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In conventional Finite Element – Lagrangian methods, the dynamics model of a flexible 

robot is usually formulated based on a critical assumption that the kinetic energy of an 

element is approximately calculated with an integral of mass point energy. Since the 

energy integral is implicit, the formulation of the dynamics model is also very complex 

and implicit. Hence, this paper develops a new mathematical approach for the dynamic 

modelling of a general flexible/rigid robot. The proposed method is more comprehensive 

and efficient in comparison with the previous ones because it no longer requires the 

calculation of the symbolic integrals and the implicit expressions of the elemental and 

global mass matrices. Besides, the proposed approach is applicable for both the flexible 

robots and the hybrid flexible/rigid robots. To validate the proposed method, numerical 

simulations and experimental results are presented. 
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1. Introduction

In comparison to the conventional rigid robots or manipulators, the flexible ones have 

outstanding advantages such as a lower overall mass, smaller actuators, lower energy 

consumptions, and a greater payload-to-manipulator-weight ratio. However, the dynamic 

modelling of the flexible robots is much more complex.  

The Finite Elements Method (FEM) has been widely used to model and analyse the 

dynamics of flexible robots [1-19]. As compared with the Assumed Modes Method [22-28], 

the main advantage of FEM is that it is ideally suited for the dynamic modelling of the flexible 

robots which consist of multi-links and different joint types [1,18,19]. In addition, FEM is 

# Correspondence: Anh My Chu, Institute of Simulation Technology, Le Quy Don Technical 

University, Ha Noi, Viet Nam. Email:  myca@lqdtu.edu.vn 



capable of handling nonlinear conditions and irregularities in the structure and mixed 

boundary conditions. 

In the literature, to establish equations of motion for the flexible robots, FEM has 

been used in conjunction with different analytical approaches, such as (i) the Lagrange’s 

equations - based approach [1,7,12,13,15,22-28], (ii) the Newton-Euler’s equations - based 

approach [3,6,17], and (iii) Kane’s equations - based approach [16]. 

In addition, there have also been some different finite element approaches which were 

developed for the dynamic modelling of Flexible Multibody Systems, such as the Floating 

Frame of Reference (FFR) formulation [28-34], the Absolute Nodal Coordinate Formulation 

(ANCF) [35, 44-46], the Co-Rotational Finite Element Method (CRFEM) [37-42], and the 

Rigid Finite Element Method (RFEM) [36, 43]. A comprehensive review about these 

approaches was presented in [36].  In FFR formulations, two sets of coordinate systems are 

usually employed where one set characterizes the location and orientation of the bodies, while 

the other one describes the elastic deformation of the bodies [28-34]. In ANCF formulations 

[35,44-46], since the position of each point on a flexible body is calculated with a global 

shape function defined in a fixed reference frame, the global mass matrix of the dynamic 

equation is a constant matrix.  In CRFEM method [37-42], a moving frame, the so called co-

rotated frame, is attached to each element of a body in order to define the elastic deformation 

of the corresponding element. As for RFEM method [36, 43], each body is divided into rigid 

finite elements, and all the elements are connected with each other via springs and dampers.  

Although many studies have been devoted to the dynamic modelling of flexible 

robots, few papers have carried on increasing the accuracy and reducing the 

computational complexity for the formulation of the dynamics model. Most of the 

previous FE formulations of the flexible robot dynamics are usually based on an 

important assumption that each link of a robot is assumed as an infinitely thin flexible 

rod. Further, to formulate elemental mass matrices for constructing the global mass matrix 

of the dynamic equation, a symbolic integration of the kinetic energy of a mass point 

along the length of an element is employed. In practice, this computational scheme has 

some considerable disadvantages. In particular, the construction of the global mass matrix 

of the dynamic equation from all the elemental mass matrices suffers from a 

computational burden since several complex and implicit mathematical transformations 

are required.  

