicircular and parabolic arches with embrace angle β = 180o under 
their self-weight. As anticipated, it is observed that the collapse mech-
anisms are exactly opposite; in the case of the semi-circular arch, the 
thrust line starts at the extrados at the base, it touches the intrados at 
35.52o and then the extrados at the crown, while for the parabolic arches 
the limit thrust line starts at the intrados, at the base, then touches the 
extrados at43.81o and the intrados at the crown. The fact that the 
rupture angles of the parabolic arch are “higher” (longer legs) compared 
to the semicircular arch further highlights the pattern of the opposite 
mechanisms. A very important result is that the minimum thickness of 
parabolic arches is t/R = 0.0239, while the corresponding minimum 
thickness for semicircular arches is t/R = 0.1075. This is another sig-
nificant difference showcasing quantitatively the “geometrical 

favouritism” towards structures that resemble the catenary [33], as 
shown qualitatively in Fig. 4. The numbering adopted for the rupture 
angles is different between the circular and parabolic arches to facilitate 
comparison; this will become evident in the next section when ac-
counting for inertial loading. 

Fig. 11a compares the minimum dimensionless thickness of circular 
to parabolic arches for different embrace angles, β. Evidently, the 
parabolic arches (with c = 1/2), always require thinner geometries to 
support their self-weight than their circular counterparts, regardless of 
β. Furthermore, the difference between the min(t/R) of a circular and 
parabolic arch decreases for smaller values of β (Fig. 11a). It is important 
to note here that for constant (locked) c, when the embrace angle de-
creases, it results in an arch with smaller arc. Following this observation 
and Fig. 11b it can be deduced that as the embrace angle decreases 
(smaller arcs) the whole collapse mechanism is “lifted up” resulting in 
thinner geometries. 

3. Identification of the four-hinge mechanism for parabolic 
arches subjected to inertial loading 

When an arch is subjected to a horizontal acceleration, it exhibits a 
four-hinge asymmetric mechanism as highlighted by Alexakis and 
Makris [3] amongst others. Fig. 12 presents a comparison between the 
two different limit thrust lines for semicircular and parabolic arches 
under their self-weight and a horizontal acceleration of 0.05 g (from left 
to right) revealing the different developed mechanisms. As in the case of 
the five-hinge mechanism of the previous section, it is evident that the 
mechanisms are exactly opposite. More specifically, for the semi-circular 
arch, the limit thrust line starts at the extrados at the right abutment (for 
left to right acceleration), then touches the intrados at φC

1 = 37.18o, the 
extrados at φC

2 = 92.86o, and finally the intrados at φC
3 = 148.54o. 

However, for parabolic arches the limit thrust line starts at the intrados 
of the left abutment (for left to right acceleration), then touches the 
extrados at φP

1 = 180o − 46.69o, the intrados at φP
2 = 180o − 94.08o, 

and finally the extrados atφP
3 = 180o − 160.32o, as shown in Fig. 10b. To 

facilitate comparisons between the different failure mechanisms of the 
two types of arches studied in this paper, the following assumptions 
regarding the rupture angles have been made. In the case of circular 
geometry, φ1 = φC

1 , φ2 = φC
2 and φ3 = φC

3 ; for the parabolic geo-
metry,φ1 = π − φP

1, φ2 = π − φP
2 and φ3 = π − φP

3. 

Fig. 8. (a) Static equilibrium of a single voussoir and (b) An example of a force polygon used to determine resultant thrust forces for an arch discretised into 
six voussoirs. 
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Fig. 13 compares the two asymmetric collapse mechanisms for a 
circular (Fig. 13a) and a parabolic arch (Fig. 13b) and show explicitly 
the convention of numbering the rupture angles. Fig. 13b also reveals 
the moment equilibrium at the onset of the four-hinge mechanism of the 
parabolic arch. 

3.1. Moment equilibrium at the onset of the four-hinge mechanism 

Once the equations of the centres of gravity for the four segments 
that correspond to the five-hinge mechanism have been evaluated, a 
moment equilibrium of segment 2 about point B is applied (as shown in 

Fig. 9. Overview of limit thrust line algorithm.  
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Fig. 10. Limit thrust line for (a) semicircular and (b) parabolic arches; symmetric five-hinge mechanism of (c) semicircular and (d) parabolic arches when subjected 
to their self-weight. 

