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Abstract Self-representation based subspace learning 
has shown its effectiveness in many applications. In this 
paper, we promote the traditional subspace represen-
tation learning by simultaneously taking advantages of 
multiple views and prior constraint. Accordingly, we 
establish a novel algorithm termed as Tensorized Multi-
View Subspace Representation Learning (TMSRL). To 
exploit different views, the subspace representation ma-
trices of different views are regarded as a low-rank tensor, 
which effectively models the high-order correlations of 
multi-view data. To incorporate prior information, a 
constraint matrix is devised to guide the subspace rep-
resentation learning within a unified framework. The 
subspace representation tensor equipped with a low-rank

C. Zhang
the School of Computer Science and Technology, Tianjin Uni-
versity, Tianjin , 300072, China
E-mail: zhangchangqing@tju.edu.cn

H. Fu
Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
E-mail: huazhufu@gmail.com

J. Wang
Graduate School of Information Science and Technology, The
University of Tokyo, Japan
E-mail: jing wang@mist.i.u-tokyo.ac.jp

Q. Hu
the School of Computer Science and Technology, Tianjin Uni-
versity, Tianjin , 300072, China
E-mail: huqingqing@tju.edu.cn

X. Cao
the State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences,
Beijing, 100093, China
E-mail: caoxiaochun@iie.ac.cn

W. Li
the Computer Vision Laboratory, ETH, Zurich
E-mail: liwenbnu@gmail.com

constraint models elegantly the complementary infor-
mation among different views, reduces redundancy of

subspace representations, and then improves the accu-
racy of subsequent tasks. We formulate the model with a
tensor nuclear norm minimization problem constrained
with `2,1-norm and linear equalities. The minimization
problem is efficiently solved by using an Augmented
Lagrangian Alternating Direction Minimization (AL-

ADM) method. Extensive experimental results on di-
verse multi-view datasets demonstrate the effectiveness
of our algorithm.
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1 Introduction

Recently, data collected from various sources or rep-
resented by different types of features are available in
many real-world applications. For images, different types
of features are usually extracted based on color, texture
and edge. For web pages, different types of features
could be extracted based on text, hyperlinks and pos-
sibly existing visual information. These different types
of information can be considered as different views de-
scribing subjects. Different views describe samples from
different perspectives, hence it is beneficial to integrate
the information from multiple views for more compre-
hensive learning [5, 6, 9, 10, 12,13, 21,22, 35,44,54, 65,73].
Moreover, real-world data are usually associated with

prior such as label information, which, if being utilized,
can improve the discriminability of representation. To
utilize these two cues, in this work, we focus on advanc-
ing representation learning by making use of multiple
views and prior constraint within a unified framework.



Most existing multi-view clustering methods exploit
different views with graph-based models. Typically, some
early approaches address the “2-view” case [5, 12, 21].
The method in [21] relates two views with a bipartite
graph and the final clustering result is obtained by using
a standard spectral clustering algorithm. The method
in [5] focuses on handling the data with two condition-
ally independent views based on k-means clustering. To
be applicable for the data with three or more views,
Linked Matrix Factorization (LMF) [54] fuses the infor-

mation from multiple graphs, where a common factor
is shared by all graphs and a view-specific factor is as-
signed to each individual graph. Some methods [34,35]
co-regularize or co-train different views to enforce the

consistence among multiple views. The common space
based models [6,13] usually focus on learning a common
representation by using Canonical Correlation Analysis
(CCA) to project multiple views onto a low-dimensional
common subspace, and followed by conventional clus-
tering algorithms. Recently, some methods [59, 66] were
proposed for multi-graph fusion with rank constraint on
its Laplacian matrix, thus the cluster indicators are di-
rectly obtained by the global graph without performing
any post processing (e.g., k-means clustering). Based

on self-representation subspace learning, several multi-
view subspace learning methods [9,68,70] were proposed,
which usually jointly learn multiple subspace represen-
tation matrices or one unified subspace representation
matrix.

Although great progress has been achieved, there
are still two limitations for existing methods: (1) previ-
ous approaches usually capture pairwise correlations of

different views, ignoring the essentially high-order rela-
tionship of multi-view data; (2) for multi-view represen-
tation learning, there are usually prior constraints (e.g.,
must-link constraint or partial label information) which

could improve the learned multi-view representation.
However, this is not guaranteed in existing multi-view
clustering approaches.

To address these issues, we propose a novel method
termed Tensorized Multi-View Subspace Representa-
tion Learning (TMSRL), which is outlined in Fig. 1.
The whole procedure includes the following two aspects.
Firstly, the proposed TMSRL regards the subspace rep-
resentations of all views as a high-order structure, i.e.,
a 3-order tensor. To model the high-order cross different
views, the tensor is enforced to be low-rank to enhance
the consistency and reduce the redundancy of these

multiple subspace representations. Secondly, to incorpo-
rate the prior information thus guide the representation
learning, a constraint matrix is introduced into our
framework. Therefore, the learned representation could
be beneficial from both the complementarity of multiple

views and the effective prior constraint. Notably, in our
model, the high-order correlation indicates the linear cor-
relation by simultaneously considering all views instead
of pairwise manner. The well-known Canonical Correla-
tion Analysis (CCA) and its variants are designed for
multi-view representation learning by maximizing the
sum of pairwise correlations. Although this is a popu-
lar way in multi-view learning, it fails to incorporate
higher-order correlations. The main contributions are
summarized as follows:

– With integrating together all the subspace repre-
sentations of different views by low-rank tensor, the
proposed TMSRL captures the global structure of all
views, and explores the correlations within each view
and across multiple views. The proposed algorithm
levels up the conventional multi-view learning which
can only explore pairwise correlation.

