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Abstract—The modern Internet of Things (IoT)-based smart1

home is a challenging environment to secure: devices change,2

new vulnerabilities are discovered and often remain unpatched,3

and different users interact with their devices differently and4

have different cyber risk attitudes. A security breach’s impact is5

not limited to cyberspace, as it can also affect or be facilitated6

in physical space, for example, via voice. In this environment,7

intrusion detection cannot rely solely on static models that8

remain the same over time and are the same for all users.9

We present MAGPIE, the first smart home intrusion detection10

system that is able to autonomously adjust the decision function11

of its underlying anomaly classification models to a smart home’s12

changing conditions (e.g., new devices, new automation rules and13

user interaction with them). The method achieves this goal by14

applying a novel probabilistic cluster-based reward mechanism15

to non-stationary multi-armed bandit reinforcement learning.16

MAGPIE rewards the sets of hyperparameters of its underlying17

isolation forest unsupervised anomaly classifiers based on the18

cluster silhouette scores of their output.19

Experimental evaluation in a real household shows that MAG-20

PIE exhibits high accuracy because of two further innovations:21

it takes into account both cyber and physical sources of data;22

and it detects human presence to utilise models that exhibit the23

highest accuracy in each case. MAGPIE is available in open-24

source format, together with its evaluation datasets, so it can25

benefit from future advances in unsupervised and reinforcement26

learning and be able to be enriched with further sources of data27

as smart home environments and attacks evolve.28

Index Terms—Intrusion Detection System, Cyber-physical at-29

tacks, Smart Home, Reinforcement Learning.30

I. INTRODUCTION31

The mass adoption of IoT technology in smart homes has32

made them attractive targets to cyber threats, from unlocking33

doors and eavesdropping on occupants through their own cam-34

eras to hijacking voice-controlled personal assistant devices.35

Commercial trends for protecting against such threats revolve36

mainly around preventive measures, such as encryption or two-37

factor authentication, but the assumption that these measures38

are sufficient is not well-grounded [1], as vulnerabilities for39

IoT devices are discovered and exploited routinely despite40

them. In environments involving multiple devices of varying41

levels of trustworthiness and likely inter-dependencies between42

them, such as those found in smart homes, it makes sense to43

try to detect security breaches when they occur.44

Intrusion detection is not new to the IoT [2]. In fact,45

several solutions have been proposed specifically for smart46

city and industrial IoT environments [3, 4]. Smart homes,47
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however, present unique challenges with very specific require- 48

ments that can make generalist approaches unsuitable. They 49

consist of multiple commercial off-the-shelf (COTS) devices, 50

each often using a different network protocol, sometimes 51

directly connected to the household’s Wi-Fi router, other times 52

connected indirectly through a specialised hub, and usually 53

in an encrypted format. Users tend to develop their own 54

automation rules that virtually link otherwise unconnected 55

devices, including external ones, in unpredictable ways. 56

Furthermore, new vulnerabilities are discovered on a daily 57

basis, and it is unrealistic to expect a smart home intrusion 58

detection system to always be aware of all threats. Addition- 59

ally, cyber-physical attacks (i.e., cybersecurity breaches that 60

have adverse physical impact in the form of unauthorised, 61

delayed, incorrect or altogether prevented actuation, or in the 62

form of physical privacy breaches [5]) can affect domestic life 63

and a person’s behaviour and psychological state in their own 64

home [6]. Different users have different risk attitudes in this 65

context and would wish to configure differently any security 66

measures protecting their smart home. Finally, in most cases, 67

the cost of COTS smart home devices is relatively low, so any 68

added security provision introduced should not itself require 69

expensive equipment to run on. 70

We have addressed the above requirements by designing and 71

implementing MAGPIE (monitoring against cyberphysical 72

threats), an intrusion detection system (IDS) prototype for 73

smart homes subjected to a variety of cyber-physical security 74

threats, both known and (at the time of execution) unknown. 75

For a smart home IDS to be effective against unknown attacks 76

and in changing conditions, it must be able to adapt. We argue 77

that the configuration of an unsupervised classifier can be 78

adapted continuously via reinforcement learning as it provides 79

dynamic capability to continuously adapt an IDS configuration 80

via conceptualisation of “actions” within a detection adap- 81

tation process, guided by learning the relationships between 82

anomalous and normal cyber-physical behaviour in the en- 83

vironment. The challenge here is that an unsupervised IDS 84

system cannot know the groundtruth (i.e., whether there really 85

was an attack or not); thus, reinforcement learning cannot re- 86

ward a classifier’s specific set of hyperparameter values based 87

on the groundtruth. However, in most attacks on a smart home, 88

the less confident a classifier is, the more inaccurate it is in 89

practice. Based on this observation, MAGPIE applies a simple 90

idea for the first time: the reward function of reinforcement 91

learning on an unsupervised classifier’s hyperparameters can 92

be based on the classifier’s own confidence in its output, 93

as expressed through its cluster silhouette scores. We have 94

tested and confirmed the validity of this idea experimentally. 95
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In addition, MAGPIE introduces three more innovations to96

ensure its practicality in a household, including taking into97

account users’ risk tolerance, human presence and cyber-98

physical sources of data. In summary, MAGPIE implements99

the following contributions:100

• Ability to continuously adapt unsupervised smart home101

threat detection to changing conditions. MAGPIE self-102

adapts by applying reinforcement learning on the unsuper-103

vised classifier’s hyperparameters based on a probabilistic104

reward function without an a priori model or knowledge of105

the household configuration.106

• Experimental evaluation with both cyber and physical107

sources of data. From a threat monitoring perspective, the108

physical impact of some security breaches constitutes an109

opportunity because, in conjunction with traditional cyber110

sources of data, it can provide valuable information about111

the system’s security state.112

• Self-configuration based on automated inference of hu-113

man presence. In a smart home, the models of what is114

normal or not depend on human presence. For example,115

a voice-activated action being triggered when a human is116

present carries different significance to one triggered in the117

absence of a human.118

We provide MAGPIE in open-source format for installation119

on a low-cost Linux computer, such as a Raspberry PI*.120

II. RELATED WORK121

Traditionally, the vast majority of IoT security research ap-122

plicable to current smart homes has focused on authentication123

and access control [7, 8, 9]. Lately, there has been a growing124

body of work tackling the challenge of detection, whether125

knowledge-based (utilising signatures of known attacks) or126

behaviour-based (detecting deviation from normal behaviour).127

A. Knowledge-based smart home IDS128

Anthi et al. [10] utilised standard machine learning classi-129

fiers, such as naive Bayes, to categorise IoT activity as normal130

or malicious. The features used were limited to network traffic131

and were similar to those used for non-IoT traffic, including132

timestamp, destination IP, protocol and packet size. In [11],133

the authors specifically classified which types of attacks have134

occurred based on supervised learning. This information can135

be very useful for triggering response mechanisms, but it is136

only applicable for known attacks and requires an extensive137

period of training under attack conditions (two weeks in the138

cited paper), which may be impractical for a household’s smart139

home network.140

Brun et al. [12] focused on detecting attacks on smart home141

IoT gateways. They employed a deep learning-based approach142

using dense random neural networks. However, the attacks143

utilised in the performance evaluation were simple TCP SYN144

denial of service attacks, which were shown to be almost as145

easily detectable by a simple threshold detector. Moustafa et146

al. [13] started with generalist datasets for botnets but enriched147

*The code and datasets used here are provided at https://github.com/isec-
greenwich/magpie

