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Abstract 

 

 

The increasing proportion of the population aged 65 or over has generated a global rise 

of health spending due to higher demand for medical and long-term care services, which 

has become a growing challenge to the sustainability of public finances across countries. 

This phenomenon is especially prominent in China, which has experienced accelerated 

rates of both economic growth and population ageing over the past four decades. Using 

Bayesian-VAR (B-VAR) models we compute the impulse response functions (IRFs) and 

the forecast error variance decomposition functions (FEVDs) to empirically examine the 

dynamic relationships between ageing index, life expectancy, economic growth and 

health expenditure in China. We compare China with the USA which has distinct 

trajectories of population structure and economic development to better understand the 

former’s dynamic patterns. We find a pronounced response for both the USA and China 

of ageing index to life expectancy and of health spending per capita to GDP per capita, 

while ageing population induces a relatively strong reaction from health expenditure per 

capita in China. Our results are robust with either nominal or real variables. These 

findings suggest that, in China, a well-rounded policy accommodating economic, social 

and health factors is needed to improve the quality of life of the ageing population for a 

sustainable development of the economy. 
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1. Introduction 

 

Health expenditure plays an important role in people’s wellness and in countries’ economic 

development (Fogel 2002; 2004). In both developed and developing countries, health expenditure is 

highly and positively correlated with economic growth (Wang 2011; Braedle et al. 2016; Murthy et 

al. 2016; Lopreite and Mauro 2017). In particular, economic growth leads to increases in demand for 

medical services. Subsequent increases in life expectancy in turn lead to greater health expenditure 

(Werblow et al. 2007; Harper 2014). Moreover, large elderly cohorts have led to increased incidence 

rates of chronic diseases (i.e. cardiovascular diseases, cancer, chronic renal disease, diabetes and their 

respective complications) and higher demand of long-term healthcare services including expensive 

technologies and hospitalisation which has put the sustainability of healthcare systems at risk (Fujino 

1987; Murthy and Ukpolo 1994; Feng et al. 2020). On the other hand, greater health expenditure 

leads to increased availability of medical products and long-term healthcare services with a parallel 

rise of longevity (Kunze 2014). The resulted labour force with improved health status positively 

affects labour quality and labour productivity and therefore drives economic development and growth 

(Linden et al. 2017; Alvarez-Galvez et al. 2018). 

In recent decades, major developing economies such as China have experienced a substantial 

demographic transition due to both declines in fertility and increases in life expectancy. Compared 

with developed countries such as the USA that has had decades to adjust gradually its health spending 

to its ageing population, China’s ageing process started at an earlier stage of development and it was 

faster. 

In China from 1978-2017 the share of population aged 65 or over increased from 4.45 percent to 

10.64 percent with a significant impact on health spending and economic growth (Fougere et al. 1999; 

Bloom et al. 2015; Choi et al. 2015; Uddin et al. 2016). In the same period other indicators such as 

fertility rate declined from 2.9 percent to 1.6 percent and life expectancy increased from 65 to 76, 



both in consequence of China’s one-child policy further amplifying the negative effect of population 

ageing on health expenditure. 

In fact, the rapid fertility reduction associated with the one-child policy in China may have a negative 

impact on the elderly, as they might no longer be able to receive support from their children. 

Furthermore, the demographic shift may move China from a global source of low-cost workers to an 

economy suffering healthy labour shortages as the country approaches its Lewis Turning point from 

2020-2030 (IMF 2013). It is expected that China will become the world’s most aged society in 2050 

with the percentage of Chinese population above the retirement age projected to be almost tripled 

from 9.6 in 2015 to 27.6 in 2050. At the same time the elderly dependency ratio is expected to increase 

from 0.13 to 0.47 (UNPD 2015a). The old pension programmes in China penalise working in old age 

and encourage early retirement whereas population ageing makes it necessary to prolong the working 

lives to compensate for the increasing public eldercare costs. China will have proportionally smaller 

working-age population and a surge of retirees that will soon prompt questions on its ability of 

providing eldercare. The challenges of maintaining the sustainability of public finances and of 

managing the shortage of labour supply are thus driving the Chinese government to reform its 

retirement systems (UNPD 2015b). These effects will impose several constraints on China’s 

economic development and China could quickly lose its competitive edge to other emerging 

economies such as India and Indonesia, which increases its risk of falling into the “middle income-

trap” (Cai, 2012). 

According to China’s National Bureau of Statistics (2015) there were on average 27 beds in elderly 

care institutions per 1000 senior citizens in China in 2015, while there were respectively 37 beds in 

the USA and 55 in Germany (OECD 2017). In addition, the recent slowdown in China’s economic 

growth may reduce its health spending, with negative consequences on the quality of healthcare as 

well as on life expectancy.  

These observations suggest that China needs to readjust its policies in order to provide additional 

resources to the elderly and their households and to break the intergenerational cycle of poverty. To 



achieve these goals, it is crucial for the policymakers to understand the relationships between health 

spending, ageing, life expectancy and economic growth in China.  

The aim of this paper is to test these relationships empirically using the Bayesian vector 

autoregression (Bayesian-VAR or B-VAR) econometric techniques. The results will help 

policymakers better understand the dynamic interactions between the rapid growth of the older 

segment of the population in China and its healthcare and economic systems which are still far from 

adequately supporting the elder boom.   

