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Abstract 49 

Greater availability of leaf dark respiration (Rdark) data could facilitate breeding efforts to raise 50 

crop yield and improve global carbon cycle modelling. However, the availability of  Rdark data 51 

is limiting because it is cumbersome, time consuming or destructive to measure. We report a 52 

non-destructive and high-throughput method of estimating Rdark from leaf hyperspectral 53 

reflectance data that was derived from leaf Rdark measured by a destructive high-throughput 54 

oxygen consumption technique. We generated a large dataset of leaf Rdark for wheat (1380 55 

samples) from 90 genotypes, multiple growth stages and growth conditions to generate models 56 

for Rdark. Leaf Rdark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7- to 15-fold 57 

among individual plants, while traits known to scale with Rdark, leaf N and leaf mass per area 58 

(LMA), only varied 2- to 5-fold. Our models predicted leaf Rdark, N and LMA with r2 values of 59 

0.5-0.63, 0.91 and 0.75, respectively, and relative bias of 16-18% for Rdark and 7-12% for N 60 

and LMA. Our results suggest that hyperspectral model prediction of wheat leaf Rdark is largely 61 

independent of leaf N and LMA. Potential drivers of hyperspectral signatures of Rdark are 62 

discussed. 63 

Keywords: 64 

high-throughput phenotyping, leaf reflectance, machine learning, mitochondrial respiration, 65 

proximal remote sensing, wheat (Triticum aestivum L.)  66 
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1 INTRODUCTION 67 

The world’s population is projected to rise by approximately 30%, reaching 9.7 billion in 2050 68 

(United Nations Department of Economic and Social Affairs Population Division, 2015). This 69 

increase will cause demand for staple food crops to double (Cassman, 1999; Tilman, Balzer, 70 

Hill, & Befort, 2011). Doubling crop productivity to match future demand will be challenging 71 

(Tilman, Cassman, Matson, Naylor, & Polasky, 2002), a challenge exacerbated by climate 72 

change (Goldsmith, Gunjal, & Ndarishikanye, 2004; IPCC, 2013; Xiao & Ximing, 2011). 73 

Addressing these challenges will require the simultaneous pursuit of a broad range of options 74 

(Godfray et al., 2010) including increasing yield per unit of land, and identification and use of 75 

germplasm with better resilience to global climate change.  76 

Theoretically, increasing radiation use efficiency (RUE, increase in biomass per unit 77 

absorbed radiation) provides a novel way to increase potential yield. RUE could be increased 78 

by improving photosynthesis by: (i) altering crop canopy architecture to alter the distribution 79 

of radiation capture between leaves (Loomis & Williams, 1969); (ii) introducing a carbon 80 

concentrating C4 mechanism into C3 plants (Furbank, von Caemmerer, Sheehy, & Edwards, 81 

2009); and (iii) re-engineering Rubisco (Parry, Madgwick, Carvalho, & Andralojc,  2007). 82 

Another opportunity to increase RUE is to optimize mitochondrial respiration in the dark 83 

(Rdark). In all plants, energy from Rdark drives biosynthesis, cellular maintenance and active 84 

transport. The respiratory pathway also provides intermediates that serves as substrates for the 85 

synthesis of ATP, amino acids, nucleic acids, fatty acids and many secondary metabolites. The 86 

efficiency of ATP synthesis per unit of CO2 released or O2 consumed through the respiratory 87 

process varies, depending on engagement of phosphorylating and non-phosphorylating 88 

pathways of mitochondrial electron transport (Millar, Whelan, Soole, & Day,  2011; 89 

Vanlerberghe & McIntosh, 1997). Variations in the rate and efficiency of leaf Rdark thus have 90 

the potential to influence biomass accumulation and yields of crops (Hauben et al., 2009; 91 
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Wilson & Jones, 1982).  Consequently, large datasets on leaf Rdark have potential application 92 

in various aspects of the crop production system, including: screening of germplasm in genetic 93 

resource collections and in plant breeding; assessing the efficacy of agricultural management 94 

programmes; and, monitoring crop health. Of particular importance is the formation of 95 

comprehensive datasets that assess genotype- and environment-mediated variation in leaf Rdark 96 

under controlled and field conditions.  97 

Leaf respiration, defined as the non-photorespiratory mitochondrial CO2 evolution in 98 

the light (Rlight), is typically less than Rdark (Hurry et al. 2005; Pärnik & Keerberg, 1995). 99 

Techniques for measuring Rlight, including the Laisk (1977), Kok (1948) and/or mass 100 

spectrometer (Loreto, Velikova & Di Marco, 2001) approaches, are low-throughput and often 101 

challenging to correctly implement. Measuring Rdark is also slow and cumbersome. To address 102 

the issue of low-throughput methods to measure leaf respiration, high-throughput approaches 103 

have been recently developed to estimate Rdark by measuring O2 consumption (O’Leary et al. 104 

2017; Scafaro et al. 2017; Sew et al. 2013). Sew et al. (2013) employed a liquid-phase oxygen-105 

sensitive fluorophore technology, while Scafaro et al. (2017) and O’Leary et al. (2017) used a 106 

faster, automated gas-phase method; the latter system takes only ~1-2 min per sample.  Such 107 

high-throughput measurements of respiratory O2 uptake will be indicative of rates of CO2 108 

efflux in leaves where the primary respiratory substrate is sucrose and the latter is fully oxidized 109 

to CO2 and H2O (Lambers, Chapin & Pons, 2008). However, while these approaches enable 110 

rapid screening of large numbers of samples, all require destructive sampling of leaves, limiting 111 

their utility for ongoing monitoring of leaf Rdark at the landscape scale.  In the current study, we 112 

outline a rapid non-destructive technique – using reflectance spectra – to estimate Rdark. 113 

 Instruments can measure electromagnetic radiation reflected from vegetation surfaces 114 

spanning the visible (400-700 nm), near-infrared (NIR, 700-1300 nm), and shortwave infrared 115 

(SWIR, 1400-3000 nm) spectral regions. When light falls on a leaf, it can be absorbed, reflected 116 
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or transmitted. Light absorption by leaves in the visible region is driven by electron transitions 117 

in pigments (including chlorophyll, carotenoids and anthocyanins). In the NIR-SWIR spectra 118 

region of 700-2400 nm, in contrast, light absorption is driven by the bending and stretching of 119 

covalent bonds between hydrogen atoms and atoms of carbon, oxygen and nitrogen in water 120 

and other chemicals (Curran, 1989). Radiation reflected from leaves can provide information 121 

about the internal composition of the leaf (Blackburn, 2007; Jacquemoud & Baret, 1990; 122 

Jacquemoud et al. 1996).  Reflectance over a broad range of narrow and contiguous wavelength 123 

bands, termed hyperspectral reflectance, is increasingly used to predict plant or crop traits 124 

including: water status (Gutierrez, Reynolds, & Klatt, 2010; Sims & Gamon, 2003); 125 

photosynthetic metabolism (Ainsworth, Serbin, Skoneczka, & Townsend, 2014; Barnes et al., 126 

2017; Serbin, Dillaway, Kruger, & Townsend, 2012; Silva-Pérez et al., 2018); leaf mass per 127 

area (LMA) (Asner and Martin, 2008; Asner et al., 2011; Ecarnot, Compan, & Roumet, 2013); 128 

concentrations or contents of nitrogen (N), lignin and photosynthetic pigments (Martin & Aber, 129 

1997; Yendrek et al., 2017); and grain yield (Montesinos-López et al., 2017a, b; Weber et al., 130 

2012).   131 

Respiration rates at a standard temperature (25°C, Rdark
25), whether expressed on a mass 132 

or area basis, are highly variable. Variation in Rdark
25 among genotypes and environments is 133 

predictable from other leaf traits such as N concentration or content, LMA and the 134 

carboxylation capacity of Rubisco at 25°C (Vc,max
25) (Atkin et al., 2015; Reich et al., 1998a; 135 

Reich, Walters, Tjoelker, Vanderklein, & Buschena, 1998b; Ryan, 1991). Both N and LMA 136 

can be predicted from hyperspectral reflectance data (Serbin et al., 2012; Ecarnot et al., 2013; 137 

Silva-Pérez et al., 2018). It is also possible to  predict Vc,max
25, but with  lower accuracy and 138 

precision (Ainsworth et al. 2014; Dechant, Cuntz, Vohland, Schulz, & Doktor, 2017; Doughty, 139 

Asner, & Martin, 2011; Serbin et al. 2012; Silva-Pérez et al. 2018). The poorer ability to predict 140 

Vc,max
25 from leaf reflectance compared to leaf N could be due to the absence of a direct 141 
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absorption signal related to Vc,max
25, arising instead from a secondary correlation with leaf N 142 

(Dechant et al., 2017). Both  photosynthesis and respiration are processes requiring numerous 143 

proteins (Evans & Terashima, 1988; Evans, 1989a; Field & Mooney, 1986), which pose ATP 144 

demands associated with protein synthesis and repair (Hachiya, Terashima, & Noguchi, 2007) 145 

and functional linkages between photosynthetic and respiratory metabolism (Noguchi & 146 

Yoshida, 2008). Although Rdark scales with N, LMA and Vc,max, and these three parameters can 147 

each be predicted with various levels of confidence from hyperspectral reflectance, we are 148 

aware of only one publication predicting Rdark directly from reflectance spectra (see Doughty 149 

et al., 2011). There might be limitations in prediction of a flux such as Rdark from reflectance 150 

spectra compared with prediction of capacity of other physiological processes e.g. Vc,max. This 151 

might be because Rdark is a physiological process driven by enzymatic reactions that 152 

dynamically adjust to short-term (seconds to minutes) and long-term (hours to days) 153 

environmental changes, whereas the proteins underpinning metabolic capacity can be more 154 

stable over time. In addition, respiratory enzymes may not exhibit distinct reflectance 155 

signatures that would enable direct quantification as such. Estimation of leaf Rdark may arise 156 

indirectly through secondary correlations with other leaf traits e.g. leaf N and LMA, as already 157 

discussed for Vc,max
25 (Dechant et al., 2017). Here, we investigate the possibility that variations 158 

in Rdark can be well predicted from hyperspectral signatures.   159 

Appropriate analytical tools for assessing plant traits using hyperspectral reflectance 160 

data includes Partial Least Square Regression (PLSR, Wold, Sjöström, & Eriksson (2001)), 161 

which combines features from principal component analysis and multiple regression, and 162 

machine learning algorithms such as Support Vector Machine Regression (SVMR, Vapnik 163 

