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Abstract

Conditionals and conditional reasoning have been a long-standing focus of research

across a number of disciplines, ranging from psychology through linguistics to

philosophy. But almost no work has concerned itself with the question of how hearing

or reading a conditional changes our beliefs. Given that we acquire much—perhaps

most—of what we believe through the testimony of others, the simple matter of

acquiring conditionals via others’ assertion of a conditional seems integral to any full

understanding of the conditional and conditional reasoning. In this paper we detail a

number of basic intuitions about how beliefs might change in response to a conditional

being uttered, and show how these are backed by behavioral data. In the remainder of

the paper, we then show how these deceptively simple phenomena pose a fundamental

challenge to present theoretical accounts of the conditional and conditional reasoning –

a challenge which no account presently fully meets.

Keywords: Conditionals, testimony, belief updating, reasoning, Bayesian modeling

AbVWUacW



Running head: CONDITIONALS 1

Conditionals and Testimony

Peter J. Collins1,2

Karolina Krzyøanowska2,3

Stephan Hartmann2

Gregory Wheeler4

Ulrike Hahn1,2

1Dept. of Psychological Sciences, Birkbeck, Univ. of London
2Munich Center for Mathematical Philosophy, LMU Munich

3Institute for Logic, Language and Computation, University of Amsterdam
4Frankfurt School of Finance & Management

MaQXVcUiSW File



CONDITIONALS 2

Abstract

Conditionals and conditional reasoning have been a long-standing focus of research

across a number of disciplines, ranging from psychology through linguistics to

philosophy. But almost no work has concerned itself with the question of how hearing

or reading a conditional changes our beliefs. Given that we acquire much—perhaps

most—of what we believe through the testimony of others, the simple matter of

acquiring conditionals via others’ assertion of a conditional seems integral to any full

understanding of the conditional and conditional reasoning. In this paper we detail a

number of basic intuitions about how beliefs might change in response to a conditional

being uttered, and show how these are backed by behavioral data. In the remainder of

the paper, we then show how these deceptively simple phenomena pose a fundamental

challenge to present theoretical accounts of the conditional and conditional reasoning –

a challenge which no account presently fully meets.

Keywords: Conditionals, testimony, belief updating, reasoning, Bayesian modeling



CONDITIONALS 3

Conditionals and Testimony

Each day we encounter conditional sentences: sentences, most typically, of the

form “If P, (then) Q”. Conditionals can make assertions: “If people smoke, they have a

higher risk of lung cancer.” They can give advice or warnings: “If you stand here

(there), you’ll have a better (worse) view.” They can express promises—“If I’m free, I

promise I’ll come to your party”—and bets—“If Liverpool and Tottenham make the

final, I bet you £50 Liverpool will win.” They can make claims about worlds that

turned out di�erently from our own—“If Oswald hadn’t killed Kennedy, someone else

would have”— or that may yet come to pass—“If a sane candidate were to win, we

might not be doomed.” In short, conditionals are a flexible way to communicate

information, or perform speech acts, under uncertainty.

When we receive such conditionals, we must interpret them and we may change

our beliefs. These sentences seem natural: we seem to understand them e�ortlessly and,

where appropriate, assimilate their content seamlessly. And yet it remains somewhat

mysterious how we change our beliefs when we encounter a conditional. This paper

pursues the question of how we change our beliefs in response to conditional assertions.

It will focus on indicative conditionals: conditional sentences in the indicative mood or,

roughly, in which tense has the usual temporal meaning: present means present; past

means past; and so on (Declerck & Reed, 2001). Another key type of conditional is the

subjunctive or counterfactual conditional. To see the di�erence, compare these examples

from Declerck and Reed (2001): “I’ll punish you if you do something wrong”, in which

the present tense forms are understood in the usual way, and “I’d punish him if he did

something wrong”, which can be used of the future despite its past tense form.1 This

latter example is a subjunctive or counterfactual. The tense in such conditionals (often)

conveys the falsity of the antecedent. While it is important to understand how people

change their beliefs in response to subjunctive conditionals—and much work on

subjunctives has been inspired by work on the very type of models we discuss in depth

1 Note that it is very much up for debate whether the subjunctive mood features at all in “subjunctive”

conditionals. We take the view that it does not.
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later (Pearl, 2000, 2013)—we defer subjunctives until future work.

There is a further aspect of the mystery that we find important but neglected: the

testimonial use of conditionals. Conditionals will typically be uttered by a source who

(like all of us) is not always right: who is less than perfectly reliable even when

well-intentioned. It is the assertion of conditionals by a partially reliable source that

provides the basis for recipients to change their beliefs. This paper considers, then, how

people update their beliefs when they receive conditional assertions in a testimonial

context.