them with simulated IoT sensor data. Their learning approach 148

was based on an Adaboost ensemble of decision trees, naive 149

Bayes and artificial neural networks. However, the approach 150

has not been evaluated with actual smart home devices and 151

does not account for changes in usage patterns over time. 152

Nobakht et al. [14] employed a method based on software- 153

defined networking technology, specifically OpenFlow, for 154

providing modularity in intrusion detection for smart homes. 155

Their experimental evaluation however was on a single light 156

bulb, and the technique itself was based on known signatures 157

of attacks, which limited its wider potential for large smart 158

home setups or previously unseen attacks. 159

Trimananda et al. [20] addressed the specific challenge of 160

information inference attacks in smart homes. Their tool is 161

able to automatically extract packet-level signatures for device 162

events based only on packet lengths and durations to predict 163

which device is activated. Although very useful in anomaly 164

detection, this approach has not yet been employed in this 165

fashion. Additionally, it is naturally limited to attacks related 166

to the unauthorised activation of devices. 167

B. Behaviour-based smart home IDS 168

Wan et al. [21] introduced IoTArgos, which in addition 169

to supervised classification of the data communications of 170

different smart home devices, has a “second stage” of detection 171

using unsupervised learning for unknown attacks. This is a 172

meaningful direction and has been evaluated on a wide range 173

of COTS smart home devices. However, the cost of the two 174

detection stages has not been evaluated, and the method does 175

not take into account the presence of the user or the smart 176

home’s changing conditions. 177

A very interesting idea was developed in EclipseIoT [22], 178

which in addition to authentication and access control, features 179

an early detection provision based on canary files. These are 180

forged files with enticing names (e.g., “SmartLock.py”) placed 181

amongst genuine ones. Modification of a canary file is an 182

indication of unauthorised access. 183

Procopiou et al. [15] proposed a lightweight algorithm based 184

on forecasting and chaos theory to identify flooding and DDoS 185

attacks launched by compromised smart home devices. For 186

every time-series behaviour collected, a forecast is generated, 187

and the error of the forecast against the actual value is 188

assessed by the Lyapunov exponent to determine if an attack 189

has occurred. The evaluation conducted in NS-3 simulation 190

involved low-rate and flooding attacks, but the method has 191

not been extended beyond availability threats. 192

Novak et al. [16] proposed an intrusion detection technique 193

that focuses on identifying unusually short and unusually long 194

activities based on self-organising maps. While the approach 195

of taking into account the length of activities proved to be 196

useful, it is not sufficient by itself and can lead to considerable 197

false positives. 198

Ramapatruni et al. [17] employed a hidden Markov model- 199

based approach that learns what is normal in a smart home. In 200

terms of context, if the user is recognised as being out (based 201

on their mobile device’s Wi-Fi connectivity), then any activity 202

related to doors will result in an abnormal state. A strength of 203
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Table I: Limitations in existing intrusion detection research for IoT and Smart homes Vs. MAGPIE

IDS Cyber sources Physical sources Self-configuration Testbed
[10] IP 7 7 Laboratory
[12] IP 7 7 Laboratory
[13] IP 7 7 UNSW-NB 15, NIMS datasets
[15] IP 7 7 Simulation
[16] ZigBee 7 7 Simulation
[17] IP Sensor readings (HTTP API) 7 Smart home testbed
[18] IP 7 7 Laboratory
[19] IP, WiFi, BLE 7 7 Laboratory
[11] IP 7 7 Smart home testbed
[20] IP 7 7 Smart home testbed
[14] IP 7 7 Smart home testbed
[21] IP 7 7 Smart home testbed
MAGPIE Modular (IP, ZigBee, WiFi tested) Modular (RF, Audio tested) Continuous* Real household
* via RL-based hyperparameter adaptation and Human presence inference

this work is that it can take into account the traffic generated204

by several diverse sensors, but it has been evaluated only in205

simulations in the form of artificial state changes.206

Yamauchi et al. [23] expanded consideration of the user by207

modelling user behaviour as a sequence of events, including208

the operation of IoT devices and other behaviour monitored209

by sensors. Their method learns sequences of events for a210

predefined set of conditions and detects attacks by comparing211

the sequences of events, including the current operation, with212

the learned sequences. This work was extended in [18] and213

compared with a technique based on a hidden Markov model.214

It was tested on four users using smart home devices, but in a215

laboratory setting. Naturally, any legitimate behaviour that had216

not been previously observed would erroneously be flagged as217

anomalous.218

C. Critique of related work219

We observe that there is a wide variety of machine learning220

classifiers utilised in the literature, but there has been no221

emphasis on allowing configuration of intrusion detection222

beyond the design stage or based on the user’s preferences.223

In addition, existing smart home IDSs have largely ignored224

the fact that cyber attacks in smart homes have an observable225

physical impact, which can be useful in detection. Finally, with226

the exception of [23], human presence has not been taken into227

account in smart home IDS research, although normal IoT228

device and network activity differ when the users are at home229

versus when they are not. In Table I, we provide an overview230

of the existing literature on intrusion detection approaches and231

MAGPIE, and in the following sections, we present, in detail,232

how MAGPIE addresses all four limitations.233

III. MAGPIE DESIGN234

Figure 1 summarises the MAGPIE architecture. Its collec-235

tion phase captures and decodes the data coming from cyber236

(computation, communication) or physical feeds (e.g., audio,237

signal strength). It can dynamically activate or deactivate238

interfaces and decode the corresponding raw feeds, such as239

sensor readings or network datagrams.240

Smart homes generate large volumes of usually encrypted241

data [24] that may differ considerably between different envi-242

ronments. In the transcription phase, MAGPIE considers only243

meta-data that are consistent across different smart homes.244

We argue that alternative approaches, such as authenticated245

and encrypted device API queries or passive interception 246

of content with decryption keys, would render the defence 247

mechanism a single point of failure and a target for attack. 248

Moreover, by reading only smart home network communica- 249

tion flow meta-data, MAGPIE is better positioned to preserve 250

privacy. MAGPIE extracts meta-data streams (MDS) based on 251

specific interface datastream parsing logic (e.g., communica- 252

tion/application/sensor protocol) (Figure 2). Rolling window- 253

based parser extraction and buffering allow appropriate per- 254

formance and volume of data samples for processing. After 255

aggregating, statistical information on the extracted meta-data 256

features, such as the mean, standard deviation, min and max 257

of sample frequency, content/message type, size, length, delay 258

and flow direction, is considered. We define the delay meta- 259

data feature as the inter-arrival rate in milliseconds between 260

packets/frames for the same source-destination message type 261

pairs. 262

Table II shows the volume and inter-arrival rate for samples 263

collected in a 5-min window in our smart home testbed during 264

periods of relatively low occupant activity with an aggregate 265

average sample inter-arrival rate of 0.49 s and average sample 266

volume of 3456, with extremes of under 1 ns between input 267

samples in some cases. On the basis of these observations, 268

it is clear that analysis on datastream samples in real time, 269

without windowing and buffering, is impractical on a resource- 270

constrained platform. Moreover, it may prove impractical to 271

offload such volumes of data due to file size, upstream network 272

bandwidth saturation and throttling [25]. 273

Table II: Datastream sample inter-arrival time in seconds with
no smart home occupant present (5-min capture)

Datastream Samples Avg. Min Max Stdev.
IP 569 0.5369 0.00002 4.0338 0.9539
WiFi 3555 0.0892 0.0008 0.2048 0.1023
Sound 12465 0.0240 0.0121 0.0718 0.0146
Zigbee 390 0.7848 0.0002 5.3879 1.3882
RF 300 1 1 1 0

As part of windowing, a synchronised “end of window” 274

datastream buffer is the stage where a parsing instance should 275

initiate feature extraction, interpolation, discretisation and gen- 276

eration of statistical data (Figure 2). The datastream window in 277

the buffer is then forwarded to a parsing logic and interpolation 278

phase, where meta-data extraction and feature interpolation 279

are performed on raw datastreams and are enumerated with 280

protocol mapping identifiers (e.g., addressing, data type). The 281
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Figure 1: The MAGPIE architecture