The remainder of the paper is organised as follows. In Section 2 we present a summary of literature 

review and highlight our contributions. We pay particular attention to the studies exploring the 

empirical causal relationships between health spending per capita, GDP per capita, life expectancy 

and population ageing. In Section 3 we introduce the Bayesian VAR methodology and explain why 

it fits well with the aims of our study. In Section 4 we describe the data used in our empirical analysis. 

In Section 5 we show the results of the impulse response functions (IRFs) and the forecast error 

variance decomposition functions (FEVDs) and compare China with the USA for the same period of 

time. In Section 6 we evaluate the forecast accuracy of the frequentist VAR model and that of the B-

VAR model with different prior specifications (e.g. Minnesota prior versus Normal-inverse-Wishart 

prior). Finally, in Section 7 we test the robustness of the results by repeating the analysis for the same 

period of time with real GDP per capita and real health expenditure per capita before we conclude 

the paper. 

 

2. Literature Review 

 

We have performed a critical review of the literature that explores empirical relationships between 

the four variables, health expenditure, population ageing, life expectancy and economic growth.   

We use generally acknowledged databases such as Scopus, Google Scholar and PubMed. The search 

terms (i.e. key variables) employed in identifying the relevant literature include: “ageing (OR 



longevity) AND health expenditure (OR health spending OR cost) AND economic growth (OR GDP) 

AND life expectancy”.  

The above four variables are interrelated with each other. The relationship between life expectancy 

and population ageing is a straightforward one as the latter is driven by increases in the former 

combined with declines in fertility rates.  The empirical studies collected from our search strategy 

typically focus on one relationship (between a pair of variables) at a time. Therefore three strands of 

literature are summarised below depending on which of the three pairwise relationships between the 

three variables, health expenditure, population ageing (or life expectancy) and economic growth, is 

investigated.  

Firstly, we focus on the studies that assess the causal relationship between health spending and 

economic growth while grouping them in terms of one-way or two-way causality relations.  

Several studies analysing the one-way relationship between health spending and economic growth 

have stressed the importance of economic growth in health expenditure. For instance, Gerdtham et 

al. (2010) reveal that GDP per capita contributes significantly to the explanation of the health care 

expenditure’s variation between the 19 OECD countries. Braendle and Colombier (2016) show that 

income per capita is positively related to health care expenditure growth. Baltagi and Moscone (2010) 

using the data of 20 OECD countries over the period 1971-2004 demonstrate that health expenditure 

is a necessity rather than a luxury.  

Other studies, instead, have found a two-way causal relationship between health expenditure and 

economic growth. For instance, Wang (2011) analyses the data of 31 countries from 1986 to 2007 to 

explore the causality between an increase in healthcare expenditure and economic growth. He finds 

that health care expenditure growth stimulates economic growth whereas economic growth reduces 

expenditure growth. The findings of Amiri and Ventelou (2012) indicate that there exists a 

bidirectional Granger causality between GDP and healthcare expenditure in OECD countries. Amiri 

and Linden (2016) using the sample of 22 OECD countries find during the period 1970-2012 that 

a bilateral relationship between GDP and aggregate healthcare spending is widely predominant in the 



vast majority of OECD countries. Halici-Tuluce et al. (2016) show that a reciprocal relationship exists 

between health spending and economic growth in the short run for both low and high-income 

economies in their sample. Finally, Chaabouni et al. (2016) and Chaabouni et al. (2017) find a 

bidirectional relationship between health spending and economic growth for the period 1995-2013 in 

51 countries with low-middle or high income level. 

Secondly, the relationship between population ageing (or life expectancy) and health expenditure has 

also been studied in the literature. For example, Breyer and Felder (2006) find that the expanding of 

medical technology has a much larger impact on healthcare expenditure than ageing in Germany. 

Kildemoes et al. (2006) show that the population ageing in Denmark is likely to increase future 

expenditure on prescription drugs. Jaba et al. (2014) collecting the data for 175 countries obtain for 

the years 1995-2010 a significant relationship between health expenditure and life expectancy using 

a panel model. Murthy and Okunade (2016) using the annual data from 1960-2012 and the ARDL 

(autoregressive distributed lag cointegration) approach identify real income per capita, the share of 

population aged 65 or over and the level of health care technology as the major drivers of health 

expenditure per capita. Linden and Ray (2017) find a positive relationship between public health 

expenditure (in particular private expenditure) and life expectancy for 34 OECD countries between 

the years 1970 and 2012. Lopreite and Mauro (2016) using Bayesian-VAR (B-VAR) models show 

that health spending in Italy for 1990-2013 reacts more to ageing index than life expectancy and 

economic growth. Gallet and Doucouliagos (2017) using a meta-regression analysis find evidence of 

a greater effect on health spending of mortality rate compared to life expectancy. Obrizan and Wehby 

(2018) suggest that increasing health spending in countries with low life expectancy may have 

important returns to life expectancy. All in all, the existing literature investigating the relationships 

between health expenditure and its major drivers give different results which depend on data type 

(macro or micro) and on model specification. Moreover, the impact of several demographic changes 

(i.e. as number of people over a certain age, number of people with a given disabilities or chronic 

disease) on the health spending is still not clear and varies substantially.  



