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Abstract 

 

Outstanding long-term face recognition of suspects is a hallmark of the exceptionally 

skilled police ‘super-recognisers’ (SRs). Yet, research investigating SR’s memory for faces 

mainly employed brief retention intervals. Therefore, in Experiment 1, 597 participants (121 

SRs) viewed 10 target videos and attempted identification of targets from 10 target-present 

line-ups after 1 - 56 days. In Experiment 2, 1421 participants (301 SRs) viewed 20 target 

videos, and after a baseline of no delay to 28 days, - 10 target-present and 10 target-absent 

line-ups, to assess correct line-up rejections. Overall, delay positively correlated with hits but 

not with correct rejections. Most, but not all SRs, made more correct identifications and 

correct rejections than controls at all retention intervals, demonstrating that many SRs 

possess enhanced long-term face memory. This research adds to knowledge of SR’s skillsets, 

and enhances the case for the selection of SRs to identity critical roles – particularly policing. 
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Super-recognisers: face recognition performance after variable delay intervals 

 

The face recognition ability spectrum in the population ranges from developmental 

prosopagnosics who struggle to recognise familiar faces (e.g., Behrmann, Avidan, Marotta, 

& Kimchi, 2005; for a review see Susilo & Duchaine, 2013), to so called super-recognisers 

(SRs) with exceptional unfamiliar face processing skills (e.g., Russell et al., 2009; for a 

review see Noyes, Phillips, & O’Toole, 2017). Face recognition ability is inherited (e.g. 

Shakeshaft & Plomin, 2015; Wilmer et al., 2010), impacted by exposure (e.g., cross-age 

effect: Wiese, Komes, & Schweinberger, 2013; cross-ethnicity effect, Meissner & Brigham, 

2001), and bears weak relationships with cognitive skills such as non-face object recognition 

(e.g., Bobak, Bennetts, Parris, Jansari, & Bate 2016; McCaffery, Robertson, Young, & 

Burton, 2018; Royer et al., 2018; Verhallen, Bosten, Goodbourn, Lawrance-Owen, Bargary, 

& Mollon 2017; Wilmer et al., 2010). Recent studies have evaluated SR’s superiority at 

short-term unfamiliar face memory (e.g. Bate, Bennetts et al., 2018; Russell et al., 2009), 

simultaneous unfamiliar face matching (e.g. Bobak, Hancock, & Bate, 2016), and long-term 

familiar face recognition (e.g. Davis, Lander, Evans, & Jansari, 2016). However, SRs often 

self-report exceptional long-term unfamiliar face memory (e.g. Russell et al., 2009), and yet 

only one small-scale study has investigated this (Davis & Tamoytė, 2017). Recruiting one of 

the largest SR samples to date, the current research aimed to address this gap in the literature. 

This research has important theoretical and applied implications. Until recently, face 

recognition research evaluating groups of different abilities, tended to examine 

prosopagnosics and/or controls scoring in the typical-ability range. Following the first 

empirical evaluation of SRs (Russell et al., 2009), and the understanding that the face 

recognition ability spectrum is far wider than previously realised, some reappraisal of 

theories may be necessary (i.e. those in relation to face expertise; Young & Burton, 2018). 
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Empirically evaluating the capabilities of those at the top end of the spectrum across different 

intervals of time should enhance knowledge of human face memory capacity and retention. 

Practically, some police forces deploy SRs to roles utilising their superior skills. For 

instance, London’s Metropolitan Police Service (MPS) created a full-time SR Unit. This unit 

is tasked with reviewing CCTV images of previously unidentified suspects, with a view to 

recognising these individuals or providing investigative leads. Their superior face processing 

abilities have been verified in empirical research (Davis et al., 2016; Davis, Treml, Forrest, & 

Jansari, 2018; Robertson, Noyes, Dowsett, Jenkins, & Burton, 2016). When actual identity 

was still unknown, these officers sometimes recognised suspects in person, even in large 

crowds (i.e. the case of Ilhan Karatepe; O’Keefe, 2016, 22 August); or more commonly, in 

new footage of later crimes (i.e. the case of Austin Caballero; Robertson, 2016, April 2). In 

this manner, a team of seven police SRs from the MPS SR Unit made 1,071 suspect 

identifications in 30 months (Davis et al., 2018). For this, police SRs accessed past footage, 

or extracted facial stills stored on a database for simultaneous matching of those depicted. SR 

police working in these teams therefore needed exceptional long-term unfamiliar face 

recognition ability and simultaneous face matching ability (Robertson et al., 2016; for a 

review of identification from CCTV see Davis & Valentine, 2015). No data is available as to 

typical time between initial viewing and subsequent identification. However, the average 

retention interval between a crime occurring and images being available on the MPS database 

was about 40 days (M. Neville - former MPS Detective Chief Inspector, private 

communication, 2019, 6 August).  

As face recognition ability is not amenable to training (e.g., Towler et al., 2019), or 

improved from experience in a job role requiring such skills (i.e. passport officers, White, 

Kemp, Jenkins, Matheson, & Burton, 2014), understanding SRs’ aptitudes on empirical tasks 

replicating real-world deployment may assist in suitable recruitment test development (e.g. 
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Ramon, Bobak, & White, 2019). Finally, the descriptions of the long-term face memory 

abilities of the police SRs described above provides anecdotal evidence of superior skills in a 

small number of officers only. The current research aimed to empirically determine whether 

exceptional long-term face memory skills would be found in all SRs classified as such using 

short-term face memory tests.  

Following precedent (e.g., Bobak, Bennetts et al., 2016; Bobak, Hancock et al., 2016; 

Russell et al., 2009), SR group inclusion criteria here were scores 2 standard deviations (SD) 

above the estimated population mean (i.e. top ≈ 2%) based on a representative sample 

(Bobak, Pampoulov, & Bate, 2016) on the short-term Cambridge Face Memory Test: 

Extended (CFMT+) (Russell et al., 2009). Participants also completed the Glasgow Face 

Matching Test (GFMT) (2010) in order to evaluate their simultaneous face matching skills, as 

well as to verify SR’s superior face processing abilities.  

 

Long-term face memory 

 

Previous research has revealed correlations between short-term and long-term face 

memory (e.g., Bindemann, Brown, Koyas, & Russ, 2012; Davis & Tamoytė, 2017). Less 

research has examined face recognition accuracy using retention intervals of four weeks or 

more (e.g., Courtois & Mueller, 1981; Sauer, Brewer, Zweck, & Weber, 2010; Shepherd & 

Ellis, 1973; Shepherd, Ellis, & Davies, 1982; Yarmey, 1979; for a review see Deffenbacher, 

Bornstein, McGorty, & Penrod, 2008). None of these projects, however, evaluated individual 

differences in face recognition ability. The forgetting curve for the human face embraces a 

form determined by Ebbinghaus (1913) for other stimuli, although multiple factors such as 

interference (Deffenbacher et al., 2006), retrieval failure (Eimer et al., 2012), facial 

distinctiveness (Wickham, Morris, & Fritz, 2000), initial memory strength (Deffenbacher et 

al., 2008), and repeated exposure (e.g. Deffenbacher, Bornstein, & Penrod, 2006) can have an 
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impact. Most forgetting, however, occurs in the first 24 hours, and gradually increases over 

longer periods (Deffenbacher et al., 2008). Only one long-term face memory study has tested 

SRs. Davis and Tamoytė (2017) found that SRs were more accurate than controls at 

identification of a target from a nine-person line-up after mean retention intervals of 10 days. 

However, only one target-actor, sometimes in disguise, was employed as a stimulus, and 

participant numbers were low, limiting generalisability. 

Although these results suggest that SRs’ exceptional short-term memory contributes 

to enhanced long-term memory performance, of theoretical interest is whether the ability of 

SRs to retain unfamiliar face representations in memory differs from non-SRs (controls). 

Retention in memory, or its antithesis ‘forgetting,’ can be measured by participants viewing a 

series of faces in a learning phase and varying the interval before they are asked to identify 

the previously encountered faces amongst never seen faces or foils. The forgetting rate or 

curve can be inferred by reduced correct identification rates following each time interval.  

All other things being equal, if SRs and controls display a similar forgetting curve, 

then SRs’ long-term superiority is likely to be a direct result of their short-term memory 

superiority (whether it is due to enhanced encoding, enhanced retrieval, or both). As such, the 

level of SRs’ superiority over controls after the longest retention intervals should be roughly 

the same as after the shortest intervals. In other words, the mean group difference between 

scores on a test will be similar at both time points. However, if SRs display a shallower 

forgetting curve, then on top of the mechanisms driving their short-term memory superiority, 

SRs might additionally possess more effective long-term retention skills. SR’s superiority 

over controls after the longest retention intervals would therefore be greater than after the 

shortest intervals. This would be exhibited by an interaction, so that the mean difference in 

scores between SRs and controls would be larger after the longer interval.  
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The current research 

 

The primary aim of the two experiments described here was to determine whether 

super-recognisers, assessed as such using a short-term face memory test and a verifying 

simultaneous face matching tests, would also demonstrate superior long-term face memory. 