In order to appreciate the overall argument in this paper, it seems helpful to

provide an initial broad overview of what our research is attempting to do: in any

functional context, it seems essential to one’s understanding of what an object is that

one takes into consideration what the object does, that is, how one interacts with it. In

trying to understand what a tennis racket is, for example, we must observe a game of

tennis. Conditionals are no di�erent. There is a long history of trying to understand

exactly what conditionals are, in the sense of trying to understand what they mean, but

no complete understanding of this can be achieved without engaging with what it is we

do with conditionals. For the vast majority of research on conditionals, this has meant

examining reasoning with conditionals in the sense of examining the inferences people

do and do not draw from a given conditional. But there are other aspects to how we

interact with conditionals that have been overlooked: in particular, scant consideration

has been given to what changes when we acquire conditionals—specifically how our

beliefs change simply on hearing (or reading) a conditional asserted by a testimonial

source. As we argue in this paper, consideration of how our beliefs change upon

encountering an assertion of a conditional constrains our theories of what conditionals

are.

It is by no means unique to the conditional that a theory of what a piece of

human language is must engage with the theory of how it is acquired. Historically, it

has been integral to debates about the nature of syntax whether or not particular

aspects of language might be learnable from the input (Berwick, Pietroski, Yankama, &



CONDITIONALS 5

Chomsky, 2011; Chomsky et al., 1988; Marcus, 1993). However, it is not just theories of

language that are so constrained. Rule-based theories of human general knowledge and

common-sense reasoning dominated the early decades of cognitive science (see e.g.,

Newell and Simon (1961); Oaksford and Chater (1991)); one of several concerns that

brought about their demise was the emergent di�culty of learning suitable rule-based

theories (Steels, 1985). In short, theories of what conditionals are must be able to

interface broadly with theories of how they are acquired. It is this interface that we

explore in the present paper. Specifically, we focus on theories of the conditional that

have been influential in the psychology of reasoning, and detail how they fail to interact

appropriately with the basic fact that we typically acquire conditionals through

testimonial assertion.

For reasons that will become apparent, we will consider how, when people acquire

a conditional, they change their judgment of the probability of the conditional’s

antecendent, the probability of its consequent, and the conditional probability of its

consequent given its antecedent. As we will see, some current theories o�er

straightforward predictions for how our beliefs should change upon hearing such an

assertion. These predictions turn out to be wrong. Others o�er no direct predictions,

but only general ‘machinery’ for modelling the requisite belief change. That machinery,

too, turns out to struggle. This in conclusion, we argue, suggests that present theories

of the meaning of conditionals do not fully square with how we interact with

conditionals in our daily lives and that there remains an important gap as a result.

Background

Although we talk of a mystery about conditionals, the mystery is not total.

Conditionals have been widely researched, yielding evidence about what conditionals

mean, evidence which bears, of course, on how people change their beliefs in response to

a conditional. Much of this evidence argues for a close association between conditionals

(“If P, then Q”) and the conditional probability of their antecedent given their

consequent (P(Q|P)).
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One source of evidence is the conditional reasoning task. Participants in these

experiments read a set of premises, and either derive their own conclusions or decide

whether to endorse conclusions supplied by the experimenter(s). A classic finding is the

following, with approximate numbers given in brackets:

Modus Ponens If P, then Q. P. Therefore Q. (≥ 100%)

Modus Tollens If P, then Q. Not Q. Therefore not P. (≥ 60%)

A�rmation of the Consequent If P, then Q. Q. Therefore P. (≥ 50%)

Denial of the Antecedent If P, then Q. Not P. Therefore not Q. (≥ 40%)

(see, e.g., Evans, Newstead, & Byrne, 1993)

This pattern indicates that people do not reason according to the rules of classical logic,

because classical logic predicts 100% endorsement of modus ponens and modus tollens

and 0% endorsement of A�rmation of the Consequent and Denial of the Antecedent.

While a somewhat better fit is achieved by allowing for biconditional interpretations (“if

and only if”), a far closer fit is achieved by a probabilistic model which takes conditional

reasoning to be Bayesian belief revision with the conditional premise expressed as the

conditional probability P(Q|P) (Oaksford & Chater, 2007). A still closer fit is achieved

if we allow violations to the “rigidity” assumption (on the assumption, see Sobel, 2004).

That is, learning the minor premise (i.e. the non-conditional premises above) may a�ect

beliefs about the conditional probability. For instance, on hearing “If you turn the key,

the car starts” and “The car did not start”, people might lower their judgment of

P(CarStarts|KeyTurned) (see, e.g., Oaksford & Chater, 2013). In short, the

comparative success of the probabilistic models suggests that, however people

ultimately represent the conditional2, that representation is closely tied to the

conditional probability, and that people draw inferences accordingly (on the

psychological plausibility of the model assumptions, see Oaksford & Chater, 2013).