Fig. 11. . (a) Minimum t/R and (b) intermediate rupture angle (φC
1 for circular, φP

3for parabolic) versus various embrace angles (β) for circular (solid line) and 
parabolic arches (dashed line) subjected only to their self-weight. 

Fig. 12. Limit thrust lines of a (a) semi-circular and (b) parabolic arch subjected to their self-weight combined with an inertial lateral load of 0.05 g, posed from left 
to right. 
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Fig. 13b). In order to consider low gravity (α) and the extra additional 
loading (L), all the weights of the segments are multiplied by αL. 

Segment(2) : − εW2

(
yc2 − sin(φ1)

{
r1 +

t
2

})
− αLW2

(
cos(φ1)

{
r1 +

t
2

}

− xc2

)
+ Tcx

(
sin(φ2)

{
r2 −

t
2

}
− sin(φ1)

{
r1 +

t
2

})

+ Tcy

(
cos(φ1)

{
r1 +

t
2

}
− cos(φ2)

{
r2 −

t
2

})

= 0
(12) 

Similarly, moment equilibrium of segment 3 about point D is applied: 

Segment(3) : − εW3

(
yc3 − sin(φ3)

{
r3 +

t
2

})
+ αLW3

(
xc3

− cos(φ3)
{

r3 +
t
2

})
− Tcx

(
sin(φ2)

{
r2 −

t
2

}

− sin(φ3)
{

r3 +
t
2

})
+ Tcy

(
cos(φ2)

{
r2 −

t
2

}

− cos(φ3)
{

r3 +
t
2

})

= 0 (13)  

where ε is the horizontal acceleration coefficient, L is the weight 
multiplier and α the gravitation multiplier. Their value is α = L = 1 in 
this section, however, those parameters will be further discussed in the 
next section. 

By solving Eqs. (12) and (13), the moment equilibrium of Segment 
1–2 about the point A can be expressed in terms of Tcx, and Tcy: 

Segment(1 − 2) : Tcx

(
sin(φ2)

{
r2 −

t
2

}
− sin(β0)

{
r0 −

t
2

})

+ Tcy

(
cos(β0)

{
r0 −

t
2

}
− cos(φ2)

{
r2 −

t
2

})

− εW12

(
yc12 − sin(β0)

{
r0 −

t
2

})

− αLW12

(
cos(β0)

{
r0 −

t
2

}
− xc12

)

= 0 (14) 

Eq. (14) can be re-solved for ε : 

ε = f (φ1,φ2,φ3, t) (15) 

To calculate the rupture angles, φ1,φ2,φ3 that correspond to mini-
mum t/R for a given horizontal acceleration level, ε, the principle of 
potential energy is employed [3]. This constitutes an alternative way 
that deviates from the need to calculate analytically the limit thrust line 

which can become very complex –especially for geometries with varying 
curvature such as the parabolic arches [39]. 

As abovementioned, the entire energy of the system is expressed as 
the work of all forces acting on the structure with reference y = 0. The 
loading on a parabolic arch subjected to a horizontal acceleration, εg, is 
equivalent to the gravity loading on the same parabolic arch when it is 
rotated by an angle, ω = tan− 1ε/α from the vertical under a new gravi-
tational field, ̂g = g

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 + ε2

√
. Fig. 14 shows the new, tilted system where 

the resultant gravitational field is ĝ and the potential energy can be 
expressed as 

V̂ = Ŵ ⋅ŷ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 + ε2

√
Wŷ ∕= V or  

V(φ1,φ2,φ3, ε) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + f (φ1,φ2,φ3, t)2
√

Wŷ (16) 

The principle of potential energy dictates that the four-hinge mech-
anism is a natural state (in equilibrium) among all geometrically ad-
missible states of the system if, and only if, the variational work 
increment vanishes for arbitrary geometrically admissible variations. 
Therefore, the potential energy of the system needs to be stationary, 
δV = 0 [3]. 