Most long-term face memory research uses one target and one line-up to assess eyewitness 

performances. As SR unit police can encounter large numbers of unknown suspects, often 

displayed on moving images, participants were exposed to a series of action-varying videos 

of target-actors. Long-term face memory was assessed using six-person line-ups. In 

Experiment 1, all 10 line-ups were target-present, and planned retention intervals varied from 

one day to 56 days.  

SRs are also more accurate than controls at correctly rejecting previously unseen faces 

(e.g., Bate, Bennetts et al., 2018; Davis et al. 2016). This implies that SRs may be able to 

better determine when stored face representations do not match with viewed faces. In 

policing contexts, it is important to measure the likelihood of identification by a SR, if, for 

instance, an innocent suspect became the target of an investigation. To measure this, 

Experiment 2 again employed 10 target-present line-ups. However, 10 target-absent line-ups 

in which the target was replaced by a foil were also included. The increase in trial numbers (n 

= 20) was additionally designed to better discriminate between high and low performers. 

Retention intervals varied from being virtually instantaneous, to provide a baseline of 

performance to 28 days. Identification decision confidence ratings were also analysed.  

As possession of simultaneous face matching ability may be important in applied 

policing contexts, to measure the latter, participants completed the Glasgow Face Matching 

Test (GFMT) (Burton et al., 2010), a perceptual task with virtually no memory demands. The 

test’s inclusion also allowed replication of previous research finding that although many SRs 
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are outstanding at both face memory and matching tasks, some SRs display poor 

simultaneous face matching skills (e.g. Bate, Frowd et al., 2018; Bobak, Bennetts et al., 2016; 

Bobak, Dowsett et al., 2016; Bobak, Hancock et al., 2016; Davis et al., 2016). These 

dissociations have generated suggestions that different types of SR might exist, although poor 

performances on any test may be due to a lack of engagement, distractions or other factors 

not related to face recognition ability. Indeed, long-term memory for faces in particular may 

be impacted by a very large number of intervening and uncontrollable variables. As a 

consequence, some authors have also suggested that to reliably identify SRs, more than one 

test of face recognition is required (e.g. Noyes et al., 2017). The inclusion of the GFMT also 

allowed assessment of whether outcomes differed if one (CFMT+), or two (CFMT+ and 

GFMT) tests were employed to assign participants to SR and control groups.  

As with previous research investigating SRs, a disproportionately high number of 

participants in the current research achieved SR criteria (e.g., Belanova et al., 2018; Satchell, 

Davis, Julle-Danière, Tupper, & Marshman, 2019). Many more scored slightly below our SR 

threshold. This is likely due to interest in the topic However, restricted range samples can 

reduce the strength of correlations (e.g. Goodwin & Leech, 2006). A three-component 

strategy was therefore employed to reduce the impact of this recruitment bias. First, with the 

inclusion of all participants, correlations examined relationships between all test outcomes. 

Second, the performances of SRs and ‘typical-range ability’ controls were compared. Third, 

individual analyses compared performances of each SR against the mean of controls. This 

generated an estimate of the proportion of short-term memory test identified SRs who would 

also be considered SRs at simultaneous face matching and long-term face recognition.   

 

Experiment 1 
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As police working in SR units may be required to identify suspects over delays of 40 

days or more, in Experiment 1, participants completed the CFMT+ (Russell et al., 2009), and 

the GFMT (Burton et al., 2010) prior to starting a 10-trial Long-Term Face Memory Test 

(LTFMT10) with retention intervals of 1 to ≥ 56 days. As this research was exploratory, 

exact intervals were 1 day, 7 days, 14 days, 28 days and 56 days, in case task difficulty with 

longer delays was too great. In Phase 1 of the LTFMT10 (learning phase) participants viewed 

ten 60s target actor videos. In Phase 2 (test phase) they identified the targets from ten 6-

person target-present hybrid-video line-ups. With these line-ups, each member’s video played 

sequentially, while still images of the others remained visible. The aim was to reduce floor 

effects as simultaneously presented line-ups generate higher accuracy than sequential line-ups 

(e.g. Mickes, Flowe, & Wixted, 2012), while moving images can also enhance unfamiliar 

face recognition (e.g. O’Toole, Roark, & Abdi, 2002). This may be due to additional cue 

availability in multiple video frames, rather than movement itself (although see Lander, 

Christie, & Bruce, 1999). 

A sub-set of participants were also allocated to SR and typical-range ability control 

groups (i.e. within 1 standard deviation of the typical population mean) based on their 

CFMT+ scores. Previous research has found positive relationships between simultaneous face 

matching and short-term face memory (e.g. McCaffery et al., 2018), and between short-term 

and long-term face memory (e.g., Bindemann et al., 2012; Davis & Tamoytė, 2017), with 

longer retention intervals resulting in lower accuracy (e.g. Deffenbacher et al., 2008). Similar 

effects were predicted here. 
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Method 

 

Design  

 

In Experiment 1, participants first completed the CFMT+ (Russell et al., 2009) and 

the GFMT (Burton et al., 2010), and another short-term face memory test 1, before viewing 

ten 60s target-actor videos in Phase 1 of the LTFMT10. After random retention intervals of 1, 

7, 14, 28, or 56 days, they received invites to Phase 2 of the LTFMT10 during which they 

viewed ten 6-person target-present hybrid-video line-ups. The dependent variables were 

correct line-up identification rates (hits), incorrect foil identification rates (foil IDs), and 

incorrect rejections of the line-ups (misses). A correlational design examined the 

relationships between performances on each test. 

With a sub-set of participants, a 2 (group: SRs, controls) x 5 (actual retention 

interval: 1-6, 7-13, 14-27, 28-55, 56+ days) between-subjects design evaluated outcome 

differences, while individual analyses (Crawford, Garthwaite, & Porter, 2010) compared 

performances of each SR against the control mean. 

 

Materials 

 

Cambridge Face Memory Test: Extended (CFMT+: Russell et al., 2009). 

This 102-trial test is an updated version of the standard 72-trial CFMT (Duchaine & 

Nakayama, 2006). Participants’ short-term learning and recognition of six white-Caucasian 

male hairstyle-cropped target faces is tested in an increasingly difficult three-alternative 

forced-choice paradigm across four blocks.  

 
1 The data from this test are available in the online repository. They are not reported here.  
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Bobak, Pampoulov et al.’s (2016) participants may be the most representative UK 

sample to take this test (n = 254, M = 70.72, SD = 12.32). Consistent with the expected 

recruitment bias, with strong effect sizes, a one-sample t-test revealed that participants in 

Experient 1 significantly outperformed this standard (M = 86.62, SD = 9.52), t(596) = 40.87, 

p < .001, Cohen’s d = 1.45 (see Figure 1). 

 

Glasgow Face Matching Test (short version) (GFMT) (Burton et al., 2010). 

This 40-trial test contains simultaneously presented pairs of white-Caucasian male 

and female facial images. Twenty trials are matched, in which a correct response is ‘same’ 

(recorded as a ‘hit’). Twenty are mismatched and require a “different” response (‘CR’).  

Current participants (M = 37.3 (93.3%), SD = 2.5), significantly outperformed Burton 

et al.’s norms (M = 32.5 (81.3%), SD = 9.7), t(596) = 47.83, p < .001, Cohen’s d = 1.48 (see 

Figure 1).  

Figure 1 here 

 

Long-Term Face Memory Test (10-trial: LTFMT10).  

For Phase 1 of this test, ten videos depicting white-Caucasian target males (n = 5) and 

females (n = 5) in good lighting were sequentially displayed for 60s each. The actions made 

by the targets, their clothing and background environment information differed to assist 

discrimination. For instance, some actors walked towards the camera inside a building, others 

were depicted outdoors, one sat behind a table, another stood behind a desk. One was at a 

golfing range. Each video clip displayed approximately 20-30s close-up facial views (see 

Figure 2). 

 

Figure 2 here 
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For Phase 2, the 10 actors, wearing different clothing to Phase 1, were filmed by an 

experienced police officer at a London police station to create PROMAT™ video line-ups 

(Promat Envision International, Nelson, Lancashire, UK). A 15-sec head-and-shoulders video 

was filmed of each actor, and following Police and Criminal Evidence Act (1984) Codes of 

Practice that govern identification procedures in England and Wales, the officer selected 

eight foils of the same age, ethnicity, and ‘position in life’ from a volunteer database of over 

23,000 videos (see Davis, Maigut, Jolliffe, Gibson, & Solomon, 2015, for a video depicting 

the PROMAT system).  