Figure 2: Parsing datastreams with variable inter-arrival rate

output is the MDS window feed, which is forwarded for282

storage to the MDS datastore to fuse data points across all283

MDS datastreams into an aggregated sample (aMDS). The284

datastore serves as a data historian for anomaly detection285

training (e.g., concept discovery) and captures snapshots of286

MDS data samples used in reinforcement learning-based adap-287

tation (Section III-A). The aMDS fusion extracts common288

statistical features across all MDS feeds, which are later used289

to train a presence inference function within the smart home.290

The aMDS dataset combines common features across MDS291

feeds to generate a single feature-vector sample per window292

t for presence inference (whilst each MDS can have different293

sample rates for t) by omitting source-destination address and294

message type pairs for network data sources and compressing295

some physical MDS input. The average, mode, cumulative sum296

and standard deviation metrics are obtained for each feature297

extracted across each MDS feed.298

The real-time threat monitoring latency is the window299

buffering latency plus the reasoning engine’s prediction la-300

tency. All received MDS feeds are processed, interpolated,301

normalised and scaled in real time during each monitoring302

window interval. This process provides the required feature303

structures for concept discovery training data to learn “normal”304

behaviour and generate an independent anomaly detection305

model for each interface. Note that the complexity of the306

MAGPIE transcription phase is variable based on the cyber307

or physical data source, the sample rate and whether the data308

source is connection-oriented. For example, for network data309

sources (IP, WiFi, ZigBee), the computational complexity of310

the end-to-end parsing logic and interpolation is O(nδ), where311

n is the number of samples (or data set size) per window t 312

and δ represents the computation of distinct source-destination 313

pairs by connection address, port and message type. For 314

physical data sources (RF and Audio), the computational 315

complexity is O(n). For training, the individual linear time 316

complexity for each isolation forest model is O(ζψ logψ) [26]. 317

During real-time detection, the computational complexity of 318

each isolation forest model is O(nζ logψ). From a technical 319

implementation perspective, MAGPIE’s processing efficiency 320

is achieved by running parallel transcription processes for each 321

data source and anomaly model. During the course of testing 322

on a Raspberry Pi3, on average, the transcription phase did 323

not exceed 1 s for each monitoring window t or 2.5 s for 324

the end-to-end processing phases (collection, transcription and 325

reasoning) at peak loads across five data sources. 326

A. Reasoning 327

MAGPIE employs (i) real-time unsupervised anomaly de- 328

tection, (ii) adaptation based on reinforcement learning, and 329

(iii) model selection based on human presence inference. 330

1) Unsupervised anomaly detection: The first building 331

block of MAGPIE’s reasoning is the real-time detection of 332

anomalies on individual interfaces. Here, supervised machine 333

learning techniques are impractical because attack dataset 334

labelling is unlikely to apply across households with different 335

system configurations and different automation rules defined 336

by their users. Let us consider the general case of an MDS 337

feed k ∈ [1,K] monitored during time window t. 338

During that time window, M samples are collected, A 339

of which are classified by an anomaly detection process 340

as abnormal and N of which are classified as normal, for 341

example, based on an isolation forest [26] classifier, one-class 342

support vector machines [27] or support vector data description 343

[28]. We denote by At (resp. Nt) the number of abnormal 344

(resp. normal), according to MAGPIE, samples investigated 345

during time window t. Therefore, regardless of the choice of 346

anomaly classifier used, for each MDS feed k in window t, we 347

denote by Ak,t (resp. Nk,t) the number of anomalous (resp. 348

normal) samples found in feed k during time t. We then define 349

the anomaly ratio pk,t as pk,t = At

At+Nt
. 350

Extending this approach across all feeds, we derive an
aggregate anomaly score at for time window t. We have
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(a) All models pt equal or 1 model
≥0.1 with all others = 0

(b) Variable pt across all models

Figure 3: q parameter anomaly score bias example

chosen

at =

(∑K
k=1 p

q
k,t∑K

k=1 pk,t

) 1
q−1

(1)

This transformation is required because different data351

sources can exhibit highly variable behaviour, and a single352

source’s anomaly score is not a reliable means for determining353

an attack state. As described in [29], a simple approach, such354

as a weighted sum, cannot deliver reliable results because in-355

dividual anomaly scores are typically contradictory. Therefore,356

we use the aggregate anomaly score at to address skewness.357

As square roots are commonly used for left skewness while358

cube roots are used for right skewness, the introduction of359

q allows for flexibility in the transformation. In practice, the360

control parameter q configures a higher, lower or balanced361

anomaly score bias across the ensemble. Favouring higher or362

lower scoring bias, however, can have an adverse effect on363

the anomaly score threshold θ defined by the smart home364

occupants for when to report a suspected attack. For exam-365

ple, in Figure 3, we demonstrate how an ensemble of five366

data sources, as in our experiments, can affect the detection367

accuracy if the user has defined a specific θ when q is too368

low or too high. For the top graph in Figure 3, for each369

aggregate score at (where all models are equal to the same370

pt, or one model pt > 0 with all other models pt = 0), we371

show that depending on the user’s defined θ, the value of q372

results in higher false positives or false negatives. For balanced373

accuracy, in this case, q = 3 is an optimal configuration for374

an ensemble of five anomaly models. In the bottom graph in375

Figure 3, we provide three general cases with variable anomaly376

model ratio scores pt. If an occupant defines θ = 0.3 as377

their attack threshold, then q = 2 would result in more false378

positives, while q = 5 would result in more false negatives.379

Thus, a middle-ground q parameter is preferable (again, in this380

example with five models, q = 3). Consequently, q must be381

increased or decreased as the number of data sources changes382

(where a minimum of two data sources, e.g., cyber + physical,383

is assumed and K ≥ 2). In our experiments, we found that a384

middle-ground value, i.e., q =
⌈
K
2

⌉
, is appropriate and can be385

set automatically.386

As pk,t ∈ [0, 1], this conveniently ensures that at ∈ [0, 1].387

Thus, according to (1), the higher the q ∈ [2, inf] is, the388

more important one abnormal feed is to the overall anomaly389

score. As discussed, we have found experimentally that q = 3390

provides a good balance between ensuring that the overall391

score does not unduly fluctuate between excessively high 392

values caused by small numbers of anomalous MDS feeds 393

(e.g., one cyber and one physical interface) or excessively low 394

values caused by large numbers of normal MDS feeds (e.g., 395

ten cyber/physical interfaces). Thus, for simplicity, equation 396

(1) becomes at =

√∑K
k=1 p

3
kt∑K

k=1 pkt

. 397

Finally, the anomaly score is interpreted as an overall 398

monitoring state St for the smart home, abnormal (if at > θ) 399

or normal (if at < θ), based on an anomaly score threshold 400

θ ∈ [0, 1], which is selected by the occupants. 401

In practice, θ is a threshold that represents the risk profile 402

of the household. For example, a very high value, such as 403

θ = 0.9, would mean that the household would not want 404

to be warned unless there are multiple strong indications of 405

anomalies (risk-seeking profile). Intuitively, this is a household 406

that would prefer to minimise false positives at the expense 407

of a greater number of false negatives. In MAGPIE, a global 408

θ threshold represents a single configuration parameter that 409

occupants configure for attack detection. While model-specific 410

θ definitions would increase the flexibility and control for the 411

user, it would also increase the configuration complexity. First, 412

users would require technical expertise to determine which 413

θ to use for each data source, as it is unrealistic to assume 414

a priori knowledge on the mapping between which θ values 415

would bias one source over another. Furthermore, considering 416

a preference for cyber or physical attack detection in cyber- 417

physical IDS, it may be ineffective to define specific θ values 418

that bias one cyber or physical source over another, specifically 419

because attacks against either may be initiated via cyber 420

or physical space [5]. By comparison, a global θ definition 421

specifies a required threshold for an aggregate anomaly alert 422

to be considered significant enough to be a substantive attack, 423

regardless of whether the attack source is cyber or physical. 424

Further, to improve the processing of MDS samples as 425

timeseries data, a sliding window of MDS samples is defined 426

per MDS feed. The sliding window enables the anomaly score 427

ratio calculation to take into account a previous window (or 428

windows) of MDS activity. 429

2) Adaptation based on reinforcement learning: A newly 430

installed smart home’s dataset is typically free from con- 431

tamination. After some time, however, the MDS datastore 432

is likely to contain adversarial data samples from historic 433

attacks or compromised devices. Therefore, it is important to 434

adapt the learning process to cope with adversarial datapoints. 435

This requirement is addressed naturally in certain unsupervised 436

learning approaches through the application of contamination 437

hyperparameters that adjust the decision threshold used for 438

anomaly detection. Furthermore, what is considered normal in 439

a household can change continuously as devices are added, 440

removed or updated and as people add or remove automation 441

rules or simply change how they use the devices. Therefore, 442

changes in the datastream distribution require continuous adap- 443

tation of the anomaly detection threshold. Concept discovery 444

is unique for each smart home, even for households with 445

identical smart home configurations, because the network, 446

sensor and actuation activity depends on the human factor 447

[30]. Therefore, an unsupervised anomaly detection model 448
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Figure 4: MAGPIE’s reinforcement learning for threat detection re-configuration