(1995)). One of the most commonly used analytical tool in estimating plant traits from 164 

hyperspectral reflectance of leaves is PLSR. Doughty et al. (2011) used PLSR to predict Rdark 165 

from leaf hyperspectral reflectance collected from 149 species (see Doughty et al., 2011). 166 
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However, prediction of Rdark in that study was limited(r2=0.48, RMSE=-0.52 µmol m-2 s-1; and 167 

for canopy Rdark r2=0.16, RMSE=0.58 µmol m-2 s-1). This encouraged us to see if the method 168 

could be applied to wheat leaves.  169 

To test the suitability of estimating leaf Rdark from hyperspectral reflectance data, three 170 

experiments were conducted during which we characterised leaf Rdark, hyperspectral 171 

reflectance, biochemical (N concentration) and morphological (LMA) traits under different 172 

environmental conditions, and plant growth stages, using a diverse set of wheat (Triticum 173 

aestivum L.) genotypes. We report on leaf respiration rates and associated leaf traits of 1380 174 

samples from 90 genotypes. The varied conditions, growth stages and genotypes were used to 175 

generate a wide range of Rdark values to robustly test different modelling approaches. We used 176 

two independent analytical tools –PLSR and SVMR to investigate if: 177 

1. Leaf Rdark can be well predicted from leaf hyperspectral reflectance data 178 

2. Model predictions of leaf Rdark from spectral reflectance data can be improved by using 179 

an alternative to PLSR, i.e. SVMR 180 

Our study also provided an opportunity to assess the extent of genotypic and environment-181 

driven variation in leaf respiration rates of commercial elite wheat lines, and the extent to which 182 

other traits such as leaf N and LMA are predictors of wheat leaf Rdark values.  183 

 184 

2 MATERIALS AND METHODS 185 

Three independent experiments were conducted to explore associations (or the absence thereof) 186 

between leaf reflectance spectra and leaf Rdark in wheat. Two of the experiments (Experiments 187 

1 and 2) were undertaken in climate-controlled glasshouses at the Australian National 188 

University (ANU), Canberra while a third (Experiment 3) was conducted in a field-based poly-189 

tunnel at CSIRO Ginninderra Experiment Station. Leaves of a diverse set of wheat genotypes 190 
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(between 3 and 70 per experiment, see Table S1 for list of genotypes) were examined at 191 

different growth stages and under varied environmental conditions (Table 1). The varied 192 

growth stages and environmental conditions were used to generate a wide range of Rdark values 193 

and to ensure a robust test of our approach of using leaf reflectance spectra to predict leaf Rdark.  194 

2.1 Glasshouse Experiment 1 – exploring environment-induced variation in leaf 195 

respiration  196 

Experiment 1 was carried out at the ANU Controlled Environment Facilities, Canberra, 197 

Australia. Three wheat genotypes, ‘Calingiri’, ‘Halberd’, and ‘Janz’, were selected to represent 198 

a wide range of average rates of Rdark; an earlier study screening 138 lines (grown in controlled 199 

environment cabinets) showed two-fold genotypic variation in Rdark among the wheat lines, 200 

with ‘Calingiri’, ‘Halberd’, and ‘Janz’ being at high (0.79 µmol O2 m-2 s-1), mid (0.50 µmol O2 201 

m-2 s-1) and low (0.35 µmol O2 m-2 s-1) range of Rdark values, respectively (Scafaro et al., 2017). 202 

Seeds were germinated on moist filter papers on 09 March 2016 with >95% germination 203 

achieved within two days. Five days after germination (DAG; on 16 March 2016) seeds were 204 

transferred into 2 L plastic pots (one seedling per pot) filled with Martins mix (Martins 205 

Fertilizers Ltd, Yass, NSW Australia). The potting mix was treated at 63°C for 1 h prior to 206 

filling pots. The mix was enriched with Osmocote® OSEX34 EXACT slow-release fertilizer 207 

(Scotts Australia, Bella Vista, NSW, Australia). The base of the plastic pots were perforated in 208 

several places to ensure proper drainage upon watering. Seedlings were watered twice daily, in 209 

the morning and late afternoon, to avoid water deficit stress. The glasshouse was maintained at 210 

12/12 h day/night temperature of 28/23°C and ambient light condition. One-week old seedlings 211 

were transferred to different treatments as per the experimental design described below.  212 

The experimental design was a split-split-plot with temperature, light and genotype, 213 

respectively as main, sub and sub-sub plots, replicated six times. There were three growth 214 
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temperatures (12/12 h day/night conditions of 21/16, 28/23 and 35/30°C), two light intensities 215 

[photosynthetic photon flux density (PPFD) of 600~800 µmol m-2 s-1 (high light) and 150~200 216 

µmol m-2 s-1 (low light, i.e. 25% of high light)] and three genotypes (‘Calingiri’, ‘Halberd’, and 217 

‘Janz’). The temperature regimes were maintained by automated heating and cooling systems. 218 

Changes in temperature occurred at 0700/1900 h. The prevailing ambient light was taken as 219 

high light and to achieve low light a green mesh was placed over bespoke-cages within which 220 

plants were kept (see Figure S1). This mesh and cage arrangement resulted in a 75% reduction 221 

of ambient light reaching the plants. Photoperiod during that time of the year was ~12 h day-1. 222 

Plants were kept under these conditions for three weeks, at the end of which plants were 223 

approximately at growth stage Z13 (seedling growth; Zadoks, Chang, & Konzak, 1974). The 224 

most recently expanded leaf (the third true leaf and henceforth designated as Leaf-3) was 225 

measured at 35 and 36 DAG; the first three replicates at 35 DAG and the rest at 36 DAG. We 226 

used 108 plants/leaf samples for Experiment 1. 227 

2.2 Glasshouse Experiment 2 – variation in leaf respiration among 70 genotypes  228 

Experiment 2 was conducted in the same glasshouse facility as Experiment 1. Seeds of seventy 229 

wheat genotypes (see Table S1 for list of genotypes), a subset of the 138 genotypes used 230 

recently to validate a technique for high-throughput measurement of Rdark (Scafaro et al., 2017). 231 

The seeds were germinated and transferred into 2 L plastic pots filled with Martins mix as in 232 

Experiment 1. Seedlings were transferred on 09 June 2016 (6 DAG). Plant nutrition and 233 

watering were as described for Experiment 1. The glasshouse was maintained for three 234 

consecutive months at 12/12 h day/night temperature of 25/20˚C with temperature changes at 235 

0700/1900 h.  Light measured as PPFD at plant height varied between 400 and 1200 µmol m-2 236 

s-1 and photoperiod during this experiment was 10-12 h   day-1.  237 
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The experimental design was a randomised complete block design with four replicates. 238 

Due to space limitations, the four replicates were split equally between two adjoining rooms in 239 

a glasshouse. Each replicate, consisting of 70 genotypes, was placed on a bench in a glasshouse 240 

(n=280 plants). Each glasshouse room had a pair of benches. Leaf measurements were taken 241 

first at growth stage Z13 (seedling growth; 24-27 DAG) from Leaf-3, and then at growth stages 242 

Z61-69 (anthesis) from the leaf subtending the flag leaf (henceforth designated as Flag-1; 67-243 

70 DAG) and the flag leaf (81-85 DAG) and. For each growth stage, measurements and sample 244 

collection were completed within 4-5 days. Each of the four replicates required at least one day 245 

for data collection. Total leaf samples used for Experiment 2 were 840. 246 

2.3 Poly-tunnel Experiment 3 – variation in leaf respiration among 24 wheat genotypes 247 

Seeds of 24 wheat genotypes (selected based on similarities in phenology - height and days to 248 

anthesis, but contrasting for Vc,max and Rdark) were used for this experiment. Seeds were sown 249 

at a rate of 250 grains m-2 on 16 September 2016 in field plots, under a poly-tunnel, at CSIRO 250 

Ginninderra Experiment Station, Australian Capital Territory (35° 12´S, 149° 06´E; 600 m asl). 251 

The soil was a yellow chromosol (Isbell, 2002). Mean daily maximum/minimum air 252 

temperature obtained from a weather station installed in a neighbouring poly-tunnel from 253 

November to December was 27/12°C. A 30-year (1981-2010) average over the same period 254 

was 25/11°C, and from September through December was 22/8°C (data from the closest 255 

Bureau of Meteorology weather station). The photoperiod during the experiment was 12-14 h 256 

day-1. Plants were kept well-watered by drip irrigation and fertilized optimally. The experiment 257 

was laid out as a row × column design with 12 rows and six columns, with each block 258 

containing two columns. As such, there were 72 plots, each block of 24 genotypes replicated 259 

three times. Each plot consisted of ten equally spaced 1m rows covering an area of 2.5 m2.  260 
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Measurements and sampling were at growth stages Z23-27 (tillering) and Z55-71 261 

(inflorescence emergence, anthesis through milk development). At both growth stages three 262 

sampling events were carried out on consecutive days. At growth stages Z23-27 (tillering), 263 

sampling and measurements were on the last fully expanded leaf, with one leaf measured from 264 

each plot each day for three days. The leaf sampled varied between Leaf-3 and the sixth true 265 

leaf 6 (Leaf-6), when counting from the base of the plant. At growth stages Z55-71 266 

(inflorescence emergence, anthesis through milk development), the flag leaf and Flag-1 were 267 

sampled on the first and second day, respectively, while on the third day the leaf subtending 268 

Flag-1 (designated as Flag-2) was sampled. In total, 432 leaf samples were collected for 269 