The potential energy is stationary when: 

δV = V(φi ± δφi) − V(φi) =
∂V(φi, ε)

∂φi
δφi = 0⇒

∂V(φi, ε)
∂φi

= 0 

This yields the following set of equations: 

∂V(φ1,φ2,φ3, ε)
∂φ1

= 0 (17a)  

∂V(φ1,φ2,φ3, ε)
∂φ2

= 0 (17b)  

∂V(φ1,φ2,φ3, ε)
∂φ3

= 0 (17c)  

where by substituting Eq. (16) into Eq. 17a, b, c : 

∂V(φ1,φ2,φ3, ε)
∂φi

=
∂f (φ1,φ2,φ3, t)

∂φi
Wŷ

f (φ1,φ2,φ3, t)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + f (φ1,φ2,φ3, t)
2

√ = 0 i

∈ [1, 2, 3] (18) 

Given that the horizontal acceleration is not zero, ε =

f(φ1,φ2,φ3, t) ∕= 0, and that ŷ is also nonzero, Eq (18) yields: 

Fig. 13. Four-hinge collapse mechanisms for (a) a circular and (b) a parabolic arch subjected to self-weight and inertial loading. Notice the difference in the 
convention of numbering the rupture angles. 
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∂f (φ1,φ2,φ3, t)
∂φi

=
∂ε
∂φi

= 0 (19) 

Eq (15) together with expression (19) for i ∈ [1, 2,3] offer a 4 × 4 
equation system that can be solved in order to calculate the four un-
knowns φ1,φ2, φ3 and tfor a given acceleration level and embrace angle 
β. Fig. 15 shows the different limit thrust lines for semicircular and 
parabolic arches under their self-weight and horizontal accelerations, 
εg = {0.1;0, 2;0.4; 0.6}g together with the corresponding rupture an-
gles. For a horizontal force acting from left to right, the failure mecha-
nism always starts from the intrados at the left abutment, φ1is located at 
the extrados, φ2at the intrados and φ3 at the extrados. 

Fig. 16 shows also a comparison between the analytical and nu-
merical results regarding the minimum thickness of the parabolic arches 
under self-weight and different horizontal acceleration levels. It can be 
appreciated that the results are very close and provide an appropriate 
validation of the analytical calculations. 

3.2. Minimum thickness and imminent hinge locations of circular and 
parabolic arches 

The minimum thickness and the hinge locations of the parabolic and 
circular arches are presented in Fig. 17 and Fig. 18 respectively for 
terrestrial gravitational conditions (α = 1) and with the consideration 
that all of the mass contributes to inertial forces (L = 1). As expected, 
Fig. 17 clearly depicts i) the need for thicker geometries as the lateral 
inertial load increases and ii) the need for thinner geometries as the 
embrace angle decreases as it corresponds to smaller arches, for both the 
circular and parabolic case. However, contrary to the self-weight 
consideration where the parabolic arches have been proved more 
optimal than the corresponding circular ones (as shown in Fig. 11a), 
Fig. 17 indicates that after a certain value of embrace angle (β) and 
lateral inertial load (εg), the circular arches tend to be more efficient. 
More specifically, for β = {125o,90o} the circular arches constitute a 
better choice for lateral loading higher than those corresponding to 
0.225 g and 0.064 g, respectively. One reason behind this interesting 
observation is that as the embrace angle decreases, both types of arches 
have smaller arcs; however, the parabolic has a “steeper” top part 
compared to the circular arch that has a “flatter” top part in order to 
accommodate more efficiently the shape of the limit thrust line. 

Fig. 18 plots the rupture angles’ locations against the levels of hor-
izontal acceleration for parabolic and circular arches with embrace {β =

90o,125o,155oand180o}. It should be noted here that from Figs. 12 and 
15, the four-hinge mechanism of the parabolic arch follows a “down-
stream”/clockwise pattern (from left intrados to right extrados), while in 
the case of the circular arches the mechanism follows an “upstream”/ 

counterclockwise pattern (from right extrados to left intrados) for a 
lateral load from left to right. As aforementioned, following the 
numbering convention of Fig. 11 and for comparison reasons the hinge 
locations for the circular will be shown as φi = φC

i and for the parabolic 
φi = 180 − φP

i . When it comes to parabolic arches, φ3 reaches the 
extrados at the base for substatially lower values of inertial loading 
compared to the circular arches. Furthermore, φ2 does not change 
significantly, especially for the case of parabolic arches across the whole 
range of lateral loading. Interestingly, particularly for the case of para-
bolic arches, as the lateral loading increases, φ1 and φ2 increase up to a 
point (move clockwise) before they start decreasing again (move 
counterclockwise). On the other hand, φ1 and φ2of the circular arches, 
are constantly increasing. Another observation is that as the embrace 
angle is decreasing, φ1is increasing and φ3 is decreasing in order to fit 
within the new smaller arch. 