Finally, the relationship between population ageing and economic growth is also a reciprocal one as 

population age structure affects the pace of economic growth and economic performance leads to 

demographic changes as well. It has been well documented that an enlarged share of population in 

the working ages (i.e., an increase in the support ratio) generates the “first demographic dividend” in 

emerging Asia (Bloom and Williamson 1998, Lee et al. 2000). Mason and Lee (2006, 2007) further 

explores the possibility of a “second demographic dividend” through the accumulation of human and 

physical capital as more recently low fertility rates and high life expectancy lead to population ageing 

and a decline in the support ratio. Bloom et al. (2010a) have considered the economic impacts of 

population ageing through the lens of accounting, behavioural and institutional effects and their 

counterfactual exercises (assuming 2005-2050 growth rate of labour force per capita for 1960-2005) 

suggest modest declines of economic growth rates for OECD countries and an insignificant impact 

on the pace of economic growth in developing countries.    

Our contribution to the existing literature is at least twofold. Firstly, unlike the above-mentioned 

studies, we consider the relationships between health expenditure, ageing index, life expectancy and 

economic growth and investigate all the possible directions of causality. In order to do this, we use 

the Bayesian-VAR (B-VAR) methodology, which is especially suitable for short samples as in our 

case and offers better results than a classical VAR model. Moreover, we estimate a B-VAR model 

based on the Minnesota prior specification, which incorporates useful belief information on the 

distributions of parameters. As a result, we are able to conduct both short and medium-run analyses 

by computing the impulse response functions (IRFs) and the forecast error variance decomposition 

functions (FEVDs) and evaluate the forecasting performance.  

Secondly, we conduct a comparative analysis between China and the USA which are characterised 

by significant differences in the dynamics of their economic development and population age 

structure. In fact, the USA has long been considered as an “ageing society” (Llotyd-Scherlock et al. 

2000; Bloom et al. 2010a) whereas China is characterised by “getting old before getting rich” (Qiao, 

2006). As shown in Figure A1 in the appendix, although China has achieved phenomenal economic 



growth over the past several decades, its income and health expenditure per capita is still far behind 

the levels in the USA. However, the rates of life expectancy and population ageing in China have 

clearly accelerated over the past two decades and will soon arrive at the same levels as in the USA. 

Therefore, a comparative analysis between China and the USA enables us to interpret the results in 

context. 

 

3. Methodology: Setting the Prior for the B-VAR Estimation 

 

Over the past several decades the VAR models have been largely used as standard tools in 

macroeconomic analysis and forecasting (Sims 1980, 1992; Christiano et al.1999). The popularity of 

VAR models is due not only to their simple formulation but to that they are very successful in 

capturing dynamic linear relationships between time series without imposing restrictions on 

parameters as in structural VAR models. However, they show several problems when the frequentist 

approach is applied to VAR estimation. Firstly, a typical VAR model works better with a small 

number of variables. Thus, we may have a risk of ‘overfitting’ in the case of a large number of 

parameters (risk present also with moderate size) as the number of unrestricted parameters that can 

be estimated is limited. Secondly, since the VAR models usually include a few variables they tend to 

be poor models in forecasting and in structural analysis for omitted variables bias (Christiano et 

al.1999; Giannone and Reichlin 2006). Finally, the VAR approach suffers from the loss of degree of 

freedom if the lag length increases and becomes too large. In this case we have large standard errors 

and then unstable point estimates.  

These problems are particularly relevant in our context, where, due to the lack of data, we can perform 

our analysis only on a short period of time (1978-2016). One of the advantages of the B-VAR 

approach is to overcome the problems associated with overfitting and the poor forecasting 

performance  introduced by the VAR methodology when the dataset is short, the sample information 



is weak or the number of the parameters is large (Litterman 1981, 1986; Sims 1982; Doan et al. 1984; 

Stock and Watson 2001; Canova 2007; Banbura et al. 2010; Auer 2014; Kanngiesser et al. 2019). 

The Bayesian inference using the parameter shrinkage, which we describe below, improves the 

dynamic analysis and forecasting accuracy of the models. 

Specifically, it is possible to reduce the estimation error and to have only a small bias on the 

parameters for the restrictions (priors) on the coefficients assuming that they are more likely close to 

zero with respect to the coefficients of the shorter lags (Litterman 1981, 1986; Doan et al. 1984).  

The use of the B-VAR, with the help of the priors as the key factor, makes additional knowledge 

available during the estimation and hence achieves better results without the need of requiring 

restricted models (i.e. models with many coefficients set to zero). Specifically, the Bayesian approach 

combines the sample information with the researchers’ prior information on the coefficients (priors) 

to derive a posterior distribution. The choice of the prior is an important step of the Bayesian inference 

since if the prior is too loose, overfitting is hard to avoid; conversely if it is too tight, the data are not 

allowed to speak. The researchers set the prior according to the information they have on the nature 

of the parameters of interest or they may use informative priors to reflect their beliefs. 

The specification of the priors allows to solve two problems: (a) equations with too many free 

parameters tend to pick up excess noise, and (b) equations with too few parameters fail to pick up the 

signal. The usage of the priors provides a flexible solution to the trade-off between less overfitting 

data and more signal extraction capabilities. Moreover, many studies (Bambura et al 2010; Auer 

2014) have confirmed that the B-VAR methodology can be used with success for large datasets as 

well as for datasets with a moderate level of cointegration. 

The Bayesian methods use the maximum likelihood function to estimate the posterior probabilities. 

This function in other domains can overcome limitations of the techniques such as the generalized 

method of moments (GMM) of Arellano and Bond (1991). Following Allison et al. (2017) the 



maximum likelihood function changes how the structural estimation models (SEM) perform, 

allowing accurate estimations. 

In the rest of this section we introduce the Litterman-Minnesota prior (Litterman 1986) and the 

Normal Inverse Wishart prior used in our study.  