Figure 5: MAGPIE Reasoning Engine overview

developed for one smart home is not portable to another.449

As it is generally infeasible to obtain a priori knowledge450

of the correct contamination level, we propose the use of451

reinforcement learning to continuously update the anomaly452

classifier’s hyperparameters.453

The reinforcement learning mechanism in MAGPIE re-454

cursively explores and exploits detection reward feedback455

across different anomaly classifier configurations, where a456

single action-state (i.e., the anomaly classifier hyperparameter457

configuration) is selected during each step. The process treats458

the continuous capture and analysis of each MDS snapshot459

as an adversarial multi-armed bandit (MAB) environment460

[31, 32] because the composition of an individual dataset461

snapshot collected and analysed by MAGPIE (e.g., in terms of462

volume and data points) is continuously changing during real-463

time operation. This approach enables the anomaly detection464

to adapt to previously unseen data and to identify legitimate 465

changes that occur in the environment that are expected to 466

stabilise over time, whereas attack anomalies remain distinct 467

because of their sparse occurrences. 468

For each MAB iteration, we define a probabilistic reward 469

feedback based on the cluster silhouette scores of the anomaly 470

detection results generated for each analysed dataset snapshot. 471

In practice, the reinforcement learning process rewards the 472

action-states (e.g., bandit arms) that reduce uncertainty in its 473

own decision. Below, we describe the bandit environment, 474

action-state parameters and reward generation algorithm: 475

[Bandit environment]: Defined as an adversarial bandit 476

[33], where for each MAB action-state parameter iteration 1 477

to N (where N is the step horizon for a bandit episode), MDS 478

data snapshot i ∈ [J ] is selected at random, and [J ] is the set 479

containing all current MDS feed datastore snapshots. 480

[Action-state parameter]: The bandit arms are defined by 481

the anomaly model contamination hyperparameter χ, which 482

corresponds to the proportion of outliers in snapshot i used 483

for anomaly modelling. The χ hyperparameter controls the 484

anomaly detection decision threshold based on the anomaly 485

detection classifier. For example, for our MAGPIE implemen- 486

tation, χ controls the decision threshold of an isolation forest 487

classifier based on the decision function described in [26]. 488

[MAB reward generation algorithm 1)]: The reward logic 489

is as follows: for a given window t ∈ [1, T ], each MAB iter- 490

ation corresponds to a given action-state (i.e., contamination 491

hyperparameter) χ. We define at,χ as the anomaly score value 492

of time window t for a contamination hyperparameter χ, and 493

we denote ~aχ as the vector of all anomaly scores for χ for all 494

the different time windows t. 495

Next, using K-means clustering with the Euclidean dis- 496

tance, we generate two clusters that contain higher and lower 497

anomaly scores. We define the reward value Rχ,i for snapshot i 498

as the silhouette score from the dataset clusters that represents 499

a measure of cluster similarity. 500

Figure 4 shows a high-level illustration of the reinforce- 501

ment learning role. During real-time operation, 1) the cur- 502

rent anomaly model’s configured detection threshold classifies 503
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ALGORITHM 1: Algorithm for IDS RL Reward
Input : Anomaly scores produced by χ for each

window in dataset i (at,χ)
Output: MAB reward value Rχ,i

1 Function MABReward:

2 for t ∈ [1, T ] do
3 ~Aχ ← at,χ ;
4 end
5 k = 2 ;

6 ~Cχ = KMeans( ~Aχ, k) ;

7 Rχ,i = Silhouette(~Cχ) ;
8 return Rχ,i ;
9 End Function

MDS samples during each monitoring window t. Depending504

on either the number of samples collected or the time delta505

between collection periods, 2) MDS sample snapshots (e.g.,506

M samples across K feeds) are sent to a “MAB RL” function507

to determine anomaly model hyperparameter χ based on508

the newly updated data sample of recent and historic MDS509

samples. Once the updated MDS samples are processed by the510

“MAB RL” function, 3) the model configuration computed by511

the RL process is issued as an updated model configuration512

(χ) for real-time anomaly detection. This process enables the513

anomaly model configuration to adapt its detection threshold514

via the RL process to respond to changes in the MDS data515

sample distribution and to discover previously unidentified516

threats.517

Figure 5 shows the reinforcement learning process.518

• Real-time detection. During each detection window t,519

following collection and transcription processing (1.1), the520

presence inference layer classifies the aMDS sample to521

determine the presence inference state (1.2) and then selects522

the most appropriate anomaly detection model to use for523

each subsequent MDS sample forwarded in the window524

(1.3). The user’s risk threshold θ is used to compute the525

window’s aggregated anomaly score by means of formula526

(1).527

• Continuous RL adaptation. Once the sample input thresh-528

old (which is defined by the sample data size or time delta)529

is met, the received MDS samples are stored as a snapshot530

consisting of n windows in the MDS datastore set [J ] (2.1).531

MDS samples are selected at random during each MAB532

arm iteration. During each trial (2.2), each MDS model is533

trained with contamination hyperparameter χ (i.e., the MAB534

action-state parameter), with the MDS dataset excluding the535

randomly selected MDS snapshot i (i.e., the non-stationary536

bandit environment). Snapshot i is then used as test data for537

the trained anomaly model, producing an array of anomaly538

scores for each window in the snapshot, where the reward539

Rχ,i is computed by the reward Algorithm 1. Once the540

number of predefined RL trials has been reached, the χ541

hyperparameter “tuned” model is selected for use in the542

real-time anomaly detection process. The RL process is re-543

initiated once a new snapshot is stored. 544

To estimate the reliability of MAGPIE’s reward mechanism, 545

in section V, we experimentally evaluate two popular MAB 546

algorithms that are commonly applied in non-stationary and 547

adversarial bandit problems against a random selection method 548

and compare their the cumulative average regret, cumulative 549

average reward and average regret. We then proceed to estab- 550

lish the quality of the arm (χ) selection for the optimal bandit 551

method using a fixed step horizon and evaluate the selection by 552

generating an AUC-ROC model score for the corresponding 553

isolation forest anomaly classifier configurations. 554

Monitor state and source detection - The state and source 555

variables are intended to inform the household of whether the 556

smart home is subject to anomalous behaviour after computing 557

the detection score (e.g., under attack), as well as the MDS 558

feeds with the highest anomaly score, which is indicative of 559

the utilised attack vector (e.g., IP network, Zigbee network). 560

3) Human presence inference: Certain smart home system 561

activity is observed irrespective of occupant presence. For 562

example, a voice-controlled home assistant sends a continuous 563

keep alive IP packet to the cloud regardless of whether 564

occupants are using it. Other cases of system activity would be 565

unusual if no human is present. For example, consider the case 566

where network traffic from a ZigBee motion sensor increases 567

dramatically or a voice command is activated even though no 568

one is home. Therefore, it may make sense to train different 569

machine learning models for the two cases of presence and no 570

presence. Human presence inference can be based on a simple 571

manual process, where occupants set it manually when they go 572

to sleep or leave home, or it can be performed automatically 573

before anomaly detection to select the machine learning model 574

that corresponds to the presence state identified. 575

IV. PROTOTYPE IMPLEMENTATION AND SETUP 576

We have evaluated our prototype implementation by inte- 577

grating it within the smart home of a real household with 578

three members. Figure 6 shows the layout of the devices, 579

which are described in Table IV, referenced by number ID 580

in Figure 6, and accompanied by the smart home automation 581

rules specified by the household, which are summarised in 582

Table V. The setup includes a common home Internet router 583

(2) with a WiFi LAN for WiFi-enabled devices (3-7, 13) and 584

a ZigBee gateway (8) for Zigbee devices (9-12) connected to 585

the home router via Ethernet. Remote connectivity to WiFi and 586

ZigBee devices is facilitated by respective cloud services via 587

the Internet. MAGPIE (1) collects all local and Internet traffic 588

traversing the home router via an Ethernet SPAN port. Its WiFi 589

and ZigBee interfaces passively monitor WiFi and Zigbee 590

network frames on their configured RF channels. The software 591

defined radio (SDR) interface captures spectrum readings in 592

the respective WiFi and ZigBee 2.4 GHz ranges. MAGPIE’s 593

microphone is directly connected via USB. An adversary 594

within wireless range of the smart home can execute ZigBee 595

and WiFi attacks using an attack laptop, SDR peripherals and 596

ZigBee antennas with customised firmware. The adversary can 597

also target the smart home remotely via compromised cloud 598

services or via command and control of compromised devices. 599

See Table IX for a list and descriptions of the attacks. 600
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Figure 6: Smart home testbed for MAGPIE prototype experiments

Table III: Live capture sample dataset statistics

Dataset Mean length Attack States* Stdev
45 x Normal 713.7 s N/A N/A
10 x A1 36.4 s .524 0.007
10 x A2 39 s .542 0.051
10 x A3 25.2 s .527 0.038
10 x A4 37.8 s .526 0.018
10 x A5 27.6 s .572 0.033
10 x A6 25.6 s .551 0.054
10 x A7 29.2 s .615 0.283
* Average ratio of attack to normal states during attacks

