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Abstract  55 

Extracellular enzymes catalyze rate-limiting steps in soil organic matter 56 

decomposition, and their activities (EEAs) play a key role in determining soil 57 
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respiration (SR). Both EEAs and SR are highly sensitive to temperature, but their 58 

responses to climate warming remain poorly understood. Here, we present a 59 

meta-analysis on the response of soil cellulase and ligninase activities and SR to 60 

warming, synthesizing data from 56 studies. We found that warming significantly 61 

enhanced ligninase activity by 21.4% but had no effect on cellulase activity. Increases 62 

in ligninase activity were positively correlated with changes in SR, while no such 63 

relationship was found for cellulase. The warming response of ligninase activity was 64 

more closely related to the responses of SR than a wide range of environmental and 65 

experimental methodological factors. Furthermore, warming effects on ligninase 66 

activity increased with experiment duration. These results suggest that soil 67 

microorganisms sustain long term increases in SR with warming by gradually 68 

increasing the degradation of the recalcitrant carbon pool. 69 

 70 

KEYWORDS 71 

Extracellular enzyme activity, Decomposition, Soil microorganisms, Soil respiration, 72 

Recalcitrant carbon pool, Ligninase activity, Cellulase activity, Global warming  73 

1  |  INTRODUCTION  74 

The average global surface temperature is predicted to increase between 1 and 4°C by 75 

the end of the 21st century (Collins & Knutti, 2013, O'Neill et al., 2017). Rising 76 

temperatures have cascading impacts on ecosystem carbon (C) budgets, and these can 77 

cause both positive and negative C cycle–climate feedbacks (Carey et al., 2016, Chen 78 

et al., 2016a, Chen et al., 2017a, Karhu et al., 2014, Paustian et al., 2016, Peñuelas et 79 

al., 2017, Yang et al., 2018). Soil respiration (SR) represents the largest C flux from 80 

soils to the atmosphere (Bradford et al., 2016, Tucker, Bell, Pendall, & Ogle, 2013), 81 

and is primarily driven by the microbial decomposition of soil organic matter (SOM). 82 

However, we know little about the mechanisms underlying the response of SR to 83 

climate warming (Chen et al., 2016b, Conant et al., 2011, van Gestel et al., 2018). 84 

Specifically, there is a lack of information regarding the degree to which soil 85 

extracellular enzymes (EEs), which catalyze the rate-limiting step in SOM 86 

decomposition (Allison, Wallenstein, & Bradford, 2010a, Jing et al., 2014, 87 
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Sinsabaugh, 2010, Stone et al., 2012), are affected by warming. These enzymes, 88 

primarily produced by microbes, are considered proximate agents of SR because they 89 

lower the activation energy of key reactions and speed up the breakdown of polymers 90 

(Chen et al., 2017b, Chen et al., 2018, Janssens et al., 2010, Suseela, Tharayil, Xing, 91 

& Dukes, 2014). Although the rates at which these enzymes are produced and 92 

degraded are sensitive to temperature (Allison & Treseder, 2008, German, Marcelo, 93 

Stone, & Allison, 2012, Papanikolaou, Britton, Helliwell, & Johnson, 2010, Steinweg, 94 

Dukes, Paul, & Wallenstein, 2013), it is still unclear how warming responses of 95 

enzymes affect SR. 96 

 Cellulose and lignin are the two most abundant SOM compounds, and 97 

microbially mediated decomposition of these materials composes a main source of SR 98 

(Carreiro, Sinsabaugh, Repert, & Parkhurst, 2000, Chen et al., 2018, Janssens et al., 99 

2010, Waldrop et al., 2004). Cellulose and hemicellulose comprise the main 100 

composition of primary plant cell walls. Hydrolysis of cellulose and hemicellulose is 101 

mainly catalyzed by cellulase, including β-1,4-glucosidase (BG), β-1,4-xylosidase 102 

(BX) and β-D-cellobiosidase (CBH) (Carreiro, Sinsabaugh, Repert, & Parkhurst, 2000, 103 