– With a constraint matrix with labels as hard con-
straint, TMSRL guarantees the data with the same
label to have the same subspace representation, which

seamlessly utilizes prior in the unified multi-view sub-
space representation framework and promotes the
subsequent tasks. The strategy of incorporating ad-
ditional prior information is parameter free, which
makes the algorithm more applicable for practical
applications.

– Extensive experiments on benchmark datasets demon-

strate the effectiveness of exploring the high-order
correlations among multiple views, and the effective-
ness of incorporating constraint as well.

2 Related Work

2.1 Multi-View Learning

Different categorises of multi-view learning algorithms
have been proposed and applied in various applications.
For example, graph fusion based methods [54,56] usually
construct multiple graphs for multiple views and then
fuse them into a common graph. Co-regularization based
methods [35, 58] jointly regularize the hypotheses to ex-
plore the complementary information. Co-training based
methods [34, 75] search for the results that agree across
different views. Multiple Kernel Learning (MKL) meth-
ods usually combine different kernels by adding them

equally [18] or learning the combination weights [27]. It
is also noteworthy that there are also models designed
for real-world applications, including video face clus-
tering [11], medical diagnosis [67] and recommendation
systems [24].
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Figure 1: Overview of Tensorized Multi-View Subspace Representation Learning (TMSRL). Given a collection
of data points with multiple views, X(1) · · ·X(V ), our method integrates all the learned subspace representations,

Z(1) · · ·Z(V ), into a low-rank tensor, Z, under the prior constraints. Then, TMSRL integrates the information from
each individual views by exploring high-order correlations and utilizing the prior constraints as well, which jointly
promote the multi-view subspace representation.

2.2 Multi-View Representation Learning

For multi-view representation learning, CCA-based al-
gorithms basically maximize the correlation of two dif-
ferent views by mapping the original features into a
common space. Generally, CCA can be expressed as an
optimization problem over matrix variables as follows

(P(1),P(2)) = arg max
P(1),P(2)

tr(P(1)TX(1)X(2)TP(2))

s.t. P(v)TX(v)X(v)TP(v) = I, v = 1, 2.

where X(v) = [x
(v)
1 , · · · ,x(v)

N ] ∈ Rdv×n is the feature ma-
trix corresponding to the vth view, with n and dv being
the number of samples and dimensionality for the vth
view, respectively. I is an identity matrix. P(v) ∈ Rdv×k
is the projection matrix for the vth view, and k is the
dimensionality of the common space. To address non-
linear correlations, the kernel extension of CCA was
proposed. To utilize the neural networks for more gen-
eral correlations, the Deep CCA [2] jointly learns two
deep neural networks (DNN) for different views, and the

autoencoder based model [47] aims to obtain a compact
representation which can well reconstruct the original
input. Similar to CCA based methods, the flexible multi-
view dimensionality co-reduction method [69] introduces
Hilbert-Schmidt independence criterion (HSIC) to ex-

ploit the correlations among different views:

(P(1), · · · ,P(V )) =

arg max
Pi∈RK(v)×D(v)

V∑
v=1

tr(P(v)X(v)L(v)X(v)TP(v)T )

+ λ
∑
v 6=u

HSIC(P(v)X(v),P(u)X(u)),

s.t. P(v)P(v)T = I, v = 1, ..., V,

where L(v) is the graph Laplacian for the vth view,
and V is the number of views. The hierarchical semi-
nonnegative matrix factorization is proposed to obtain
the semantics from multi-view data in a layer-wise man-
ner [74]. The common representation of all views is
obtained by enforcing the coefficients of different views
in the final layer to be the same:

(P
(v)
1 , · · · ,P(v)

L ,H) =

arg min
P

(v)
1 ,··· ,P(v)

L ,H

= ||X(v) −P
(v)
1 P

(v)
2 ...P

(v)
L H||2F

s.t. H � 0.

where the feature matrix X(v) is factorized into hier-
archical product of matrices P

(v)
1 , · · · ,P(v)

L and latent
representation H.



2.3 Subspace Representation Learning

Our work is closely related to subspace clustering [23,30,
41]. Sparse Subspace Clustering(SSC) [23] aims to find
a sparse representation matrix whose objective function
is:

min ||Z||1 s.t. X = XZ, diag(Z) = 0, (1)

where Z is the subspace representation matrix and can

be used for subsequent clustering or classification. Low-
Rank Representation(LRR) [41] introduces the low rank
regularization to subspace clustering by solving the fol-

lowing problem:

min
Z,E
||Z||∗ + λ||E||2,1, s.t. X = XZ + E, (2)

where E corresponds to reconstruction error. Smooth
Representation clustering(SMR) [30] underlines the im-

portance of grouping effect to subspace clustering and
the corresponding model is:

min
Z
α||X−XZ||2F + tr(ZL̃Z), (3)

where L̃ is the graph Laplacian matrix. Although impres-
sive performance has been achieved with these existing
methods [23,30,41], they are only applicable for the data
with single-view features. Recently, multi-view subspace
clustering has achieved impressive performance. Specif-

ically, the methods in [28,61,70] formulate multi-view
learning as learning a common subspace representation.
The dimensionality reduction based methods [6,13] usu-

ally learn a low-dimensional subspace to integrate these
multiple views and then obtain the final clustering re-
sult by using traditional clustering algorithm. Recently,
some multi-view subspace clustering methods are pro-

posed [9,15,25,65,70] based on the self-representation
subspace clustering. Different from these methods learn-
ing a common representation [70] or exploring correla-
tions of pairwise views [9, 25], we conduct multi-view
subspace clustering with low-rank tensor to explore the
high-order correlations across multiple views, and incor-
porate prior information as well.