Figure 7 presents the MAGPIE prototype’s technical601

schematic. Each MAGPIE interface (1: Ethernet, 2: ZigBee602

antenna, 3: WiFi antenna, 4. Microphone, 5: SDR RF scanner)603

has individual data collection and parser processes managed604

by a window synchronisation daemon to forward all MDS605

datastreams to a message queue (ZMQ publisher) based on a606

defined time window. The ZMQ message queue forwards each607

MDS datastream to a datastore. Then, MDS pre-processing608

subscribers pull each MDS datastream from the ZMQ message609

queue, preprocess and forward the prepared MDS feature610

vectors to each respective MDS Isolation Forest model for611

anomaly detection and aggregated threat detection output. In612

parallel, the aMDS feed is forwarded to the random forest613

presence classifier for presence model selection. MAB RL614

adapted isolation forest models are trained, stored in the615

datastore and then loaded into the anomaly model selection616

and detection process after every MAB RL iteration.617

The behaviour of occupants in the testbed and their inter-618

actions with the smart home devices and automation rules619

was allowed to occur naturally, with the addition of some620

requested actions to ensure that all automation rules or devices621

were activated during data collection. Training data collection622

was conducted intermittently during a 1-month period. The623

locations of the MAGPIE prototype and IoT devices remained624

static, with the exception of the mobile and tablet devices,625

which moved with the occupants using them. In total, there626

were 45 normal data collection runs with an average length of627

713.7 s each and 70 attack data collection runs with an average628

length of 31.5 s each. In Table III, we provide summary629

statistics related to the datasets collected during the 1-month630

experiment.631

A. Cyber-physical meta-data features in the smart home 632

In Table VI, we present each of the cyber-physical MDS 633

feeds and the corresponding features collected. Further sta- 634

tistical flow information, such as sample frequency, average 635

and standard deviation metrics, are added during parsing. We 636

utilise tshark’s display filter at run-time for standard input into 637

the MDS parser, applying only regex operations to input data. 638

Note that for physical data sources such as audio and radio 639

frequency spectrum, we utilise custom (a python application) 640

and open-source libraries (rx power from rx tools [34]) for 641

feature collection. On the testbed, we apply the following 642

constraints based on observation: 643

• WiFi data frames are redundant and ignored as they pro- 644

vide the network footprint, which is already monitored 645

in encapsulated IP packets. WiFi “Request/Clear to Send” 646

control frames are ignored as these are mainly used to avoid 647

hidden-node collisions. Therefore, only WiFi management 648

frames, which can be exploited to disrupt or infiltrate a WiFi 649

network, are monitored. 650

• ZigBee sensors and actuators, with the exception of coor- 651

dinator nodes (e.g., gateways), use dynamic network ad- 652

dressing. Therefore, all non-coordinator nodes are addressed 653

using the same numerical value. This does not impact the 654

ability to model anomalous ZigBee patterns as sensor and 655

actuators generate a fairly predictable network footprint. 656

• Radio frequency spectrum analysis covers the 2.4 GHz 657

frequency band for 802.11G and ZigBee, which can also 658

include Bluetooth and other 802.15.4 wireless protocols. 659

1) Risk-based unsupervised threat monitoring with rein- 660

forcement learning adaptation: 661

• Isolation forest anomaly detection. We have opted to im- 662

plement unsupervised anomaly detection using the isolation 663

forest algorithm in Python with the Scikit Learn library 664

[35]. It performs anomaly detection by isolating sample 665

data points through random feature selection and value 666

splitting, selecting a random value between the maximum 667

and minimum bounds of a data sample feature. No prior 668

assumptions are made regarding the distribution of feature 669

values. Therefore, randomised feature splitting is effective 670

for hybrid feature-sets of both continuous and categorical 671
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Table IV: Smart home testbed devices and network connectivity

ID Device Type Interface Description

1 MAGPIE prototype ZigBee, WiFi, RF, Audio, Ethernet (IP) Raspberry PI 3 “MAGPIE-enabled” prototype
2 WiFi router WiFi 802.11G, Ethernet (IP) Vodafone Broadband home router
3 Home assistant WiFi (IP) Amazon Echo voice-controlled home assistant connected to WiFi router
4, 5 Smart lightbulb WiFi LIFX smart light bulb connected to WiFi router & Amazon Echo via Cloud
6 Smart camera WiFi (IP) Somfy Protect smart camera connected to WiFi router & IFTTT via Cloud
7 Tablet WiFi Samsung S2 tablet connected to WiFi router
8 Smart hub Ethernet (IP), ZigBee, Zwave SmartThings hub connected nodes via ZigBee & WiFi router via Ethernet (IP)
9 Motion sensor ZigBee SmartThings motion sensor connected to smart hub via ZigBee
10 Smart outlet ZigBee SmartThings power outlet connected to smart hub via ZigBee & Amazon Echo via Cloud
11 Presence ZigBee SmartThings presence sensor key chain dongle connected to smart hub via ZigBee
12 Multi-purpose sensor ZigBee SmartThings multi-purpose sensor connected to smart hub via ZigBee
13 Smart phone WiFi, Cellular (3/4G) Connected to WiFi router (external connectivity to smart home control software via 3/4G)

Figure 7: MAGPIE prototype technical schematic

Table V: Smart Home testbed automation integration and rules

Trigger Platform Action WAS Antecedent

Amazon Echo Voice trigger command IFTTT Somfy Protect actuation
Amazon Echo Voice trigger command Alexa Skills LIFX bulb actuation
Amazon Echo Voice trigger command Alexa Skills Outlet actuation
SmartThings Mobile app “On” button SmartThings Outlet actuation
SmartThings Door-open detection SmartThings SmartThings Multi-sensor
Amazon Echo Motion sensor detection IFTTT Somfy Protect Arm/Disarm
LIFX Mobile app “Bulb” button LIFX LIFX bulb actuation

WAS: Workflow Automation Service

Table VI: MAGPIE prototype data feeds and meta-data stream
(MDS) features

Data feed Input Base Features

IPv4 (TCP/IP) pkts C src*, dest*, port, pkt type, pkt sz, ttl*, pkt delay, flow dir*.
WiFi 802.11 frames C+P src*, dest*, port, frame type, frame sz, rssi, frame delay
ZigBee (802.15.4) pkts C src*, dest*, pkt type, pkt sz, pkt delay
Microphone audio P rms frequency threshold, rms
RF (2.4GHz) Spectrum P † dB power level (per frequency bin)

C = Cyber, P = Physical, *aMDS: not used, † aMDS: Avg/Stdev of all bins

data, as is the case with MDS feeds. The recursive feature672

partitioning represents a tree structure, whereby the number673

of times a feature is split to isolate a sample follows a674

traditional tree path length from the root to a terminating675

node. The average tree path length represents the decision676

function used to classify observations as normal or anoma-677

lous [26]. For each MDS feed generated, an independent678

feed-specific isolation forest model is created. Together, the679

forests form an ensemble of models used to produce an 680

aggregate anomaly score during each monitoring window. 681

• Adversarial multi-armed bandit reinforcement learning. 682

MAGPIE models threat detection adaptation in a smart 683

home as an adversarial bandit environment based on the 684

premise that what is normal behaviour (e.g., devices, net- 685

work traffic, user interaction) may frequently change in 686

a smart home. Therefore, MAGPIE trains its RL-based 687

anomaly classifiers on a continuously changing series of 688

collected dataset snapshots. At each time step, for each 689

arm pull (i.e., isolation forest χ hyperparameter selection), 690

the smart home bandit chooses at random a dataset to test. 691

Therefore, on the basis of algorithm 1, the distribution of 692

reward Rχ,i for each action state arm is drawn from an 693

i.i.d. distribution based on randomly selected MDS dataset 694

snapshots. In this case, as each arm’s reward distribution 695

changes at random in the adversarial bandit environment, 696

the EXP3 (exponential-weight algorithm for exploration and 697

exploitation [33, 36]) algorithm is a natural and suitable 698

choice to establish the optimal χ configuration for the 699

isolation forest. For comparison against EXP3, we also 700

select a non-stationary sliding-window based UCB (upper- 701

confidence bound) algorithm [37], where the reward policy 702

is weighted according to a constant step size used to update 703

the reward estimate (we defined a step size of 0.1, which 704

moves the agents estimate 10% closer to the most recent 705

observed reward). UCB is a popular choice for traditional 706

stationary MAB reinforcement learning problems, achieving 707
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MAB Algorithm Parameters

EXP3 γ = 0.1, arms* = 10, iters.†=6000
Non-stationary UCB1 exploration (C) = 2, λ = 0.1, arms* = 10, iters.†=6000