Chen et al., 2017b, Jian et al., 2016). The aromatic C polymer lignin is found in 104 

secondary plant cell walls, where it covers and shields cellulose from microbial decay. 105 

Oxidation and degradation of phenolic-containing recalcitrant compounds are 106 

facilitated by ligninase, that is, peroxidase (PER), phenol oxidase (PO) and 107 

polyphenol oxidase (PPO) (Dashtban, Schraft, Syed, & Qin, 2010, Romero-Olivares, 108 

Allison, & Treseder, 2017, Sinsabaugh et al., 2008, Zhou et al., 2012). The critical 109 

roles of cellulase and ligninase in mediating SOM decomposition suggest that climate 110 

warming may affect SR through its effects on EEAs, yet we still lack direct evidence. 111 

Cellulase and ligninase are synthesized by specific groups of microorganisms 112 

(Burns et al., 2013, Carreiro, Sinsabaugh, Repert, & Parkhurst, 2000, Wang et al., 113 

2012), and it may take years for microbial communities to adapt to environmental 114 

changes (DeAngelis et al., 2015). Thus, responses of cellulase and ligninase activities 115 

to warming may vary over time. Because warming methods differ in their effects on 116 

soil temperature and moisture (Chen et al., 2015, Lu et al., 2013), soil microbial 117 
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community (Chen et al., 2015) and belowground C allocation (Rustad et al., 2001, 118 

Schindlbacher et al., 2015), they may differ in their effects on EEAs as well. 119 

Including cellulase and ligninase activities in soil C models may improve future 120 

predictions of soil C stocks (Ali et al., 2015, Luo, Chen, Chen, & Feng, 2017, 121 

Moorhead, Sinsabaugh, Hill, & Weintraub, 2016). However, warming effects on 122 

cellulase and ligninase activities as well as the underlying mechanisms are still 123 

unclear.  124 

To address this knowledge gap, we conducted a meta-analysis of the responses of 125 

cellulase and ligninase activities to warming and their links with SR responses. More 126 

specifically, our study seeks : (1) to quantify the effects of warming on cellulase and 127 

ligninase activities, (2) to investigate the factors affecting the responses of cellulase 128 

and ligninase activities to warming, and (3) to test whether the responses of cellulase 129 

and ligninase activities to warming are linked with changes in SR. 130 

 131 

2  |  MATERIALS AND METHODS  132 

2.1  |  Data collection 133 

We extracted results for enzyme activities of ligninase and cellulase under warming 134 

experiments conducted in the field. We used Web of Science 135 

(http://apps.webofknowledge.com/), Google Scholar (http://scholar.google.com/) and 136 

China National Knowledge Infrastructure (http://www.cnki.net/) for an exhaustive 137 

search of journal articles published before June 2018, using the following key words : 138 

(1) “climate change” or “experimental warming” or “elevated temperature” and (2) 139 

“cellulase”, or “ligninase”, or “glucosidase”, or “xylosidase”, or “cellobiosidase”, or 140 

“peroxidase”, or “phenol oxidase”, or “polyphenol oxidase”, and (3) “terrestrial” or 141 

“soil” or “land”. 142 

To be included in our dataset, experiments had to meet several criteria: (1) the 143 

warming treatment lasted at least one year; (2) vegetation, soil physicochemical 144 

parameters and climate were similar between control and warming treatments; (3) 145 

sample size and standard deviations were reported; (4) warming protocols (i.e., 146 

warming method, warming magnitude, warming time and warming season) were 147 
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clearly described. All studies in our dataset measured enzyme activity for warmed and 148 

control soils at the same incubation temperature (i.e., temperature differences between 149 

treatments occurred only in the field, and not during the incubation). As such, 150 

differences in enzyme activity between warmed and control soils were not related to 151 

the temperature sensitivity of enzymes, but reflect warming effects on enzyme 152 

production by soil microbes. We found 56 articles that met our requirements (see 153 