In this paper, a novel mathematical modelling method is developed and validated 

for application in formulating the dynamics model of the flexible/rigid robots. In the 

proposed approach, the motion of a flexible robot is decomposed into rigid and flexible 

motions. Both the flexible and rigid motions of each element of a link are taken into 

account when calculating the total kinetic energy of an element. By using the Jacobian 

matrices and a global vector of the generalized velocities, all elemental mass matrices and 

the global mass matrix for a general flexible/rigid robot is explicitly calculated to 

determine the mass and all inertia moments of all elements. In this manner, the dynamic 

equation for a rigid robot can be obtained by eliminating all the elastic displacements in 

the dynamic equation of a flexible robot. Thus, the proposed method is applicable for not 

only the flexible robots but also the flexible/rigid robots which consist of links of a given 

geometry. Furthermore, since all the elemental mass matrices can be formulated without 

any symbolic integrals, the time complexity of the formulation is reduced by O(η), where 

η is the number of finite elements on all links. It was well demonstrated that the dynamic 



modelling scheme proposed in this study for a flexible robot is similar to the commonly 

used schemes of the dynamic modelling for the conventional rigid robots. Thus, the 

proposed method is very useful and helpful to users who have been familiar with the 

dynamic modelling and control of rigid robots. Therefore, the proposed method is more 

efficient, advantageous and useful when compared with previous methods. Finally, to 

present validations of the newly developed dynamic modelling method, the numerical 

examples and experimental results are presented.     

2. Equations of Motion

This section presents a new mathematical approach to establish the dynamic 

equation of a flexible robot. In the proposed approach, the rigid and flexible motions of 

an element of a link are considered when calculating the linear velocity, the angular 

velocity, and the kinetic energy of each element of a link. Besides, the global mass matrix 

of the dynamic equation can be effectively calculated and explicitly expressed in terms 

of Jacobian matrices and the global generalized velocities without any complex 

assembling procedures. 

Let’s consider a planar flexible robot consisting of n   links and n  joints.  Fig. 1 

presents a generalized schematic of an arbitrary couple of flexible links of the robot, 

namely link 1−i   and link i . In this figure link 1−i   connects with link i  by a joint i  

which can be a revolute joint, a sliding prismatic joint or a fixed prismatic joint [1]. Link 

i of length il is divided into in elements of equal length iel . The vector of flexural

displacements and the flexural slopes of an element j  is 

( ) ( ) ( ) ( )2 1 2 2 1 2 2− + +
 =
 

T

ij i j i j i j i j
u u u up . 

Figure. 1. Link 1−i  and link i  of a flexible robot 

Suppose that the homogeneous motion of an element j  includes the two motions. 

The first motion is a rigid motion which implies that the motion of the element j  will 

take place regardless of the elastic deformation of the link i . The second motion is a 



flexible motion relative to the rigid motion, which is caused by the elasticity effect of the 

link i .   

Let’s define i i i iO X Y Z as the local coordinate system attached to the link i , where

the origin iO is fixed to the proximal end of the link i and the axis iX points in the 

direction of the link i . Similarly, 1 1 1 1− − − −i i i iO X Y Z is defined for the link 1−i . 0 0 0 0O X Y Z

is the reference coordinate system fixed to the base. 

Let 
r r r r

ij ij ij ijO x y z be a local frame, of which the origin point 
r

ijO  is located at the centre 

of mass of the rigid element j , and the axis 
r

ijx points in the direction of the rigid link i . 

Similarly, the frame 
f f f f

ij ij ij ijO x y z is defined for the flexible element j . The superscript “r”

stands for a rigid element, and “f” stands for a corresponding flexible element. 

In essence, the frame 
f f f f

ij ij ij ijO x y z can be obtained by translating and rotating the frame 

r r r r

ij ij ij ijO x y z at a flexural displacement ( )ijw x along 
r

ijy axis, and at a flexural slope ( )
ijw x

around 
r

ijz axis, respectively. The transformation matrix can be expressed as follows:
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where the flexural displacement ( )ijw x is calculated at the centre of mass ,

2
iel

x = , as ( ) ( ) ( )( )

4

2 2
1


− +

=

=ij m i j m
m

w x x u , where m are the shape functions. 

In the frame i i i iO X Y Z attached to a link i , a point ( )ij xr on an element j  of a link 

i is calculated as follows: 

( ) ( )

( )

( )

1

0

1

ie

ij

i ij

j l x

w x
xr

 − + 
 
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(2) 

In the precede frame 1 1 1 1− − − −i i i iO X Y Z , the point ( ) ( )i ij
xr is denoted as 

( ) ( )1i ij
xr

−

which can be determined with the following kinematic relationship: 

( ) ( ) ( ) ( ) ( )1 1i ij i i i ij
x xr Θ r

− −
= , (3)



 

where ( )1i i
Θ

−
is the transformation matrix describing the kinematic relationship 

between a link 1i −  and a link i  for a flexible robot, which was proven in our previous 

study [1].  