Another source of evidence is the judgment task. Participants in these experiments

judge the probability of the conditional alongside various other (theoretically relevant)

2 We are sympathetic to the view that the conditional is represented at least in part as the conditional

probability. But others disagree: see, for example, Goodwin (2014).
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quantities. Studies typically ask whether the probability of the conditional (“If P,

(then) Q”) is best predicted by the conditional probability (P(Q|P)), the probability of

the conjunction (P(P · Q)), or the probability of the material conditional (P(¬P ‚ Q)).

Judgments of the conditional probability correlate well with judgments of the

probability of the conditional (Evans, Handley, Neilens, & Over, 2007; Evans, Handley,

& Over, 2003; Oberauer & Wilhelm, 2003; Over, Hadjichristidis, Evans, Handley, &

Sloman, 2007b, 2007a; Politzer, Over, & Baratgin, 2010). This correlation does not hold

universally, however: data suggest that for sixth graders (aged around 12 years’ old) the

probability of the conjunction is a better predictor of the probability of the conditional

(Barrouillet & Gau�roy, 2015). Studies with adult participants also identify subgroups

of participants for whom the probability of the conjunction3 correlates better with the

probability of the conditional (Evans et al., 2003; Fugard et al., 2011; Oberauer &

Wilhelm, 2003).4 Supporting evidence for the role of the conditional probability comes

from psycholinguistic studies, which suggest that the conditional probability predicts

the reading time of conditionals, and that the conditional probability is available early

in processing (Haigh, Stewart, & Connell, 2013).

Studies have shown the association with the conditional probability for a wide

range of conditionals. These include indicative conditionals (Evans et al., 2003); causal

conditionals (Over et al., 2007b); conditional promises (Ohm & Thompson, 2006);

conditional tips, threats, and warnings (Evans, Neilens, Handley, & Over, 2008); and

counterfactual conditionals (Over et al., 2007b). Given this breadth of evidence,

whatever is learnt from a conditional is likely to include something about the

conditional probability.

3 There is reason to think that conjunctive responses result from di�culties with mathematical

reasoning in these experimental tasks (Fugard, Pfeifer, Mayerhofer, & Kleiter, 2011), and conjunctive

responders can learn to respond with conditional probabilities during an experiment (Fugard et al.,

2011).

4 Recent data suggest an important qualification: that, for the conditional probability and the

probability of the conditional to correspond well, the antecedent may need to be positively relevant for

the consequent (Skovgaard-Olsen, Singmann, & Klauer, 2016b).
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Rich though these findings are, and suggestive though the link to probabilities is,

such studies have not explicitly treated the question of how our beliefs actually change

when we hear a conditional. Reasoning research has, instead, focused on reasoning from

a set of supplied premises without much regard to how they are acquired. And research

on conditionals more generally has focused on establishing a relationship between, on

the one hand, the probability, acceptability, and assertability of the conditional and, on

the other, the conditional probability without much regard to how someone changes

their beliefs when they learn a conditional. These focuses have arguably made the study

of the conditional more tractable. But they may also reflect the philosophical origins of

reasoning research. Historically, philosophy has modeled reasoning with classical logic,

the natural focus of which is the transition from premises to conclusion. Arguably, the

psychology of reasoning has inherited this focus, even though many—perhaps

most—psychologists of reasoning have adopted new models: witness the probabilistic

New Paradigm.5

We take this question about belief change to be fundamental to the psychology of

reasoning. A comprehensive psychology of reasoning should give an account of

reasoning in natural contexts. In such contexts, we contend, reasoners do not typically

know all the premises from which they derive their conclusions. They must learn at

least some of the premises there and then. Often this learning will occur on the basis of

someone’s utterance in a conversation. Indeed, as Oaksford and Chater (2019) observe,

“even in the simplest conditional inference, our reasoning depends not on pure

principles of logic, but on a combination of background knowledge and conversational

principles.” It would surely be problematic for a theory of reasoning if it could not be

linked to a model of how the premises are learnt in such contexts (and, as we will see, it

is quite plausible to extend probabilistic accounts of reasoning, although the methods

we consider produce challenging results).

Against this view, that a full understanding of the psychology of reasoning must

5 There are, of course, influential approaches which use, or are inspired by, logics (see, for instance,

Johnson-Laird, Khemlani, & Goodwin, 2015; Stenning & Lambalgen, 2008).
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take into consideration its interaction with background knowledge and conversational

principles, one might set the classic distinction between semantics, pragmatics, and the

kind of (putatively logical) reasoning people were traditionally taken to conduct with

conditionals. These distinctions might be appealed to in order to support a division of

labour, whereby the semantic theory can remain entirely separate from pragmatics, or

the reasoning theory distinct from pragmatics. On this alternative view, it is no

problem for the semanticist or psychologist of reasoning that their theory omits aspects

of belief updating and reasoning; handling those aspects is someone else’s job – say, the

pragmaticist’s.