Dataset and Figure S1).  154 

For each study in our dataset, we extracted information on cellulase and 155 

ligninase activities (Table S1). If a paper reported multiple warming responses (e.g. in 156 

multi-factor experiments, or studies applying more than one warming protocol), each 157 

experiment was included separately in our dataset. If one paper reported two or three 158 

kinds of cellulase or ligninase, then their sum values were considered as the overall 159 

responses of cellulase and ligninase activities. We also recorded a wide range of 160 

environmental variables, including latitude, longitude, elevation, climatic variables 161 

(mean annual temperature (MAT), mean annual precipitation (MAP)), sampling date, 162 

sampling temperature, vegetation type (http://www.worldclim.org/) and soil type 163 

(http://www.fao.org/about/en/). Regarding the warming protocols, we recorded the 164 

magnitude (i.e., the average temperature difference between the warming and control 165 

plots), duration (in years) and methods (open top chamber (OTC), infrared heater (IH), 166 

green house (GH), heating cable, and curtain). We also recorded SR, soil C:N, 167 

microbial biomass, and the ratio of fungal to bacterial abundance for both control and 168 

warming treatments when these data were reported. When warming responses of SR 169 

were not available, we used responses of heterotrophic respiration or weight loss in 170 

litter bag experiments as proxy values. To extract data from figures we used Engauge 171 

Digitizer 4.1 (http://digitizer.sourceforge.net). When some critical information was 172 

not reported in the article, we tried to obtain this information by contacting the 173 

corresponding author. 174 

 175 

2.2  |  Data analysis 176 
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We used meta-analysis to evaluate the effects of warming on cellulase, ligninase, 177 

individual enzyme activity and other ancillary variables (García-Palacios et al., 2014, 178 

Hedges, Gurevitch, & Curtis, 1999, Van Groenigen et al., 2014, Zhao et al., 2017). 179 

The effects of warming on EEAs were evaluated using the natural log of the response 180 

ratio (ln�): 181 

 182 
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 184 

with ������ and �C��� as the arithmetic mean concentrations in the warming and control 185 

treatments, respectively. The variances (v ) of lnR were calculated by: 186 

 187 

 (2),  188 

 189 

with Wn  and Cn as the number of replicates, and WS  and CS  as the SDs  for 190 

warming and control treatments, respectively. 191 

The overall effect and the 95% confidence interval were calculated using the 192 

“rma.mv” function in the R-package “metafor” (Viechtbauer, 2010). Because 193 

incubation temperature for enzyme measurements varied among studies, we included 194 

“Incubation temperature” as a random factor in the meta-analysis. Because several 195 

papers contributed more than one response ratio, we also included the variable “paper” 196 

as a random factor (Chen et al., 2018, Terrer et al., 2016, van Groenigen et al., 2017). 197 

The effects of warming were considered significant if the 95% confidence interval did 198 

not overlap with zero. The results for the analyses on lnR were back-transformed and 199 

reported as percentage change with warming (that is, 100 × (elnR

The meta-analytic models were selected by using the same approach as in Chen 202 

et al. (2018), 

 - 1)) to ease 200 

interpretation. 201 

Terrer et al. (2016) and van Groenigen et al. (2017). Briefly, we analyzed 203 

all potential combinations of the studied factors in a mixed-effects meta-regression 204 
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model using the “glmulti” package in R (Bangert-Drowns, Hurley, & Wilkinson, 2004, 205 

Calcagno & de Mazancourt, 2010). The importance of a specific predictor was 206 

expressed as the sum of Akaike weights for models that included this factor, which 207 

can be considered as the overall support for each variable across all models. A cut-off 208 

of 0.8 was set to differentiate between important and non-essential predictors.  209 

 210 

3  |  RESULTS 211 

Across the whole dataset, warming significantly enhanced ligninase activity by an 212 

average of 21.4%. Specifically, warming significantly increased activities of PER by 213 

18.4%, PO by 13.5% and PPO by 28.6%. In contrast, warming had no effect on 214 

cellulase activity (Figure1a), or any of the individual cellulase enzymes BG, BX and 215 

CBH. The responses of cellulase and ligninase activities to warming were normally 216 

distributed (Figure 1b and 1c), and they were independent of the sample size (Figure 217 