In order to determine the position and the orientation of a flexible element j , the 

position and the orientation of the rigid element j  should be calculated first. In 0 0 0 0O X Y Z

, the point 0 r r

ij ijOr , and the orientation of 
r r r r

ij ij ij ijO x y z is characterized by the following 

transformation matrix:  

( )
0 0

0 1

1 0 1
 


−

=

   
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

ri
r r ij ij
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where 
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r

ij
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Consequently, in 0 0 0 0O X Y Z , the position vector 0

f

ijr (the point 
f

ijO ) can be 

determined as follows: 

0 0 0= +f r f

ij ij ij ijr r A u (6) 

It is clearly seen that, the centre of mass of any element of a given link can be 

determined explicitly with Eq. (6). 

Let’s consider the dynamic equation of the flexible robot: 

( ) ( ) ( )+M q q +C q,q q +Kq G q = F (7) 

Eq. (7) is written with respect to the global vector of the generalized coordinates, 

1 1 2 2 ... =    
T

T T T

n np p pq , where ip is the joint variable i , and 
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T
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u u u u is the vector of the elastic displacements of all 

elements of a link i . The applied forces/torques imposing on n   joints of the robot are 

represented as 

1
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T
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Formulation of the global mass matrix ( )M q

Taking time derivative both sides of Eq. (6) yields: 

0 0 0 0= + +f r f f

ij ij ij ij ij ijr r A u A u , (8) 

Note that 0 0=f T f

ij ij iju A u . Therefore,



0 0 0 0 0 0= + +f r T f f

ij ij ij ij ij ij ijv v A A u A u

0 0 0 0 0= + +f r r f f

ij ij ij ij ij ijv v ω u A u

0 0 0 0 0= − +f r f r f

ij ij ij ij ij ijv v u ω A u

(9) 

where 0

f

ijv is the velocity of the centre of mass 
f

ijO of an element j . 0

r

ijω is the 

angular velocity of an element j  with regardless of the elastic deformation of  link i . 

It is noticeable that 

0

0

r

ijr

ij

r
v q

q


=


, 

0

0

r

ijr

ij

ω
ω q

q


=


, and 

f

ijf

ij

u
u q

q


=


. 

Hence, the velocity 0

f

ijv  can be expressed in terms of Jacobian matrices and the 

generalized velocities as follows: 

( ) ( )( )0 0 0

f r f r f

ij ij ij ijij T ij R
v J u J A J q= − + , (10) 

where the Jacobian matrices are determined as follows: 

( )
0

=


r

ijr

ij T

r
J

q
, 

( )
0

=


r

ijr

ij R

ω
J

q
 and 


=



f

ijf

ij

u
J

q
. (11) 

The matrices 
( )

r

ij T
J and 

( )
r

ij R
J are the translational and rotational Jacobian 

matrices of an element j   regardless of the elastic displacements of the element j . 

Meanwhile the Jacobian matrix 
f

ijJ is calculated with respect to the relative flexural 

displacement of the element j .  

Let’s denote 

( ) ( )0 0= − +f f r f

ij ij ijij T ij R
J u J A J (12) 

( )
f

ij T
J  plays a role of a translational Jacobian matrix with regards to to the elastic 

deformation of the element j  of the link i . The absolute linear velocity 0

f

ijv  can be 

rewritten as follows: 

( ) ( )( )0

f r f

ij ij T ij T
v J J q= + , (13) 

The absolute angular velocity 0

f

ijω  of a flexible element j  of a flexible link i  can 

be determined as follows: 

0 0= +f r f

ij ij ijω ω ω , (14) 

where 

( )
T

f f f

ij ij ijω A A= (15)



In terms of the Jacobian matrices and the generalized velocities q , the angular 

velocity 0

f

ijω can be rewritten as follows:

( ) ( )( )0

f r f

ij ij R ij R
ω J J q= + , (16) 

Where 

( )


=



f

ijf

ij R

ω
J

q
(17) 

Assuming that the size of an element j  is small, and link i  is dived into a finite 

number of elements, the kinetic energy of an element j  of  flexible link i  can be 

approximated as follows: 