While it is di�cult to separate the semantic from the pragmatic (see, e.g., Korta

& Perry, 2015; Levinson, 2000; Recanati, 2010), it can certainly be helpful to do so, as

the resulting data can help to distinguish between theories of the conditional (for a

recent attempt, see Skovgaard-Olsen, Collins, Krzyøanowska, Hahn, & Klauer, 2019).

But if we maintain a strict separation, we run the risk of generation component theories

that fail to interface with other components in the desired ways. Moreover, as we have

seen, it may be impossible to distinguish between reasoning and pragmatics, since

conversational principles may inform the most basic inference (Oaksford & Chater,

2019). Consequently, in our experiments and modeling, we will not attempt to identify

any phenomena as distinctively pragmatic. Some readers might prefer to maintain a

separation. But we take the view that strict separation may not only be impossible

between the psychology of reasoning and pragmatics, but (even if it were possible) may

obscure important constraints on explanatory adequacy.

Similarly, we consider it fundamental that when people learn conditionals—as

opposed to, say, probabilistic dependencies from data—they learn from sources that are

partially reliable. They learn, that is, from the testimonial use of conditionals. As

recipients of information, people are sensitive to sources’ reliability from an early age

(for a review, see Mills, 2013) into adulthood (for a review, see Briñol & Petty, 2009).

It seems essential, then, to understand how this sensitivity to source reliability interacts

with the learning of conditionals. This sensitivity may also arise in experiments,
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however controlled they seem. As Hilton (1995) and Schwarz (1996) have argued,

experiments are social and communicative contexts in which a source (the

experimenter; like all of us, with partial reliability) communicates information to a

recipient (the participant), who need not take that information at face value (for an

example, see Hahn, Harris, & Corner, 2016, for discussion of experimenters as sources in

studies on climate science communication). Studying the testimonial use of

conditionals, then, allows one to consider a crucial aspect of communication, probe

deeper into experimental e�ects, and test the generalizability of experimental findings

across levels of trust.

Some Intuitions

How, then, might our beliefs change on hearing a conditional? For some people,

this question may have a straightforward answer. Some participants - notably, 6th

graders - treat the conditional as a conjunction (Barrouillet & Gau�roy, 2015). For

them, learning a conditional presumably amounts to learning the corresponding

conjunction. For instance, on hearing “If a car on this lot is a Mercedes, then it’s

black”, they learn “A car on this lot is a Mercedes and it’s black.” But there appears to

be a developmental trajectory away from such conjunctive responding (Barrouillet &

Gau�roy, 2015). We will focus here on how adults’ beliefs change on hearing a

conditional, leaving aside the interesting and important question of how children’s

beliefs change.

Imagine, then, a simple context. You are looking at cars at a large car dealership,

and someone tells you “If a car on this lot is a Mercedes, then it’s black.” Given that

there is an association between the conditional and the conditional probability of its

antecedent given its consequent, we expect that, when a recipient receives a conditional,

they increase this conditional probability. Returning to the car lot example, it seems

likely that you would increase your judgment of the probability that a car on this lot is

black given that it is a Mercedes. Intuitively, it matters who uttered the conditional:

you might well increase the relevant belief if the conditional were uttered by a fellow
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customer, but you might increase it more if it were uttered by several di�erent people,

or if it were uttered by a source with relevant expertise, such as the manager of the car

dealership.

This change to the conditional probability is the most obvious intuition, but other

changes seem possible. Imagine that you believe today will be a fine, sunny day, but as

you prepare to leave your home, someone tells you “If it rains today, then you’ll get

wet.” It seems likely that you would increase your judgment of the probability of rain

and, perhaps, of the probability of getting wet. In contrast, imagine that you have

applied for a fellowship at a psychology department which you believe you are certain to

get. A close friend, who is on the selection panel, tells you “If you get the job, then we

will be able to collaborate.” Here, it seems possible that you might actually decrease

your judgment of the probability of getting the job and, perhaps, of the probability of

collaboration. We find it harder to generate intuitions about the probability of the

consequent. Our intuitions are weaker and may arise out of coherence: for instance, by

modus ponens.6 In the experiments that follow, we treat the probability of the

consequent partly for completeness’ sake. But the data will also bear on the theories

and models we consider. Our choice of theories should be informed by how, on

encountering a conditional, people change their judgments of the probability of the

antecedent, the probability of the consequent, and the probability of the consequent

given the antecedent.7

6 A reviewer identifies a type of conditional where the assertion of a conditional might lead to a change

in the conditional probability of the consequent given the antecedent and the probability of the

consequent, leaving the probability of the antecedent unchanged. This type is non-interference

conditionals, such as “If we triple her salary, Betty will leave the Department” (example due to

Douven, 2016a, p.11). These and other conditionals need exploring in future work.