We start from a standard VAR(𝑞) model: 

    𝑌𝑡 = 𝑐 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2+. . … . +𝐴𝑞𝑌𝑡−𝑞 + 𝑢𝑡                                 (1)                                                                                                                                                                          

Where 𝑞 is the maximum lags, 𝑐 are any constant variables in the model, 𝑌𝑡 is a vector of the 

endogenous variables (𝑁), 𝐴 are the regression coefficients in matrix form (𝑁 × 𝑁) and 𝑢𝑡is the white 

noise error term with a covariance matrix 𝐸(𝑢𝑡𝑢𝑡
′ ) = 𝜓.  

We can rewrite the VAR equation (1) as a system of multivariate regressions:  

                             𝑌 = 𝑋𝐴 + 𝑈                                                                                                                (2) 

Where: 

(a) 𝑌𝑡 = (𝑦1, … … … . , 𝑦𝑇)′. The matrix dimension is 𝑇 × 𝑁 (number of observations×each 

dependent variable). 

(b) 𝑋 = (𝑥1, … … … . , 𝑥𝑇)′ with 𝑋𝑡 = (1, 𝑦𝑡−1
′ , … … … . , 𝑦𝑡−𝑞

′ )′.The matrix dimension is 𝑇 × 𝑘 

where 𝑘 = 𝑁𝑃 + 1. (number of observations ×each lagged dependent variable).  

(c) 𝐴 = (𝑐, 𝐴1 … … … . , 𝐴𝑞)′. The matrix dimension is 𝑘 × 𝑁 (number of constant/autoregressive 

terms×each lagged dependent variable). 

(d) 𝑈 = (𝑢1, … … … . , 𝑢𝑇)′ collects the error terms. The dimension is 𝑇 × 𝑁 (number of error 

terms×each dependent variable). 

By applying the Bayesian method to VAR models it is possible to select the priors combined with the 

likelihood function and to produce a tractable posterior that has generally the same density function 

of the prior. 

In our case the Litterman/Minnesota prior for 𝛽 (the parameter of our interest) is a priori normal 

conditional upon the variance-covariance matrix ∑𝑒. Specifically, the Litterman/Minnesota prior 



assumes that the prior means of 𝛽 are all the same given by the value of the hyperparameter 𝜇  is set 

close to zero, while the covariance prior is non-zero. However, in some cases 𝜇 is set close to one in 

order to capture the persistence of the time series.  

Then, the first step is to define the nature of the matrix ∑𝑒and replace it with an estimate ∑�̂� . In 

general we have three options to set this matrix: (a) using for each series the estimate of the residual 

variances by fitting AR(1) models; (b) assuming the variance-covariance matrix to be diagonal where 

all coefficients, except their own lags (and a possible constant), are equal to zero. This is the more 

used option as it yields a significant decrease of the computational burden for no relationship among 

the coefficients of the model’s equations; (c) estimating ∑𝑒 from a classical VAR model. In general, 

this last choice is not used because if the number of variables and of lags is large, and we have not 

enough observations, the variance-covariance matrix might be singular. 

After defining the nature of the variance-covariance matrix ∑𝑒 (fixed, diagonal and known) we need 

to specify the prior covariance for 𝛽  considering a set of hyperparameters.  

Given a diagonal variance-covariance matrix we select the hyperparameters by specifying four 

scalars: 

(a) 𝜆1 controls the relative importance of sample and prior information. It represents the overall 

tightness on the variance of the first lag. Setting 𝜆1 to a small value implies that the prior 

information dominates the sample information. On the contrary if 𝜆1 → ∞, the prior becomes 

non-informative and the posterior estimates converge to the unrestricted VAR coefficients. 

(b) 𝜆2 sets the relative importance for the lags of the other variables (i.e. lagged variable 𝑖-th in 

𝑗-th equation with 𝑖 ≠ 𝑗).  

(c) 𝜆3 regulates the relative importance of the information contained in the exogenous variables 

(i.e. a constant). 

(d) 𝜆4 captures the lag decay and it takes into account the different scale and variability of the 

data. Setting 𝜆4 equal to 1 implies a linear decay while if we set greater than zero we have 

two functional forms: harmonic or geometric decay.  



Once the prior covariance is set, the posterior of 𝛽 will also be normal. In particular the mode and the 

mean will correspond to a normal. 

Although the Litterman/Minnesota is actively used for its success in forecasting, it ignores any 

uncertainty associated with the variance-covariance matrix. The Normal Inverse Wishart prior relaxes 

the assumption of a fixed and diagonal variance-covariance matrix of the error terms, therefore 

overcoming the two main weaknesses in the Litterman prior: the posterior independence between 

equations and the fixed residual variance-covariance matrix. 

Moreover, it is easy to interpret and to calculate, since, the posterior distribution follows the same 

parametric form of the prior distribution and therefore the prior information can be interpreted in the 

same way as the likelihood function information.  

The Normal-Wishart prior represents a natural conjugate prior for the variance-covariance matrix 

∑𝑒that with a prior of 𝛽 set to a normal result in a posterior for 𝛽 equal to the product of a Normal 

and a Wishart distribution. In this case the prior of 𝛽 depends on the prior means of 𝛽 matrix terms 

and ∑𝑒 . For ∑𝑒 we select the hyperparameter 𝜆1that works in the same way of the Minnesota prior. 

Moreover, we need to select the two parameters 𝑣 and 𝑆 that are respectively the degrees of freedom 

parameter (𝑣) and the identity matrix (𝑆). 