Normally, PROMAT line-ups contain nine members, each displayed sequentially for 

15s. However, pilot testing (n = 40: none were SRs) in which participants viewed the 10 

Phase 1 videos, and after 7-day retention intervals, the 10 9-person line-ups revealed close-to-

floor performances. Therefore, to reduce task difficulty, the three foils most commonly 

selected by pilot participants were excluded from each line-up, being likely the hardest to 

distinguish from targets. In addition, as simultaneously presented line-ups may generate 

higher accuracy (e.g. Mickes et al., 2012), a 3 x 2 hybrid-video design was created. With 

these, from top left, to bottom right, each line-up member’s video played sequentially (12s 

each), while a still frontal image of the other members remained visible in an array. The 

sequence repeated until a response was made. Note: To reduce time demands, 1.5s was cut 

from the start and end of all videos while all line-up members faced the camera. This change 

was imperceptible.  
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Participants 

 

Participants contributed after reading media articles about super-recognition linked to 

an online anonymised 5-min, - Could you be a Super-Recogniser Test 2. On completion, they 

were invited to participate in the current research. None were compensated for their time, and 

all duplicate entries, and participants who had taken any of the tests previously were 

excluded. In total, 1570 completed the CFMT+, the GFMT, and then viewed Phase 1 of the 

LTFMT10. However, only 597 (38.0%) completed Phase 2. Reasons for high drop-out are 

reported below. All participants were included in correlational analyses (n = 597, male = 241, 

female = 356; aged 16-74 years, M = 35.3, SD = 11.6; White-Caucasian = 505 (64.3%), 

second largest group (black = 10)).  

Inclusion criteria for SR and typical-ability control groups were based on CFMT+ 

scores. SR threshold was a CFMT+ score (95+ out of 102) in the top 2% (i.e. 2 SD above the 

mean) of Bobak, Pampoulov et al.’s (2016) representative sample. To reduce the recruitment 

bias in which a disproportionate number of participants scored fractionally below SR criteria 

(see Figure 1), typical-ability controls scored within 1 SD of that mean (58-83 out of 102). 

Participants scoring 84-94 and 57 and below on the CFMT+ were excluded from between-

groups analyses. Despite attempts to reduce the recruitment bias, controls still significantly 

outperformed Bobak, Pampoulov et al.’s (2016) mean on the CFMT+, t(164) = 4.38, p < 

.001, Cohen’s d = 0.44.  

Table 1 displays SR and control group demographic information and mean CFMT+ 

and GFMT performances. Independent-measures t-tests demonstrated significant differences 

with strong effect sizes, whereby SRs outperformed controls on both tests.  

 

 
2 www.superrecognisers.com 
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Table 1 here 

 

Procedure 

 

Participants were invited to contribute to research loaded on the Qualtrics platform3, 

and asked not to use tablets/mobiles to optimise image size. After providing informed 

consent, they completed the CFMT+, the GFMT, and the unreported test, and were then 

provided with debriefing information which included a list of their scores on these tests.  

All participants were then immediately invited to participate in the current research 

project which included the LTFMT10. After providing informed consent for a second time, 

which included access to scores on the CFMT+ and GFMT and information that they would 

need to provide e-mail addresses removing anonymity, they were familiarised with 

requirements by viewing a practice trial. This consisted of a cartoon character Phase 1-type 

video and immediately afterwards, a cartoon Phase 2-type target-present line-up, with 

instructions, and options to select a line-up member (or not) and to provide confidence as 

described below.  

Next, participants sequentially viewed the Phase 1 target actor videos. Unless 

problems were reported, videos could not be replayed. After each video, questions asked 

whether, a. participants had seen that actor before (none had) and b. whether the video had 

played properly. If participants clicked ‘no’ to b, that video was repeated after the final video 

of 10. There were 372 reported problems out of 15,700 plays (2.36%) (n = 203 participants). 

Repeat plays had no impact on whether participants completed Phase 2 or not; or on any 

results reported below (p > .2). 

 
3 www.qualtrics.com 
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After viewing all Phase 1 videos, participants were asked to provide an e-mail address 

and were warned to watch out for their Phase 2 invite e-mail. As retention interval was 

random, no information was provided as to when the e-mail would be sent. In total, 1,570 

participants completing LTFMT10 Phase 1 were e-mailed Phase 2 invites, with 597 finishing 

the LTFMT10 (38.0%). Some drop out can be explained from high numbers of rejected e-

mails – suggesting errors in entering details. A point-biserial correlation examining the 

relationship between CFMT+ scores and finishing or not (1 = finisher, 0 = non-finisher) was 

positive and significant, r(1570) = .16, p < .001. More SRs (48.0%) completed Phase 2 than 

controls (28.7%), χ2(1, 534) = 19.28, p < .001, Cramer’s V = .190.  

On clicking on the Qualtrics link for Phase 2, the final line-ups were sequentially 

displayed in the same order as first phase videos (i.e. Actor A’s Phase 1 video and Phase 2 

line-up was displayed first). Target-actor and foil positions within line-ups were randomised 

and counterbalanced. In the pilot research described above, participants were provided with 

the usual police warning that the “culprit may or may not be present in the line-up”. This 

resulted in high incorrect foil ID and miss rates. To encourage selections in the final research, 

participants were correctly informed that “the target-actor is definitely present in each line-

up”, although an option to reject the line-up was retained. Participants identified targets by 

selecting a line-up number (1-6), or if they did not recognise the target, they rejected the line-

up (‘none of the above’). Correct line-up identification rates (hits), incorrect foil 

identification rates (foil IDs), and incorrect line-up rejections (misses) were calculated. 

Confidence ratings in identifications were collected immediately after each line-up decision 

(0%: guessing to 100%: absolutely certain). However, as all participants were told all trials 

were target-present, which would not match normal eyewitness procedures, as it potentially 

encouraged guessing, confidence data were analysed in Experiment 2 only 4.   

 
4 Note: Confidence data are available in the supplementary data. 
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Regardless of retention interval, mean hit rates to each actor on the LTFMT10 were 

higher than chance and ranged from 68% to 26% (chance levels = 1/6 = 16.7%). 

 

Results 

 

LTFMT10 retention interval (Median = 14 days, M = 24.1, SD = 23.9) varied from 1-

182 days (see Figure 3); and was skewed (Shapiro-Wilk (597) = 0.83, p < .001), so that 

where appropriate, non-parametric tests were employed. Mean retention interval did not 

differ between SRs and controls, t(284) < 1. Seven participants (SRs n = 3; Controls n = 0; 

Excluded n = 4) achieved LTFMT10 scores of 10 out of 10 (n = 21 scored 0) (Median = 4, M 

= 4.08, SD = 0.24). Despite being told that targets were definitely present in the line-up, 

15.6% of participant selections were misses (participants responded ‘none of the above’).  

 

Figure 3 here 

 

Correlational analyses: With the inclusion of all participants, Table 2 presents 

Spearman’s correlation coefficients across all test outcomes. Retention interval did not 

correlate with GFMT and CFMT+ scores suggesting successful randomisation. While scores 

on all three face processing tests were as expected significantly positively related, the 

correlation between scores on the GFMT and the CFMT+ was stronger than the positive 

correlation between these tests and LTFMT10 hits, and the negative correlation between 

these tests and LTFMT10 Foil IDs. As predicted, LTFMT10 hit rates were also negatively 

correlated with retention interval, Foil IDs, and misses.  

 

Table 2 here 
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Between-groups analyses: To compare performances of SRs and controls, three 2 

(group: SR, control) x 5 (retention interval: 1-6 days (actual mean retention interval: M = 

1.46), 7-13 days (M = 7.91), 14-27 days (M = 15.37), 28-55 days (M = 31.77), 56+ days (M = 

64.12)) ANOVAs were performed on hits, foil IDs and misses on the LTFMT10. Outcomes 

are reported in Figure 3 along with the results of Tukey’s post-hoc tests 5. These analyses 

provide an estimate of forgetting rates, assuming that the mean hit rates in the 1-6 days 

retention interval condition represent faces reliably committed to memory. 

Significant group main effects were found on LTFMT10 hits, F(1, 276) = 29.25, p < 

.001, η2 = .096, and foil IDs, F(1, 276) = 37.12, p < .001, η2 = .119, but not misses F(1, 276) 

< 1. SRs made more hits and fewer foil IDs than controls.  