Experiment 3. 270 

2.4 Measured traits – all experiments 271 

Reflectance spectra were captured from the adaxial surface of leaves using an ASD FieldSpec® 272 

4 Full-Range spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) with 273 

spectral range 350-2500 nm and a rapid data collection time of 0.1s per spectrum. Data from 274 

the full spectral range (350-2500 nm) was used for analysis. Spectral resolution of the device 275 

was 3, 10 and 10 nm (Full-Width-Half-Maximum) at 700, 1400 and 2100 nm, respectively. 276 

Sampling intervals were 1.4 and 2 nm for the spectral regions 350-1000 nm and 1000-2500 277 

nm, respectively. The device was fitted with an ASD fibre optic cable and leaf clip. A mask 278 

attached to the leaf clip reduced the width of the aperture through which leaf reflectance was 279 

recorded to 11.5 mm, enabling easier measurement of leaf widths down to 12 mm (Silva-Pérez 280 

et al., 2018). Leaf spectral reflectance was captured between 1000 and 1400 h from the adaxial 281 

surface and close to the midpoint of the leaf. Each leaf was measured at one position, taking 282 

less than 20s. An internal light source was used to illuminate a white reference panel for 283 

calibration or a leaf placed in front of a black panel during measurement. After measuring the 284 

reflectance spectrum, the leaf was immediately detached near the ligule for subsequent 285 
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measurement of Rdark. Samples were temporarily stored in ziplock bags with moist tissue paper 286 

or cotton balls and placed in Styrofoam boxes partly filled with ice blocks/packs for transfer 287 

from glasshouse/field to the laboratory. Rdark values were determined within 24 h of obtaining 288 

spectral reflectance values. Leaf sections of ~4 cm2, including the exact spot where the 289 

reflectance measurement was taken from, was dissected from the whole leaf and used for 290 

determination of other traits. 291 

The dissected leaf section was weighed and exact area determined. The ~4 cm2 leaf 292 

sections were placed in an automated Q2 O2-sensor (Astec Global, Maarssen, the Netherlands) 293 

to determine O2 consumption rate following the method of Scafaro et al. (2017). Briefly, freshly 294 

dissected leaf tissues were placed in 2 mL tubes and hermetically sealed with specialised caps 295 

(Astec Global). The top surfaces of caps contained a fluorescent metal organic dye, sensitive 296 

to O2 quenching. The tubes were loaded onto racks, which individually accommodated 48 297 

tubes, and racks placed on the Q2 O2-sensor. Each rack was loaded with two tubes filled with 298 

ambient air (designated 100% O2) and N2 (designated as 0% O2), for calibration of the Q2 O2-299 

sensor before measurement was made. An automated robotic arm with fibre optic fluorescence 300 

detection capability scanned the rows of tubes enabling the quantification of O2 dependent 301 

decay in fluorescence signal. The % O2 relative to the air calibration tube was converted to 302 

absolute values of Rdark in moles of O2 s-1. The Q2 O2-sensor was set at 25°C and measurements 303 

taken at a frequency of four minutes over a two-hour period. However, values from the first 30 304 

min were disregarded, as they tend to be unstable – respiratory activity rapidly increased and 305 

decreased during this period (Scafaro et al., 2017).  306 

All leaf samples used for determination of Rdark were oven-dried at 70°C for 48 h 307 

(Experiment 1 and 2) or 60°C for 72 h (Experiment 3) then LMA determined. The same 308 

samples were then used to determine leaf N content (%), by combustion using a Carlo-Erba 309 

elemental analyser (NA1500, Thermo Fisher Scientific, Milan, Italy). Area, fresh mass, dry 310 
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mass and N content (per gram of leaf dry mass, Nmass, or per square metre of leaf area, Narea) of 311 

the leaf section used for determination of Rdark were used to calculate Rdark per: (i) square metre 312 

of leaf area (Rdark_LA, µmol O2 mLA
-2 s-1); (ii) gram of leaf fresh mass (Rdark_FM, nmol O2 gFM

-1 313 

s-1); (iii) gram of leaf dry mass (Rdark_DM, nmol O2 gDM
-1 s-1); and (iv) gram of leaf Nmass (Rdark_N, 314 

nmol O2 gN-1 s-1). 315 

2.5 Model development for prediction of leaf traits from reflectance spectra 316 

Different regression techniques, including PLSR and SVMR have been used to quantify 317 

relationships between spectra data and leaf/canopy traits. But only PLSR has been used to 318 

predict leaf/canopy Rdark of 149 species (for prediction of leaf Rdark r2=0.48, RMSE=-0.52 µmol 319 

m-2 s-1; and for canopy Rdark r2=0.16, RMSE=0.58 µmol m-2 s-1; Doughty et al., 2011), although 320 

not including wheat. The SVMR is considered a powerful regression technique (Thissen, 321 

Pepers, Üstün, Melssen, & Buydens, 2004), in terms of model performance and prediction 322 

accuracy. Therefore, we independently tested the different models for leaf traits using these 323 

two regression techniques. 324 

Prior to data analysis a multiplicative correction module (ASD Spectral Analysis and 325 

Management System (SAMS®) version 3.2) was applied to the reflectance data at 1000 and 326 

1800 nm to correct for ‘jumps’ observed in apparent reflectance at the intersections between 327 

different detector ranges. As did Silva-Pérez et al. (2018), reflectance spectra with values 328 

greater than 0.7 between 800 and 1000 nm were treated as an outlier and removed. 329 

Variation in foliar traits (including Rdark) and biochemical composition based on leaf 330 

optical properties were modelled using PLSR and SVMR. The PLSR technique could be 331 

performed with either the continuous, full-spectrum data (Asner & Martin, 2008) or a pre-332 

determined spectral subset (Bolster, Martin, & Aber, 1996). We initially applied the PLSR 333 

model building approach of Serbin et al. (2012) and Wold et al. (2001) to 90% of the dataset 334 



15 
 

(training dataset). This works by extracting latent variables (i.e. underlying factors or indices 335 

produced by the observable variables that account for most of the variation in the response) 336 

from sampled factors and responses. This step is analogous but not identical to principal 337 

component regression. Then the extracted factors are applied in a set of regression equations 338 

and used to construct predictions of the responses. PLSR models can suffer from over-fitting 339 

if the number of model components selected is suboptimal. To avoid overfitting, we selected 340 

the optimal number of model components for the PLSR model by minimizing the root mean 341 

squared error of prediction. The root mean squared error of prediction was calculated by k-fold 342 

cross validation.  The optimal PLSR model was subsequently applied to estimate measured 343 

traits of the remaining 10% of dataset (test dataset). This was done independently for each trait 344 

of interest.  345 

Like our PLSR model, we initially built the SVMR model on 90% of the dataset 346 

(training dataset) then subsequently used the built model to estimate measured traits of the 347 

remaining 10% (test dataset). To develop our SVMR models we used the epsilon-regression 348 

form of SVMR and followed the recommendation of Hsu, Chang, & Lin (2003). We chose the 349 

Gaussian (radial basis function) kernel type for our model. The radial basis function is a general 350 

purpose kernel used when there is no prior knowledge about the data. Then we combined this 351 

with a k-fold (k=10) cross validation approach that optimized for model cost parameter (C) and 352 

kernel parameter (γ). Cost and kernel parameters resulting in the best model fit, i.e. highest 353 

squared Pearson correlation (r2) on the training dataset, were selected. This was then used to 354 

calculate validation statistics for the test dataset (the remaining 10% of dataset not used for 355 

model building).  356 

PLSR and SVMR analyses were carried out in the R statistical environment (R Core Team, 357 

2018) using the packages ‘pls’ (Mevik, Wehrens, & Liland, 2016) and ‘e1071’ (Meyer, 358 

Dimitriadou, Hornik, Weingessel, & Leisch, 2017), respectively. Model predictions for 90/10 359 
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training/test datasets were compared for PLSR and SVMR and for all three experiments 360 

combined based on their r2, RMSE and relative bias (%). In addition, we undertook model 361 

validation by predicting Rdark of individual or combined experiments using hyperspectral-based 362 

models built on individual experiments or various combinations of experiments.  363 

2.6 Statistical analysis 364 

Leaf Rdark, N and LMA were subjected to ANOVA after tests for normality (Bartlett’s test and 365 

visual assessment of Q-Q plot) and homogeneity of variances (Shapiro-Wilk’s test and plots of 366 

residuals against fitted values). Outliers were identified and removed from the dataset using 367 

the Tukey’s method i.e. values above and below the 1.5*IQR (the inter-quartile range) were 368 

removed. Tukey’s method was chosen over the standard deviation method because it is 369 

independent of the distribution of the data and is resistant to extreme values.  370 

 371 

3 RESULTS 372 

3.1 Leaf reflectance spectral properties 373 

Leaf reflectance spectra varied substantially within and between experiments (Figure 1 and 374 

Figure S2). For example, reflectance at 400 nm ranged between 0.04-0.07 (Experiment 1), 375 

0.03-0.11 (Experiment 2) and 0.03-0.17 (Experiment 3, Figure S2). Across all experiments, the 376 

largest range in leaf reflectance was in the NIR region. However, the coefficient of variation 377 

(CV) of reflectance for this region was the least (23%) compared to 33% for the SWIR and 378 

32% for the visible regions. The wavelengths with the largest and smallest range of reflectance 379 

were 1926 nm (79%) and 1076 nm (21%), respectively.  380 

3.2 Variation in leaf traits 381 
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Leaf Rdark_LA, Rdark_FM and Rdark_DM across experiments were on average 0.73 µmol O2 mLA
-2 s-382 

1, 4.05 nmol O2 gFM
-1 s-1, and 21.1 nmol O2 gDM

-1 s-1, respectively, showing a seven- to nine-383 

fold variation (Table 2). Leaf Rdark_N averaged 449 nmol O2 gN
-1 s-1 spanning a 15-fold range 384 

of values (87-1260 nmol O2 gN
-1 s-1). The large range in Rdark_N compared to other traits was 385 

also characterised by ~25% higher CV than Rdark_LA, Rdark_FM or Rdark_DM (CV=0.37 for Rdark_N 386 

vs 0.28-0.29 for others; Table 2). Leaf Nmass averaged 49.5 mg g-1
 (CV=0.28), Narea 0.87 g m-2 387 