 

4. Data 

 

Our dataset contains the following annual macro-variables: nominal gross domestic product  per 

capita (GDPN) as an economic indicator,  nominal health expenditure per capita (HEX) as healthcare 

indicator, life expectancy (LFE) and ageing index (AI) as demographic and health indicators.  

Following Lopreite and Mauro (2017) we compute ageing index (AI) as the ratio between the number 

of people aged 65 or over and the number of people aged from 0-14. Since the numerator (the size of 

elderly population is increasing) and the denominator (the size of young population is decreasing due 

to declines in fertility) of AI vary in the opposite direction, the overall indicator rises over time. Life 



expectancy (LFE) is also a relevant indicator that reflects people’s health status as a result of their 

standard of living, lifestyle, education, way to eat, sport practice etc. According to the World Bank 

definition, life expectancy at birth is the average number of years a newborn is expected to live if 

mortality patterns at the time of its birth remain constant in the future. We use the total value (male 

plus female) of this indicator. 

Finally, we use nominal GDP as a measure of income, and nominal health expenditure as a measure 

of the consumption of healthcare products and services. Both indicators are expressed in per capita 

value.  

The sample spans from the year 1978 to the year 2016 due to data availability. Note that this period 

of time observed China’s rapid economic growth and demographical structure change since China’s 

economic reform of 1978. The data of nominal GDP per capita (GDPN), ageing index (AI), and life 

expectancy (LFE) are obtained for both China and the USA from the World Bank Development 

Indicators Database. The data of nominal health expenditure per capita (HEX) are extracted for the 

USA from the OECD database while for China are extracted from the China Statistical Yearbook. 

We convert nominal health expenditure per capita in China into US dollars using the RMB-dollar 

exchange rates contained in the China Statistical Yearbook. Finally, we apply the logarithms to 

GDPN and HEX in order to reduce the dimensional effects and to minimise the linearisation and the 

normalisation requirements. 

As we can see in Table 1 the USA shows a much higher average value of GDPN and of HEX while 

the difference between China and the USA in AI and LFE is not as significant. We also notice that 

the standard deviation of AI and of LFE is higher in China than in the USA.   

These findings suggest that, given the lower average values of the Chinese HEX and GDPN, AI and 

LFE may lead to more constraints on health spending and economic growth in China than in the USA.    

 

Table 1: Summary statistics 

 China USA 

 HEX LFE AI GDPN HEX LFE AI GDPN 



Mean 99.36 71.37 29.45 1943.6 4819.3 76.30 59.28 32893 

Median 31.26 70.75 24.66 781.75 4145 76.42 57.63 31573 

Max 504.49 76.25 57.19 8117.3 10410 78.84 78.99 57589 

Min 6.80 65.86 11.85 156.40 865 73.35 47.62 10587 

St. dev 141.62 3.16 13.80 2506.2 2931.6 1.71 6.7 14310 

 

5. B-VAR Analysis: Impulse Response Functions and Forecast Error Variance Decomposition 

Functions  

 

In this section we analyse the impulse response functions (IRFs) as well as the forecast error variance 

decomposition functions (FEVDs) based on the B-VAR model for China and compare the results 

with those for the USA.  

To this end, we estimate the B-VAR model with two lags selected according to the Schwartz Bayesian 

criterion. The model is specified by considering  nominal gross domestic product per capita (GDPN),  

nominal health expenditure per capita (HEX), life expectancy (LFE), ageing index (AI) and a 

constant. We select the four hyperparameters of the Minnesota prior covariance matrix as follows: 𝜆1 

(prior information) is set to a small value since the prior beliefs influence the estimation with respect 

to the information contained in the data; 𝜆2 (cross variables lags) and 𝜆3 (exogenous variables) are 

set greater than zero because the information of cross variable lags and of the exogenous variables is 

important for our analysis; 𝜆4 (lag decay) is set greater than zero since the variables are similar in 

their scale, we assume a geometric decay.  

The reasons why we apply the Minnesota prior specification are threefold: firstly, in our analysis we 

use series in levels and the Minnesota’s performance is optimal with this type of macro-variables; 

secondly, using the levels of the time series we can capture, by analysing the IRFs and the FEVDs, 

the dynamic information on the relations among the variables (in the short and  medium-run); thirdly 

we obtain estimation gains with respect to an unrestricted VAR since the Minnesota prior shrinks the 

estimated coefficients of the VAR model towards the prior mean and away from the OLS estimates. 



Figure 1 and Figure 2 depict the IRFs for the B-VAR model for China and the USA side by side for 

the four variables (GDPN, HEX, LFE, AI). The shaded regions indicate the posterior coverage 

intervals corresponding to the 95% of the Bayesian credible sets obtained through Gibbs sampling 

using 1000 iterations.  

  



Figure 1: B-VAR impulse response functions with 95% credible intervals for China and the USA side 

by side for ageing index (AI) shock and life expectancy (LFE) shock (10-year horizon; nominal 

variables) 

 

 
  



Figure 2: B-VAR impulse response functions with 95% credible intervals for China and the USA side 

by side for nominal gross domestic product per capita (GDPN) shock and health expenditure per 

capita (HEX) shock (10-year horizon; nominal variables) 

 

 

  



We present the responses of a variable to a shock (one standard deviation) from each of the other 

variables for the B-VAR model until ten years when this effect becomes less significant. In particular 

we study whether there exist or not significant relationships between nominal gross domestic product 

per capita (GDPN),  nominal  health expenditure per capita (HEX), life expectancy (LFE) and ageing 

index (AI) and what the directions of causality are. As a robustness check, we also extend the horizon 

of the IRFs from ten to twenty years and the new IRFs for both China and USA converge to zero or 

to a constant level. This suggests the absence of explosive functions like exponential IRFs that do not 

converge to zero or constant levels given unstable causal relationships (see Figures A2 and A3 in the 

appendix).  