( ) ( )0 0 0 0

1 1

2 2

T T
f f f f

ij i ie ij ij ij ij ijT ml v v ω I ω+ (18) 

Substituting Eqs. (14 and17) into Eq. (19) yields 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1

2 2
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T T
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Let’s denote 

( ) ( ) ( )
r f

ij T ij T ij T
J J J= + , and (20) 

( ) ( ) ( )
r f

ij R ij R ij R
J J J= + (21) 

Rewriting ijT in terms of the elemental mass matrix gives 

( )
1

2

T

ij ijT q M q q= (22) 

Therefore, the elemental mass matrix  ijM can be expressed as follows: 

( ) ( ) ( ) ( )
T T

ij i ie ijij T ij T ij R ij R
mlM J J J I J= + (23) 

The total kinetic energy of n links of the robot is calculated as follows: 

( )
1 1

1

2

jnn
T

ij

i j

T T q M q q
= =

= = (24) 

Finally, the global mass matrix is obtained as follows: 

( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

j

i

nn

ij

i j

nn
T T

i ie ijij T ij T ij R ij R
i j

m l

M q M q

J J J I J

= =

= =

=

= +




(25) 

Remark. It is clearly seen that the form of the global mass matrix of the dynamic 

equation of a flexible robot is similar to the form of the global mass matrix of the dynamic 

equation of a rigid robot. The dynamic equation for the flexible robots is more generalized 



than the dynamic equation for the rigid robots. The dynamic equation of a rigid robot can 

be obtained by eliminating all the components 
( )

f

ij T
J and 

( )
f

ij R
J  in Eqs. (20 and 21) that 

characterize the elasticity effects in the dynamic equation of a flexible robot.  Therefore, 

Eq. (25) is a generic formulation of the global mass matrix of the dynamic equation which 

can be used for both the flexible robot and the rigid robot. Furthermore, this formulation 

is also applicable for the case when a part of some rigid links of a robot is flexible. 

      A flowchart of the algorithm for the symbolic formulation of the global mass 

( )M q is presented in Fig. 2.  

Figure 2. The algorithm for symbolic formulation of the global mass matrix   
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For every element j  of  link i , the vector 
f

iju and the matrix
f

ijA are calculated 

with Eq. (1), the position vector ( )0

r

ij xr and the rotation matrix 0ijA are calculated with 

Eq. (4).  The angular velocity 0

r

ijω  is then determined via 0 0 0

r T

ij ij ijω A A= . The Jacobian 

matrices 
( )

r

ij T
J ,

( )
r

ij R
J and 

f

ijJ are calculated with Eq. (11), and the matrix 
( )

f

ij T
J is 

calculated with Eq. (12). The relative angular velocity 
f

ijω is calculated with Eq. (15) 

and the Jacobian 
( )

f

ij R
J  is determined with Eq. (17). The elemental mass matrix ijM is 

calculated with Eq. (23). For all elements on all links, the above steps are recursively 

looped to archive all ijM . Finally, the global matrix M  is obtained with Eq. (25). 

Note that, to complete the formulation of the dynamic equation Eq. (7), the global 

stiffness matrix K  and the Coriolis and centrifugal matrix C  are formulated by using the 

method presented in our previous work [1]. 

It is also noticeable that the dynamic modelling method of flexible robots 

proposed in this section is different from the Floating Frame of Reference (FFR) 

formulations [28-34]. In FFR formulations, two sets of coordinates are usually used to 

describe the configuration of the deformable bodies [28]; the first set describes the 

position of the bodies, while the second set describes the deformation of the bodies with 

respect to their coordinate systems. As discussed in [28], one critical issue that arises 

when using FFR formulations is the definition of the sets of the coordinate systems on 

the bodies, since the shape of deformation of a body is defined in its coordinate system. 

Therefore, in the dynamic modelling approach proposed in this paper, the following 

differences are made, in comparison with the FFR formulations [28-34]:  

(i) One more set of element coordinate systems
r r r r

ij ij ij ijO x y z is defined. Moreover, 

all the link frames and element frames are defined in a way that the novel transformation 

matrix that was proven in our previous work [1] can be used effectively to simplify the 

kinematic formulation of a multilink flexible robot with different joint types.  

(ii) Jacobian matrices are taken into account for the dynamic modelling of a

flexible robot. In this manner, the form of the dynamic equation of a flexible robot is 

similar to the form of the dynamic equation of a rigid robot.  