S2). 218 

 None of variables tested for the effects of warming on cellulase activity reached 219 

the threshold value (0.8) of the summed Akaike weights (Figure 2a). In contrast, 220 

effects of warming on ligninase activity were best explained by warming duration and 221 

warming method (Figure 2b). Linear regression analysis confirmed that lnR of 222 

ligninase activity was positively correlated with warming duration, while no such 223 

relationship was found for cellulase activity (Figure 3a and 3b). Regarding warming 224 

methods, warming did not affect cellulase activity for any of the warming methods 225 

(Figure 3a). In contrast, OTC, GH and IH significantly increased ligninase activity by 226 

15.5%, 31.4% and 22.3%, respectively; while cables had no effect on ligninase 227 

activity (Figure 3b).  228 

Warming significantly increased microbial biomass specific ligninase activity (i.e. 229 

the ratio of ligninase activity to total microbial abundance) by 40.6% (Figure S3a). 230 

This increase was weakly positively correlated with warming-induced changes in the 231 

ratio of fungal to bacterial abundance (Figure S3b). Finally, our analyses suggest that 232 

warming had stronger positive effects on biomass specific ligninase activity for 233 

long-term than short-term studies, while this relationship was not observed for 234 
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biomass specific cellulase activity (Figure S4a and S4b). 235 

Warming on average increased SR by 15.8% (95% CI: 6.3% - 26.1%) in our 236 

dataset. We found no relationship between the responses of cellulase activity and the 237 

responses of SR to warming (Figures 4a). However, the warming response of SR was 238 

positively correlated with the response of ligninase activity and the positive 239 

relationship held when analyzed for PER, PO and PPO individually (Figures 4b and 240 

S5). To compare the relative importance of cellulase and ligninase activities in 241 

explaining the response of SR to warming, we limited our model selection analysis to 242 

studies that simultaneously reported the effects of warming on cellulase and ligninase 243 

activities and SR. Effects of warming on SR were best predicted by the responses of 244 

ligninase activity over a wide range of ecosystem types, climatic variables and 245 

warming protocols (Figure 4c). Experiment duration had no significant impact on SR 246 

responses to warming, either in the subset of studies that reported responses of both 247 

enzymes (Figure 4c), or across the entire dataset. 248 

4  |  DISSCUSSION 249 

Our results show that warming significantly enhanced ligninase activity, and that 250 

warming responses are positively correlated with warming duration. In contrast, 251 

warming does not affect cellulase activity. Why does warming have differential 252 

effects on cellulase and ligninase activities? We propose three possible mechanisms. 253 

First, the enzyme responses reflect warming-induced changes in substrate availability. 254 

Enzyme activity can be described by the Michaelis–Menten relationship, which 255 

primarily depends on substrate availability (Davidson & Janssens, 2006, Sinsabaugh 256 

et al., 2008). Initial stimulation of SR by warming depletes easily hydrolysable 257 

substrates (Allison, McGuire, & Treseder, 2010b, Luo, Wan, Hui, & Wallace, 2001), 258 

limiting the positive response of cellulase activity to increasing temperatures 259 

(Davidson & Janssens, 2006, Stone et al., 2012, Weedon, Aerts, Kowalchuk, & van 260 

Bodegom, 2014). At the same time, warming-induced declines in easily hydrolysable 261 

C pools can lead to microbial C starvation (Crowther & Bradford, 2013, Fenner et al., 262 

2006, Melillo et al., 2017, Metcalfe, 2017). Under these circumstances, soil microbial 263 

communities may adapt to utilize previously inaccessible recalcitrant C pools to fuel 264 
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their metabolic activities. Microbial utilization of recalcitrant substrates such as 265 

phenol requires depolymerization, a process catalyzed by ligninase (De Gonzalo, 266 

Colpa, Habib, & Fraaije, 2016, Jassey et al., 2012, Sinsabaugh, 2010).  267 

Second, warming may increase ligninase activity through its effect on soil N 268 

availability. Warming-induced redistribution of N from soils to vegetation could 269 

progressively lead to microbial N limitation, particularly in high C:N regions (Bai et 270 

al., 2013, Beier et al., 2008, Melillo et al., 2011). In that case, soil microorganisms are 271 

expected to invest C and energy to acquire N through decomposition of N-containing 272 

molecules (Chen et al., 2017b, Sinsabaugh et al., 2008), which are often physically or 273 

chemically protected by other aromatic macromolecules such as lignin (Hobbie, 2008, 274 