2.4 Semi-Supervised Clustering

Generally, clustering is most related to representation
learning, and here we mainly review the constrained clus-
tering which could be roughly classified into two groups.
The first category [62] usually learns a Mahalanobis dis-

tance to minimizes the distance between samples within
the same class and maximizes the distance between sam-
ples of different classes. However, it may lead to over
fitting since constraints are usually scarce. The second
category extends the traditional clustering methods, e.g.,

k-means [4,57] or Gaussian mixtures [45] to constrained
setting. There are also some methods [11, 33] simply
replace entries of affinity matrix for must-link pairs with
1 and cannot-link pairs with 0.

For example, Video Face Clustering via Constrained
Spares Representation (CS-VFC) [76] utilizes must-link
and cannot-link constraints in two steps, i.e., sparse rep-
resentation and spectral clustering. Its objective function
is as follows:

min ||Z||1 s.t. X = XZ, Zji = 0, (j, i) ∈ (M∪ C ∪ I),(4)

where M, C, I are defined as the sets of the must-link,
cannot-link constraints and indices corresponding to the
elements with value 1 in the identity matrix, respectively.
The way of constructing affinity matrix is provided as:

Wconst = |Z|+ |Z|T + λM + βC, (5)

where M ∈ RN×N ,C ∈ RN×N are the must-link matrix
and cannot-link matrix, respectively. Here λ and β are
trade-off parameters. Note that, we perform normaliza-
tion for Z as zi ← zi/||zi||∞ so as to lead the values in
affinity matrix to be of the same scale.

3 The Proposed Approach

3.1 Preliminary

In subspace clustering, the subspace representation is

usually obtained in self-represented way. The affinity
matrix is constructed according to the learned subspace
representation. Given the data matrix X = [x1, ...,xN ]
with each column being a D-dimensional sample, where
N is the number of samples. To obtain the subspace
representation, representative subspace representation
learning methods [23, 30, 41] usually share the following

formulation

min
Z,E
L(X,XZ) + λΩ(Z)

s.t. X = XZ + E,
(6)

where Z = [z1, z2, ..., zN ] ∈ RN×N is the reconstruction
coefficient matrix, whose column zi is the learned sub-
space representation vector corresponding to the sample
xi, and E ∈ RD×N is the reconstruction error matrix.
L(·, ·) denotes the loss function measuring reconstruc-
tion error, and Ω(·) is the regularization term and λ
is the trade-off parameter that balances the intensity
of the loss and regularization. For clustering task, after

obtaining subspace representation matrix Z, an affinity
matrix is constructed as (|Z| + |ZT |)/2, where | · | de-
notes the absolute operator, and the spectral clustering
algorithm [46] is applied on the affinity matrix for the
final clustering result.



However, Eq. (6) could only handle single-view data.
To extend the single-view subspace representation learn-
ing to multi-view setting, we can rewrite Eq. (6) as:

min
Z(v),E(v)

V∑
v=1

(
Ω(Z(v)) + λvL(X(v),X(v)Z(v))

)
s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, ..., V,

(7)

where X(v), Z(v), E(v) denote the data matrix in the
vth view, corresponding subspace representation matrix
and reconstruction error matrix, respectively. Here λv
denotes the hyperparameter for the vth view and V is
the number of views. Apparently, this naive way deals
with each view data independently, which ignores the
correlations among different views. Thus, our proposed

algorithm aims to capture the high-order correlation
among multiple views.

3.2 Multi-View Subspace Representation Learning with
Low-rank Tensor

In our work, we propose a multiview subspace cluster-

ing method with a low-rank tensor constraint, which
aims to learn the subspace representations of distinct
views jointly and explore the high-order correlation un-

derlying multiple views. The proposed method regards
the subspace representation matrices of all view as a
tensor, which is the generalization of matrix concept.
The definition of tensor nuclear norm [41,43,55, 71, 72]

is as follows:

||Z||∗ =
M∑
m=1

ξm||Z(m)||∗

s.t. ξi > 0,

M∑
m=1

ξm = 1,

(8)

where ξms are constants and M is the number of modes.
The terminology of M -order tensor (or M -mode tensor)
is defined as Z ∈ RI1×I2×...×IM and the unfold opera-
tion along the mth mode on the tensor Z transforms
it into a matrix Z(m) defined as unfoldm(Z) = Z(m) ∈
RIm×(I1×...×Im−1×Im+1...×IM ) [20,37]. The nuclear norm
|| · ||∗ can well approximate the rank of a matrix, since
it is the tightest convex envelop for the rank of a matrix.
Essentially the nuclear norm of a tensor is a convex com-

bination of the nuclear norms of all matrices unfolded
along each mode. We uses the nuclear norm to enforce
the tensor Z with a low-rank constraint as

min
Z(v),E(v)

||E||2,1 + λ||Z||∗,

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, ..., V,

Z = Ψ(Z(1), ...,Z(V )), E = [E(1); ...;E(V )],

(9)

where Ψ(·) combines the representations of distinct views
Z(v) into a 3-order tensor Z, whose dimensionality is
N ×N ×V . We concatenate together along the columns
of errors with respect to each view in the vertical di-
rection, forming as E = [E(1);E(2); ...;E(V )] and apply
`2,1-norm ||.||2,1 to encourage E to be sparse in columns.
There is an underlying assumption that corruptions are
sample-specific, which means some instances are cor-
rupted. In the manner of integration, the columns of
[E(1),E(2), ...,E(V )] will be constrained with jointly con-
sistent magnitude values [14]. Note that, to decrease the
variation in the magnitude of the error corresponding to
different views, we normalize the data matrices in each
view to impose the same scale on the error of distinct

views. Specifically, we normalize xi with xi ← xi/||xi||2.