For China a LFE shock raises AI approximately of 0.5% after 2.5 years and it becomes not significant 

after 4 years (third row, first column, Figure 1). At the same time, AI has also a positive effect on 

GDPN that remains significant for the years 3-7 (with a peak around 1.2%  after 5 years) while on 

HEX the effect becomes significant after 5 years and it is increasing in the long run (with a peak 

around 2% after 7.5 years) (second row, first and third column, Figure 1). On the other hand, GDPN 

has a positive and significant impact on LFE (first row, third column, Figure 2), whereas its impact 

on HEX is only slightly positive and becomes not significant after 5 years (second row, third column, 

Figure 2). Finally, more HEX leads to an increase that is persistent in time for both LFE (by 0.8 after 

5 years) and AI (by 0.3 after 2.5 years) (third row, third and first column, Figure 2). To better 

understand the patterns found for China, we also estimate a B-VAR model for the USA for the same 

period of time as a comparison. We observe a significant and positive response that becomes 

persistent in the long term respectively from HEX to a GDPN shock (second row, fourth column, 

Figure 2), from LFE to AI (third row, second column, Figure 1) and from AI to an HEX shock (third 

row, second column, Figure 2). Moreover, we find a weakly negative effect only in the long run of 

an HEX shock on LFE (third row, fourth column, Figure 2). We also observe a positive and very 

weak long run effect of a GDPN shock on LFE (first row, fourth column, Figure 2). Finally, we 

observe a temporary and weak impact of AI on HEX: the short-lived effect becomes insignificant 



after 6 years (second row, fourth column, Figure 1). Unlike the finding for China, the effect of an AI 

shock on GDPN is not significant for the USA (second row, second column, Figure 1).  

To further understand the relative importance of each variable in affecting other variables, we 

compute the forecast error variance decomposition functions (FEVDs) for China and the USA side 

by side for the same time horizon of ten years (Figures 3 and 4), which confirm the robustness of the 

above results. Specifically, for China we find a moderate contribution of AI (around 2%) to the 

variance of GDPN (second row, first column, Figure 3). We also observe a significant impact of AI 

(around 3%) on HEX (second row, third column, Figure 3),  of GDPN (around 2.5%) on HEX (second 

row, third column, Figure 4) and of GDPN (around 75%) on LFE (first row, third column, Figure 4). 

On the other hand, for the USA GDPN has accounted for about 70% of HEX’s forecast error variance 

after 10 years (second row, fourth column, Figure 4). Moreover, we find a significant influence 

(around 30%) of LFE on AI (third row, second column, Figure 3) and of GDPN (around 60%) on AI 

(first row, second column, Figure 4). Finally, we observe a moderate contribution of AI (around 1%) 

to HEX’s variance (second row, fourth column, Figure 3).  



Figure 3: B-VAR forecast error variance decomposition functions with 95% credible intervals for 

China and the USA side by side for ageing index (AI) shock and life expectancy (LFE) shock (10-

year horizon; nominal variables) 

 

 

  



Figure 4: B-VAR forecast error variance decomposition functions with 95% credible intervals for 

China and the USA side by side for  nominal gross domestic product per capita (GDPN) shock and 

health expenditure per capita (HEX) shock (10-year horizon; nominal variables) 

 

  

  



The comparison between China and the USA can be summarised as follows. For China, LFE, GDPN 

and AI have relatively strong impacts on the other variables, whereas in the USA, HEX and GDPN 

are the major drivers, as shown in the IRFs results. This means that GDPN plays an important role in 

the macro systems for both countries. However, compared with the situation in China, in the USA, 

life expectancy (LFE) and ageing population (AI) have relatively small impacts on the other variables. 

In other words, these findings suggest that the increasing share of elderly population has a greater 

impact on China than to the USA.  

 

6. Forecast Evaluation 

 

To evaluate the performance of our model, in this section we empirically compare the forecast 

accuracy resulted from two different VAR specifications (unrestricted VAR model and B-VAR 

models based respectively on the Minnesota prior and on the Normal-inverse-Wishart prior) for our 

dataset of both China and the USA over the period 1978-2016. 

We compute the point forecasts (two year ahead) using the Root Mean Square Error (RMSE) and the 

Mean Absolute Error (MAE) to select which model specification has the best forecast accuracy. More 

precisely: 

RMSE = √
∑ (𝑦𝑖−𝑦�̅�)2𝒏

𝒊

𝒏
  

MAE =
∑ | 𝑦𝑖 − 𝑦�̅�|

𝑛
𝑖

𝑛
 

where 𝑦𝑖 are the data and 𝑦�̅�is the forecast value of 𝑦𝑖. 

We prefer to use both measures because RMSE is more sensitive to large deviations from the true 

values while MAE is more sensitive to small deviations from the true values. 

A small value of RMSE, and of MAE suggests a good performance of the model. Table 2 presents 

the results for China and the USA. The findings show that the B-VAR models based on Minnesota 

prior fit better than the VAR model and the B-VAR model based on the Normal-inverse-Wishart 



prior. Overall, the prior information improves the forecast accuracy of the B-VAR models with 

respect to other specifications (VAR model).  