7 A reviewer argues that a decrease in the probability of the antecedent does not seem intuitively likely

in conditionals that express strong inferential relations, such as the following conditional uttered after a

winning streak of 9 matches: “If Manchester United win their next match, then they will have won 10

matches in a row.”, an intuition that we find plausible.
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The Experiments

At present there are only hints in the literature about how people’s judgments

change on encountering a conditional (see, for instance, Stevenson and Over (2001);

Thompson and Byrne (2002). For a clear test of the intuitions above and relevant

theories, we need new data which isolate testimony.8 To gather these data, we devised a

set of ten simple experiments, which were patterned after a conditional-reasoning task

from Stevenson and Over (2001) and standard experimental paradigms for assessing the

impact of assertions used in studies on Bayesian argumentation (see, e.g., Hahn &

Oaksford, 2007).9

As a first step, we used two tasks to probe the impact of assertion on beliefs. We

manipulated source characteristics, and as a result the extent to which the asserted

conditional was likely to be correct. We manipulated this in two di�erent ways. In one

set of studies, we manipulated the number of people making the assertion; in the other,

the expertise of a single person making the assertion. The designs were

between-participants, and across all experiments participants only took part in a single

experiment. In both tasks, participants indicated their subjective beliefs in three

quantities for a conditional “If P, then Q”: these quantities were the probability of the

antecedent, P(P); the probability of the consequent, P(Q); and the conditional

probability, P(Q|P). Participants responded on a scale from 0 (not at all possible) to 10

(certain).

The first task, the Number-of-Assertions Task, probed participants’ response to

the mere assertion of a conditional. To illustrate, the following are the di�erent

conditions for a single topic, asking about the conditional probability:

Null (No Assertion) Condition: Imagine you are at a large car dealership. What’s

the probability that a car on this lot is black given that it’s a Mercedes?

8 Stevenson and Over (2001) focus on conditional reasoning, and Thompson and Byrne (2002) compare

indicative conditionals with counterfactual conditionals, rather than with a neutral baseline of the kind

we describe below.

9 For the full methodology, see Appendix A.
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Single Assertion: Adam is at a large car dealership. He tells you, “If a car on this lot

is a Mercedes, then it’s black”. What is the probability that a car on this lot is

black given that it’s a Mercedes?

Multiple Assertion: Adam, Barbara, Nick and Sue are at a large car dealership.

They tell you, “If a car on this lot is a Mercedes, then it’s black?” What’s the

probability that a car on this lot is black given that it’s a Mercedes?

Participants read seven conditionals on real-world topics. For each conditional, they

provided three ratings, one for each probability (antecedent, consequent, conditional

probability).

The second task probed participants’ response to conditionals with source

information. To illustrate, the following are the di�erent conditions for a single topic,

asking about the probability of the antecedent:

Null Condition: Imagine you are at an infectious-diseases ward. What’s the

probability that a patient on this ward has malaria?

Inexpert Source: Imagine you are at an infectious-diseases ward. A medical student

tells you, “If a patient on this ward has malaria, then they’ll make a good

recovery.” What’s the probability that a patient on this ward has malaria?

Expert Source: Imagine you are at an infectious-diseases ward. A professor of

medicine tells you, “If a patient on this ward has malaria, then they’ll make a

good recovery”. What’s the probability that a patient on this ward has malaria?

Participants read six conditionals on real-world topic 10 in a web survey hosted on

Amazon Mechanical Turk (full methods are reported in Appendix A). For each

10 We note a potential ambiguity with our items. We intended our items to be about a particular

person or object. However, some items could be read as generic statements about any such object or

person. Studies on conditionals often use wordings that are more clearly about singular persons or

objects (see, for example, Evans et al., 2003). However, Cruz and Oberauer (2014) found evidence that

people interpret statements such as our “If a patient on this ward. . . ” conditional as though they are

about a random instance from the distribution. Similarly Krzyøanowska, Collins, and Hahn (2019)
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conditional, they provided three ratings, one for each probability (antecedent,

consequent, conditional probability). In an initial experiment, we included only the

unreliable and reliable conditions; from the replication on, we included all three

conditions.

In both tasks, we gave the items rather minimal contexts. We intended these

contexts to make the items assertable with minimal complexity. We avoided richer

contexts to try and isolate the e�ects of learning a conditional. Richer contexts would

require richer representations in any modeling exercise, and would result in less general

patterns of belief change.