4. Minimum thickness and hinge locations of parabolic and 
circular arches in low-gravity conditions 

This section discusses the effects of low gravity in the stability of 
parabolic and circular arches. The effect of low gravity is considered 
through the gravitational multiplier, α = g’/g, that takes the values of 
0.38 and 0.17 which correspond to the martian and lunar gravitational 
fields, respectively. However, given the concept that these arches can be 
used as potential shielding structures from radiation and extreme tem-
perature fluctuations, there might be the need to add loose regolith 
material at the top in order to reach a certain protective thickness equal 
to 250 cm [6]. 

L = mtotal
minertia

=
mstructure+minfill

minertia 
in this case accounts for the additional mass of 

the loose regolith infill, minfill ∕= 0, and since not all of it contributes to 
inertial loading, minertia, L can take the values, L = 1,2, 3, 4 (L =

1denotes that all the mass contributes to inertia, mtotal = minertia). More 
specifically, Fig. 19 shows a rough representation of the “compacted” 
loose regolith infill atop of a parabolic arch. Fig. 19(a) shows the infill 
following the structure when subjected to more frequent, low-impact 
ground motions (similarly to Serviceability Limit State, SLS). In this 
case, L = 1, as the infill contributes fully to the inertia of the total 
structure. On the other hand, Fig. 19(b) shows the infill that has yielded, 
and has partially collapsed, when the structure is subjected to more 
significant ground motions (similarly to the Ultimate Limit State, ULS). 
In this case, the infill contributes only partially to the inertia of the 
structure, as it is not monolithically attached to it and therefore L > 1. 
There are many reasons for this partial collapse such as the intensity of 
the ground motion, the geometry of the arch, how the loose material has 
been attached upon the arch, the interface conditions between the loose 

Fig. 14. Tilted system with a new resultant gravitational field equal to ĝ = g
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 + ε2

√
.  
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and the structural material, the gravitational conditions, etc., and 
further investigation is needed when proceeding to the design of these 
arches. 

Figs. 20 and 21 show the variation of the minimum thickness of 
circular and parabolic arches with embrace angles {β = 90o, 125o,

155o and 180o}, when subjected to different levels of inertial loading in 
different gravitational fields, α = 1,0.38,0.17, and different levels of L 
(i.e. L = 1,2,3,4). 

It is observed from these figures that the required minimum thick-
ness increases with increasing lateral acceleration, however, it gets 

further amplified as gravity decreases (lower α values). Moreover, the 
additional weight due to the protective shielding of an arch designed in 
low-gravity conditions (e.g. lunar surface) that does not contribute to 
inertial loading (L) will be beneficial in terms of structural material 
saving. As it was observed in the previous section, smaller embrace 
angles lead to thinner geometries. The same phenomenon takes place in 
low-gravity conditions. An indicative example to highlight the previous 
statement is that according to Fig. 20a, two circular arches with L = 1, 
constructed on the martian surface which have the same minimum 
thickness (t/R = 0.2) and different embrace angles (β = 155o,125o) can 

Fig. 15. Limit thrust lines for semicircular and parabolic arches under their self-weight and horizontal acceleration (from left to right) of (a) εg = 0.1g; (b) εg = 0.2g; 
(c) εg = 0.4g and (d)εg = 0.6g. 