3. Numerical examples

In this section, to validate the dynamic modelling method proposed in this study, the 

behaviour of the forward dynamics of two different flexible robots are analysed and 

simulated. The first robot has one flexible link and the second robot has two flexible links. 

In the examples, the numerical solution of the dynamic equation derived by using the 

proposed method is compared with the solutions of the dynamic equations established by 

using the previous method [1, 7-9, 15].  

3.1. Example 1: Dynamics of a robot with one flexible link 

In this example, as shown in Fig. 3, the robot has two links, but the first link is rigid. Only 

the second link is flexible. The parameters of the robot are as follows. Link 1 has a length 



of 0.2m and a mass of 2.0kg. The length of link 2 is 1.0m. The mass per meter of link 2 

is 0.706 kg/m. Link 2 has a cross section area which is 9x10-5 m2, and it is divided into 5 

elements.  

Figure 3. A flexible robot for numerical simulation 

When the force/torque (Bang-bang rule) was applied as shown in Fig. 4 and Fig.5 

for the inputs of the simulation, the two joints of the robot were displaced as shown in 

Figs. 6 and 7. Fig. 8 shows the flexural displacement at the end-effector of the robot. 

These graphs show that the time evolution of the displacement curves computed by using 

the method proposed in this study having a close resemblance to the curves computed by 

using the previous methods. Note that the simulation curves of the two numerical 

solutions continue to match well even when the parameters of the robot are changed. 

Figure 4. The input of applied force on 

the prismatic joint 

Figure 5. The input of applied torque on 

the revolution joint 



Figure 6. The displacement of the prismatic joint 

Figure 7. The displacement of the revolute joint 

Figure 8. The flexural displacement at the end-effector 



 

3.2. Example 2: Dynamics of a robot with two flexible links 

In order to demonstrate the proposed dynamic formulation with a more complex 

flexible robot, a two-link flexible robot with two rotational joints as shown in Fig. 9 is 

analysed.  The lengths of flexible link 1 and flexible link 2 are 0.8m and 0.3m, 

respectively. The cross-section areas of the two links are equal as 3x10-5 m2. Each flexible 

link is divided into 2 elements. The mass of the payload at the end-effector is 50g. The 

applied torques at joint 1 and joint 2 are shown in Fig. 10 and Fig. 11, respectively. The 

displacements of the joints are displayed in Fig. 12 and Fig. 13. The flexural and slope 

displacement at the end-effector are presented in Fig. 14 and Fig. 15.  

Figure 9. A two-link flexible robot with two rotational joints 

Figure 10. The input of applied torque 

on the rotational joint 1 

Figure 11. The input of applied torque on 

the rotational joint 2 



 

Figure 12. The displacement of the rotational joint 1 

Figure 13. The displacement of the rotational joint 2 



Figure 14. The flexural displacement at the end-effector 

These figures show that, with a more complex flexible robot, the shape and the 

value of the displacement curves computed by using the method proposed in this study 

having a close resemblance to the curves computed by using the previous methods.  

4. Experimental Results

In the previous section, the proposed method has been validated by simulation 

scenarios. In this section, the results of the experiments which were conducted for 

validation of the dynamic analysis of the flexible robot are presented. Figs. 15, 16 show 

the robot prototype and the system diagram of the robot used in the experiment. The two 

joints of the robot are actuated by a motor GB 37-3530 DC 12V (1) and a NEMA 17 step 

motor 200 steps/rev 12V (4), respectively. To collect the feedback signals, two rotary 

encoders LPD3806-600BM-G5-24V-2P-AB are used. 

The experimental set-up also includes two flex sensors of 4.5-inch FSL0095-103-

ST. A Terminal Board STM32 F407/417 with the Cortex™-M4 core running at 168 MHz 

was selected for the control hardware. The LabVIEW software interface was used to 

display the readings of the experiment. The two flex sensors 112.24 mm in length were 

adhered towards both ends of the flexible link. The maximum resistance of the sensors 

was 110 kΩ.     



Figure 15. The flexible robot prototype for the experiment: (1) DC motor, (2) Lead 

screw, (3) Rotary encoder 1, (4) Step motor, (5) Flex sensor, (6) Rotary encoder 2, (7) 

Flexible link. 