With these tasks, we explored how people’s beliefs change in response to the

assertion of a conditional, by manipulating two factors, one per task:

Number-of-Assertions (Null, Single, Multiple) and Expertise (Null, Unreliable,

Reliable). For ease of exposition, we will not present directional predictions here; but, as

we will see later, the direction of any changes has considerable theoretical importance.

These initial experiments give us data to assess how beliefs change when

participants have no evidence to fix their views on the probability of the antecedent or

consequent. The full analysis for this and all other experiments can be found in

Appendix A.11 Let us consider, first, the e�ect of assertion by single or multiple sources

(Number-of-Assertions). The descriptive data are shown in the left-hand panels of

Figures 1, 2, and 3. An initial data set (Experiment 1) and replication (Experiment 2)

produced a consistent pattern of results.12 Recall that people, here, read conditionals

such as “If a car on this lot is a Mercedes, then it’s black”. Number-of-Assertions

found no di�erence among specific and generic readings of conditionals on a range of variables (both

semantic and pragmatic).

11 Note that the figures show the data aggregated over participants but not over items. They do not,

therefore, show the full dependencies in the data, and should be interpreted alongside the parameter

estimates in Appendix A. However, the figures and parameter estimates are so close that the figures

provide a reasonable and similar summary of the data.

12 Note that, for both tasks, the confidence intervals were consistent for the original and replication

data sets; see Appendix A for more details.
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reliably increased people’s estimates of the conditional probability, P(Black|Mercedes).

This is borne out by the reliable di�erence between the Null (context only) and Single

conditions (“Adam”) and between the Null and Multiple (“Adam, Barbara, Nick, and

Sue”) conditions. There was however, no di�erence between the Single and Multiple

Conditions. Nor did assertion of the conditional reliably a�ect the probability of either

the antecedent, P(Mercedes), or the consequent, P(Black) individually. Table 1, below,

reports the fixed e�ects for Experiments 1 and 2.

— Table 1 and Figures 1, 2, and 3 here —

We turn, now, to the e�ect of source expertise (e.g., “medical student” vs.

“professor of medicine”). Expertise a�ected the extent to which the assertion of the

conditional increased estimates of the conditional probability. This e�ect is seen across

two data sets, an initial data set (Experiment 3) and replication (Experiment 4). The

descriptive data for these studies are shown in the right-hand panels of Figures 1, 2,

and 3.13 Assertion by an inexpert source (a medical student) reliably increased the

conditional probability (Experiment 4); so too did assertion by an expert source (a

professor of medicine; Experiments 3 an 4); this increase was also reliably larger

(Experiment 4). As with number of assertions, neither data set showed reliable e�ects

of source expertise on estimates of the probability of the antecedent or the consequent.

Table 2 reports the fixed e�ects for Experiments 3 and 4.

— Table 2 here —

There may seem to be a tension between the Number-of-Assertions and Expertise

Tasks, in that the e�ect of Number-of-Assertions seems to plateau, with no reliable

13 The initial study included only Inexpert and Expert conditions; the replication included a Null

condition to allow more direct comparisons with the Number-of-Assertions study.
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di�erence between Single and Multiple Assertion. But there is reason to believe that

this di�erence is due to the interpretation of the materials in the Multiple condition.

The multiple sources can be understood as dependent—e.g. making their observations

together—or independent (Wheeler & Scheines, 2013). We pursued this point in another

study, reported in Collins (2017). This study included a condition in which participants

were told that the sources did not know each other, didn’t speak to each other, and

gave their testimony independently. In this condition, ratings for the conditional

probability were reliably higher than for the single-assertion condition. These additional

data suggest that the tension between the Number-of-Assertions and Expertise Tasks is

only apparent. We do not discuss the issue of independence further in this paper.

The data from Experiments 1 to 4 suggest that, when people start with

intermediate probabilities for the antecedent and consequent, they change only the

conditional probability. However, there is another way in which people may change

their beliefs on hearing the assertion of a conditional, beyond raising their estimate of

the conditional probability. People may not just ascribe a particular degree of

(un)certainty to a claim, but also have uncertainty about that degree of uncertainty. In

other words, people may be entertaining a range of possible probabilities, and assertion

of a conditional may also be a�ecting those ranges. To probe these e�ects further, we

allowed participants to respond with interval estimates. As above, this was a

between-participants design. Participants responded by positioning two end points on a

sliding scale between 0% and 100%. Figure 4 shows the instructions and response scale

given to participants.

— Figure 4 here —

We replicated the Number-of-Assertions and Expertise Tasks using sliders as the

dependent variables. We analyzed the data in two ways: firstly, we averaged the end

points of the sliders to replicate the data for the earlier studies (henceforth “point

values”); secondly, we analyzed the range of the sliders to ascertain whether the
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underlying distributions changed (henceforth “slider ranges”).14

The sliders data broadly replicated the earlier studies. Take, first, assertion by

single or multiple sources (Experiment 5). The descriptive data are shown in Figure 5.