(CV=0.21) and LMA 31.5 g m-2 (CV=0.29) with two- to and five-fold variation (Table 2). 388 

Table 2 provides a summary of leaf traits for each and all experiments combined. Treatment or 389 

leaf level summaries and ANOVA results for experiments 1, 2 and 3 are provided in Tables 390 

S2, S3 and S4, respectively. Broadly, rates of Rdark were affected by growth irradiance, with 391 

markedly lower rates in plants grown under low light compared to those under high light, with 392 

inconsistent effects of growth temperature Rdark (measured at 25°C) (Table S2). Growth stage 393 

was also found to have strong effects on Rdark, albeit with the differences between vegetative 394 

and reproductive varying depending on the units that Rdark was expressed (Tables S3 and S4).  395 

3.3 Correlations of leaf respiration with other leaf traits 396 

Correlations of Rdark with leaf N and LMA were poor (r between -0.08 and 0.38), irrespective 397 

of the units that rates were expressed in (Figure 2 and Table 3), with the exception between 398 

Rdark_N and leaf Nmass (r=-0.59). See Figure S3 for more detailed results of individual 399 

experiments. The signs of the correlations of Rdark with leaf Nmass and LMA differed, with Rdark 400 

having a negative association with leaf Nmass, except for Rdark_DM, whereas Rdark had a positive 401 

association with LMA, except for Rdark_DM. Leaf Nmass, Narea and LMA correlated significantly 402 

(P<0.001) with one another albeit poorly (r=0.12-0.49; Figure 3, Table 3. Also see Figure S4 403 

for individual experiments).  404 
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3.4 Predictions of leaf respiration and other traits based on a subset of pooled 405 

experimental data (10% test dataset) 406 

We validated our models using a test dataset that consisted of 10% of our pooled experimental 407 

data, which was not used in building the models. Across experiments, predictions of leaf Rdark 408 

varied per unit leaf area, DM and N (r2=0.50-0.63 for PLSR, Figure 4 and r2=0.53-0.64 for 409 

SVMR, Table 4). Values of r2 were generally highest for Rdark per leaf N and least when 410 

expressed per gram of leaf dry mass (Table 4). Relative bias were between 16 and 18% (Table 411 

4). Model predictions of leaf Nmass, Narea and LMA achieved r2 of 0.91, 0.60 and 0.75, 412 

respectively with PLSR (Figure 5). For SVMR, predictions of Nmass, Narea and LMA had r2 of 413 

0.90, 0.79 and 0.72, respectively. The corresponding relative bias were 7-12% for PLSR, and 414 

8-11% for SVMR. 415 

3.5 Comparison of PLSR and models 416 

Performance of the PLSR model was comparable to that using SVMR, with similar r2 and 417 

RMSE, and differences in relative bias under 2% (Table 4). A similar result (i.e. no clear 418 

indication that SVMR outperformed PLSR) was obtained using a multi-method ensemble 419 

developed by Feilhauer, Asner, & Martin (2015) and tested on either the continuous, full 420 

spectrum data or a spectral subset that were selected based on weightings (Table S5; Also see 421 

Supplementary Text S1 for our attempt to reduce model complexity and improve prediction 422 

using the multi-method ensemble of Feilhauer et al. (2015)). The presentation of further results 423 

will therefore be limited to those from PLSR models using the full spectral range.  424 

3.6 Cross-predictions of leaf respiration and other traits of experimental data 425 

PLSR models built on one experiment were poor at predicting Rdark of a different experiment 426 

(Figs 6 and S5). The best outcome was predicting Rdark_LA for Experiment 1 using a model 427 

developed from Experiment 2 (r2=0.33). Similarly, models built on single glasshouse 428 
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experiments were poor at predicting that of the field experiment and vice versa. The best r2 for 429 

this method was 0.21, for a model built from Experiment 3 predicting Rdark_DM for glasshouse 430 

Experiment 2. By contrast, predictions of Rdark based on models built on a combination of 431 

Experiments 1 and 2 or all three experiments, were better than or similar to models built on 432 

one experiment (Figs 6 and S5). For example, a model developed on 90% of data comprising 433 

all three experiments predicted (i.e. was validated on) Rdark_DM of the remaining 10% of data 434 

for each of Experiment 1, 2 and 3 with r2 of 0.20, 0.66 and 0.61 respectively. This compares to 435 

r2 of 0.04, 0.61 and 0.45 when models were built with 90% of data solely from same experiment 436 

and validated on the remaining 10%. Similar results were obtained with Narea (Figs 7 and S6).  437 

 438 

4 DISCUSSION 439 

Our study has produced a large dataset of wheat leaf Rdark rates (1380 samples), obtained from 440 

90 genotypes, multiple growth stages and grown under varying environmental conditions. We 441 

show that leaf Rdark can be predicted from reflectance spectra with model r2 values of 0.50-0.64 442 

and relative bias of 16-18%. PLSR model predictions of leaf Rdark from spectral reflectance 443 

data were as good as SVMR. Models predicting Rdark from leaf reflectance spectra generally 444 

performed better when trained on more diverse data, such as genotype, growth stage and 445 

growing conditions. Our ability to predict Rdark from reflectance spectra could arise from: (i) 446 

indirect association with other traits (e.g. Narea, Nmass and LMA); (ii) links with spectral 447 

signatures of key photosynthetic components such as Vcmax and/or Jmax whose variations are 448 

coupled with variations in Rdark; and (iii) spectral absorption features by respiratory substrates 449 

or components in the respiratory system. These possibilities are discussed in detail in section 450 

4.2. 451 

4.1 Variation in wheat leaf respiration and other leaf traits. 452 
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Wheat leaf Rdark varied enormously, irrespective of how it was expressed. The seven-fold 453 

variation in wheat leaf Rdark_LA reported here is higher than the modest two-fold reported by 454 

Scafaro et al. (2017) for wheat and by O’Leary et al. (2017) for Arabidopsis (Arabidopsis 455 

thaliana L.). It is comparable to the 10-fold variation for 899 species covering plant functional 456 

types from the Arctic to the tropics (Atkin et al., 2015). Variations reported here for wheat leaf 457 

N and LMA were in line with other reports for wheat (Ecarnot et al., 2013; Martin et al., 2018), 458 

other crops (Jullien, Allirand, Mathieu, Andrieu, & Ney, 2009) and within natural ecosystems 459 

(Asner et al., 2014; Wright et al., 2004). These variations were caused by genotypic, growth 460 

and environmental effects. For instance, the plot of leaf Rdark_DM versus Narea (Figure 2c) showed 461 

distinct clusters of the vegetative and reproductive stages of both Experiments 2 and 3. Also, 462 

the plot of Rdark_LA versus Narea (Figure 2a) could be distinguished by Experiment, with higher 463 

Rdark_LA per leaf Narea for Experiment 2 compared to Experiment 3. The higher leaf Rdark per leaf 464 

Narea during growth stages Z13/Z23-27 (i.e. seedling growth/tillering) of Experiments 2 and 3 465 

or of some genotypes compared to others suggests greater relative allocation of leaf N to 466 

metabolic processes than to structural properties (Evans, 1989a, b; Harrison, Edwards, 467 

Farquhar, Nicotra, & Evans, 2009), higher demand for respiratory products and/or increase in 468 

ATP turnover (Atkin & Tjoelker, 2003; O’Leary et al., 2017).  469 

In natural ecosystems and even within species, individual plants experiencing cold 470 

growth conditions can exhibit higher temperature-normalized rates of leaf Rdark than individuals 471 

of the same genotypes growing in warmer habitats (Atkin, Scheurwater, & Pons, 2006; 472 

Mooney, 1963; Oleksyn et al., 1998; Xiang, Reich, Sun, & Atkin, 2013). Cooler growth 473 

temperatures can induce increases in density and ultrastructure of mitochondria (Armstrong, 474 

Logan, & Atkin, 2006a; Armstrong, Logan, O’Toole, Tobin, & Atkin, 2006b; Miroslavov & 475 

Kravkina, 1991) and increase capacity of individual mitochondria (Armstrong et al., 2006b) 476 

both potentially contributing to the variation in leaf Rdark. However, variations in leaf Rdark and 477 
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other leaf traits reported in this study were likely in response to a combination of factors, in 478 

addition to temperature. Other factors such as growth irradiance and evaporative demand that 479 

differed among the experiments and play key roles in moderating leaf Rdark, N and LMA (Lusk, 480 

Reich, Montgomery, Ackerly, & Cavender-Bares, 2008; Poorter, Niinemets, Poorter, Wright, 481 

& Villar, 2009) may also have contributed.   482 

4.2 What underpins the ability to predict leaf respiration from leaf reflectance?  483 

Hyperspectral reflectance characteristics of leaves have been used to predict LMA, leaf 484 

N and photosynthetic traits. Extending this approach to predict Rdark seemed plausible given 485 

that Rdark scales with LMA (Wright et al., 2006), leaf N (Reich et al., 1998a, 2008; Ryan, 1991; 486 

Wright et al., 2004) and photosynthesis (Bouma, De Visser, Van Leeuwen, De Kock, & 487 

Lambers, 1995; O’Leary et al., 2017). While the prediction of Rdark could in part be related to 488 

N or LMA, in our study, clear and simple correlations were not evident (Figure 2a, b). 489 

Predicting Rdark using multiple linear regression against N and LMA only achieved r2 values 490 

up to 0.12 (supplementary Table S6) compared to 0.54 achieved with PLSR. Allocation of leaf 491 

N to respiratory proteins, respiratory energy needed for protein turnover, and utilization of N 492 

in building thicker and denser leaves all link Rdark to N and LMA. The weak relationship 493 

between Rdark-N-LMA when Rdark and N are expressed on an area basis is not uncommon 494 