Significant retention interval effects were found on hits, F(4, 276) = 7.61, p < .001, η2 

= .099, and foil IDs, F(4, 276) = 6.36, p < .001, η2 = .084, but not misses, F(4, 276) < 1. 

Longer retention intervals were associated with reduced hits and increased foil IDs. However, 

although mean hits in the 1-6 days interval were significantly higher than all other retention 

intervals, and mean false alarms significantly lower than the 14-27, 28-55, and 56+ day 

intervals, only a few of the remaining paired comparisons examining the differences between 

all retention intervals were significant (see Figure 4).  

 

Figure 4 here 

 

 

 
5 Some authors argue that to rigorously allocate SRs to groups, two or more tests are required. Following 

Satchell et al. (2019), these three ANOVAs were therefore repeated with the exclusion of SRs (n = 41) 

achieving less than maximum on the GFMT (GFMT = 40), and controls (n = 89) scoring more than 1 SD 

outside the typical population mean on the GFMT (GFMT = 28-36 out of 40). These ANOVAs generated 

virtually identical effects as the main analyses reported above, albeit with larger between-group effect sizes for 

hits, F(1, 120) = 18.11, p < .001, η2 = .131, foil IDs, F(1, 120) = 41.38, p < .001, η2 = .256, and misses, F(1, 

120) = 7.29, p = .008, η2 = .057. Indeed, unlike in the main text, miss rates became significant using these 

criteria. SRs (M = 0.19; SD = 0.22) made more misses than controls (M = 0.12; SD = 0.16). 



 Long-term face memory 
 

20 

 

There were no significant interactions, F(4, 276) ≤ 1.16, p ≥ .330, η2 ≤ .016, 

suggesting that the forgetting curves for SRs and controls are of a similar shape, although see 

Discussion. 

  

Individual level analyses: Modified t-tests for single cases (Crawford et al., 2010), 

individually compared the scores of each SR against the control mean on the CFMT+ (out of 

102), the GFMT (out of 40), and LTFMT10 (hits) within each retention interval (see Figure 

5).  

Figure 5 here 

  

Not surprisingly given inclusion criteria, all SRs (n = 165, 100%) scored significantly 

higher than the control mean on the CFMT+, t(165) = 3.02-4.08, p < .05, one-tailed, z = 3.03 

(95% CI: 2.67-3.39 ) – 4.09 (95% CI: 3.63-4.56). 

Most SRs exceeded the control GFMT mean (n = 111, 91.7%). However, even 

maximum scores of 40 out of 40 were not significantly different from the control mean. 

Noteworthily, ten SRs (8.3%) scored below the control GFMT mean, though non-

significantly.  

For the LTFMT10, SRs were compared to controls from the matched retention 

interval group described in Figure 2. The scores of 95 SRs (78.5%) exceeded the associated 

retention interval control mean, although only 31 (25.6%) significantly outperformed 

controls, t(121) = 1.78-2.74, p < .05, one-tailed, z = 1.81 (95% CI: 1.23-2.38) -2.77 (95% CI: 

2.11-3.43). A further 26 SRs scored below control means, two – significantly (p < .05). 

Importantly, the worst SR performers on the LTFMT10 were not necessarily those who 

scored poorly on the GFMT.   
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Discussion 

 

In Experiment 1, as expected, correlational analyses with the inclusion of all 

participants demonstrated that longer retention intervals were associated with significantly 

fewer LTFMT10 hits, and more foil IDs. With stronger effect sizes, as a group, SRs were 

significantly more accurate than controls regardless of retention interval condition. 

Importantly, there was no interaction between group and retention interval. As such, the 

shape of SRs and controls’ forgetting curves appears roughly similar, and SRs’ superiority 

over controls after 56 days is of approximately the same degree as after 1 day. It is important 

to note, however, that genuine interaction effects typically require larger sample sizes to 

provide adequate power to detect them (Maxwell, Delaney, & Kelley, 2018), and therefore 

the presence of genuine interaction effects cannot be dismissed. Numbers of SRs in some 

retention interval conditions were low (< 20), resulting in low power (.23) to find small 

effects in Experimen1. Experiment 2 recruited a far larger participant sample to address this 

limitation. 

Despite the low numbers of SRs in some conditions, between-group outcomes were 

matched by the individual analyses. All SRs (n = 121, 100%) significantly exceeded the 

control group mean on the CFMT+ and most SRs exceeded the GFMT (91.7%); and 

LTFMT10 (78.5%) control means. However, only a minority significantly outperformed the 

control group on the LTFMT10 (25.6%). This may be due to low discriminatory power from 

only including 10 trials in the LTFMT10, as well as the bias to recruit better-than-typical face 

recognisers – the control group here significantly outperformed past research norms on the 

CFMT+ and GFMT. This may partly be because a higher proportion of controls (71.3%) than 

SRs (52.0%) dropped out after completing Phase 1. It is possible many of these controls were 

aware that their LTFMT10 scores would be poor and declined to continue. All participants 
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received feedback in the form of their scores after the CFMT+ and GFMT, from which 

controls would have been able to infer they were not exceptionally good at this task – a 

possible demotivating effect. On the other hand, the investment in time of those who did 

finish was high, and it would be surprising for someone to take part but not try. Nevertheless, 

a few SRs also performed below the control mean on the GFMT (8.3%), supporting proposals 

for dissociated perceptual and memory-based processing components at the highest levels of 

ability (e.g., Bate, Frowd et al., 2018).  

In summary, Experiment 1 demonstrated that superiority on the short-term CFMT+ is 

associated with superiority at the long-term recognition of faces, while the forgetting curve of 

SRs and controls was roughly similar. However, participants were correctly informed Phase 2 

trials were all target-present, meaning participant deductions as to the most likely target in the 

line-up may have contributed to outcomes. Furthermore, most forgetting happens in the first 

24 hours (Deffenbacher et al., 2008), and no performance baseline with virtually no LTFMT 

retention interval was included to establish a baseline of performance and to measure initial 

decline. Finally, a large number of participants (62%) failed to finish the LTFMT10. 

Experiment 2 addressed these factors.  

 

Experiment 2 

 

In Experiment 2, participants completed an extended 20-trial (LTFMT20) version of 

Experiment 1’s 10-trial LTFMT10. To maintain Experiment 1’s 10-min Phase 1 learning 

time, and to avoid elevated participant drop out risk, learning time for each Phase 1 video in 

Experiment 2 was reduced by half, to 30s. After random retention intervals (immediate, 1 

day, 7 days, 14 days, 28 days), all participants viewed ten target-present and ten target-absent 

3 x 2 counterbalanced simultaneous photo line-ups. The use of photos instead of videos was 
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expected to result in lower rates of accuracy than Experiment 1. However, it also reduced 

Phase 2 time demands. From an applied perspective, police are also more likely to first view 

suspects in CCTV stills in briefings, before deciding whether to access the original crime 

scene videos. This would be more likely if they believed they recognised the suspect from the 

still image. As such, it is important to measure factors that might impact on performances in 

real world situations. Finally, all participants in Experiment 2 had previously taken the 

GFMT (Burton et al., 2010) and the CFMT+ (Russell et al., 2009) in unpublished research, 

and had requested invites to future research. Recruiting motivated volunteers was also 

expected to reduce dropout. 

In Experiment 2, identification decision confidence was also analysed. Signal 

detection theories of decision making and confidence processing (e.g., Green & Swets, 1966; 

Macmillan & Creelman, 1991) suggest response and response confidence in recognition 

memory tasks derive from shared evidential bases. As such, conditions amenable to higher 

identification decision accuracy (i.e. longer exposure and good views of targets in learning 

phases; shorter retention intervals), should also generate higher confidence. The opposite 

should apply if identification conditions are poor. In support, most research finds  

identification accuracy and confidence is calibrated (e.g., Mickes et al., 2012; Sauer et al., 

2010; Sporer, Penrod, Read, & Cutler, 1995, Wixted & Mickes, 2018; for a review see Sauer 

& Brewer, 2015). Indeed, Sauer et al. (2010) found that regardless of retention interval, 

higher confidence was associated with stronger diagnosticity. However, compared to when 

identification decisions were made immediately, there was a tendency for participants to be 

over-confident in their identification decisions after 20-50 days, reducing diagnosticity. 

Superior face recognition ability is also associated with higher confidence in accurate 

identifications, and lower confidence in misidentifications (e.g., Grabman, Dobolyi, 
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Berlovich, & Dodson., 2019; see also Davis et al., 2018), and the current design allowed for 

measurement as to whether this relationship persists over longer retention intervals.  