3.3 Constrained Multi-View Subspace Representation
Learning

Although the subspace representation learning could be
improved with multiple views, it is still challenging be-
cause there is no label information guiding the learning

process. Fortunately, there is usually prior knowledge
(e.g., must-link constraint) available which injects dis-
criminative information into the representation learning.

The must-link prior information indicates whether sam-
ples belong to the same cluster.

To incorporate must-link constraints into the pro-

posed multi-view representation learning model, a con-
straint matrix [32] is constructed. Suppose there are L
samples belonging to C sets where the samples in each
set belong to the same class. The rest N − L samples
with no constraints are considered to belong to N − L
sets. Then, the dataset is partitioned into N−L+C sets,
and accordingly, we can construct a constraint matrix

Q ∈ RN×(N−L+C), where Qi,j = 1 if xi is in the jth set.
To ensure samples in the same set to be clustered into the
same cluster, an auxiliary matrix U(v) ∈ RN×(N−L+C)

is designed for each view satisfying Z(v) = U(v)QT . The
objective function in Eq. (9) can be reformulated as

min
Z(v),E(v)

||E||2,1 + λ||Z||∗

s.t. X(v) = X(v)U(v)QT + E(v),

E = [E(1); ...;E(V )],

Z = Ψ(Z(1), ...,Z(V )), Z(v) = U(v)QT .

(10)

Proposition 1 Under the equation Z(v) = U(v)QT , we

have ||Z||∗ ≤ ||U ||∗.

Based on Proposition 1, ||U ||∗ is an upper bound of
||Z||∗. Therefore, for our objective function Eq. (10), we



substitute ||Z||∗ by ||U ||∗ to avoid the inverse operation.
Accordingly, the optimization problem of Eq. (10) is
transformed as

min
U(v),E(v)

||E||2,1 + λ||U ||∗

s.t. X(v) = X(v)U(v)QT + E(v),

U = Ψ(U(1), ...,U(V )), E = [E(1); ...;E(V )].

(11)

According to the Proposition 1, minimizing ||U||∗ can
be considered as an approximation of minimizing ||Z||∗.
This way of approximation is widely used in the field

of optimization. Specifically, because ||U||∗ is an upper
bound of ||Z||∗, any constraint ||Z||∗ < a can be satisfied
by enforcing ||U||∗ < b (b ≤ a is a sufficient condition).
Therefore, in practice use, we can satisfy the strength of

the low-rank property for Z by setting an appropriate
value for the hyper-parameter λ.

Model properties. To summarize, we highlight

that the proposed latent partial multi-view representa-
tion enjoys the following merits: (1) Our model explores
the high-order correlations by simultaneously mining the
intra-view and inter-view correlations, which is espe-

cially important for the multi-view data. (2) The su-
pervised information is incorporated into the proposed
multi-view subspace representation learning model, which

could guide the learning process for more accurate re-
sult. (3) The proposed algorithm is a flexible framework,
where the constraint matrix is constructed automatically

according to supervised information and the model will
be reduced into unconstrained one if there is no prior
information.

3.4 Optimization

The Augmented Lagrange Multiplier (ALM) is an effi-
cient algorithm for solving optimization problems under
equation constraints. The ALM with alternating direc-
tion minimizing strategy is an efficient solver for our

problem (10). It is necessary to make our objective
function separable to adopt this strategy. Thus, we fol-
low [55] to introduce an auxiliary tensor G consisting of
V variables G(v)’s to replace U , and convert it to the
following optimization problem as

min
U(v),E(v),Gm

||E||2,1 + λ||G||∗

s.t. U = G, X(v) = X(v)U(v)QT + E(v)

U = Ψ(U(1), ...,U(V )), G = Ψ(G(1), ...,G(V )),

E = [E(1); ...;E(V )],

(12)

where G is the augmented variable corresponding to U
that makes our problem separable. The first constraint
ensures the equivalence between (11) and (12). The
second constraint jointly relates the data points of the
same cluster, i.e., the same linear subspace, and takes
the prior into consideration. The last constraint with
`2,1-norm gives the underlying assumption of error, i.e.,
sample-specific error. The optimization problem of Eq.
(12) can be solved by the AL-ADM method [39], which
minimizes the following augmented Lagrangian function:

Lµ>0({U(v);E(v)}Vv=1; {G(m)}Mm=1) =

||E||2,1 +
M∑
m=1

λm||G(m)||∗ + Φ(W ,U − G)