When there were multiple sources, there was a tendency for increased precision

(decreased ranges) in the conditional probability judgments, but this trend was only

marginally significant. The point values data replicated the earlier findings: both single

and multiple sources reliably increased judgments of the conditional probability; there

was no reliable di�erence between single and multiple sources. There were no reliable

e�ects on point values or ranges for either the probability of the antecedent or the

probability of the consequent. Table 3 reports the fixed e�ects for this experiment (note

the significance level of p = .025).

— Figure 5 and Table 3 here —

We turn, now, to the the e�ect of source expertise (Experiment 6). The

descriptive data are shown in Figure 6. Here, there was again a tendency for assertion

to increase the precision (decrease the ranges) of conditional probability judgments. But

this time this e�ect was reliable, driven by the di�erence between Null (context only)

and Expert conditions. The point values replicated the earlier data: inexpert and expert

sources both reliably increased judgments of the conditional probability, and the e�ect

was reliably larger for expert sources than for inexpert sources. As above, there were no

reliable changes to ranges or point values for the probability of the antecedent or the

probability of the consequent. Table 4 reports the fixed e�ects for this experiment.

— Figure 6 and Table 4 here —

14 Since these are two analyses of the same data, a multiplicity correction is required. Accordingly we

chose a significance level of p = .025.
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These intervals data, then, show analogous data patterns to Exp. 1 to 4, which

involve point estimates: reliable change only to the conditional probability, both in the

mean estimate and (for source expertise) intervals assigned. There were no reliable

e�ects on antecedent or consequent probabilities individually.

But what of the initial intuition that belief change for antecedent and consequent

might depend on their prior probabilities? Recall the earlier example of expecting a

very dry day and then hearing someone say “If it rains today, then you will get wet.”

Conceivably this may increase your estimate of the chance of rain. We explored this

possibility by manipulating the prior probability of the antecedent by varying the

antecedent’s fit with a context. Compare, for instance, the following conditionals:

Imagine that you are visiting a Liberal Arts College.

Low Prior: Sue tells you, ‘If Lisa, a student, is majoring in astrophysics,

then she’s working late in the library.

High Prior: Sue tells you, ‘If Lisa, a student, is majoring in an arts

subject, then she’s working late in the library.’

In this study, then, we manipulated the prior probability and testimony (in one

experiment, Number-of-Assertions; in the other, Expertise). Participants were recruited

in the same manner as the previous experiments. Participants once again responded on

a scale from 0 (not at all possible) to 10 (certain), this time providing a rating only for

the probability of the antecedent; and, once again, participants only saw one condition

and completed only one task. The key prediction was an interaction between prior

probability and testimony: a possible increase when the prior probability is low, and

potentially a decrease when the prior probability is high.

The data partially vindicate the intuitions about priors.15 We will consider, first,

the probability of the antecedent (Experiments 7 and 8). The descriptive data are

shown in Figure 7. In both experiments, there were significant interactions. In both

15 For all of the priors studies, we selected a significance level of p = .017 to correct for multiple

comparisons (in addition to the Tukey correction on pairwise comparisons).
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experiments, when the prior probability of the antecedent was low, testimony

(Number-of-Assertions, Expertise) reliably increased the probability of the antecedent.

For Number-of-Assertions (Experiment 7), there were reliable increases between the

Null and Single conditions and the Null and Multiple conditions, but not between the

Single and Multiple conditions. For Expertise (Experiment 8), there were reliable

increases between the Null and Inexpert conditions and between the Null and Expert

conditions, but not between the Inexpert and Expert conditions. When the prior

probability of the antecedent was high, the tasks di�ered. Number of assertions reliably

decreased the probability of the antecedent, an e�ect driven by the decrease from Null

to Multiple conditions, the other di�erences not being significant. Expertise, in

contrast, did not reliably decrease the probability of the antecedent. Table 5 reports the

fixed e�ects for these experiments (note the significance level of p = .017).

— Figure 7 and Table 5 here —

We turn, now, to the probability of the consequent. As above, the prior was

determined by the fit between context and consequent. The materials were the same as

for the task above; we simply swapped the antecedent and consequent.16 As above, the

key prediction was for an interaction between the prior probability of the consequent

and testimony (Number-of-Assertions, Expertise). The descriptive data are summarized

in Figure 8.

— Figure 8 here —

This study produced similar data for both experiments (Experiments 9 and 10).