*hyperparameter configurations, † action-step horizon

Table VII: EXP3 and non-stationary UCB1 MAB parameters

Table VIII: MAGPIE prototype Reasoning Engine model
configuration parameters

Anomaly detection (Unsupervised learning) configuration

Algorithm Isolation Forest
Trees (ζ) 200 (per MDS model)
Sub-sampling (ψ) 250 (per MDS model)
Bootstrap Sampling without replacement
Max Features All features (randomly selected per split)
Contamination (χ) Bins = 0.001, 0.002, 0.005, 0.01, 0.2, 0.05, 0.1, 0.2, 0.5, 0.7
θ 0.1, 0.3, 0.5, 0.7, 0.9

Presence inference (Supervised learning)

Algorithm Random Forest
Trees (ζ) 100
Sub-sampling (ψ) 250 (per MDS model)
Max Depth 15
Bootstrap Sampling without replacement
Max Features Auto (max features=

√
features)

θ 0.3, 0.5, 0.7

Detection adaptation (Reinforcement learning) configuration

Algorithm EXP3 (γ=0.1, 6000 step-horizon)
Reward metric As per section III-A
Presence 1 (Activity), 0 (No activity)
MAB Arms 10 - (Contamination χ Bins)

logarithmic regret for the number of actions/arm pulls (in708

this case, χ parameters) selected over time [38], where709

regret refers to the expected decrease in reward gained710

during execution of the learning algorithm instead of acting711

optimally [39]. In other words, the regret is the difference712

between the reward of a given policy (i.e., the learning713

algorithm) and that of the optimal static policy in hindsight.714

In this case, to adjust to stochastic, non-stationary bandit715

behaviour, a discounting factor (λ) based on a step-size716

sliding window is applied to a UCB1 policy reward estimate.717

The EXP3 and non-stationary UCB1 implementations were718

adapted from the bandit algorithms developed in [40] and719

[41], respectively. In Table VII, we summarise the config-720

uration parameters for the EXP3 and non-stationary UCB1721

algorithms.722

2) Human presence inference: In our implementation, the723

presence of people is detected with a supervised random forest724

(RF) classifier using ground-truth labels defined by the user,725

as RF is commonly used for lightweight machine learning in726

the IoT [42]. Other lightweight supervised machine learning727

classifiers are similarly useful. Labelling of aMDS data sam-728

ples (user presence (1)/no user presence (0)) is pre-configured729

for the initial training of the prototype during the start-up730

learning phase. Subsequent training requires users to actively731

inform MAGPIE of the time periods in which they are actively732

present in the household (unsupervised presence inference is733

outside the scope of the prototype development). We define a734

simplified household environment for presence inference based735

on whether occupants are actively or passively interacting with736

the smart home network. By observing the behaviour of a sub-737

sample of collected aMDS data points (Figure 8), we see a 738

distinguishable impact of presence and no presence for most 739

datastreams. However, aside from other physical sources, basic 740

sound measurements as a feature may be problematic in the 741

face of an audio injection attack. We evaluate this impact 742

on automated presence inference in section V-A, where we 743

also assess overall detection results, showing that presence 744

inference helps increase accuracy. 745

B. Smart home cyber-physical attack vectors 746

We have subjected our testbed to attacks targeting WiFi, 747

ZigBee and voice-enabled home assistant communication tech- 748

nologies, as well as corresponding smart home device control 749

software and third-party apps, all of which are commonly 750

deployed within today’s smart home environments. WiFi is 751

currently the primary connectivity medium in most smart 752

homes, not only for device-to-device communication but also 753

as a network gateway to the cloud services on which most 754

smart home devices rely. ZigBee is a low-powered wireless 755

medium that provides energy-efficient connectivity for low- 756

resource devices that connect to more capable control gate- 757

ways (e.g., ZigBee hub with Ethernet or WiFi backhaul). How- 758

ever, it has limited bandwidth for data communication (250 759

kbit/s per channel in the 2.4 GHz band used in the testbed). 760

Security-wise, the speaker-microphone pair of a voice-enabled 761

home assistant is typically an unmonitored communication 762

link, which has been shown to be vulnerable to exploitation 763

[44]. Smart home devices such as security cameras offer 764

physical monitoring protection of the household; however, 765

recent high-profile compromises of these types of systems have 766

demonstrated how their exploitation can lead to significant 767

breaches of the physical privacy of occupants and, in some 768

cases, impact their emotional well-being [6]. 769

In Table IX, we describe the attack vectors and their cyber- 770

physical impact based on [5]. All attacks were executed in both 771

the presence and no presence conditions. Note that localised 772

attack vectors (namely, WiFi deauth (A1), Evil twin (A2), 773

ZigBee jamming (A3) and Node amplification (A4)) could also 774

be launched remotely if a target device were compromised 775

through third-party apps, cloud-based control software, or 776

compromised software and hardware supply chains [6]. For 777

example, both home assistants and smart lightbulbs provide 778

the ability to host their own WiFi access point, whilst ZigBee 779

devices are capable of reconfiguring themselves as ZigBee 780

network coordinators. 781

C. Experimental scenario, settings and parameters 782

Our experimental process consisted of three phases. Phase 783

1 was related to (i) live sample data collection of smart home 784

behaviour (in terms of the data sources monitored) when not 785

under attack and (ii) execution of each attack vector. This 786

phase comprised two different types of experiments: one where 787

users were present during data collection and another where 788

no users were present in the household. Phase 2 was related to 789

the adaptation of the offline reinforcement learning anomaly 790

detection. Phase 3 was related to live monitoring of attack 791

detection using the RL-optimised MAGPIE configuration. 792
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Figure 8: Aggregated MDS (aMDS) behaviour during “No presence” (orange dashed line) and “Presence” (blue line) states.

Table IX: Experiment attack vectors with cyber-physical impact classification [6] in the smart home

Attack* Layer C* P* Description

(A1) WiFi
deauth

Data Link A PA, DA WiFi deauthentication frame flood, resulting in prevented or delayed actuation and DoS for all WiFi hosts. Executed
with aircrack-ng suite.

(A2) WiFi
Evil Twin

Data Link C, I, A PA, IA Evil twin (ET) spoofs WiFi network disrupting WiFi-connected devices; entices connection to attacker-controlled access
point. Results in prevented actuation through WiFi beacon frame interference and incorrect actuation for ET-connected
devices under the control of the attacker. Executed using the aircrack-ng suite.

(A3) ZigBee
jamming

Physical A PA ZigBee communication is jammed on current radio frequency. Results in prevented or delayed actuation. Executed
with the RZRAVEN USB Stick flashed with Jackdaw firmware [43].

(A4) ZigBee
node
amplification

Network I, A DA Targets a vulnerability in Samsung SmartThings smart outlet, which acts as a router/relay in the ZigBee PAN. An
unsolicited ZigBee data request sent to the SmartThings outlet returns four encrypted data packets in response. Replay
of a doctored PCAP containing a large volume of data requests triggers exponential traffic amplification against the
outlet. The resulting volume of data packets returned quickly overwhelms the SmartThings network bandwidth resulting
in prevented or delayed actuation. Executed using the RZRAVEN USB Stick with KillerBee suite https://github.com/
riverloopsec/killerbee. After our ethical disclosure to the manufacturer, the vulnerability has since been patched.

(A5) Malware
audio
injection

Physical &
Application

I UA Compromised smart device (Samsung Tablet) with its on speaker-microphone pair injects malicious commands into the
Amazon Echo home assistant, eliciting unauthorised actuation. The commands continuously arm or disarm the smart
camera and turn on or off any household lights. A second-order impact is the DoS of smart home systems that may
also be used to detect physical intrusion. A remote command and control channel directs the execution of the audio
injection. Executed using Stringify API as the command and control channel to a custom Android app that plays and
records audio (for audio-based camera actuation).

(A6) Security
camera
compromise

Application C UA, BP Compromised smart home security camera user credentials (e.g., phishing/insecure network) used to create a remote
connection to the camera video feed (breaching physical privacy). Executed using the user credentials to obtain an
authentication token issued by the Somfy Protect API.

(A7) Workflow
automation
compromise

Application C UA, BP Compromised smart home IFTTT user credentials (e.g., phishing or insecure network). Issues actuation commands
via occupant workflow automation rules (“Arm/Disarm camera”, “Turn on light bulb”, etc.), disrupting smart home
devices via unauthorised actuation. Smart outlet, camera and bulbs are continuously issued actuation commands at
high frequency; light bulb set to “flicker”, which could lead to medical impact in the form of seizures for occupants
with photosensitive epilepsy or to electrical damage caused by surges in voltage.