Diagnosticity may be confounded with response bias, or participants’ tendency to 

choose (or not) from a line-up (e.g., Wixted & Mickes, 2012). Therefore, for the current 

research, confidence-based accuracy in SRs and controls was plotted using Receiver 

Operating Characteristic (ROC) curves. ROCs plot the probability of a correct identification 

of a target in target-present line-ups (y axis) against the probability of an incorrect foil 

identification (false alarm: FA) in target-absent line-ups (x axis) at each confidence level. The 

area under the ROC (AUC) is independent of response bias (Green & Swets, 1966). Here, a 

partial area under the curve (pAUC) was reported because the false alarm rate was limited by 

the number of lineup members (n = 6), meaning the curve cannot extend across the entire x-

axis (e.g., see also Mickes et al., 2012).  

In eyewitness research in which the ground truth of ‘guilt’ is known, if correct 

identifications of guilty suspects (true positives) are plotted on the y-axis and incorrect 

identifications of foils (false alarms) on the x-axis, then the AUC reflects the ability of 

witnesses to distinguish between guilty and innocent suspects, independently of willingness 

to identify anyone. In the current research, it was predicted that SRs would display larger 

AUC than controls at each retention interval, reflecting better discrimination of targets from 

foils.   

Consistent with previous findings, a positive relationship was also expected between 

CFMT+, GFMT and long-term face recognition test performances. Retention interval was 

predicted to have a negative impact on LTFMT20 accuracy, with the largest retention interval 

effect sizes expected for target-present than target-absent trials, indicative of increased 

forgetting of targets. Regardless of retention interval, SRs were predicted to generate more 

target-present hits and target-absent correct rejections (CRs) than controls. 
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Method 

 

Design 

 

In the LTFMT20 Phase 1, participants viewed twenty 30s target-actor videos. In 

Phase 2 (immediately, 1 day, 1 week, 2 weeks, or 28 days later), they attempted to identify 

the actors from 10 target-present and 10 target-absent six-person photo line-ups. Target-

presence order was counterbalanced. After making an identification decision they provided 

confidence ratings in that decision (0%: guessing to 100%: absolutely certain). A 

correlational design examined relationships between scores on the CFMT+, the GFMT, as 

well as LFMT20 retention interval, hits and CRs. A mixed 2 (group) x 5 (retention interval: 

< 1 day, 1-6 days, 7-13 days, 14-28 days, >28 days) x 2 (target-presence: target-present vs. 

target-absent) design, with target-presence as the within-subjects factor, also evaluated each 

outcome. At each retention interval, partial ROC analyses additionally compared SR’s and 

control’s probability of a correct identification of a target in target-present line-ups against 

the probability of a foil identification in target-absent line-ups at each confidence level using 

a stratified bootstrap method. Finally, individual analyses again compared test outcomes of 

each SR against the mean performances of controls.  

 

Materials  

 

Long-Term Unfamiliar Face Memory Test 20 (LTFMT20)  

Procedures for this test mostly matched those described in Experiment 1, except trial 

numbers were doubled, and half the trials were target-absent. In Phase 1, participants viewed 
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20 30s target actor videos, ten of which had been used in Experiment 1’s LTFMT10. These 

clips, originally 60s, were cut at appropriate places to ensure that close-up views of each 

target were retained without impacting action continuity. Videos of ten new targets were 

additionally selected for Experiment 2 from an image database of about 500 students. 

Experiment 1’s LTFMT10 targets comprised the odd-numbered trials in the LTFMT20 (e.g. 

1, 3, 5 etc.). The ten new Phase 1 videos and Phase 2 line-ups comprised the even-numbered 

trials. The new Phase 1 videos depicted targets from close-up, moving their heads from side-

to-side in a similar manner to the PROMAT line-ups described in Experiment 1.  

In Phase 2, participants were presented with 20 3 x 2 photo line-ups, each consisting 

of two stills of each line-up member (frontal view, right profile). For the 10 new Phase 2 line-

ups, the targets wore different clothing from Phase 1. All new line-up photos were taken 

against the same blue background. To ensure a balanced design with each target associated 

with a target-present and target-absent line-up, Phase 2 had two randomly allocated versions.  

Overall, regardless of retention interval, individual trial accuracy ranged from 82.0% 

to 13.0% for hits in target-present trials, and 51.0% to 27.0% for CRs in target-absent trials. 

 

Participants 

 

New volunteer participants who had completed the CFMT+ (Russell et al., 2009) and 

the GFMT (Burton et al., 2010) once only previously were invited to Experiment 2. Overall, 

1,683 participants completed Phase 1 of the LTFMT20. Drop out was far less than 

Experiment 1 as 270 failed to finish the LTFMT20 (16.0% dropped out). Unlike in 

Experiment 1, Experiment 2’s participants were recruited via email invitations and had fewer 

tests to complete, which potentially explains why a smaller proportion of participants failed 

to finish. Substantially more females than males completed the LTFMT20 (n = 1,421; male = 
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445, female = 972, other = 3; white-Caucasian = 1236 (86.9.%), aged 16-86 years, M = 

39.87, SD = 12.14)6.  

Figure 6 here 

 

SR and control groups were based on similar criteria as Experiment 1. Table 3 depicts 

the final group demographic information as well as mean CFMT+ and GFMT scores with 

independent t-tests comparing groups. As with Experiment 1, despite attempts to reduce the 

impact of the recruitment bias, controls still significantly outperformed Bobak, Pampoulov et 

al.’s (2016) sample on the CFMT+, t(414) = 14.31, p < .001, Cohen’s d = .46 (Figure 6). 

 

Table 3 here 

 

Procedure   

 

Invitees were e-mailed a Qualtrics (www.qualtrics.com) link and asked not to use 

tablets/mobiles to optimise image size. After providing informed consent, participants viewed 

Experiment 1’s LTFMT cartoon practice trial, followed by the twenty target-actor videos 

(30s each) in Phase 1. As with Experiment 1, if participants reported problems with video 

play by clicking on an icon, they could view that video again at the end of Phase 1. There 

were 628 replays out of 28,460 videos viewed (2.21%), which had no effect on any reported 

results (p > .2). Participants automatically received Phase 2 URL link e-mails at random 

retention intervals (immediately, 1 day, 7 days, 28 days), although not all took part 

immediately on receiving the e-mail. In Phase 2, they were asked to identify recognised 

 
6 Note: demographic information was missing for some participants (gender n = 1; age n = 3; ethnicity n = 3) 
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actors by selecting a line-up number (1-6), or to reject the line-up (‘none of the above’). They 

were not provided with any other instructions. Finally, they were debriefed. 

Unlike Experiment 1, a point-biserial correlation examining the relationship between 

CFMT+ scores and finishing or not (1 = finisher, 0 = non-finisher) was not significant, 

r(1683) = -.04, p = .142. Nevertheless, more SRs (98.1%) completed Phase 2 than controls 

(83.8%), χ2(1, 563) = 27.91, p < .001, Cramer’s V = .223. 

 

Results 

 

LTFMT20 retention intervals varied from almost immediately to 50 days (Median = 

7.6, M = 13.3, SD = 12.2) (see Figure 7); and was skewed (Shapiro-Wilk (1421) = 0.842, p < 

.001). Overall, mean retention intervals were significantly longer for SRs than controls, 

t(714) = 2.04, p = .041, Cohen’s d = .15. The highest total score by any participant (n = 1) 

was 19 out of 20 (n = 3 scored 0) (Median = 8.0, M = 8.2, SD = 3.3) (Figure 7).  

 

Figure 7 here 

 

Correlational analyses: Table 4 presents correlation coefficients between test 

outcomes and retention interval in the LTFMT20. As in Experiment 1, there was no evidence 

of retention interval differing by ability as correlations with CFMT+ and GFMT scores were 

close to zero. Accuracy rates on all face processing tests (CFMT+, GFMT, and LTFMT20 hits, 

and CRs) were positively and significantly related; although the coefficients between the 

CFMT+, and the GFMT, were stronger than those between these tests and the LTFMT20 

outcomes. Furthermore, as hypothesised, in comparison to those between the CFMT+, GFMT, 

and LTFMT20 hits, weaker correlations were revealed between the same two tests and CRs on 
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the LTFMT20. Finally, as expected, retention interval negatively correlated with LTFMT20 

hits indicative of forgetting of targets, but not LTFMT20 CRs.  

 

Table 4 here 

 

Between-group analyses: To compare performances of SRs and controls, two separate 

2 (group: SRs, controls) x 5 (retention interval condition: < 1 day (actual mean retention 

interval: M = 0.33), 1-6 days (M = 5.44), 7-13 days (M = 8.80), 14-27 days (M = 24.99), 28+ 

days (M  = 30.86)) ANOVAs were conducted on LTFMT20 hits and CRs (see Figure 8).  