Figure 16. The systematic diagram of the robot for the experiment 

Figure 17. The applied force for the 

experiments 

Figure 18. The applied torque for the 

experiments 

Figs. 17 and 18 show the Bang-bang input signals (the applied force/torque) which 

were transformed into voltage and pulse signals for the motors. Fig. 19 and Fig 20 show 

the displacement of the joints produced by experiments and by simulation, respectively. 

It is observed that, in the steady-state, the deviation between the experimental curve and 

the computational curve is very small (about 3.5% in magnitude). Fig. 21 presents the 

flexural displacement at the second node of the second element of link 2. Fig. 22 shows 



 

the flexural displacement at the arm tip. It can be seen that the shape and the value of the 

simulation curves, which were calculated by both the proposed method and the previous 

method closely matching the experimental readings. These results are a good validation 

of the dynamic modelling method proposed in this study. 

Figure 19. The prismatic joint displacement 

Figure 20. The revolute joint displacement 



Figure 21. The flexural displacement at the second node of the second element of link 2 

Figure 22. The flexural displacement at the end-effector 



 

6. Discussion and Conclusion

The simulation and experimental results have demonstrated the effectiveness and 

efficiency of the dynamic modelling method newly proposed in this study. In particular, 

as compared with the previous methods, the proposed method has two main advantages. 

The first advantage is that the dynamic equation of a flexible robot is derived in a 

simplified and explicit manner. In particular, the expression of the global mass matrices 

of the dynamic equation for a flexible robot and a rigid robot are similar. The second 

advantage of the method is that all the steps of the dynamic modelling procedure for a 

flexible robot is similar to the commonly used steps of the dynamic modelling procedure 

for the conventional rigid robot. Thus, the proposed method is very useful and helpful to 

users who have been familiar with the dynamic modelling and control of the rigid robots. 

A detailed comparison of the proposed method with the previously used methods is 

presented in Table 1. 

Table 1.  A comparison of the proposed method with the previously used methods 

FLEXIBLE ROBOTS RIGID ROBOTS 

The previous methods [1, 

29, 36] 

The proposed method The conventional 

methods 
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It can be seen from Table 1 that, in the previous methods [1, 29, 36], each 

elemental mass matrix is usually computed and implicitly expressed in terms of nodal 

elastic deformations of a link because the symbolic integral of the element kinetic energy 

is employed. Not all the moment of inertia of an element and a link are included in the 

formulation. Moreover, the construction of the global mass matrix requires complex and 

implicit computational transformations. Whereas, in the proposed method, the mass and 

all the moment of inertia of all elements are taken into account. In addition, because the 

symbolic formulation of the dynamics model is simplified the calculation of the symbolic 

integrals and the implicit expressions of the elemental global mass matrices are not 

required. Furthermore, the global mass matrices for a flexible robot and a rigid robot are 

similar, which can be expressed in the same compact form ready for symbolic 

programming. Besides, the proposed method is even more efficient for the case when the 

number of links of a flexible robot increases and a large number of finite elements on the 

links is considered. 

It is noticeable that, in our previous work [1], we proved a generic transformation 

matrix which characterizes the kinematics of a serial flexible robot constructed with three 

types of joints: the revolute joint, the fixed prismatic joint and the sliding prismatic joint. 

In addition, we addressed a new and effective algorithm of symbolic manipulation for 



constructing recursively the global mass and stiffness matrices of the dynamic equation 

for the flexible robots. In this proposed paper, we continue developing a mathematical 

scheme to formulate more effectively the dynamic equation of a flexible robot without 

implicit mathematical transformations and expressions. As a result, the methodology 

proposed in this study has some advantages over the previous methods, as discussed 

earlier.  

In conclusion, a new mathematical approach for the dynamic modelling of flexible 

robots and flexible/rigid robots has been presented. The dynamic modelling method 

proposed in this study has been validated through numerical simulations and experimental 

results. A close match between the simulation and the experimental result has been shown 

clearly. The proposed method is more efficient and advantageous in comparison to the 

previous ones. It has also been shown that the proposed method is more useful when 

dealing with not only the flexible robots but also the hybrid flexible/rigid robots which 

consist of rigid links and flexible links simultaneously.  

The application of the proposed methodology in order to analyse the dynamics 

and design control laws for more complex flexible robots will be the future works of this 

investigation. 
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