+
V∑
v=1

Φ(YT
v ,X

(v) −X(v)U(v)QT −E(v)),

(13)

where λm = λξm > 0 encodes the intensity of the
low-rank tensor constraint and G(m) is the mth mode
unfolding matrix of G. For convenience, we give the

definition Φ(Y,C) = µ
2 ||C||

2
F + 〈Y,C〉 , where 〈·, ·〉

denotes matrix inner product and µ is a positive penalty
scalar. The above unconstrained problem can be solved
by alternating minimization method corresponding to
the variables E(v), U(v) and G(m) and then updating the
Lagrange multipliers Yv and W(v) accordingly. In this
paper, the AL-ADM strategy is adopted and outlined

in Algorithm 1 to optimize our problem by updating
each variable for each iteration. The optimization for
each subproblem is as follows:

1. U(v)-subproblem: For updating U(v), we solve the
following problem by fixing the other variables:

U(v)∗ = argmin
U(v)

Φ(W(v),U(v) −G(v))

+ Φ(YT
v ,X

(v) −X(v)U(v)QT −E(v)). (14)

Taking the derivative with respect to U(v) and set it to
zero, we obtain the following equation:

AU(v) + U(v)B = C

with A = (X(v)TX(v))−1, B = QTQ

C = (X(v)TX(v))−1
(
G(v) −W(v)/µ

+ X(v)TYvQ/µ+ X(v)TX(v)Q−X(v)TE(v)Q

)
.

(15)

The above equation is Sylvester equation [3]. We can
find a unique solution to solve the problem in (15). The



Algorithm 1: Algorithm of TMSRL

Input: Multiple types of feature matrices: X(1), X(2),
..., X(V ), prior knowledge matrix Q,
parameters λm’s and the number of clusters K

Initialize: U(1) = 0, ...,U(V ) = 0;
Z(1) = 0, ...,Z(V ) = 0; E(1) = 0, ...,E(V ) = 0;
Y1 = 0, ...,YV = 0; W(1) = 0, ...,W(V ) = 0;
G(1) = 0, ...,G(V ) = 0; µ = 10−5; ρ = 1.5; ε = 10−5;
maxµ =1010

while not converged do
for each of V views do

Update U(v), E(v) and Yv according to Eq.
(15), (16) and (17), respectively;
Compute subspace representation of each view
by Z(v) = U(v)QT ;

end
for each of M modes do

Update G(m), W according to Eq. (18) and
(19), respectively;

end
Update the parameter µ by µ = min(ρµ; maxµ);
check the convergence conditions:
||X(v) −X(v)U(v)QT −E(v)||∞ < ε and
||U(v) −G(v)||∞ < ε;

end
Combine all subspace representations of each view by

S = 1
V

∑V
v=1 |Z(v)|+ |Z(v)T |;

Apply the spectral clustering/classification algorithm
with S;
Output: Clustering/classification result.

classical algorithm for solving the Sylvester equation is
the Bartels-Stewart algorithm [3].

2. E-subproblem: The reconstruction error matrix
E is optimized by:

E∗ = argmin
E
||E||2,1

+

V∑
k=1

Φ(YT
v ,X

(v) −X(v)U(v)QT −E(v))

= argmin
E

1

µ
||E||2,1 +

1

2
||E− F||2F ,

(16)

where F is formed by vertically concatenating the matri-
ces X(v)−X(v)U(v)QT +Y(v)/µ together along column.
This subproblem can be efficiently solved by Lemma 3.2
in [41].
3. Yv-subproblem: The multiplier Yv is updated by:

Y∗v = Yv + (X(v) −X(v)U(v)QT −E(v)). (17)

Intuitively, the multiplier is updated proportionally to

the violation of the equality constraint.
4. G-subproblem: G(m) is updated by:

G∗(m) = argmin
G(m)

λm||G(m)||∗ + Φ(W(m),U(m) −G(m))

=
λm
µ
||G(m)||∗ +

1

2
||G(m) − (U(m) + W(m)/µ)||2F .

(18)

Specifically, there are three unfolding ways for a three-

mode tensor in our model. G(m) is a matrix corespond-
ing to the mth mode unfolding of G. We can update
G(m) as a matrix by the singular value thresholding
operator [7].

5.W-subproblem: Similarly to updating Yv, the vari-
ableW is updated by:

W∗ =W + µ(U − G). (19)

Compared to the penalty method, taking µ→∞ is
not necessary for the ALM method to solve the origi-
nal constrained problem. In contrast, owing to the La-
grangian multiplier term, our method has a fast conver-
gence speed since µ can be kept much smaller. Actually
any optimization algorithm can be utilized to solve our

problem in Eq. (12) and we just provide a general opti-
mization scheme. For example, for large scale problem,
LADMPSAP [40] can substitute AL-ADM to achieve a

more efficient performance. Furthermore, some methods
can also be employed to improve the matrix inversion
computation (e.g., [51, 53] ) and Singular Value Thresh-
olding (SVT) operators (e.g., [29, 48]).

3.5 Complexity and Convergence

The detail of our method is summarized on Algorithm 1.

The optimization process of our models mainly con-
sists of five sub-problems. Firstly, solving the U(v)-
subproblem involves matrix inversion and the Sylvester
equation, both of which are with the complexity of
O(n3). The complexity of updating U(v) is O(dn2 +n3),
where d and n are the dimension of single-view feature
and the number of data, respectively. The computa-
tions of updating E(v) and Yv are matrix multiplication
with the complexity of O(dn2). The complexity of G(m)-
subproblem is also O(n3), since it is with the nuclear
norm proximal operator. Overall, the total complexity
of our algorithm is O(dn2 + n3) for each iteration.