G. Kampas et al.                                                                                                                                                                                                                                



Engineering Structures xxx (xxxx) xxx

13

sustain up to 0.2g and 0.42g respectively. 
Fig. 22 shows the minimum thickness of parabolic and circular 

arches with different embrace angles varying with the different levels of 
horizontal acceleration considering low-gravity conditions and L = 1. It 
is evident that for an embrace angle β = 180o, parabolic arches will 
always require less material than semicircular arches; however, this is 
not always the case for all embrace angles. For β = 155o, after a certain 
level of horizontal acceleration the circular arch becomes more efficient. 
This effect is even more pronounced for arches with β = 125o,90owhere 
the circular is almost universally more beneficial than the parabolic 
arch. Furthermore, it is important to observe how dominant is the effect 
of low gravity on the minimum required thickness for both types of 
arches –especially for β = 180o. This is an anticipated conclusion as the 
stability of any arch depends heavily on gravity. 

Interestingly, the phenomenon exhibits a self-similar behaviour 
presented via the master curves of the minimum t/R and rupture angles 
against the dimensionless horizontal acceleration, ε/αL for both para-
bolic and circular arches in Figs. 23, 24. In particular, each pair of β and 
minimum t/R corresponds to a unique vector of {ε/αL,φ1,φ2,φ3}. 

According to Fig. 23, for high values of ε/αL(which correspond to either 
substantial inertial loads or low-gravity conditions and more mass of the 
infill contributing to inertial loading) the parabolic arch can be always 
thinner than the circular arch for β = 180o, however as the embrace 
angle reduces, there is a certain value of ε/αL after which the circular 
arch becomes more efficient than the parabolic, following Fig. 22. These 
values of the dimensionless inertial loading with the associated values of 
the minimum required thickness against the different embrace angles 
are presented in Fig. 24. The areas where the parabolic or the circular 
arch is more efficient can be deduced explicitly from this figure. For β =

180o, in all cases the parabolic arch is more beneficial. For arch ge-
ometries subjected to their self-weight only ( ε

aL = 0) and for all the range 
of embrace angles β, the parabolic configuration is always more effi-
cient, following Fig. 11a findings. 

In the case of a lateral load, ε = 0.1, on the lunar surface, α = 0.17, 
with L = 1, the dimensionless inertial load will be ε

αL = 0.59. Thus, if an 
embrace angle of more thanβ > 150o is of interest, the parabolic ge-
ometry should be chosen, while if β < 150o, the circular arch should be 
preferred. Furthermore, if the design thickness of the arch is pre-decided 

Fig. 16. Analytical versus numerical minimum thickness and hinge locations of parabolic arches when subjected to self-weight and horizontal acceleration.  

Fig. 17. Minimum t/R versus inertial acceleration for circular and parabolic arches with embrace angles {β = 90o,125o,155o and 180o}.  
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equal to be t
R = 0.2, for arches with an embrace angle β > 150o the 

parabolic geometries will sustain higher amount of dimensionless iner-
tial loading ε

αL than the corresponding circular ones. Evidently, Fig. 24 
can be used for preliminary design decisions. 

Fig. 25 illustrates the master curves for the rupture angles against the 
dimensionless inertial loading, ε

αL, for both parabolic and circular arches 
with embrace angles β = 90o,125o,155o and 180o. The most significant 
similarity between the different types of arches is associated with the 
behaviour of the intermediate rupture angles, φ1,φ2; in both cases the 
hinges locations move more “upstream” (counterclockwise) against the 
load’s direction modifying the mechanism pattern in the same way 
following the findings of Fig. 15. 

A summary of all the results is presented in Table A1, which is 
included as supplementary material in this paper. This table shows all 
the results produced by means of limit-state analysis for both circular 
and parabolic arch geometries. More specifically, Table A1 provides the 
minimum t/R and the corresponding rupture angles (that define the 
failure mechanism) for a plethora of combinations of (i) inertial accel-
eration amplitudes (ε), (ii) gravitational (α), (iii) self-weight multipliers 
(L) and (iv) embrace angles (β).

5. Case study 

This last section presents a case study to illustrate the more practical 
aspects of the results obtained in the previous sections. The problem to 
be addressed herein is what would be the ideal arch (circular or 

parabolic) that needs to cover a span of 30 m and a height of 15 m on the 
lunar surface (α = 0.17). The selected arches would need to withstand a 
maximum (design) horizontal acceleration of 2 m/s2 due to the immi-
nent shallow moonquakes and meteoroid impacts, when the minimum 
required thickness of any lunar structure for shielding purposes is 
tradiation = 2.5 m [6]. This level of acceleration can be expected after [34] 
that compare the magnitude-frequency relationships for shallow 
moonquakes and intraplate earthquakes in Central-Eastern US (CENA), 
showing that moonquakes with body-wave magnitude more than 5.5 
had been recorder during 8 years of monitoring on the Moon [24]. 
Bigger events with higher return periods can be anticipated as well. For 
material minimisation purposes the selected embrace angle would be 
β = 180o. 