Unlike Experiment 1, no 14-day Phase 2 e-mail invites were sent. However, large 

numbers of participants completed Phase 1 between 14-27 days, allowing this retention 

interval category to be included in order to match Experiment 1’s results. All analyses were 

first conducted with the addition of the two Phase 2 counterbalanced conditions as a variable. 

Hit rates (M = 0.49, SD = 0.21 vs. M = 0.39, SD = 0.22) were significantly higher in one 

counterbalanced condition than the other (p < .001). However, there were no effects or 

interactions involving other variables (p > .2), and these data were collapsed. 

LTFMT20 hits: Significant main effects of group, F(1, 706) = 86.39, p < .001, η2 = 

.109, and retention interval, F(4, 706) = 41.83, p < .001, η2 = .192, showed that as predicted, 

SRs (M = 0.51, SD = 0.23) outperformed controls (M = 0.38, SD = 0.20), and that hit rates 

were higher with shorter retention intervals. Post hoc comparisons showed hits were 

successively reduced at each retention interval, although not all paired comparisons were 

significant (see Figure 8). Consistent with Experiment 1, there was no significant interaction, 

F(4, 706) < 1, p = .830, η2 = .003. 

 

Figure 8 here 
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LTFMT20 CRs: A significant main effect of group, F(1, 706) = 23.65, p < .001, η2 = 

.032, showed that SRs (M = 0.43, SD = 0.27) outperformed controls (M = 0.33, SD = 0.25). 

Neither the effect of retention interval, F(4, 706) <1, p = .699, η2 = .003, nor the interaction 

was significant, F(4, 706) <1, p = .964, η2 = .001.7 

 

ROC analysis: Figure 9 shows ROC curves for SRs (uninterrupted lines) and controls 

(dashed lines) across five retention intervals with confidence-based hits plotted as a function 

of confidence-based FAs (calculated from 1-CRs) using the method described by Mickes et 

al. (2012; see also Wixted & Mickes, 2018). The 10 responses on target-present trials and 10 

responses on the target-absent trials by each participant were pooled for these analyses.  

 

Figure 9 here 

 

The curves produced for SRs and controls display five markers/pointers, one for each 

confidence range, so that the first marker in the left top corner displays diagnosticity ratio 

derived from hits and FAs for 90-100% confidence range. The second marker displays 

diagnosticity ratio for 70-100% confidence range and so on. ROC analyses calculated the 

partial AUC for SRs and controls under each retention interval. Visual inspection shows that 

at all retention intervals, SR’s identification performances were closer to the top left corner 

indicative of stronger precision. Precision is also reduced with longer retention intervals for 

both groups. SRs AUC after 28 days is roughly similar to that of controls in the immediate 

condition (D = .986; p = .324). The AUC, indicative of better identification discrimination, 

was significantly greater in SRs than controls for all retention intervals (p < .01).  

 

 
7 Between-group analyses with the additional GFMT inclusion criteria described in Experiment 1 and Satchell et 

al. (2019) generated similar results as those reported here, albeit with slightly different effect sizes. The main 

effects of group (SR n = 135; controls n = 239) generated stronger effect sizes for both hits and CRs, while 

smaller effect sizes were found for the main effect of retention interval in hits.  
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Individual analyses: As with Experiment 1, modified t-tests for single cases 

(Crawford et al., 2010), individually compared SR’s scores against the control mean on the 

CFMT+, GFMT, as well as LTFMT20 hits, and CRs within each matched retention interval 

(see Figure 10 depicting 95% CIs of the estimated proportion of the general population each 

SR would be expected to exceed on each measure). As there were significant differences 

between the two counterbalanced LTFMT20 conditions, SRs were compared against the 

controls in their condition only.  

Not surprisingly given inclusion criteria, all SRs (n = 301, 100%) scored significantly 

higher than the control mean on the CFMT+, t(415) = 3.09-4.18 p < .05, one-tailed, z = 3.09 

(95% CI: 2.86-3.32) – 4.19 (95% CI: 3.89-4.49). Most SRs (n = 280, 93.02%) outperformed 

controls on the GFMT, 135 (44.9%) significantly, t(415) = 1.59 p < .05, one-tailed, z = 1.59 

(95% CI: 1.44-1.73) (control group GFMT mean and variance (SD) was slightly smaller in 

Experiment 2 than Experiment 1 allowing a maximum score to be significant in this 

experiment only). One SR scored significantly below the control mean (p < .05).  

 

Figure 10 here 

 

For the LTFMT20 hits, 225 SRs (74.8%) exceeded the associated retention interval 

control mean, with 84 (27.9%) significantly outperforming controls, t(415) = 1.54-4.27, p < 

.05, one-tailed, z = 1.55 (95% CI: 1.17-1.93) – 4.29 (95% CI: 3.61-4.97). A further 76 SRs 

(25.2%) scored below the control mean, eight significantly (p < .05). 

For the LTFMT20 CRs, 176 SRs (58.5.%) exceeded the associated retention interval 

control mean, although only 54 (17.9%) significantly outperformed controls, t(415) = 1.51-

2.78, p < .05, one-tailed, z = 1.52 (95% CI: 1.12-1.91) -2.79 (95% CI: 2.32-3.26). A further 

125 SRs (41.5%) scored below control means, although no differences were significant.   
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Discussion 

 

The target-present results of Experiment 2 closely matched those of Experiment 1 and 

hypotheses. For all participants, the highest hit rates were associated with the shortest 

retention interval (< 1 day). Hit rates at this interval were significantly higher than the other 

retention intervals. There were also significant, positive, but moderate correlations between 

scores on the face matching (GFMT) and short-term face recognition tests (CFMT+), and 

weak to moderate correlations between these and LTFMT20 hits. Regardless of retention 

interval, SRs also made significantly more LTFMT20 hits than controls. 

The results for hits in target-present trials contrast with those for the target-absent 

trials, as there was virtually no correlation (r = -.04) between retention interval and CR rates. 

Significant positive correlations between GFMT and CFMT+ scores and LTFMT20 CRs 

were also far weaker than those in target-present trials. However, SRs still made significantly 

more CRs than controls, suggesting that in comparison to controls, SRs are better able to rule 

out that faces have not been seen before. SR’s superiority was also reflected in the ROC 

analyses which considered participants’ confidence-based performance. SRs displayed a 

greater AUC compared to controls in all retention interval conditions, suggesting that super-

recognition is more diagnostic of accurate line-up identification and confidence.  

Note that even with far greater power (.77) to detect small effect sizes (.20) than in 

Experiment 1, and regardless of participant inclusion criteria (i.e., CFMT+ and GFMT based 

classification, or CFMT+ alone), there was no interaction between group and retention 

interval. Interaction effect sizes were very small. Therefore, similar to Experiment 1, the 

shape of SRs and controls’ forgetting curve for faces appears roughly similar. This is further 

elaborated on in the General Discussion. 
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General Discussion 

 

The two experiments described here demonstrate that most SRs who display 

exceptionally good short-term face memory possess better-than-typical long-term face 

memory as well. Retention intervals varied from virtually none in Experiment 2, to over 56 

days in Experiment 1. With small effect sizes, SRs LTFMT hit rates in target-present trials 

were significantly higher than typical-ability controls. Combining results from both 

experiments, individual analyses show that the hit rates of most SR’s exceeded the control 

mean of the LTFMT in their associated retention interval, although only just over one-quarter 

of comparisons were significant. With smaller effect sizes, increasing retention intervals 

negatively impacted performance, albeit not all comparisons were significant, with effects 

being roughly similar for SRs and controls.  

In Experiment 2’s target-absent trials, SRs also made more CRs than controls, 

although while most SRs individually exceeded the control mean on the individual analyses, 

only a few comparisons were significant. Importantly, in both experiments, there was no 

significant interaction between group and retention interval. This suggest SRs’ long-term 

superiority is likely to be a direct result of their short-term memory superiority (whether it is 

due to enhanced encoding, enhanced retrieval, or both), which is sustained over longer 

intervals. The lack of an interaction suggests that SRs and controls have similar forgetting 

curves for faces in memory. It is possible that SRs possess more effective long-term retention 

which was not detected in this study. For instance, we did not control for the potentially 

numerous interfering factors SRs and controls will have encountered between Phase 1 

encoding and Phase 2 recognition. Ideally, future research should attempt to control for 



 Long-term face memory 
 

34 

 

individual levels of interference, although over longer intervals, control over conditions will 

inevitably become far harder.  

It is perhaps not surprising that only a few SRs significantly made more hits than 

controls on the LTFMT. With 10 target-present trials, the LTFMT in both experiments will 

have had low discriminatory power to distinguish between performers of different standards. 