Generally, it is difficult to prove the convergence
of our proposed algorithm in theory but convergence
properties could be analyzed similarly as those in [39].
For U(v)-subproblem, we can find a unique solution [3].
Lemma 3.2 in [41] gives the optimal solution of E(v)-

subproblem and the convergence of G(m)-subproblem
is guaranteed in the work [7]. For each subproblem, the
convergence is ensured well. Moreover, the empirical
evidence on real data suggests that our algorithm has a
stable convergence behavior.



4 Experiments

4.1 Experiments Datasets

Fig. 2 presents some example images of four benchmark
datasets used in our experiments. These datasets are
widely used to perform face and image clustering tasks
in recent works [23, 30,41]. The detailed information of
these datasets is described as follows:

•Yale 1. The Yale face dataset contains 165 grayscale
images of 15 individuals. There are 11 images per sub-
ject, one per different facial expression or configuration.

•Extended YaleB 2. The Extended YaleB dataset
consists of 38 individuals and around 64 near frontal
images under different illuminations for each individual.
Similarly to the other work [41], we use the images for
the first 10 classes, including 640 frontal face images.

•ORL 3. There are 10 different images of each of 40
distinct subjects in the ORL face dataset. They took the
images at different times, changing the lighting, facial

expressions and facial details for some subjects.

•COIL-20 4. The Columbia Object Image Library
(COIL-20) dataset contains 1440 images of 20 object
categories. Each category contains 72 images. All the
images are normalized to 32× 32 pixel arrays with 256

gray levels per pixel.

•BBCSport 5. The dataset consists of documents
of sports news corresponding to 5 topics, where two
different types of features are extracted [63].

•Football 6. The dataset is a collection of 248 En-

glish Premier League football players and clubs active
on Twitter. The disjoint ground truth communities cor-
respond to the 20 clubs in the league.

•Politicsie 7. The dataset is a collection of Irish
politicians and political organizations assigned to seven
disjoint groups according to their affiliation. The two
Twitter datasets are associated with 9 different views.

In our experiments, we extract three types of features
(i.e., intensity, Local Binary Pattern (LBP) [49] and Ga-

bor [36]) for the image datasets (i.e., Yale, Extended
YaleB, ORL, and COIL-20). The intensity feature is
the intensity of a single-channel image pixel, e.g., image
grayscale. The extracted standard LBP features are with
the sampling density size of 8 and the blocking number of
7×8. We extract the Gabor wavelets at four orientations
θ = {0o, 45o, 90o, 135o} with one scale λ = 4. Accord-

1 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
3 http://www.uk.research.att.com/facedatabase.html
4 http://www.cs.columbia.edu/CAVE/software/softlib/
5 http://mlg.ucd.ie/datasets/
6 http://mlg.ucd.ie/aggregation/
7 http://mlg.ucd.ie/aggregation/

Figure 2: Example images of the four datasets used in
this paper (the rows from top to bottom correspond to
Yale, Extended YaleB, ORL and COIL-20, respectively).

ingly, the dimensionality of intensity feature depends
on the size of image and the numbers of dimensions for
LBP and Gabor are 3304 and 6750, respectively. For
the BBCSport dataset, each document is divided into
two segments. And then, standard stemming, stop-word
removal and TF-IDF normalization procedures are ap-
plied to two segments separately to produce two different

views [26]. For the Football and Politicsie datasets from
Twitter, the social relationships (networks): ‘follows’,
‘followed by’, ‘mentions’, ‘mentioned by’, ‘retweets’ and

‘retweeted by’ between two users are utilized as six views.
Each user belongs to a specific user list with detailed
description. Additionally, two views are constructed by

the belongs with two kinds of features of user lists, i.e.,
user-list names and key words of user-list names with
textual descriptions. Moreover, the tweet profile vector
is constructed with a certain number of each user’s most
recent tweets to generate the last view. The statistics
of the used datasets are shown in Table 1.

For fair comparison, we do not use the must-link in-
formation for all the compared methods and ours in the
unsupervised experiment. Specifically, the subspace rep-
resentation matrices are learned according to Eq. 9, and
then they are combined into an affinity graph. Moreover,

in the constrained multi-view representation learning
experiment, we introduce the must-link information for
all compared methods.

Table 1: Statistics of the used datasets.

dataset #instance #view #class domain

Yale 165 3 15 image
Extended YaleB 640 3 10 image

ORL 400 3 40 image
COIL-20 1440 3 20 image

BBCSport 737 2 5 text
Football 248 9 5 social media
Politicsie 348 9 7 social media
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Figure 3: Comparison between LRR with features of
each single view and our TMSRL with multiple views.

4.2 Experiments of Unsupervised Multi-View
Representation Learning

We first compare our method with other multi-view
clustering methods since the subspace representation
is usually used for clustering task. For comprehensive
evaluation, there are 10 compared methods in our ex-
periments, including 3 single-view and 7 multiview ones.
Specifically, these methods are as follows:

• SPCbest. This is the standard spectral clustering
algorithm [46] employing the most informative view.

•LRRbest [41]. This is the low-rank constraint sub-

space clustering algorithm with the best performed sin-
gle view.

•RTC [8]. The method utilizes tensor to represent
images and it is robust to the outliers.

•FeatConcatePCA. The method first concatenates
together all views and then employs PCA to reduce the
number of dimensions to 300.

•PCA+LRR. The method concatenates all views
and employs PCA to reduce the feature dimension to
300, on which LRR is applied.

•Co-Reg SPC [35]. The method co-regularizes the
clustering hypotheses to enforce corresponding samples
to have the same cluster membership.