Initially, by considering an arch without additional vertical loading 
than its self-weight (or when the total mass contributes to inertial 
loading), L = 1, the dimensionless inertial loading would be, ε

αL = 1.2. 
Using Fig. 23, the minimum required thickness for a parabolic and cir-
cular arch with β = 180o will be tP

R = 0.58 and tC

R = 0.64 respectively. 
This translates to tP = 8.70 m and tC = 9.60 m; these extreme values for 
solid arch thicknesses highlight how important and dominant role the 
low gravity plays on the stability of arches. 

However, after adding a layer of loose regolith shielding that 
partially participates in the inertial loading with its mass resulting in L =

3, the new dimensionless inertial load applied to the arches examined in 
this example will be ε

αL = 0.4. Hence, the minimum required thickness 
for a parabolic and circular arch with β = 180o will be tP

R = 0.192 and 

Fig. 18. Hinge locations versus inertial acceleration for circular and parabolic arches with embrace angles {β = 90o, 125o, 155o and 180o}.  

Fig. 19. Rough representations of a “compacted” loose regolith infill atop of a parabolic arch. (a) parabolic arch with a “loose” regolith infill during a frequent 
ground motion (SLS); (b) parabolic arch with asymmetrically yielded/collapsed “loose” regolith infill subjected to strong ground motion (ULS). 
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Fig. 20. Minimum t/R versus inertial acceleration for circular arches with various embrace angles {β = 90o,125o,155o and 180o}, considering low gravity, α = 1,
0.38, 0.17, and L = 1,2, 3,4. 

Fig. 21. Minimum t/R versus inertial acceleration for parabolic arches with various embrace angles {β = 90o,125o,155o and 180o}, considering low gravity, α = 1,
0.38, 0.17, and L = 1,2, 3,4. 
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tC

R = 0.249 respectively that yields thicknesses of tP = 2.88 m and tC =

3.74 m. Given the above, it is evident that the additional shielding 
material if placed properly in order not to participate to inertial loading, 
can lead to less structural material use, regardless of the arch geometry. 
Another observation is that the minimum shielding thickness, tradiation =

2.5 m [6], will be easily satisfied in the case of long-span arches on the 
Moon. 

For comparison reasons, if these arches where to be constructed on 
Earth for the same given design acceleration and with L = 1, they would 
result in ε

αL = 0.2 and thus to tP

R = 0.10 and tC
R = 0.17 which yields tP =

1.50 m and tC = 2.55 m. The difference between the results is 

impressive and the need to optimise the structural form of extraterres-
trial structures becomes even more apparent. 

In every case, further finite-element analysis needs to be undertaken 
to determine the appropriate stress levels before proceeding with the 
design of any of these arches in order to consider shear forces as well. 

6. Conclusions 

This paper has investigated the limit-state analysis of circular and 
parabolic arches when they are subjected to self-, additional vertical 
weight and inertial loading in low-gravity conditions. The study em-
ploys a variational formulation in order to determine the minimum 

Fig. 22. Minimum t/Rversus inertial acceleration for parabolic and circular arches with embrace angles: (a) β = 180o, (b) β = 155o, (c) β = 125o, and (d) β = 90o 

considering low gravity, α = 1,0.38, 0.17 assuming L = 1. 

Fig. 23. Master curves of the minimum required t/R versus the dimensionless inertial loading, ε/(αL), for both circular and parabolic arches.  
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required thickness of the different arches in order not to become a 
mechanism under the different combinations of loading and gravita-
tional fields. 

The results show that parabolic arches require much lower minimum 
thickness to sustain their own weight compared to circular arches and 
that they exhibit the symmetrically opposite five-hinge mechanism. This 
manifests the “geometrical favouritism” towards structures that 
resemble the catenary shape (parabolic) under self-weight, even though 
the catenary is not an admissible thrust line [27]. 