Furthermore, both experiments suffered from a recruitment bias to attract participants with 

better face recognition abilities than would be expected from a more representative sample. 

This reduction of range will have likely reduced between-group effect sizes and correlations 

between variables. Steps were taken to reduce the impact of this bias by creating typical-

range ability control groups based on scores within 1 SD of the mean on the CFMT+ (Russell 

et al., 2009) of a highly population-representative UK sample (Bobak, Pampoulov et al., 

2016). Despite this, with medium effect sizes, control groups in both experiments still 

significantly exceeded Bobak et al.’s sample mean.  

 

Between-test performance inconsistencies 

 

Despite moderate to strong positive correlations in both Experiment 1 (r = 0.42) and 2 

(r = 0.47) between CFMT+ and GFMT scores of a roughly similar strength to those in 

previous research (e.g. r = 0.45, McCaffery et al., 2018), a few SRs (1 significantly) also 

achieved scores below the control mean on the GFMT, suggesting the impact of dissociations 

between perceptual and memory-based mechanisms (see also Bobak, Bennetts et al., 2016; 

Bobak, Dowsett et al., 2016; Bobak, Hancock et al., 2016; Davis et al., 2016). Accurate face 

matching mainly relies on a facial feature-by-feature comparison strategy (e.g. Megreya & 

Burton, 2006); whereas face memory draws more on holistic or whole face mechanisms (e.g. 

Tanaka & Farah, 1993; Tanaka, Heptonstall, & Campbell, 2019). A proclivity to employ a 
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holistic face processing style has been associated with superior face memory (e.g., DeGutis et 

al., 2013; Wang et al., 2012; although see Konar, Bennett, & Sekuler, 2010). These results 

may simply imply that some SRs may use an inefficient holistically based strategy when 

completing face matching tasks. Further research is required to investigate this proposal. 

The failure of some SRs to outperform controls on the LTFMT may also reflect a 

different approach to encoding faces during the learning stage. Indeed, face recognition 

performance is associated with enhanced or deeper encoding (e.g., Marzi & Viggiano, 2010), 

and the reliance on holistic processing during face encoding similarly contributes to long-

term recognition (Tanaka et al., 2019). While previous SR research provides evidence of 

some SR’s enhanced pictorial encoding (Belanova et al., 2018) and enhanced holistic 

processing (Bobak, Bennetts et al., 2016), not all SRs display the same pattern of results. It is 

therefore possible that this heterogenous pattern of encoding and holistic processing during 

the learning stages contributes to the heterogenous pattern of long-term face recognition 

performance observed here. 

The failure of some SRs to achieve a score above the mean of controls on the LTFMT 

may also reflect a dissociation between short- and long-term elements of superior face 

memory. Indeed, some SRs (n ≈ 5) contacted the researchers stating that although they found 

the short-term memory tests easy, they struggled with longer term face recognition.  

It is also noteworthy that some between-test incontinency is to be expected, and may 

also reflect varying levels of engagement, distractions, fatigue, or a range of factors unrelated 

to face recognition ability. In online studies such as the current research, control over 

conditions is far weaker than in a lab, and therefore a range of extraneous factors may have 

impacted results. On the other hand, recent research demonstrates that experimenter presence 

in a laboratory can reduce visual memory retrieval performances, suggesting that sometimes, 

internet-based studies may better capture abilities (e.g. Souza, Rerko, & Oberauer, 2015). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Konar%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=20424020
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bennett%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=20424020
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sekuler%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=20424020
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Nevertheless, the results of the current research suggest that recruitment criteria for SR roles 

in policing and security, should best be based on achieving test scores measuring a range of 

different skills (see Noyes et al., 2017), rather than high performances on a single short-term 

face memory test such as the CFMT+ (Russell et al., 2009). 

 

Between-test performance consistency 

 

Regardless of potential dissociations between different elements of superior face 

recognition ability, a few participants did achieve highly superior performances on all three 

tests (see Figures 5 and 10). Nevertheless, even in Experiment 2’s immediate condition, SR’s 

accuracy on the LTFMT20 was well below ceiling. Mean SR hit rates in this shortest 

retention interval were 67%, CR rates were 44%. This might imply poor SR reliability. 

However, task demands were very high, being the equivalent of 20 typical eyewitness 

identification experiments in one session. Additional factors may have impacted outcomes.  

First, the LTFMT Phase 1 videos displayed actors from different viewpoints 

providing varying levels of full body, gait and facial movement information. The Phase 2 

line-ups displayed head-and-shoulders information only. As no information was provided in 

advance as to Phase 2 task demands, it is possible that some participants in Phase 1 

concentrated on the actions in the videos or tried to learn non-face features (e.g. full 

bodies/clothing). Such a strategy would have reduced performances.  

Second, in Experiment 2, all line-ups were photos, which will likely have increased 

task difficulty as no movement matching that of the Phase 1 videos could be extracted.  

Third, police worldwide usually warn eyewitnesses that “line-ups may or may not 

contain the target”. No such warning was given in Experiment 2, although in Experiment 1 

participants were correctly told all line-ups were target-present. The unbiased police warning 
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of target presence reduces misidentifications of innocent suspects and foils (e.g. Clark, 2012). 

However, it often also induces a response bias to be cautious, reducing hit rates as well. It is 

possible that if such a warning had been provided to participants, outcomes may have 

differed. Given the normal impact of the warning, CR rates would have been most likely 

increased, albeit at the possible cost of reduced hit rates.  

There were, of course, differences between SRs and controls that may provide an 

alternative explanation for group effects. Specifically, SRs were more likely to finish both 

experiments, achieve higher scores on the CFMT+ and the GFMT, and to assign higher 

confidence values on the LTFMT. As such, it could be argued that rather than possessing 

enhanced face recognition ability, SRs are simply more competitive or motivated, and 

therefore try harder at tests of this type. This proposal would, however, ignore the growing 

body of literature demonstrating that SRs do not always outperform controls at tasks that do 

not involve the recognition of faces (e.g. flowers recognition: Davis et al., 2016; house 

recognition: Bobak, Bennetts et al., 2016; personality in faces: Satchell et al., 2019). It would 

seem strange that groups of different SRs recruited to different research projects would only 

be motivated to try hard on face tests, and not on other tests presented in the same research.  

 

Limitations 

 

There are some limitations of this research that should be acknowledged. All tests 

employed white-Caucasian adults as stimuli. Future research could examine effects with 

actors of different ethnicities and ages, to measure the impact of the cross-age (e.g. Wiese et 

al. 2013) and cross-ethnicity effects (Meissner & Brigham, 2001). Robertson, Black, 

Chamberlain, Megreya, and Davis (2019), and Belanova et al. (2018) found that SRs 

outperformed controls at simultaneous other-ethnicity face matching, and other-age 
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recognition respectively, and it might be predicted that these advantages would transfer to 

longer-term recognition as well.  

In addition, from a theoretical perspective, only long-term memory of the human face 

was tested here. Previous research (e.g. Bobak, Bennetts et al., 2016) demonstrates that 

superior face recognition ability is not always dissociated from object recognition ability, 

indicating possible domain-general mnemonic enhancements. Future research should 

therefore compare long-term memory for faces with tests assessing other classes of visual 

stimuli to better control for the confounding effects of generalized superior memory 

processes. 

Body information may also enhance identification over faces displayed alone (e.g. 

Burton, Wilson, Cowan, & Bruce, 1999; Noyes, Hill, & O'Toole, 2017; Robbins & Coltheart, 

2015), although body and face matching performances may not necessary correlate (Noyes et 

al., 2017). For policing and security, it might be advantageous to deploy staff with 

exceptional face and body/gait recognition skills, particularly for roles reviewing CCTV 

footage, or surveillance and viewing suspects in real life. Recognition of persons of interest 

for instance in CCTV footage would not necessarily be limited to faces alone and as such, 

future research could investigate this with whole body line-ups perhaps using Experiment 1’s 

hybrid-video style to capture idiosyncratic movements and gait.  

The CFMT+ used here as the primary assessment of SR ability has been commonly 

employed in this type of research, although utility has been criticised (e.g., Bate, Bennetts et 

al., 2018; Bate, Frowd et al., 2018; Esins, Schultz, Stemper, Kennerknecht, & Bulthoff, 

2016). For instance, the CFMT+ employs only target-present trials, limiting the investigation 

of participants’ face processing skills (i.e. it is not possible to generate data of correct 

rejections), while the highly controlled greyscale cropped images depicting no hairstyle do 

not reflect realistic daily face recognition scenarios (Bate, Bennetts et al., 2018). The current 
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research demonstrates that CFMT+ scores do predict longer term face recognition 

performance, although alternative face memory test designs may be more suitable. On the 

other hand, between-group outcomes were virtually identical when a second test (the GFMT) 

was used to assign SRs and controls to groups in both experiments. Although this caused a 

reduction in participant numbers in both groups, effect sizes were increased, suggesting that a 

multiple test strategy may be best practice for the selection of SRs to critical roles in 

organisations such as policing.  