*See attack cyber-physical impact graphs: https://github.com/isec-greenwich/magpie
C* (Cyber impact)- C: Confidentiality, I: Integrity, A: Availability
P* (Physical impact)- PA: Prevented Actuation, IA: Incorrect Actuation, UA: Unauthorised Actuation, DA: Delayed Actuation
BP:Breach of physical privacy

Table III provides statistics about the live capture sample793

dataset for normal and attack execution experiments. Some794

attack vectors (WiFi de-authentication and ZigBee jamming)795

were observed to have a persistent effect on specific device796

behaviour, such as total connectivity loss to the WiFi network797

or disconnection of ZigBee nodes from the PAN, even after798

the attack had stopped. To ensure that persistent symptoms of799

one experiment did not interfere with another, after each attack800

execution, we reconnected affected devices and nodes to their801

respective networks and tested the automation rules to ensure802

that the smart home had returned to a known good state. For803

phase 1, each attack vector was executed independently so804

that normal and attack data samples were equally distributed805

with respect to the amount of time the smart home was 806

monitored by MAGPIE under normal conditions and during 807

attack execution. This process ensured that the captured dataset 808

had a balanced set of normal and attack samples for testing. 809

All live sample collection experiments were conducted on the 810

training data for phase 2 reinforcement learning adaptation of 811

the MAPGIE’s anomaly models, whereas phase 3 consisted of 812

executing live attack vectors against the MAGPIE prototype in 813

a real-time monitoring state with the optimised anomaly model 814

configuration. During the experiment, the users interacted with 815

the smart home according to their normal routine. This activity 816

generated a dataset that represented natural smart home user 817

behaviour. Table X shows the different types of interactions 818



R. HEARTFIELD ET AL. 12

Table X: Summary of occupant device and network interaction
in the smart home testbed

Device / Platform Action Activity description

SmartThings Multi-Sensor P, T, S Opening/closing door & status check on app
SmartThings Motion-Sensor P, T, S Moving in range of motion sensor & status check on app
Smart Outlet P, T, S Turning on/off via button & app & status check on app
Amazon Echo (via Voice) P Asking questions, playing music, triggering LifX, Somfy
Amazon Echo (via app) P, T, S Playing music, Amazon Echo activity & changing Alexa skills
Somfy Protect P, T, S Reviewing camera feed, triggering security mode via Somfy app
LifX lightbulbs P, T, S Triggering LifX bulbs via the LifX mobile app

*P=Physical, T=Tablet, S=Smart phone

performed by the users.819

V. EXPERIMENTAL RESULTS820

The MAGPIE prototype’s performance is evaluated in terms821

of the i) attack detection accuracy with reinforcement learning822

χ adaptation Vs. random χ configuration, and the effect on823

performance with and without cyber-physical sources of data;824

ii) accurate detection of presence in the smart home and its825

effect on threat detection performance for dynamic anomaly826

model selection; iii) attack detection latency, which refers to827

the time delay before the prototype system correctly identify828

an attack, taking into account correct interface source detec-829

tion; and iv) end-to-end monitoring latency, which measures830

the processing delay for each of the MAGPIE prototype’s831

transcription and analysis phases to complete, according to832

the prescribed collection window interval.833

For each measure of detection performance, we employ834

timestamp window labelling to indicate whether a predicted835

data sample’s label belongs to an attack window or a non-836

attack window. In terms of accuracy, the Jaccard similarity837

coefficient is used as a measure of prediction performance to838

compare a set of predicted data sample labels to a correspond-839

ing set of ground truth labels.840

A. (Contribution 1) Ability to recognise new smart home841

threats by continuous adaptation to changing conditions842

At its inception, a newly installed smart home can be843

safely assumed to be free from attacks. Therefore, a low844

anomaly detection sensitivity (e.g., χ - contamination value845

for isolation forest anomaly decision function) is a sensible846

choice for system initialisation. However, over time, the level847

of data contamination supporting this condition will drift due848

to changes in the smart home configuration or actual attacks849

(which may be undetectable at the time of occurrence due to850

the current detection sensitivity). The same applies to selecting851

the anomaly detection sensitivity for an existing smart home.852

In Figures 11 and 10, the experimental results of the RL853

training show that EXP3 achieved the lowest average cumu-854

lative regret and highest average cumulative reward compared855

to a non-stationary UCB strategy, whereas both EXP3 and856

UCB comfortably outperformed a naive random arm selec-857

tion strategy. In terms of cumulative reward, initially, minor858

increases in observed reward occur due to the relatively small859

distribution range between rewards (see Figure 10). The effect860

on performance for both EXP3 and UCB therefore indicates861

that a sufficiently large step horizon is required to reach an862

optimal and reliable arm selection state, as per the objectives of863

the MAGPIE MAB RL process. Following our experimental864

comparison of MAB algorithms, EXP3 was selected as the865

P* θ χ Mode* ACC TPR TNR PPV NIR

3 0.3 Random† 0.67 0.78 0.55 0.66 0.60
RL 0.85 0.99 0.82 0.64 0.60

7 0.1 Random† 0.68 0.79 0.56 0.68 0.61
RL 0.87 0.90 0.87 0.83 0.61

Table XI: Average detection accuracy for RL χ adaptation Vs.
randomly selected χ, P* Occupant presence in smart home
testbed, † Average over 100 runs, selecting from 10 bandit
Arms (i.e., χ bins - see Table VIII)

optimal bandit algorithm for solving the anomaly classifier 866

detection adaptation objective in MAGPIE. Following a fixed- 867

step horizon selection policy, in Figure 12, EXP3 reported 868

optimal arm weights χ=0.01 (ARM 4) and χ=0.005 (ARM 869

3) for the presence and non-presence anomaly classifier con- 870

figurations, respectively. To analyse the quality of the EXP3 871

selected χ configuration parameters, we derived AUC-ROC 872

curves for models trained with each specific χ parameter in 873

Figure 13. The results show that for overall model detection 874

accuracy, when applying the θ threshold across all attacks 875

we evaluated, EXP3 selected the optimal χ parameter for the 876

presence and no-presence anomaly models. In terms of overall 877

AUC, the selected arms were ranked first (AUC=0.90) and 878

third (AUC=0.88) for the presence and no-presence models, 879

respectively. 880

In summary, the results presented in Table XI demonstrate 881

that the combination of EXP3 with our probabilistic reward 882

algorithm is a reliable mechanism for optimising detection 883

performance. Figure 9 shows RL optimised the unsupervised 884

detection accuracy for each θ when tested against the attack 885

vector in our testbed. 886

Analysis of the presence datasets (orange radar) shows 887

poor detection accuracy for attack A5 (malware-enabled audio 888

injection; ACC: 60% Vs. 55% no information rate - NIR). This 889

decrease in accuracy when occupants are present is likely due 890

to the attack pattern of A5 blending in with the occupants’ 891

own use of the home assistant. Therefore, to improve detection 892

of A5 in future work, more expressive features are required 893

(such as voice command recognition or individual modelling 894

of sound and IP/WiFi traffic mean absolute deviation according 895

to the time of day) to provide greater behavioural context 896

to the anomaly detection process. Omitting A5 from the 897

aggregated results yields an overall detection accuracy for 898

occupant presence models of 89%, an F1 score of 81%, TPR 899

of 99%, TNR of 84% and precision of 72%. On the other hand, 900

A5 is easily detectable by no-presence models (for the static 901

presence model configuration) due to the abnormal occurrence 902

of sustained levels of sound, with a detection accuracy of 93%. 903

The no-presence model achieved an F1 score of 85%, TPR of 904

90%, TNR of 87% and precision of 83%. For individual attack 905

adaptation, RL also reports fairly low accuracy for attack A7 906

in the presence models and attack A6 in both the presence and 907

no-presence models. 908

In practice, the optimal θ for presence and no-presence 909

threat detection may not be selected as the preferred value. 910

Importantly, the results show that a range of different θ settings 911

influence the RL adaptation process, whereby high θ values 912
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Figure 9: Risk-based RL-optimised anomaly detection accuracy [%] (Presence = Orange, No Presence = Blue, MAB Arm 3:
χ = 0.005, MAB Arm 4: χ = 0.01)

Figure 10: Average cumulative χ selection regret for random
(blue), non-stationary UCB (orange dash), and EXP3 (green
points) MAB algorithms over a 6000 step horizon across 3
runs