•Co-Training SPC [34]. The method uses the co-
training manner within the spectral clustering frame-
work.

•Min-Disagreement [21]. The idea of “minimizing-
disagreement” is realized based on a bipartite graph.

•ConvexReg SPC [17]. The method learns a com-
mon representation for all views.

•RMSC [64]. The method seeks a cross-view shared
low-rank transition probability matrix for clustering.

•MSSC [1]. The method exploits the complemen-
tarity by using a common representation across different
modalities.

The above comparison methods are conducted by
running 30 times and reporting the average performance
and standard deviation. We utilize two commonly used
metrics to evaluate the clustering quality: Normalized

Mutual Information (NMI) and Accuracy (ACC), which
have been widely used for perform a clustering eval-
uation [16, 38]. For instance, the compared methods,
Co-Train SPC [34] and LRR [41], also utilize the same
metrics for evaluating. Specifically, Co-Train SPC uses
NMI and LRR uses accuracy (ACC) for evaluating clus-
tering task. ACC and NMI favors different properties
in the clustering, and a higher value indicates a better
clustering performance for both of them.

In our experiments, we adopt the inner product
kernel to compute the graph similarity. For the pa-
rameters of our approach on all the four datasets, we
simply set the M parameters with equal value, i.e.,
λ1 = .. = λM = λ, and accordingly only one param-
eter λ needs to tune. For all the compared methods,
we try our best to tune the parameters for the best
performance.

In Fig. 3, we compare our model with LRR using
each single view. It is observed that LRR using the

best single view achieves promising performance, while
the performances with different views vary significantly.
For example, LBP is the best view on ORL and COIL-
20, but there is a serious degeneration on Extended
YaleB. Therefore, it is not reasonable to choose the
same view for different datasets. On the contrary, our
method directly uses all views and achieves competitive

performance, while other multi-view clustering methods
can not produce promising results. This demonstrates
that our model can effectively integrate information
from multiple views.

Fig. 4 shows the detailed clustering results of dif-
ferent methods in terms of accuracy and NMI. Our

method basically outperforms all the baselines on four
benchmark datasets. Specifically for Yale dataset, it is
worth noting that RMSC, the most competitive mul-
tiview clustering model, obtains a relatively promising
performance, but LRR even achieves a better result
provided with the best feature. TMSRL outperforms
LRR with approximately 3.6% and 5.6% in terms of
ACC and NMI, respectively. In addition, as shown in
Fig. 4, concatenating all views and reducing dimension-
ality with PCA ( FeatConcatePCA) is not promising as
expected since its performance is not always superior to
the result of the best single view. Besides, our method
also performs better than two state-of-the-art multi-view
clustering methods [17,64]. The experiments results on
ORL and COIL-20 in the last two rows of Fig. 4 verify
the effectiveness of our approach.

Note that, most comparison methods have relatively
unpromising performances on Extended YaleB except
the self-representation based subspace methods (e.g.,
LRR), as shown in the second row of Fig. 4. This is
mainly due to the large variation of illumination. For
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Figure 4: Results (mean ± standard deviation) in terms of accuracy and NMI.
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Figure 5: Affinity matrices of using naive manner with LRR (top row) as in Eq. 7 and TMSRL (bottom row).
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Figure 6: Classification comparison in terms of accuracy.

instance, benefiting from the self-representation manner,
the subspace clustering methods are robust with respect
to the intensity feature, while the traditional distance-
based methods are dramatically degraded. We can see
that LRR shows the best performance among the base-
lines (e.g., Co-Training SPC, Min-Disagreement and
ConvexReg SPC). The clustering results of our model
are much better than PCA+LRR with the help of the
high order low-rank tensor constraint. Besides, we find
that our method gains such a significant improvement
over LRR on Extend YaleB while it is not as much

as that of other datasets. This is mainly because the
LBP and Gabor features basically not as effective as the
intensity features, which degrades the clustering results
of ours.

Fig. 5 shows the visualizations for affinity matrices
of our method and LRR which independently learns

multiple affinity matrices and then adds them. According
to the ground-truth clusters, we visualize these affinity
matrices. Compared to LRR, our algorithm reveals the
underlying clustering structures more clearly. The results
of visualizations further verifies that our method can
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Figure 7: Visualization of affinity matrices on Yale, Extended YaleB, ORL and COIL-20 under different ratios of
constraints.

well explore the high-order correlation across multiple
views.

We also compared our proposed methods with Feat-
Concate, CCA, Deep Canonical Correlation Analysis
(DCCA) [2] and Deep Canonically Correlated AutoEn-
coders (DCCAE) [60] on classification task. As shown
in Fig. 6, the performance of our proposed method is

rather competitive, where ours performs as the best on
three out of four datasets. It is observed that FeatCon-
cate performs competitive when the quality of each view
is promising. Specifically, according to Fig. 2 and Fig. 6,
we can find that the performance with each single view

of COL20MV is generally good, which indicates high
quality of each view. The possible reason is that simple

methods may also work well when each view is enough
for promising performance. We can also find that Feat-
Concate performs rather unpromising on the relatively

difficult datasets, i.e., yale, football and politicsie.