(Hirose & Werger, 1987; Reich, Walters, & Ellsworth., 1997, 1998a; Wright et al., 2004). 495 

Similar weak relationships have sometimes been observed between CO2 assimilation rate and 496 

Narea (Reich & Walters, 1994). We also found weak relationships between Rdark-N and Rdark-497 

LMA on a mass basis, which contrasts with the general literature dominated by interspecific 498 

studies (Reich et al., 1998a; Wright et al., 2004). However, reported relationships for 499 

intraspecific studies have been mixed (Byrd, Sage, & Brown, 1992; Fan et al., 2017; Hirose & 500 

Werger, 1987). This indicates a weak coupling of N, protein content and leaf structure to leaf 501 

Rdark within species such as wheat, which may be due to a range of factors, including the extent 502 
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to which the genotypes differed in the degree of adenylate restriction (i.e. ADP concentrations 503 

and ADP/ATP ratios) of mitochondrial electron transport (Hoefnagel & Wiskich, 1998). 504 

Photosynthesis and Rdark are interrelated. The substrates for Rdark required to power 505 

processes such as protein turnover and phloem loading are provided by photosynthesis. Our 506 

ability to predict Rdark might be an indirect reflection of photosynthesis. Considering that the 507 

light saturated ambient rate of photosynthesis and the two major determinants of photosynthetic 508 

performance – Vc,max and Jmax – can also be predicted from leaf reflectance (Ainsworth et al., 509 

2014; Barnes et al., 2017; Dechant et al., 2017; Doughty et al., 2011; Heckmann, Schlüter, & 510 

Weber, 2017; Serbin et al., 2012 Silva-Pérez et al., 2018; Yendrek et al., 2017), one possibility 511 

is that variations in Rdark are coupled to variations in Vc,max and/or Jmax, and that the ability to 512 

predict Rdark from leaf reflectance is, in part, due to spectral signatures of key photosynthetic 513 

components. Dechant et al. (2017) reported that the prediction of Vc,max
25 from leaf reflectance 514 

is a secondary one, driven primarily by the prediction of leaf N. However, since the prediction 515 

of Rdark here for wheat using Narea, LMA or their combination was poor (for Rdark-LA, highest 516 

r2=0.12) compared to the PLSR model (See Table S6 for multiple regression results for Rdark-517 

LA), our success in predicting Rdark indicates that there is additional information contained 518 

within the reflectance spectra associated with Rdark.  519 

Spectral signatures associated with Rdark could be related to respiratory substrates or 520 

components in the respiratory system. These could include: (i) the abundance of sugars, organic 521 

acids and adenylates (ATP and ADP); (ii) abundance of respiratory enzymes with distinct 522 

spectral properties; or (iii) aspects of mitochondrial mass or lipid composition. Both leaf starch 523 

and sugar content are correlated with Rdark (Noguchi, 2005; O’Leary et al., 2017; Peraudeau et 524 

al., 2015) and they have both been estimated from hyperspectral reflectance within the range 525 

reported in this study (Curran, 1989; Ramirez et al., 2015). Cytochrome c oxidase (COX) a 526 

respiratory protein complex) in the mitochondrial respiratory chain also exhibit spectral 527 
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characteristics (Appaix et al., 2000; Mason, Nicholls, & Cooper, 2014;). Connections between 528 

O2 consumption, COX and spectra absorbance in vegetables have been shown (Makino, 529 

Ichimura, Kawagoe & Oshita, 2007; Makino, Ichimura, Oshita, Kawagoe & Yamanaka, 2010), 530 

but Umbach, Lacey & Richter (2009) argued against a direct functional link between AOX and 531 

floral reflectance, which probably also applies to leaf O2 consumption, AOX and reflectance. 532 

Another possibility is that the recent discovery of an association between mitochondrial 533 

functions and cell wall properties in plants (Hu et al., 2016) may indirectly link surface 534 

reflectance with respiratory processes. The reliability of our model prediction of Rdark (r2 0.50-535 

0.64) was considerably less than that for N (r2=0.91), which probably represents the fact that 536 

Rdark is determined by a complex and varied array of components. Clearly, further research is 537 

required to understand the mechanistic basis underpinning leaf Rdark estimation from spectral 538 

reflectance signatures, possibly by using mutants, sampling at different times of the day, or 539 

treatments which alter photosynthetic capacity, levels of respiratory substrates and 540 

mitochondrial proteins. 541 

4.3 Model cross prediction improved with data from other experiments  542 

Our models, whether built on the whole spectrum (350-2500 nm) or a selected subset of 543 

wavelengths, gave good predictions of Rdark and other leaf traits for subsets of data not used to 544 

build the models. However, predictions of leaf traits for one experiment based on models built 545 

on a different experiment were poor (Fig 6, 7, S5 and S6). Poor model performance across 546 

experiments is not uncommon. Silva-Pérez et al. (2018) reported that models derived from 547 

field-grown aspen leaves (Populus tremuloides Michx.) (Serbin et al., 2012), gave poor 548 

predictions when applied to wheat leaves. The predictive performance of multivariate 549 

regression models may be increased by training models with more diverse data. For example, 550 

r2 for Experiment 3 Rdark_LA PLSR model, which was trained on just Experiment 3 data were 551 

significantly lower than predictions of the same data using a model trained with data from all 552 
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three experiments (Fig 6). Development of a system for adding novel data to an existing large 553 

spectral library for retraining models could prove to be a large cost-saving measure for large 554 

scale breeding trials and ecosystem management projects. This approach, called spiking, has 555 

been successfully applied in other fields such as soil biochemistry (Guerrero et al., 2014, 2016; 556 

Guerrero, Zornoza, Gómez, & Mataix-Beneyto, 2010). Further research is needed, however, to 557 

determine the minimum data from a novel source required to achieve good model predictions 558 

of traits. 559 

4.4 Machine learning approaches to improve model performance 560 

To test if model prediction of Rdark could be improved by using alternatives to PLSR, we applied 561 

SVMR and compared the results with those from PLSR. Our comparison suggests model 562 

prediction was not limited by the use of PLSR. In addition, an independent comparison of 563 

PLSR with SVMR and Random Forest Regression (RFR, Breiman (2001)) using a different 564 

modelling approach reported by Feilhauer et al. (2015), namely a multi-method ensemble, 565 

which included PLSR, SVMR and RFR, still showed PLSR was as good as the alternatives 566 

(Table S5; Text S1). Heckmann et al. (2017) carried out a similar comparison of model 567 

performance across a wider range of algorithms for predicting crop trait from leaf reflectance 568 

and preferred PLSR models because it yielded the highest predictive power. 569 

The ensemble of Feilhauer et al. (2015), which used a multiplicative aggregation of 570 

variable importance values of three models (PLSR, SVMR and RFR) for identification and 571 

selection of spectra bands of importance, led to the selection of 173-271 wavelengths. Model 572 

building using the selected wavelengths resulted in further improvements in model fits and 573 

prediction accuracy. Serbin et al. (2012), using a different method combined with PLSR, also 574 

reported consistently good model prediction and accuracy with fewer wavelengths. This 575 

indicated that a large fraction of the wavelengths did not provide predictive power in estimating 576 
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Rdark, which is not surprising given that leaf reflectance spectra are highly collinear, as can be 577 

seen from both observations and leaf radiative transfer models such as PROSPECT 578 

(Jacquemond & Baret, 1990). Focusing on specific wavelengths has numerous implications for 579 

downstream practise, including in scaling from leaf to vegetation canopy scale and in designing 580 

simpler sensors at key wavelengths (Serbin et al., 2012). 581 

4.5 Prediction of Rdark based on O2 consumption or CO2 evolution 582 

During leaf respiration, the flux of O2 consumption relative to CO2 evolution, depends on the 583 

substrate being metabolised (1 for carbohydrate, >1 for lipids). Importantly, 20-80% of daily 584 

fixed carbon is released back into the atmosphere by whole-plant Rdark (Poorter,  Remkes, & 585 

Lambers, 1990), with leaves accounting for ~50% of whole-plant Rdark (Atkin, Scheurwater, & 586 

Pons, 2007). It is possible to measure Rlight or Rdark as CO2 evolution in an open, flow through 587 

gas exchange system using an infra-red gas analyser. Alternatively, if one wishes to measure  588 

O2 consumption, it is necessary to use a closed system to enable a sufficiently large change in 589 

O2 concentration to be detected. The large difference in concentration between CO2 and O2 in 590 

air generally preclude simultaneous measurements of both without specialised instrumentation 591 

(Beckmann, Messinger, Badger, Wydrzynski & Hillier, 2009). We chose to measure Rdark from 592 

O2 consumption as the rapid measurements allowed more material to be sampled (O’Leary et 593 

al., 2017; Scafaro et al., 2017). Although we only validated with data on Rdark derived from O2 594 

consumption, our high-throughput approach can be adapted to measures of Rdark derived from 595 

CO2 evolution in cases where sucrose is the predominant respiratory substrate and the 596 

respiratory quotient is unity (Lambers et al. 2008).  597 

4.6 Conclusions 598 

Using a diverse set of wheat genotypes measured at different growth stages and grown under 599 

varied environmental conditions (light and temperature) either in glasshouses or field settings), 600 
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we have created a large wheat leaf Rdark dataset and found that Rdark varied enormously. Rdark 601 

can be predicted from leaf reflectance spectra, with r2 as high as 0.63 (when expressed per 602 

gram of N with RMSE=102.4 nmol O2 gN
-1 s-1 and relative bias=18.2%). The performance of 603 

models built to predict Rdark were similar for both PLSR and SVMR approaches. Predictions 604 

were not tightly linked to  the relationships between leaf Rdark and LMA or leaf N. This finding 605 

highlights the potential for rapid, non-invasive monitoring of various aspects of leaf energy 606 

metabolism in wheat. Such advances will provide opportunities for large scale field 607 

experiments to identify variants in wheat Rdark specifically, and wheat energy use efficiency 608 

more broadly.   609 
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TABLE 1 Materials and growth environment for the different experiments 917 