 

Table 2: A comparison between USA model and China model: Forecasting VAR vs B-VAR 

(nominal variables) 

 Variable RMSE MAE 

USA model    

Standard VAR 

 

LFE 

AI 

GDPN 

HEX 

0.272 

0.102 

0.028 

0.120 

0.272 

0.102 

0.028 

0.121 

Minnesota prior 

 

LFE 

AI 

GDPN 

HEX 

0.111 

0.055 

0.026 

0.065 

0.101 

0.055 

0.025 

0.065 

Normal-Wishart 

prior 

 

LFE 

AI 

GDPN 

HEX 

0.263 

0.057 

0.029 

0.066 

0.260 

0.056 

0.029 

0.120 

 Variable RMSE MAE 

China model    

Standard VAR 

 

LFE 

AI 

GDPN 

HEX 

0.253 

0.043 

0.294 

0.311 

0.256 

0.045 

0.316 

0.308 

Minnesota prior 

 

LFE 

AI 

GDPN 

HEX 

0.250 

0.042 

0.203 

0.124 

0.249 

0.043 

0.207 

0.288 

Normal-Wishart  

prior 

 

LFE 

AI 

GDPN 

HEX 

0.370 

0.052 

0.377 

0.385 

0.366 

0.054 

0.384 

0.389 

 

7. Further Robustness Checks 

 

We further check the robustness of the results by repeating the analysis for the same time span (1978–

2016) and for both countries with real variables (i.e., real GDP per capita and real health expenditure 



per capita). To do so, we deflate the time series of nominal GDP per capita and nominal health 

expenditure per capita with constant prices in 2010 for both countries.  

A B-VAR model is therefore estimated to test the relations between real GDP per capita (GDPR), 

real health expenditure per capita (HEXR), aging index (AI) and life expectancy (LFE). The results 

remain qualitatively unchanged. In particular, the IRFs based on the B-VAR model with the horizon 

of twenty years yield a significant response for both the USA and China of AI to LFE and of HEXR 

to GDPR. As before, we also observe that AI has a stronger impact on HEXR and GDPR in China 

than in the USA (Figures 5-6). These relations are again confirmed by the results of FEVDs (Figures 

7-8).  

We also run diagnostics of the model with respect to the requirements of absence of serial 

autocorrelation, and structural stability of the parameters estimated (the results are available on 

request). The results obtained therefore confirm the analysis of the IRFs and the FEVDs of the B-

VAR model previously estimated with nominal variables. Finally, the forecast accuracy of the B-

VAR model is again the highest among all the specifications (Table A1 in the appendix). 

 

  



Figure 5: B-VAR impulse response functions with 95% credible intervals for China and the USA side 

by side for ageing index (AI) shock and life expectancy (LFE) shock (20-year horizon; real variables) 

 

 

 

  



Figure 6: B-VAR impulse response functions with 95% credible intervals for China and the USA side 

by side for real gross domestic product per capita (GDPR) shock and real health expenditure per 

capita (HEXR) shock (20-year horizon; real variables) 

 

 

 

  



Figure 7: B-VAR forecast error variance decomposition functions with 95% credible intervals for 

China and the USA side by side for ageing index (AI) shock and life expectancy (LFE) shock (20-

year horizon; real variables) 

 

 

  



Figure 8: B-VAR forecast error variance decomposition functions with 95% credible intervals for 

China and the USA side by side for real gross domestic product per capita (GDPR) shock and real 

health expenditure per capita (HEXR) shock (20-year horizon; real variables) 

 

 

 

8. Conclusions and Policy Implications 

 

This paper empirically examines the relationships between ageing index, life expectancy, economic 

growth and health spending in China. We compute the impulse response functions (IRFs) and the 

forecast error variance decomposition functions (FEVDs) based on the Bayesian-VAR (B-VAR) 

model for China over the period 1978-2016. The B-VAR model is preferred over others for three 

reasons: (a) it is an appropriate choice for handling short time series data (i.e., with a small number 



of years); (b) it naturally incorporates judgmental information and a priori beliefs into the model 

settings; (c) it performs better in terms of forecasting accuracy than a classical VAR model. 

Unlike the existing literature where empirical relationships are examined one at a time, this paper 

considers the relationships between ageing index, life expectancy, economic growth and health 

spending and all the possible directions of causality simultaneously using standard B-VAR 

specifications. We set the priors following standard recommendations from the Bayesian literature 

and take into account the data characteristics. The results suggest that the Minnesota prior information 

is important for the dynamical analysis as well as for the forecasting accuracy. In particular, it 

produces better forecasting results than the VAR models or the B-VAR models based on Normal 

Inverse Wishart prior. 

Furthermore, with a comparison with the USA for the same period of time, we have found the 

following main results: (a) economic growth generally promotes health spending and an increase in 

life expectancy leads to an increase in ageing index in both China and the USA; (b) the importance 

of ageing index in health expenditure and in GDP is larger in China. These findings suggest that 

China is more affected by population ageing in the observation period from 1978-2016.  

Not only do China and the USA differ from each other in terms of the importance of AI measured by 

FEVDs, but the two countries also differ in the timing of AI-triggered GDPN and HEX responses 

measured by the IRFs. In particular, China has a positive medium-run significant impact of AI on 

GDPN whereas the impact for the USA is negative and insignificant. China has a positive and 

significant impact of AI on HEX in the long-run whereas the impact for the USA is also positive and 

significant but in the short-run.   