Finally, it could also be argued that the modest differences in performances between 

SRs and controls on the LTFMT in both experiments, despite being significant, might not 

generate large gains if transferred to applied settings such as policing. However, if a single 

SR’s superior ability to identify suspects over longer periods of time provides the first link in 

an investigation chain for a highly serious crime (i.e. murder), that might otherwise remain 

undetected, the positive impact on society would be hard to quantify.  

 

Conclusions 

 

The results from the two experiments reported here were the first to demonstrate that 

a majority of participants with outstanding short-term face memory ability – the so-called 

SRs, can sustain these skills over longer-term retention intervals. However, there were 

exceptions, and some SRs who generated exceptional short-term face memory and 

simultaneous face matching scores, produced scores on the long-term face memory tests that 

were below control means, some significantly. This has important implications for policing, 

as some forces have created specialist SR units whose successes are part based on superior 

longer-term face recognition ability. If recruitment was based only on the short-term memory 

tests commonly used in research, the impact on crime detection might be lower than if such a 
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unit contained individuals pre-tested over longer retention intervals. Regardless, tests can 

only provide a marker of ability. They will never guarantee actual workplace performance in 

any occupation. Nevertheless, the results of the current research suggest that SRs with 

exceptional short- and long-term face memory, and simultaneous face matching ability are 

more likely than controls to identify targets across retention intervals of at least 56 days.  
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Tables 

 

 
Table 1: Between-group tests comparing group constitution as well as CFMT+ and GFMT scores in 

Experiment 1 
 SRs (n = 121) Controls (n = 165)        

     N %     N %   χ  V  p 

            

Gender (male) 45 37.2 81 49.1   4.01  .118  .045 

Ethnicity (white)A 94  79.7 138 84.1   .946  .058  >.2 

     M SD     M SD df  t  d  p 

Age 33.5 9.9 36.2 13.3 281.9  -1.94  0.23  .065 

            

CFMT+ criteria ≥ 95 58-83        

CFMT+ (max 102) 96.81 1.80 75.10 6.57 196.4  40.42  4.51  <.001 

GFMT (max 40) 38.44 1.69 35.81 2.83 273.8  9.79  1.13  <.001 
A Note that ethnicity data was missing for 3 SRs and 1 control 

 

 
Table 2. Spearman’s correlation coefficients between all measures in Experiment 1 (n = 597) A B 

   LTFMT10  

 GFMT Retention interval Hit Rates Foil IDs Misses 

CFMT+ 0.42 *   0.02 0.23 * -0.24 * 0.01  
GFMT   <0.01 0.20 * -0.22 * 0.05  
LTFMT10          
Retention interval    -0.31 * 0.28 * 0.01  
Hit rates      -0.57 * -0.40 * 

Foil IDs        -0.43 * 
A Pearson correlations were also conducted and showed similar outcomes 
B All coefficients marked * were significant (p < .001) 

 

 

 
Table 3. Criteria for SR and control groups, and results for t-tests comparing their CFMT+ and 

GFMT outcomes in Experiment 2 
 SRs  

(n = 301) 

Controls  

(n = 415) 
 χ2 V p 

Gender (male) 78 25.9% 136 32.8%  5.26 .086 .072 

Ethnicity (white) 258 85.7% 367 88.4%  1.16 .040 >.2 

 M SD M SD df t Cohen’s d p 

Age 37.84 10.36 40.23 13.31 709.08 -2.70 0.20 .007 

CFMT+ criteria ≥ 95 58-83     

CFMT+ (102) 97.17 1.78 75.21 6.40 498.78 66.48 4.68 <.001 

GFMT (40) 38.57 1.86 35.78 2.66 712.99 16.53 1.20 <.001 
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Table 4. Spearman’s correlation coefficients across all measures in Experiment 2 (n = 1421) A B 

 

     LTFMT20 Outcomes 

 GFMT Retention interval TP Hits TP misses TP foil IDs TA CRs 

CFMT+ 0.47 * 0.04  0.25 * -0.02  -0.25 * 0.13 * 

GFMT   0.02  0.17 * -0.02  -0.17 * 0.11 * 

LTFMT20            

Retention interval    -0.43 * 0.19 * 0.25 * -0.04  
TP Hits       -0.45 * -0.56 * -0.07  
TP Misses        -0.41 * 0.58 * 

TP Foil IDs          -0.48 * 
A All coefficients marked * were significant p < .001  
B Pearson correlation analyses generated similar results, except the negative relationship between LTFMT20 

hits and CRs became significant, r(1421) = -.08, p = .003. 
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Figures 

 

 

 

Figure 1. Distribution of CFMT+ and GFMT scores in Experiment 1 (n = 597) 

 

 

 

 

 
 

Figure 2. Still images of the 10 actor targets displayed in Phase 1 (originally colour) videos  
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Figure 3. For all participants in Experiment 1 (n = 597), top left: LTFMT10 retention interval, top 

right: hit rates, and bottom: a scatterplot displaying both (for clarity three participants with outlier 

retention intervals (> 100 days) were excluded, n = 594).  

 

 

 
 

Figure 4: LTFMT10 (a) hits (b) foil IDs, and (c) misses in Experiment 1 as a function of 

group and retention interval (dark bars = SRs, grey bars = controls)(error bars = 1 SEM). 

Significant values indicate Tukey post-hoc test differences. 



 Long-term face memory 
 

54 

 

 
 

 

 

 

 

Figure 5.Upper and lower bound confidence intervals (95%) of the estimated proportion of 

the population expected to fall below each super-recogniser (SR) (n = 121) based on (1a) 

CFMT+ scores, (1b) GFMT, and (1c) LTFMT10 hits. Due to low super-recogniser variability 

on the CFMT+ only 92%-100% range is depicted in Figure 1a. The 50% line on Figures 1b 

and 1c represents the control mean, so that 50% of the population would be expected to 

achieve above this level. To enhance interpretability throughout, super-recognisers are 

grouped based on delay condition (1-6, 7-13, 14-27, 28-55, 56+ days), and rank-ordered 

from left-to-right based on LTFMT10 hit rates (Experiment 1). 
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Figure 6. Distribution of CFMT+ and GFMT scores in Experiment 2 (n = 1421) 

 

 

 
 

Figure 7. Retention interval in days, total correct responses regardless of target-presence, 

and a scatterplot displaying the proportion of correct responses (max = 20) and retention 

interval on the LTFMT20 in Experiment 2 (n = 1,421) 
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Figure 8. a. Hits and  b. CRs by SRs and controls in each retention interval condition (< 1 

day: SRs: n = 53, controls n = 92; 1-6 days: SR: n = 56, controls: n = 91; 7-13 days: SRs: n 

= 66, controls: n = 87; 14-27 days: SRs: n = 41, controls: n = 59; ≥ 28 days: SRs: n = 85, 

controls n = 86). (dark bars = SRs, grey bars = controls) (error bars = 1 SEM). Significant 

values indicate Tukey post-hoc test differences. 

  

 

 

 

 

 
 

Figure 9. ROC analysis for SRs (uninterrupted line) and controls (dashed line) in the five 

retention intervals with confidence-based accuracy (hits) plotted as a function of confidence-

based false alarms (FA) across all trials. The vertical axis depicts the hit rate, the horizontal 

axis the FA rate. The grey line indicates performances at chance levels (i.e. when hit rates 

equal false positive rates). AUC are indicated for SRs and controls in each retention interval 

condition. The points on each line represent diagnosticity ratio for each confidence range. 

From left to right: >90% confidence; >70%; >50%; >30%;>10%;>1% .  
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Figure 10.Upper and lower bound confidence intervals (95%) of the estimated proportion of the 

population expected to fall below each super-recogniser (SR) (n = 301) based on (2a) CFMT+ 

scores, (2b) GFMT, (2c) LTFMT20 hits, and (2d) LTFMT20 CRs. Due to low super-recogniser 
variability on the CFMT+ only 95%-100% range is depicted in Figure 2a. The 50% line on Figures 

2b, 2c, and 2d represents the control mean, so that 50% of the population would be expected to 

achieve above this level. To enhance interpretability throughout, SRs are grouped based on delay 

condition (immediate, 1-6, 7-13, 14-27, 28+ days), and rank-ordered from left-to-right based on 

LTFMT20 hit rates (Experiment 2). 

 

 