Weedon et al., 2012, Zhao et al., 2014). This explanation is supported by the positive 275 

correlation between warming effects on ligninase activity and soil C:N, while no clear 276 

relationship is found for the responses of cellulase activity (Figure S6). Finally, 277 

warming-induced changes in soil microclimate (Domínguez et al., 2017, Zhou et al., 278 

2013), fresh C input (Bhattacharyya et al., 2013a, Xue et al., 2016, Yin et al., 2013) 279 

and plant community composition (Kardol, Cregger, Campany, & Classen, 2010, 280 

Steinauer et al., 2015) can all cause substantial changes in microbial communities as 281 

well. 282 

Increased ligninase production with warming might reflect shifts in the microbial 283 

community composition. Indeed, several studies suggest that warming-induced 284 

changes in soil microbial community composition cause differential responses of 285 

cellulase and ligninase activities (DeAngelis et al., 2015, Pold, Grandy, Melillo, & 286 

DeAngelis, 2017). This explanation is also consistent with studies showing that fungi 287 

are main contributors to ligninase production (De Gonzalo, Colpa, Habib, & Fraaije, 288 

2016, Kinnunen, Maijala, JArvinen, & Hatakka, 2017), and that experimental 289 

warming increases fungal abundance (A'Bear, Jones, Kandeler, & Boddy, 2014, 290 

Delarue et al., 2015). However, warming may also directly or indirectly cause 291 

physiological adaptation of soil microorganisms to increase enzyme production 292 

(Manzoni et al., 2012, Nie et al., 2013, Schindlbacher et al., 2015), even when 293 

warming decreases total microbial biomass (Pold, Grandy, Melillo, & DeAngelis, 294 
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2017, Sistla & Schimel, 2013, Sorensen et al., 2018). This is consistent with recent 295 

findings that experimental warming tends to decrease microbial C use efficiency 296 

(Manzoni et al., 2012, Tucker, Bell, Pendall, & Ogle, 2013).  297 

Why does the effect of warming on ligninase activity increase over time? Soil 298 

microorganisms can adjust their community composition or alter their C utilization 299 

strategies to adapt to warming, but it requires several years or even decades for 300 

significant changes in their community composition to occur (DeAngelis et al., 2015, 301 

Feng et al., 2017, Rousk, Smith, & Jones, 2013). Furthermore, warming-induced N 302 

limitation may take several years to manifest (Bai et al., 2013, Melillo et al., 2011). In 303 

addition, long-term warming could also restructure plant community and alter litter 304 

quality towards decay resistance (e.g. high lignin content) (Melil lo et al., 2011, Talbot, 305 

Yelle, Nowick, & Treseder, 2012), thereby promoting the microbial production of 306 

ligninase.  307 

Regardless of the mechanism underlying the differential warming response of 308 

ligninase and cellulase, our results suggest that warming-induced shifts in cellulase 309 

and ligninase activities could help to sustain long-term increases in SR with warming 310 

(Lin, Zhu, & Cheng, 2015, Romero-Olivares, Allison, & Treseder, 2017, Souza et al., 311 

2017). This is because warming responses of ligninase activity exert far larger control 312 

over SR than a broad range of environmental and experimental variables. These 313 

results suggest that responses of SR to warming are largely modulated by a single 314 

group of lignin-modifying enzymes, which contributes to sustained positive responses 315 

of SR to long-term climate warming. 316 

Warming methods constituted the second important predictor of the warming 317 

effects on ligninase activity. Cables only warm soils and are reported to have negative 318 

effects on microbial biomass, litter inputs and root exudates (Rustad et al., 2001, 319 