Experiment Location Genotypes† Zadoks growth 
scale‡ 

Leaf sampled Day/night 
temperature (˚C) 

Light (PPFD§,  
µmol m-2 s-1), 
photoperiod 

1 ANU¶ 3 13 Third true leaf (Leaf-
3) 

21/16, 28/23 or 35/30 600~800 or 150~200, 12 h 

2 ANU¶ 70 13, and 61-69 Leaf-3, leaf 
subtending the flag 
leaf (Flag-1) and flag 
leaf 

25/20 400~1200, 10-12 h day-1 

3 CSIRO5ǂ 24 23-27, and 55-71 Leaf subtending Flag-
1, Flag-1 and flag leaf 

27/12 ---, 12-14 h day-1 

†A list is provided in Table S1; ‡Zadoks et al. (1974); §Photosynthetic photon flux density; ¶Glasshouse at Controlled Environment Facilities, 918 
Research School of Biology, Australian National University, Canberra, Australia; ǂPolytunnel at CSIRO Ginninderra Field Station, North 919 
Canberra, Australia; ---  data not available.   920 
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TABLE 2 Variation in leaf dark respiration (Rdark, per square metre of leaf area (LA), per gram of fresh mass (FM), dry mass (DM), or leaf 921 
nitrogen (N)), nitrogen (per gram of DM, Nmass, or per square metre of LA, Narea), and leaf mass per area (LMA) of wheat genotypes. 922 

 Experiment 1 Experiment 2 Experiment 3 All Experiments 
Trait Range Mean±SD† Range Mean±SD Range Mean±SD Mean (CV‡) 
Leaf Rdark per unit        
LA (µmol O2 mLA

-2 s-1)   0.18-    1.04     0.50± 0.18     0.28-   1.27     0.72± 0.18     0.26-    1.27     0.83±   0.21     0.73 (0.28) 
FM (nmol O2 gFM

-1 s-1)   0.82-    5.24     2.62± 0.88     1.66-   7.33     4.10± 1.07     1.19-    7.25     4.30±   1.12     4.05 (0.29) 
DM (nmol O2 gDM

-1 s-1)   5.26-  32.05   17.96± 4.61     7.66- 37.38   22.37± 6.09     5.17-  35.40   19.22±   5.67   21.05 (0.29) 
N (nmol O2 gN

-1 s-1) 86.6-540.4 293.7± 86.4 149.4-675.6 403.7± 85.2 144.0-1260.5 599.5± 226.4 448.5   (0.37) 
Other leaf traits        
Nmass (mg g-1)   53.8-  71.3   61.8±  3.5   33.6-  77.1   55.8±10.2 17.3-64.6 34.1±  7.8   49.5   (0.28) 
Narea (g m-2)     0.50- 1.41     0.86±0.20     0.48- 1.44     0.94±0.17   0.32-1.44   0.74±0.23     0.87 (0.21) 
LMA (g m-2)   16.9-  41.7   27.0±  6.2   17.2-  57.8   33.0±  7.8 14.2-59.0 29.7±11.6   31.5   (0.29) 

†SD, standard deviation; ‡CV, coefficient of variation; n=105-107, 815-840, and 398-423 for Experiments 1, 2 and 3 respectively.   923 
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TABLE 3 Pearson correlation coefficients matrix for leaf dark respiration (Rdark, per square metre of leaf area (LA), per gram of fresh mass 924 
(FM), dry mass (DM), or leaf nitrogen (N)), nitrogen (per gram of DM, Nmass, or per square metre of LA, Narea), and leaf mass per area (LMA) of 925 
all three experiments. 926 

Trait Leaf Rdark per unit Nmass  
(mg g-1) 

Narea  
(g m-2) LA (µmol O2 mLA

-2 s-1) FM (nmol O2 gFM
-1 s-1) DM (nmol O2 gDM

-1 s-

1) 
N (nmol O2 gN

-1 s-1) 

Rdark per unit LA        
Rdark per unit FM  0.881***      
Rdark per unit DM  0.529***  0.451***     
Rdark per unit N  0.684***  0.587***    0.457***    
Nmass -0.290*** -0.270***   0.377*** -0.592***    
Narea  0.159***  0.219***   0.178*** -0.307***  0.494***  
LMA  0.268***  0.347**  -0.080**  0.111*** -0.230*** 0.118*** 

Values are Pearson’s p. P<0.05, 0.01, and 0.001 are indicated by *, **, and *** respectively.  927 
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Table 4 Summary of PLSR and SVMR model performance for prediction of leaf dark respiration (Rdark, expressed per square metre of leaf area 928 
(LA), per gram of fresh mass (FM), per gram dry mass (DM) and per gram leaf nitrogen (N)) and other target traits, including leaf nitrogen 929 
(expressed per gram of DM and per square metre of LA), and leaf mass per unit area (LMA) across all experiments.  930 

 Coefficient of determination (r2)  Root mean square error (RMSE)  Relative bias (%)  
All Experiment† PLSR (NC‡) SVRM  PLSR SVRM  PLSR SVRM 
Rdark LA (µmol O2 mLA

-2 s-1) 0.54 (23) 0.53      0.14     0.15  16.7 15.5 
Rdark FM (nmol O2 gFM

-1 s-1) 0.55 (24) 0.53      0.79     0.80  17.0 18.1 
Rdark DM (nmol O2 gDM

-1 s-1) 0.50 (23) 0.48      4.34     4.87  17.4 16.7 
Rdark N (nmol O2 gN

-1 s-1) 0.63 (18) 0.64  102.4 103.8  18.2 17.0 
Nmass (mg g-1) 0.91 (26) 0.90      4.15     4.35    7.1   8.0 
Narea (g m-2) 0.60 (18) 0.62      0.13     0.13   11.8 11.1 
LMA (g m-2) 0.75 (14) 0.72      4.53     5.05  11.3 10.8 

†Models were built on training datasets consisting of 90% of the experimental data and used to predict the remaining (test dataset of) 10%. 931 
‡Number of components used.  932 
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FIGURE LEGENDS 933 

FIGURE 1 Mean (± standard deviation), minimum and maximum leaf reflectance (a) of wheat 934 

and spectral coefficients of variation (b) for three experiments (Experiments 1, 2 and 3) 935 

combined. 936 

FIGURE 2 Relationships between Rdark_LA and (a) nitrogen content per unit leaf area (Narea), 937 

(b) leaf dry mass per unit leaf area (LMA), and (c) between Rdark_DM and nitrogen concentration 938 

per unit leaf dry mass (Nmass). Pearson correlation coefficients (r) for data pooled from 939 

Experiments 1, 2 and 3 are presented in the plots. For each of Experiment 1 (red circles), 940 

Experiment 2 (blue triangles) and Experiment 3 (purple squares) the respective r were -0.36, 941 

0.36 and 0.40 for Rdark_LA vs Narea, -0.37, 0.33 and 0.33 for Rdark_LA vs LMA, and -0.20, 0.63 942 

and -0.10 for Rdark_DM vs Nmass. 943 

FIGURE 3 Relationship between nitrogen content per unit leaf area (Narea) and leaf dry mass 944 

per unit leaf area (LMA) for all three experiments combined. Pearson correlation coefficients 945 

(r) for each of Experiment 1 (red circles), Experiment 2 (blue triangles) and Experiment 3 946 

(purple squares) were 0.78, 0.22 and -0.19, respectively. For all bivariate relationships between 947 

traits across all experiments, see Table 3.  948 

FIGURE 4 Validation of PLSR model prediction for Rdark_LA (a), Rdark_FM (b), Rdark_DM (c) 949 

and Rdark_N (d) using 10% of pooled data from Experiment 1 (red circles), Experiment 2 (blue 950 

triangles) and Experiment 3 (purple squares) that were not used in developing the model. 951 

FIGURE 5 Validation of PLSR model prediction for nitrogen concentration per unit leaf dry 952 

mass (Nmass; a), nitrogen content per unit leaf area (Narea; b) and leaf dry mass per unit area 953 

(LMA; c), using 10% of pooled data from Experiment 1 (red circles), Experiment 2 (blue 954 

triangles) and Experiment 3 (purple squares) that were not used in developing the model. 955 
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FIGURE 6 Coefficient of determination (r2) of PLSR models used for prediction of leaf dark 956 

respiration expressed per square metre of leaf area (Rdark_LA; a), per gram of fresh mass 957 

(Rdark_FM; b), per gram of dry mass (Rdark_DM; c), or per gram of leaf nitrogen (Rdark_N; d). 958 

PLSR models were trained on 90% of data pooled from Experiments 1, 2 and 3 (black bars) 959 

or Experiments 1 and 2 (grey bars) or from individual experiments (Experiment 1 (vertical 960 

stripped bars), Experiment 2 (white bars), or Experiment 3 (dotted bars)) and validated on the 961 

test dataset (remaining 10%). See Fig S5 for root mean squared error of PLSR models for 962 

predictions of same traits. 963 

FIGURE 7 Coefficient of determination (r2) of PLSR modesl used for prediction of leaf 964 

nitrogen expressed per gram of DM (Nmass; a) or per square metre of LA (Narea; b), and LMA 965 

(c). PLSR models were trained on 90% of data pooled from Experiments 1, 2 and 3 (black bars) 966 

or Experiments 1 and 2 (grey bars) or from individual experiments (Experiment 1 (vertical 967 

stripped bars), Experiment 2 (white bars), or Experiment 3 (dotted bars)) and validated on the 968 

test dataset (remaining 10%). See Fig S6 for root mean squared error of PLSR models for 969 

predictions of same traits.  970 
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Title  971 

Predicting dark respiration rates of wheat leaves from hyperspectral reflectance 972 