4.3 Experiments for Constrained Multi-View
Representation Learning

We compare our method with 5 semi-supervised cluster-
ing methods under different ratios of supervised infor-
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Figure 8: Clustering performance under different ratios of constraints on Yale, Extended YaleB, ORL and COIL-20.
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Figure 9: Parameter tuning in terms of internal (i.e., Davies-Bouldin Index) and external (ACC and NMI) metrics
on four benchmark datasets. Since we set λ1 = ... = λM = λ in our experiment, we only should tune the parameter
λ.

mation. We introduce the semi-supervised manner for 3

subspace clustering methods by introducing must-link
constraint [42], which serves as the prior information
to modify the affinity matrix by setting Si,j = 1 if and
only if xi and xj are of must-link. Specifically, these
comparison approaches include 3 slightly modified sub-

space clustering methods and 2 constrained clustering

methods:

• SemiLRR [41]. The method concatenates all views
and employs PCA to reduce the feature dimension to
1000. SemiLRR modifies the learned affinity matrices
by LRR with the must-link constraint.



•SemiSMR [31]. Smooth Representation clustering
(SMR) introduces the enforced grouping effect condi-
tions a representation based subspace clustering model.
SemiSMR modifies the learned affinity matrices by SMR
with the must-link constraint.

•SemiLS3C [50]. Latent Space Sparse Subspace
clustering (LS3C) learns the projection of data and
finds the sparse coefficients in the low-dimensional latent
space. SemiLS3C modifies the learned affinity matrices
by LS3C with the must-link constraint.

•CS-VFC [76]. Video Face Clustering via Constrained
Sparse Representation (CS-VFC) utilizes the must-link
and cannot-link constraints in the video face cluster-
ing task on the two stages of sparse representation and
spectral clustering.

•COSC [52]. Constrained 1-Spectral Clustering (COSC)
presents a generalization of the popular spectral cluster-
ing technique which integrates must-link and cannot-link
constraints.

•CLRR [32]. The method ensures that data sharing
a must-link constraint or same label have the same
coordinates in the new representation.

Fig. 7 shows the affinity matrices on 4 datasets.
The visualization shows the block-diagonal structure
clearly which makes the results of subspace clustering
more accurately. Moreover, with the increase of the
supervision ratios (denoted by sup ratio), the block-
diagonal structure of the affinity matrices becomes much
clearer.

Fig. 8 shows the comparison among diverse methods
with respect to must-link constraints under different
ratios of supervised information in terms of cluster-

ing accuracy and NMI. Obviously, it is observed that
the clustering performances becomes better with the
increase of supervised information. Note that, COSC
achieves a promising performances and defeats these
subspace clustering methods, while our algorithm gains
a competitive results. We also note that the improve-

ments of SemiSMR are not such significant as others
with the increase of supervision ratios on ORL and
COIL-20, while our competitive results further validates
the effectiveness of our method.

Table 2: Computation cost on COIL-20.

Method SPC LRR RMSC MSSC LT-MSC

Time (s) 3.84 276.19 389.78 1833 452.25
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Figure 10: Convergence experiment on Yale and Ex-
tended YaleB.

4.4 Parameter Tuning, Convergence & Computational

Cost

The experiments of parameter tuning are shown in Fig.
9. In our model, there is only one parameter λ to be

tuned. We tune it on 4 benchmark datasets. Overall, the
performances with regularization λ > 0 are better than
λ = 0 on all 4 datasets, which demonstrates the effective-

ness of the low-rank tensor constraint. Moreover, we can
find an reasonable parameter interval for each dataset
to achieve a relatively promising performance. However,
different dataset has a distinctly different parameter

interval. For instance, our method on ORL performs
well with a small λ, which indicates a slight constraint is
sufficient to cluster the ORL data. While for Extended
YaleB, a much larger λ is needed.

Generally, it is difficult to select a value for the
parameter λ in advance for a new dataset because there
is no validation set guiding the selection as in supervised
task. Even though, we provide a possible way to guide
the hyper-parameter selection for clustering. Specifically,
since the label information is invalid, we introduce an

internal evaluation scheme, where the clustering result
is evaluated by using quantities and features inherent to
the dataset. We used the Davies-Bouldin index (DBI)
[19] as a metric for evaluating clustering algorithms
without using label information, where the smaller value



in terms of DBI indicates the better clustering result.
As shown in the Fig. 9, the promising performances in
terms of external metric (e.g., ACC and NMI) are usually
consistent with those of internal metric, demonstrating
the effectiveness of the proposed parameter selection
strategy. Moreover, other internal or combination of
multiple internal metrics could be considered in the
future.

Fig. 10 shows the convergence experiments on Yale
and Extended YaleB. We normalize the values of con-

vergence conditions to (0, 1). The results validate that
our algorithm can achieve convergence within a few
iterations.

We report the results about computational time of

the representative multi-view learning methods on COIL-
20, as shown in Table 2. All the methods are tested on
a computer with Intel(R) Core(TM) i5-8400 CPU and
8.00GB RAM. Because graph (with the size n × n)
is involved for existing subspace clustering methods, it
leads to computational cost matrix operations. The time

complexities of these subspace-based clustering methods
are generally in the same level. We observe that the
spectral clustering is much faster because it does not
require a number of iterations.

5 Conclusion

We introduced a framework to learn representation for
multi-view data by exploiting the complementary infor-

mation from multiple views. The tensor is introduced
to explore high-order correlations of multi-view data,
and a constraint matrix is devised to further promote
the learned representation. We formulated the problem
within a unified optimization framework and proposed
an efficient algorithm to obtain the optimal solution.
The extensive experimental results validate the effec-

tiveness of the proposed method in exploring high-order
correlations and prior information.
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