Schindlbacher et al., 2015). Similarly, a recent meta-analysis shows that cables 320 

generally decrease total microbial, fungal and bacterial abundance, while other 321 

warming methods increase microbial abundance (Chen et al., 2015). We hypothesize 322 

that these negative responses suppressed microbial activity and microbial enzymatic 323 

production (Chen et al., 2015, Hanson et al., 2017). In addition, high warming 324 
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magnitude and large reductions in soil moisture in cable experiments may decrease 325 

microbial C use efficiency (Schindlbacher et al., 2011, Schindlbacher et al., 2012), 326 

which could potentially suppress microbial cellulase and ligninase production.  327 

Model projections of soil C dynamics often lack representation of EEAs 328 

regulated SOM decomposition (Davidson & Janssens, 2006, Luo et al., 2016, Wieder, 329 

Bonan, & Allison, 2013). However, our finding that warming-induced shifts in 330 

cellulase and ligninase activities may facilitate sustained increases in SR under 331 

long-term climate warming, highlights the need for a closer integration of enzymatic 332 

decomposition into soil biogeochemical models. Unfortunately, responses of SR and 333 

EEAs to long-term climate warming remain understudied, since experiment duration 334 

is often constrained by funding availability. If the relationship between ligninase and 335 

warming duration holds across a wide range of land ecosystems, our results suggest 336 

that ecosystem climate-carbon feedbacks could be stronger than previously assumed. 337 

 338 
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Figure captions 764 

 765 

FIGURE 1 (a) Effects of warming on cellulase and ligninase activities indicated with 766 

the mean percentage of change in warming vs. control plots. Distribution of the 767 

log-transformed response ratios (lnR) of (b) cellulase and (c) ligninase activities to 768 

experimental warming. Error bars represent 95% confidence intervals. The sample 769 

size for each variable is shown in the right column of the figure. PER, peroxidase; PO, 770 

phenol oxidase; PPO, polyphenol oxidase; BG, β-1,4-Glucosidase; BX, 771 

β-1,4-Xylosidase; CBH, β-D-Cellobiosidase. 772 
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FIGURE 2 Model-averaged importance of the predictors of warming effects on soil 774 

(a) cellulase and (b) ligninase activities. The importance is based on the sum of 775 

Akaike weights derived from model selection using corrected Akaike’s Information 776 

Criteria. Cutoff is set at 0.8 in order to differentiate between important and 777 

non-essential predictors. MAT, mean annual temperature; MAP, mean annual 778 

precipitation; Sample.T, sampling temperature; Time, daily warming regime (i.e., day, 779 

night, or diurnal warming); Season, annual warming regime (i.e. growing season, 780 

non-growing season or whole-year warming). 781 

 782 

FIGURE 3 Relationships between warming-induced changes in (a) cellulase and (b) 783 

ligninase activities and warming duration. Effects of warming on (c) cellulase and (d) 784 

ligninase activities for various warming methods. The response of ligninase activity 785 

was positively correlated with warming duration (y = 0.016 x + 0.113, R2

 790 

 = 0.117, p < 786 

0.001, F = 22.590, n = 172). Error bars represent 95% confidence intervals. OTC, 787 

open top chamber; IH, infrared heater; GH, green house. The sample size for each 788 

variable is shown in the right column of the figure. 789 

 791 

FIGURE 4 Relationships between the effect of warming (lnR) on soil respiration (SR) 792 

and lnR of (a) cellulase and (b) ligninase activities. (c) Model-averaged importance of 793 

the predictors of warming effects on SR. The warming response of SR was positively 794 

correlated with the warming response of ligninase activity (y = 0.528 x + 0.108, R2 = 795 

0.467, p < 0.001, F = 61.260, n = 72). Model selection analysis is limited to studies 796 

that simultaneously reported the responses of ligninase, cellulase and SR. The 797 

importance is based on the sum of Akaike weights derived from model selection using 798 

corrected Akaike’s Information Criteria. Cutoff is set at 0.8 to differentiate between 799 

important and non-essential predictors. MAT, mean annual temperature; MAP, mean 800 

annual precipitation; Time, daily warming regime (i.e., day, night, or diurnal 801 

warming); Season, annual warming regime (i.e. growing season, non-growing season 802 

or whole-year warming); Sample.T, sampling temperature. 803 
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