 973 

Running Title 974 

Spectral reflectance for predicting leaf respiration 975 

 976 

Supporting Information  977 

Table S1 Genotypes used for study.  978 

 Experiment 1 Experiment 2 Experiment 3 
1 Calingiri† 39586 Axe§ 
2 Halberd or Halgerg†, ‡ 39592 CCG2 
3 Janz† 39606 CCG4 
4  39608 CCG5 
5  39611 CCG6 
6  39636 CCG7 
7  705-WW CCG10 
8  803-WW CCG11 
9  93-WW CCG13 
10  959WW CCG14 
11  Annuello CCG15 
12  Aroona CCG16 
13  Arrino CCG18 
14  Axe§ CCG19 
15  Baxter CCG22 
16  Berkut CCG23 
17  Binno or Binnu ‡ CCG24 
18  BT-schomburgk CCG25 
19  Bumper CCG26 
20  Calingiri† CCG28 
21  Carnamah Drysdale§ 
22  Cascades Espada§ 
23  Catalina Maxe§ 
24  Chara-WT Magenta§ 
25  Clearfield STL  
26  Correli or Corrill ‡  
27  Cranbrook  
28  Datatine  
29  DM-WW  
30  Drysdale§  
31  Ducula 4  



 

48 
 

32  EGA-Bonnie Rock  
33  EGA-Eagle Rock  
34  EGA-2248  
35  Endure  
36  Espada§  
37  Excalibur  
38  Fang  
39  Fortune  
40  Frame  
41  GBA sapphire  
42  Gladius  
43  Guardian  
44  H45  
45  Halgerg or Halberd†, ‡  
46  Hartog  
47  Janz†  
48  Krichau ff  
49  Lang  
50  Lincoln  
51  Mace§  
52  Machete  
53  Magenta†  
54  Magenta  
55  Perenjori  
56  Rees  
57  Ruby  
58  Sarc 1  
59  Spear  
60  Stiletto  
61  Sunco  
62  Tamamrin Rock or Tammarin_Rock‡  
63  Ventura  
64  Wentworth  
65  Westoria  
66  Wyalkatchem  
67  Yaradouka or Yanadouka‡  
68  Yipti  
69  Young  
70  Zippy  

†Genotypes common to Experiments 1 and 2; ‡Alternative spelling; §Genotypes common to 979 
Experiments 2 and 3. 980 
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Table S2 Foliar traits of wheat genotypes for Experiment 1 under different growth irradiance and temperature conditions averaged for 
three cultivars. 
Irradiance 
/temperature (T) 

Leaf Rdark per unit† Nmass
‡  

(mg g-1) 
Narea  
(g m-2) 

LMA§  
(g m-2) 

LA  
(µmol O2 mLA

-2 s-1) 
FM  
(nmol O2 gFM

-1 s-1) 
DM  
(nmol O2 gDM

-1 s-1) 
N  
(nmol O2 gN

-1 s-1) 
 

High light        
21/16°C 0.62 2.84 19.52 311.2 63.4 0.87 25.9 
28/23°C 0.57 2.77 18.27 297.0 63.4 0.84 28.2 
35/30°C 0.64 3.24 18.02 301.6 60.3 0.84 26.4 
Low light        
21/16°C 0.33 1.96 16.37 270.0 61.3 0.87 27.0 
28/23°C 0.43 2.63 20.28 336.3 61.1 0.84 27.1 
35/30°C 0.37 2.24 15.23 247.0 61.1 0.88 27.3 
LSD        
Irradiance 0.04***     0.26***   1.62ns   28.6ns   1.2P=0.063 0.08ns   2.4ns 
T 0.05ns     0.32ns   1.99*   35.0P=0.051   1.5P=0.059 0.10ns   3.0ns 
Irradiance * T 0.08**     0.45*   2.81*   49.5*   2.1P=0.063 0.14ns   4.2ns 

†Leaf Rdark values are expressed per unit leaf area (LA, µmol O2 mLA
-2 s-1), fresh mass (FM, nmol O2 gFM

-1 s-1), dry mass (DM, nmol O2 
gDM

-1 s-1), nitrogen (N, nmol O2 gN
-1 s-1); ‡N is expressed per gram of DM and per metre of LA; §LMA, leaf mass per area; LSD=Least 

significant difference; ns=not significant (P>0.05); P<0.05, 0.01, and 0.001 are indicated by *, **, and *** respectively; n=105-107.  
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Table S3 Means, mean squares and F. probabilities of ANOVAs for foliar traits examined during Experiments 2 for different 
genotypes and at different growth stages (GS).  

Treatment  Leaf Rdark per unit† Nmass
‡  

(mg g-1) 
Narea  

(g m-2) 
LMA§  
(g m-2) 

 d.f. LA  
(µmol O2 mLA-2 s-1) 

FM  
(nmol O2 gFM-1 s-1) 

DM  
(nmol O2 gDM-1 s-1) 

N  
(nmol O2 gN-1 s-1) 

   

Growth stage¶        
Vegetative stage 0.76 3.99 28.77 392.4 68.3 1.02 25.8 
Reproductive stage  0.70 4.16 19.33 426.7 49.5 0.90 36.6 
LSD (P<0.05) 0.03 0.15   0.62   12.0   0.7 0.02   0.8 
Mean squares and F. probabilities of ANOVA   
Genotype 69 0.08*** 3.09***       35.6***     6005ns       63.4*** 0.04***       80.0*** 
GS 1 0.58*** 6.42*** 16319.7*** 219939*** 64892.5*** 2.52*** 21537.5*** 
Genotype*GS 69 0.03 P=0.053 1.10P=0.06       21.4**    4806ns 33.24*** 0.06***       23.7ns 
Residual3  0.02 (689) 0.85 (690)       14.3 (679)    6551 18.82 (690) 0.02 (679)       27.1 (694) 

†Leaf Rdark expressed per unit leaf area (LA, µmol O2 mLA
-2 s-1), fresh mass (FM, nmol O2 gFM

-1 s-1), dry mass (DM, nmol O2 gDM
-1 s-1) 

and nitrogen (N, nmol O2 gN
-1 s-1); ‡N is expressed per gram of DM and per metre of LA; §LMA, leaf mass per area; ¶Vegetative stage 

being leaf-3 at growth stage Z13 (seedling growth) while reproductive stage being flag leaf and Flag-1 at growth stages Z61-69 
(anthesis). Values in parenthesis are residual degrees of freedom; ns=not significant (P>0.05); P<0.05, 0.01, and 0.001 are indicated 
by *, **, and *** respectively.  
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Table S4 Means, mean squares and F. probabilities of ANOVAs for foliar traits examined during Experiments 3 for different 
genotypes and at different growth stages (GS).  

Treatment  Leaf Rdark per unit† Nmass
‡  

(mg g-1) 
Narea  

(g m-2) 
LMA§ 
(g m-2) d.f. LA  

(µmol O2 mLA
-2 s-1) 

FM  
(nmol O2 gFM

-1 s-1) 
DM  
(nmol O2 gDM

-1 s-1) 
N  
(nmol O2 gN

-1 s-1) 
Growth stage¶        
Vegetative stage 0.89 4.62 22.40 491.9  32.7 0.66     40.1 
Reproductive stage 0.76 3.97 16.18 708.1  35.5 0.82     19.4 
LSD (P<0.05) 0.04 0.21   0.91   40.0    1.5 0.04        1.0 
Mean squares and F. probabilities of ANOVA      
Genotype 23 0.06 P=0.064 1.24ns       28.8ns     32796ns 116.5*** 0.10***       26.8ns 
GS 1 1.87*** 45.02***   4058.0*** 4852040*** 820.8*** 2.69*** 45082.8*** 
Genotype*GS 23 0.02ns 0.47ns       18.5ns     25601ns   40.3ns 0.02ns   21.1ns 
Residual  0.04 (364) 1.18 (370)       21.8 (367)     38343   49.9 (373) 0.04 (368)   28.6 (373) 

†Leaf Rdark expressed per unit leaf area (LA, µmol O2 mLA
-2 s-1), fresh mass (FM, nmol O2 gFM

-1 s-1), dry mass (DM, nmol O2 gDM
-1 s-1) 

and nitrogen (N, nmol O2 gN
-1 s-1); ‡N is expressed per gram of DM and per metre of LA; §LMA, leaf mass per area; ¶Vegetative stage 

being leaf-3 through leaf-6 sampled at growth stages Z23-27 (tillering) while reproductive stage being flag leaf, Flag-1 at growth 
stages Z55-71 (inflorescence emergence, anthesis through milk development). Values in parenthesis are residual degrees of freedom; 
ns=not significant (P>0.05); P<0.05, 0.01, and 0.001 are indicated by *, **, and *** respectively.   
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Table S5 Squared Pearson correlation (r2) for predictions of leaf dark respiration (Rdark, expressed per metre of leaf area (LA), per 
gram of fresh mass (FM) and dry mass (DM), and leaf nitrogen), nitrogen (expressed per gram of DM and per metre of LA), and leaf 
mass per unit area (LMA),  across all experiments, by the three models using either the continuous, full-spectrum data (350-2500 nm) 
or a spectral subset selected based on coefficient weightings of a multi-method ensemble developed by Feilhauer et al. (2015).  
 PLSR  RFR  SVMR  Number of 

ensemble 
selected 

wavelengths 

All Experiment† Whole 
spectrum 

Selected 
wavelengths 

 Whole 
spectrum 

Selected 
wavelengths 

 Whole 
spectrum 

Selected 
wavelengths 

 

Leaf Rdark per unit           
LA (µmol O2 mLA

-2 s-1) 0.52 0.55  0.40 0.41  0.56 0.54  265 
FM (nmol O2 gFM

-1 s-1) 0.52 0.54  0.43 0.44  0.55 0.55  269 
DM (nmol O2 gDM

-1 s-1) 0.42 0.51  0.45 0.50  0.51 0.57  248 
N (nmol O2 gN

-1 s-1) 0.59 0.64  0.60 0.60  0.63 0.68  243 
Other traits           
Nmass (mg g-1) 0.81 0.84  0.80 0.80  0.84 0.85  229 
Narea (g m-2) 0.58 0.66  0.56 0.55  0.63 0.68  228 
LMA (g m-2) 0.69 0.79  0.71 0.70  0.76 0.80  221 

†Models were built on training dataset consisting of 90% of the experimental data and used to predict the remaining (test dataset of) 
10%.  
  