(a) Average cumulative regret (b) Average cumulative reward

Figure 11: Cumulative χ selection reward and regret for ran-
dom (blue), non-stationary UCB (orange) and EXP3 (green)
MAB algorithms over a 6000 step horizon across 3 runs

(a) No-presence arm weights (b) Presence arm weights

Figure 12: EXP3 weights for bandit arms (χ) over a 6000 step
horizon

(a) No-presence AUC ROC (b) Presence AUC ROC

Figure 13: AUC ROC curves for MAGPIE bandit arms (χ
hyperparameters

(0.7 and 0.9) are the least effective for both presence and 913

no-presence models. In general, high θ favours high anomaly 914

scores, which reduces false positives but may increase false 915

negatives. This characteristic can be observed for attack A7 916

(workflow automation compromise), where MAGPIE reduces 917

each set of attack data points to a single sample per window 918

(based on source and destination identity), which in turn is 919

saturated by a high volume of normal traffic, thus lowering 920

the anomaly score. Overall, the detection results illustrated 921

in Figure 9 demonstrate that the non-stationary UCB im- 922

plementation is effective at adapting the detection sensitivity 923

to optimise the threat detection performance according to 924

the occupants’ θ configuration. From here on, we assess the 925

MAGPIE prototype’s threat detection performance according 926

to the best-performing θ and RL optimised isolation forest χ 927

parameters. 928

B. (Contribution 2) Considering both cyber and physical 929

sources of data 930

Applying the best θ and χ parameters, for both individual 931

and aggregate attack dataset RL adaptation, in Figure 14 the 932

detection accuracy for the presence and no-presence models 933

across different MDS cyber and cyber-physical feature models 934

is presented. Here, MAGPIE prototype threat detection is 935

demonstrably more accurate, on average, when both cyber and 936

physical smart home data sources are used compared to cyber 937

features only. However, even without physical features (in this 938

case RF, audio and WiFi RSSI), extending the collection of 939

cyber features beyond traditional monitoring of TCP/IP traffic 940

significantly improves the detection accuracy across a wide 941

range of attack vectors in the smart home. 942
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Figure 14: Attack detection performance results comparison
for MDS models with cyber+physical features, multiple cyber
features and cyber features based on the TCP/IP stack only

Figure 15: Presence inference accuracy for each attack (Avg.
ACC: θ 0.3=0.93, θ 0.5=0.81, θ 0.7=0.76)

C. (Contribution 3) Self-configuration based on automated943

inference of human presence944

Figure 15 shows that presence inference returned high clas-945

sification accuracy during both attack and non-attack scenar-946

ios. A choice of θ = 0.3 yielded the highest overall accuracy947

(93%) across both the presence and no-presence datasets.948

However, there is a noticeable accuracy drop compared to949

static detection model assignment for correctly detecting pres-950

ence during the audio injection attack (A5) when there is no951

presence (62%). This is because the random forest detection952

model has determined higher audio values to be associated953

with presence state and thus incorrectly identifies the audio in-954

jection attack as occupant presence. Consequently, this failure955

has a negative impact on the detection of audio injection with956

a high sensitivity for presence inference. On the other hand,957

whilst increasing θ to 0.5 increases the detection accuracy for958

audio injection during no presence (83%; increasing further959

to 97% for θ = 0.54 - not shown in Figure 15), this change960

has a negative effect on detection accuracy for attacks A6 and961

A7 and further reduces the A5 detection accuracy during the962

occupant presence state.963
Figure 17 shows a noticeable advantage of dynamic recon-964

figuration based on presence inference. When utilising the best965

high and very high θ values for presence and no-presence966

anomaly models, respectively, the method achieves slightly967

lower detection accuracy overall (significantly lower in the968

case of audio injection - A5 for non-presence) compared to969

static model assignment (which requires explicit occupant re-970

configuration to function, e.g., the occupant informing the971

system when they are no longer present or active). Crucially,972

however, without static or dynamic anomaly model assign-973

ment, for both the presence and no-presence models, individual974

detection performance for alternate datasets is considerably975

worse overall.976

Figure 16: AUC ROC curve (TPR Vs. FPR) performance for
presence inference during smart home attacks

Figure 17: Performance for static presence, no presence and
dynamic real-time presence anomaly model selection

The experimental results are promising, especially as the 977

fusion of cyber and physical MDS features has proven to 978

be valuable for improving presence inference, as further ev- 979

idenced in the area under curve (AUC) receiver operating 980

characteristic analysis on new, unseen MDS data shown in 981

Figure 16. Compared to the AUC score of 0.66 when only 982

cyber data sources are used, the aggregation of cyber and 983

physical data sources (i.e., the aMDS feed) yields an AUC of 984

0.98 for presence inference. Here, instead of training a single 985

MDS model for both presence and anomaly detection, affected 986

by increases in model dimensionality and feature-masking for 987

window synchronisation, these results demonstrate that a ded- 988

icated presence classifier supports the selection of presence- 989

specific MDS models that directly benefit from the feature 990

context to detect attacks more accurately. 991

D. Threat detection latency 992

Analysis of the detection latency using the best θ and 993

χ RL parameters for the presence and no-presence datasets 994

produced variable results for each attack. These differences 995

were expected, as the impact of different attacks on cyber 996

and physical feature behaviour may only become noticeable 997

later in the course of execution. For attacks A1, A2 and A7, 998

during human presence, detection was immediately triggered 999

(detection latency = 1 monitoring window) when the attack 1000

was executed in the collection window, but the initial discovery 1001

of A3 and A4 was three times slower and that of A6 was five 1002

times slower. In the presence condition, A5 was undetectable. 1003

In the no human presence condition, attacks A2, A4 and 1004

A5 reported immediate detection, A1 and A3 required an 1005

additional collection window for identification, and A6 and 1006
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A7 were four and three times slower, respectively. MAGPIE1007

has demonstrated that it is able to detect an attack soon after it1008

is executed, but there remains a trade-off in detection latency1009

and detection accuracy to be explored in the future.1010

VI. FUTURE WORK1011

In future work, the q parameter is an interesting and poten-1012

tial candidate for further exploration within the RL action-1013

space for dynamic q assignments, alongside unsupervised1014

model hyperparameter adaptation. However, a consideration1015

when introducing q in this manner is that it increases the1016

computational complexity for the RL action-space. As ob-1017

served in Figure 3, the benefit of the increased complexity does1018

not clearly outweigh the simpler static q definition. Therefore,1019

dynamic determination of the optimal q is an area that would1020

ideally be explored in the context of collaborative learning,1021

such as federated threat detection adaptation in experiments1022

across multiple coordinating households and MAGPIE agents,1023

with varying MDS configurations and contrasting attack vec-1024

tors.1025

It would also be interesting to explore how MAGPIE’s1026

detection adaptation might be applied in the form of cyber1027

resilience capability for machine-learning-based intrusion de-1028

tection itself, for example, as a proactive defence mechanism1029

against emerging adversarial machine learning attacks [45] that1030

disrupt detection accuracy in cyber-physical systems.1031

VII. CONCLUSION1032

We have evaluated MAGPIE in terms of four primary1033

contributions: the ability to detect previously unseen attacks1034

while taking into account the user’s risk tolerance; the ability1035

to adapt to changing conditions via reinforcement learning; the1036

benefit of using both cyber and physical sources of data; and1037

self-configuration of the choice of models based on whether1038

user presence is detected or not. The prototype has performed1039

well across a range of attack vectors at the application,1040

network, data link and physical layers. We have observed that1041

the incorporation of physical sources of data can noticeably1042

improve the performance for most of the attacks, especially for1043

attacks that are normally undetectable by systems that monitor1044

only TCP/IP traffic. We have also observed that by leveraging1045

the same data sources as for anomaly detection, we can detect1046

user presence sufficiently reliably, which in turn helps tailor1047

the anomaly detection models to the two cases of presence1048

and no presence, thereby improving their accuracy. Most1049

importantly, we have successfully tested our intuition that1050

in the context of smart home attacks, reinforcement learning1051

can meaningfully adapt an unsupervised anomaly classifier’s1052

hyperparameters based on its own confidence in its output.1053

We have made the source code of the MAGPIE imple-1054

mentation available to the research community to facilitate1055

extensions and experimental evaluation comparisons with new1056

methods. A natural extension would be to add real-time1057

response capabilities, such as isolating offending nodes or re-1058

configuring the radio frequency channel. Additionally, MAG-1059

PIE can be extended to incorporate feedback from the user, for1060

example, to confirm whether a suspected anomalous device or1061

network behaviour is a result of their own activity or not, to1062

further improve the accuracy.1063
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