To make sure that our results are not driven by price factors during this period of time, we further 

check the robustness of the results by repeating the analysis with real GDP per capita and real health 

expenditure per capita. The results indeed remain qualitatively unchanged.  

Our results are in line with the predictions by Bloom et al. (2010a) in a sense that population ageing 

induces a more negative effect on economic growth for developed countries than for developing 



countries. However, there are notable differences between the decomposition analyses of the effects 

of population ageing on economic growth in the existing literature (Bloom et al. 2010a, 2010b, Mason 

and Lee, 2007) and ours. Firstly, the previous decomposition analyses are based on economic growth 

accounting (i.e., decomposing economic growth rates into demographic growth rates and others) 

whereas ours are based on an empirical model B-VAR and the related computation of FEVDs. The 

FEVDs show the amount of information that each variable contributes to the other variables in the 

model. It determines how much of the forecast error variance of each of the variables can be explained 

by exogenous shocks to the other variables. Our FEVDs analysis is useful to determine which of the 

independent variables is “stronger” in explaining the variability in the dependent variables over time. 

Secondly, rather than using counterfactual exercises or simulations, this paper is empirically driven 

by actual data and hence provides solid evidence of the different economic reactions to population 

ageing between the largest developing economy and the largest developed economy in the world. The 

differences observed above between China and the USA are clearly linked to the different dynamics 

of population age structure and economic development experienced in the past four decades by the 

two countries. The rapid growth of the proportion of the elderly has led China to “become old before 

getting rich” and to lose its “first demographic dividend” (Cai, 2010). On the contrary, the USA, as a 

developed country, has possessed a mature social and economic system while supporting its ageing 

population (see Figure A1 in the appendix). While an AI shock still triggers a positive and significant 

response from GDPN in China in the medium-run, it is unlikely to sustain in the coming decades 

given that China’s economic growth has already slowed down.  

On the other hand, the medium-run significant response of HEX to AI shocks is more worrisome for 

China. One way to cut the health expenditure in China is to establish a fully functioning three-tier 

healthcare system, where the role of primary healthcare providers as a gatekeeper is of critical 

importance (Li et al. 2017, Xu and Mills 2019, Yu 2015, Yip et al. 2019). Moreover, a sounding 

health infrastructure cannot live without sustainable financial schemes. In this regard, China has made 

promising progresses for both urban and rural populations (Hsiao 1995, Feng et al. 2020, Gao et al. 



2014). Another solution, as emphasised by Bloom et al. (2010a), is to encourage behavioural 

adjustments. For instance, community programmes can be developed to help the elderly maintain 

their economic activities by providing training and employment opportunities, flexible working hours 

and remuneration even after their retirement. More generally, a retirement reform  requires a 

comprehensive policy package effectively addressing a host of factors including replacement rate of 

pension, personal life events, savings, work condition, health, and family circumstances rather than 

merely postponing the retirement age (Liu and Sun, 2016).  

Resulted from an evidence-based approach, the findings presented here are clearly informative for 

supporting healthcare policy decisions. But to devise or evaluate a specific healthcare policy, it 

certainly requires detailed investigation, especially at micro level, as the aggregated variables 

considered here cannot be directly translated into policy instruments. Another limitation of this study 

is that only a short period of time from 1978-2016 and only two countries are considered here. The 

limitation can be addressed in the future with larger data sets with longer time series or more 

countries, which are desirable for further testing the robustness of the results and for generalising the 

policy implications for both developed and developing countries. These issues are left for future 

investigation.   
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Appendix 

 

Figure A1: Comparisons between China and the USA for the key variables 

 

 

  



Figure A2: B-VAR impulse response functions with 95% credible intervals of nominal gross domestic 

product per capita (GDPN), health expenditure per capita (HEX), life expectancy (LFE), ageing index 

(AI) for China (20-year horizon; nominal variables) 

 

 
  



Figure A3: B-VAR impulse response functions with 95% credible intervals of nominal gross domestic 

product per capita (GDPN), health expenditure per capita (HEX), life expectancy (LFE), ageing index 

(AI) for the USA (20-year horizon; nominal variables) 

 

 
 

  



Table A1: A comparison between USA model and China model: Forecasting VAR vs B-VAR 

(real variables) 

 Variable RMSE MAE 

USA model    

Standard VAR 

 

LFE 

AI 

GDPR 

HEXR 

0.24 

0.105 

0.29 

0.129 

0.23 

0.9 

0.28 

0.128 

Minnesota prior 

 

LFE 

AI 

GDPR 

HEXR 

0.0.39 

0.035 

0.056 

0.075 

0.026 

0.055 

0.024 

0.065 

Normal-Wishart 

prior 

 

LFE 

AI 

GDPR 

HEXR 

0.256 

0.053 

0.074 

0.121 

0.24 

0.059 

0.079 

0.127 

 Variable RMSE MAE 

China model    

Standard VAR 

 

LFE 

AI 

GDPR 

HEXR 

0.63 

0.93 

0.67 

0.53 

0.61 

0.89 

0.59 

0.57 

Minnesota prior 

 

LFE 

AI 

GDPR 

HEXR 

0.03 

0.06 

0.04 

0.03 

0.03 

0.04 

0.01 

0.01 

Normal-Wishart  

prior 

 

LFE 

AI 

GDPR 

HEXR 

0.20 

0.58 

0.27 

0.63 

0.17 

0.58 

0.39 

0.61 

 

 

 

 