 

53 
 

Table S6. Summary of different trait-based and reflectance-based regression models for leaf 1 
dark respiration expressed per square metre of leaf area (Rdark LA). Model predictors are 2 
either reflectance, or measured leaf traits – leaf nitrogen (expressed per gram of DM, Nmass; 3 
and per metre of LA, Narea), and leaf mass per unit area (LMA). The coefficient of 4 
determination, R2, is shown for all models.  5 

Predictor(s) Method Rdark LA  
coefficient of determination (R2) 

Advanced regression  
Reflectance PLSR 0.54 
 SVMR 0.53 
Traditional regression  
Nmass Simple linear regression 0.08 
Narea Simple linear regression 0.04 
LMA Simple linear regression 0.07 
Nmass, LMA Multiple linear regression, no interaction 0.12 
 Multiple linear regression, with 

interaction 
0.12 

Narea, LMA  Multiple linear regression, no interaction 0.09 
 Multiple linear regression, with 

interaction 
0.09 

  6 
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 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

FIGURE S1 Display showing green mesh suspended by metal cages used to achieve low light 15 
(photosynthetic photon flux density of 150~200 µmol m-2 s-1 i.e. 25% of ambient) intensity 16 
during Experiment 1.  17 
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  18 

   19 

FIGURE S2 Mean (± standard deviation), minimum and maximum leaf reflectance (top panels) of wheat (a-c) and spectral coefficients of variation 20 
(d-e) for Experiment 1 (left panels), Experiment 2 (middle panels) and Experiment 3 (right panels).   21 
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   25 

FIGURE S3 Relationships between Rdark_LA and (a-c) leaf nitrogen per square metre of leaf area (Narea), (d-f) leaf mass per area (LMA), and (g-i) 26 
between Rdark_DM and leaf nitrogen per gram of leaf dry mass (Nmass) for Experiment 1 (left panels), Experiment 2 (middle panels) and Experiment 27 
3 (right panels). Pearson correlation coefficients (r) for data pooled from Experiments 1, 2 and 3 were 0.16, 0.27 and 0.38, respectively for Rdark_LA 28 
vs Narea, Rdark_LA vs LMA, and Rdark_DM vs Nmass. 29 
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 32 

FIGURE S4 Relationship between leaf nitrogen (per square metre of leaf area, Narea) and leaf 33 
mass per area (LMA) for Experiment 1 (a), Experiment 2 (b) and Experiment 3 (c). For the 34 
pooled data Pearson correlation coefficients (r) was 0.12 (P<0.001).   35 
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38 

39 
FIGURE S5 Root mean squared error (RMSE) of PLSR model used for prediction of leaf 40 
dark respiration per square metre of leaf area (Rdark_LA; a), per gram of fresh mass (Rdark_FM; 41 
b), per gram of dry mass (Rdark_DM; c), or per gram of leaf nitrogen (Rdark_N; d). PLSR models 42 
were trained on 90% of data pooled from Experiments 1, 2 and 3 (black bars) or Experiments 43 
1 and 2 (grey bars) or from individual experiments (Experiment 1 (vertical stripped bars), 44 
Experiment 2 (white bars), or Experiment 3 (dotted bars)) and validated on the test dataset 45 
(remaining 10%). 46 
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49 
FIGURE S6 Root mean squared error (RMSE) of PLSR model used for prediction of leaf 50 
nitrogen per gram of DM (Nmass; a) or per square metre of LA (Narea; b), and LMA (c). PLSR 51 
models were trained on 90% of data pooled from Experiments 1, 2 and 3 (black bars) or 52 
Experiments 1 and 2 (grey bars) or from individual experiments (Experiment 1 (vertical 53 
stripped bars), Experiment 2 (white bars), or Experiment 3 (dotted bars)) and validated on the 54 
test dataset (remaining 10%).  55 
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Text S1 Multi-method ensemble  56 

We attempted to reduce model complexity and improve model predictions by combining 57 

different regression techniques into a multi-method ensemble, an approach first suggested by 58 

Bates & Granger (1969) and shown to increase prediction accuracy (Waske & van der Linden, 59 

2008; Du, Xia, Chanussot, & He, 2012). This is achieved by excluding bands showing low 60 

sensitivity to the response variable in all three model types (Frenich et al., 1995; Wolter, 61 

Townsend, Sturtevant, & Kingdon, 2008; Andersen & Bro, 2010). We employed the multi-62 

method ensemble that combines PLSR, SVMR and RFR, which was recently developed by 63 

Feilhauer, Asner & Martin (2015). The ensemble identified distinct hyperspectral bands (with 64 

elevated sensitivity to the response variable) for each of the PLSR, SVMR and RFR models. 65 

These subsets of wavelengths were in turn used to model predictions of the different traits of 66 

interest and predictions compared to those developed with the full spectrum. 67 

In the ensemble, individual model predictions of leaf Rdark, Nmass, Narea and LMA using 68 

either the continuous, full spectrum data or a spectral subset selected based on weightings in 69 

the multi-method ensemble developed by Feilhauer et al. (2015) were mostly similar (Table 70 

S6). Within models, differences in r2 between full spectrum and selected subset of wavelengths 71 

were at most ±0.03 for Rdark and ±0.04 for other leaf traits. The use of model coefficient 72 

weighting resulted in the selection of between 173 and 271 wavelengths for Rdark and other leaf 73 

traits. The selected wavelengths were spread across the whole spectrum of interest. Across 74 

models the RFR performed less well in some instances (e.g. Rdark_LA, Rdark_FM and LMA) 75 

compared to PLSR and SVRM (Table S6). We found that the PLSR model exhibited better 76 

performance relative to RFR but similar performance to the SVMR model. 77 

  78 
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   99 

FIGURE 1 Mean (± standard deviation), minimum and maximum leaf reflectance (a) of wheat and spectral coefficients of variation (b) for three 100 
experiments (Experiments 1, 2 and 3) combined.  101 

0.0

0.2

0.4

0.6

0.8

1.0

400 650 900 1150 1400 1650 1900 2150 2400

R
ef

le
ct

an
ce

 

Wavelength (nm)

(a) Mean
Min/max
+/-SD

0

20

40

60

80

100

400 650 900 1150 1400 1650 1900 2150 2400

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
(%

)

Wavelength (nm)

(b)



 

67 
 

102 

 103 

rpooled = 0.16, P<0.001
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 104 
FIGURE 2 Relationships between Rdark_LA and (a) nitrogen content per unit leaf area (Narea), 105 
(b) leaf dry mass per unit leaf area (LMA), and (c) between Rdark_DM and nitrogen concentration 106 
per unit leaf dry mass (Nmass). Pearson correlation coefficients (r) for data pooled from 107 
Experiments 1, 2 and 3 are presented in the plots. For each of Experiment 1 (red circles), 108 
Experiment 2 (blue triangles) and Experiment 3 (purple squares) the respective r were -0.36, 109 
0.36 and 0.40 for Rdark_LA vs Narea, -0.37, 0.33 and 0.33 for Rdark_LA vs LMA, and -0.20, 0.63 110 
and -0.10 for Rdark_DM vs Nmass.  111 
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 112 

FIGURE 3 Relationship between nitrogen content per unit leaf area (Narea) and leaf dry mass 113 
per unit leaf area (LMA) for all three experiments combined. Pearson correlation coefficients 114 
(r) for data pooled from Experiments 1, 2 and 3 are presented in the plots. Pearson correlation 115 
coefficients (r) for each of Experiment 1 (red circles), Experiment 2 (blue triangles) and 116 
Experiment 3 (purple squares) were 0.78, 0.22 and -0.19, respectively. For all bivariate 117 
relationships between traits across all experiments, see Table 3.  118 
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r² = 0.54; RMSE = 0.14
Relative bias = 17%
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FIGURE 4 Validation of PLSR model prediction for Rdark_LA (a), Rdark_FM (b), Rdark_DM (c) 123 
and Rdark_N (d) using 10% of pooled data from Experiment 1 (red circles), Experiment 2 (blue 124 
triangles) and Experiment 3 (purple squares) that were not used in developing the model.  125 
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r² = 0.9106; RMSE = 4.15
Relative bias = 7.1%
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 128 

FIGURE 5 Validation of PLSR model prediction for nitrogen concentration per unit leaf dry 129 
mass (Nmass; a), nitrogen content per unit leaf area (Narea; b) and leaf dry mass per unit area 130 
(LMA; c), using 10% of pooled data from Experiment 1 (red circles), Experiment 2 (blue 131 
triangles) and Experiment 3 (purple squares) that were not used in developing the model.   132 
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FIGURE 6 Coefficient of determination (r2) of PLSR model used for prediction of leaf dark 137 
respiration expressed per square metre of leaf area (Rdark_LA; a), per gram of fresh mass 138 
(Rdark_FM; b), per gram of dry mass (Rdark_DM; c), or per gram of leaf nitrogen (Rdark_N; d). 139 
PLSR models were trained on 90% of data pooled from Experiments 1, 2 and 3 (black bars) 140 
or Experiments 1 and 2 (grey bars) or from individual experiments (Experiment 1 (vertical 141 
stripped bars), Experiment 2 (white bars), or Experiment 3 (dotted bars)) and validated on the 142 
test dataset (remaining 10%). See Fig S5 for root mean squared error of PLSR models for 143 
predictions of same traits. 144 
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147 
FIGURE 7 Coefficient of determination (r2) of PLSR model used for prediction of leaf 148 
nitrogen expressed per gram of DM (Nmass; a) or per square metre of LA (Narea; b), and LMA 149 
(c). PLSR models were trained on 90% of data pooled from Experiments 1, 2 and 3 (black 150 
bars) or Experiments 1 and 2 (grey bars) or from individual experiments (Experiment 1 151 
(vertical stripped bars), Experiment 2 (white bars), or Experiment 3 (dotted bars)) and 152 
validated on the test dataset (remaining 10%). See Fig S6 for root mean squared error of 153 
PLSR models for predictions of same traits. 154 
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