Furthermore, except the fact that larger inertial loading results in 
higher minimum thickness, smaller embrace angles lead to thinner 
arches. The latter is evident as when the embrace angle decreases, for a 
given c, the arc of the arch becomes smaller (the arc corresponds to 
smaller embrace angle) and therefore requires less structural material. 
The asymmetrical four-hinge mechanism developed due to the hori-
zontal loading is opposite for the two types of arches. However, the 
mechanism pattern shows a significant similarity, in the sense that as the 

inertial loading increases, in all cases, the mechanism tends to move 
“upstream” against the horizontal load in order for the arches to 
accommodate their limit thrust lines. Another interesting observation is 
that although for an embrace angle β = 180o the parabolic is always 
more beneficial than the semi-circular arch, this is not the case when the 
embrace angle decreases. For smaller embrace angles and higher inertial 
loading, the circular shape tends to become more beneficial than the 
parabolic; a result that was not initially anticipated due to the catenary 
resemblance of the parabolic shape. 

Low-gravity conditions increase the structural material requirements 
(minimum thickness) significantly, although the additional weight from 
the loose shielding material can act beneficially, as expected, since 
gravity provides extra stability to arches. Hence, the need for optimising 
the structural form of resilient “extraterrestrial” structures becomes 
more evident. Moreover, a self-similar behaviour has been observed, 
revealing that every arch of a certain geometry type and embrace angle 
(β) that is subjected to a “universal” dimensionless inertial load ε

αL, 

Fig. 24. Identified areas where either the circular or the parabolic arch leads to (i) left: more cost-effective geometries (smaller values of t/R) and (ii) right: more 
resilient structures that can sustain higher levels of dimensionless inertial loading ε/(αL). 

Fig. 25. Master curves of the hinge location versus the dimensionless inertial loading, ε/(αL), for both circular and parabolic arches.  
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always results in the same minimum thickness and rupture angles 
{

t
R,φ1,φ2,φ3

}
. Areas where the circular or parabolic arches can be more 

beneficial in terms of structural material are identified and presented in 
Fig. 22 expressed in terms of the “universal” dimensionless inertial 
loading and the different embrace angles; these can be used practically 
for taking important decisions at the preliminary design stage. The need 
to optimise the arch geometry becomes apparent in low-gravity condi-
tions, as shown in Section 5, since the required minimum thickness can 
become prohibitively large. 
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Appendix A 

The coordinates of the extrados and intrados of the parabolic arch are: 

yex =
(

R +
t
2

)
−

(
R + t

2

)

(
R
2c +

t
2

)2x2 (A1)  

yin =
(

R −
t
2

)
−

(
R − t

2

)

(
R
2c −

t
2

)2x2 (A2) 

Subsequently, the weight of an arbitrary segment of the arch assuming radial cuts (Fig. 5b) will be: 

W =

{∫ xex(i)

0
(yex − yρ(i))dx −

∫ xin(i)

0
(yin − yρ(i))dx

}

−

{∫ xex(i+1)

0

(
yex − yρ(i+1)

)
dx −

∫ xin(i+1)

0

(
yin − yρ(i+1)

)
dx

}

(A3)  

where 

yρ(i) = xtan(φi) (A4a)  

yρ(i+1) = xtan(φi+1) (A4b)  

xex(i) =
(

ri +
t
2

)
cos(φi) (A4c)  

xex(i+1) =
(

ri+1 +
t
2

)
cos(φi+1) (A4d) 

xin(i) =
(

ri −
t
2

)
cos(φi) (A4e) 

xin(i+1) =
(

ri+1 −
t
2

)
cos(φi+1) (A4f) 

By substituting Eq. (9) into (8) after the consideration of c = 1/2, the exact expression of the weight of an arbitrary segment is: 

W =
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(A5) 

The equations for the calculation of the coordinates of the centre of gravity of an arbitrary segment of the arch are presented below. 

xc =

{∫ xex(i)
0

(
yex − yρ(i)

)
xdx −

∫ xin(i)
0

(
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xdx
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.engstruct.2020.111501. 
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