In both experiments, the interaction was significant. And in both experiments, when

the prior probability of the consequent was low, testimony (Number-of-Assertions,

16 There was one exception, where a bigger change was required because simple inversion resulted in a

highly unnatural sentence. For details, see Appendix A.
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Expertise) reliably increased the probability of the consequent. For

Number-of-Assertions (Experiment 9), the increase from Null to Single conditions was

reliable, as was the increase from Null to Multiple conditions. The increase from Single

to Multiple conditions was not reliable. For Expertise (Experiment 10), the increases

from Null to Inexpert, from Null to Expert, and Inexpert to Expert were all reliable.

For both tasks, when the prior probability of the consequent was high, there was no

reliable e�ect of testimony, in the sense of Number-of-Assertions or Expertise, at the

p = .017 level. Table 6 reports the fixed e�ects for Experiments 9 and 10.

— Table 6 here —

Summary

Across ten experiments we found that participants systematically changed their

judgments of the conditional probability, increasing it in response to testimony

(Number-of-Assertions, Expertise). Participants were also prepared to make their

beliefs more precise, in the sense that they narrowed their interval judgments of the

conditional probability (reliably for Expertise, and marginally so for

Number-of-Assertions). And they were prepared to change their judgments of the

probability of the antecedent and the probability of the consequent depending on the

respective priors. For the antecedent, when the priors were low, testimony (both

Number-of-Assertions and Expertise) reliably increased the probability; when the priors

were high, Number-of-Assertions reliably decreased the probability, but Expertise had

no reliable e�ect. For the consequent, when the priors were low, testimony (both

Number-of-Assertions and Expertise) increased the probability; when the priors were

high, there was no reliable change.

The e�ects above seem intuitive and simple. Nevertheless, in the rest of this

paper, we will argue that these data pose challenges for both modeling and present

theories of the meaning of the conditional. These data are, to the best of our

knowledge, novel and, as such, require (further) replication. We do not claim that the
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findings are general across conditionals. A larger research program is needed to explore

patterns of belief change across the rich typology of conditionals, following, for instance,

corpus linguistic work such as Declerck and Reed (2001). A program of this kind could

usefully cover a wider range of prior probabilities. It should also include a wider range

of participants, and could usefully compare adult and developmental groups. However,

the data seem an appropriate starting point.

Below, we start by considering how the data sit with the dominant, probabilistic

theory of the conditional. We consider two possible extensions, using distance measures

and Bayesian belief networks, which have limited success. We then consider how the

data challenge other leading theories of the conditional.

The Data Meet the Suppositional Theory

Any theory whose aspiration is to capture the way people reason with indicative

conditionals needs to be compatible with data such as ours on belief change, too. In the

Background section we saw considerable evidence for an association between a

conditional and the conditional probability of its antecedent given its consequent. These

data sit most comfortably with a theory that takes the conditional to be fundamentally

probabilistic: the Suppositional Theory. It is natural to think of the Suppositional

Theory as the most promising candidate for a theory that can handle these data.

However, this section will show that, to handle such data, we will need to extend the

machinery of the Suppositional Theory.

What is known as the Suppositional Theory is more accurately a family of

probabilistic accounts of conditionals that emphasise the association between the

probability of a conditional and the corresponding conditional probability. More

specifically, the Suppositional Theories are committed to Stalnaker’s Hypothesis

(Stalnaker, 1970), which—reflecting its importance in psychology of reasoning—is

widely referred to simply as “the Equation”, presented here in a form familiar from the

literature on conditionals:

Stalnaker’s Hypothesis (“The Equation”): For all probability
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functions P such that P(A) > 0, P(If A, C) = P(C|A).17.

As we have explained above, there is considerable evidence that people’s

interpretation of conditionals complies with the Equation, at least when the

conditional’s antecedent is positively relevant for its consequent.18 These data, however,

lead to a puzzle, as they seem to clash with an important formal finding, the Triviality

Results. Lewis (1976), and other authors after him, undermine the equating of

P(If A, C) and P(C|A) by showing that it holds only for special, trivial probability

functions which cannot be realistic representations of people’s degrees of beliefs. To

respond to this clash, many researchers choose not to drop “the Equation” and instead

drop one of the main assumption of triviality proofs, namely, the idea that conditionals

express propositions, that is, that they can be true or false at all (Adams, 1975;

Bennett, 2003; Edgington, 1995b). Others choose to follow de Finetti (1937), who

analysed conditionals as conditional events, satisfying the three-valued truth table, as

shown below:

A C If A then C

True True True

True False False

False/Void True/Void Void

False/Void False/Void Void

On this account, a conditional is construed as having truth values only when its

antecedent is true. The conditional is then true when its consequent is also true, and

false when its consequent is false. When the antecedent is false (similarly, when its

truth value is undetermined), the conditional does not have a truth value; it is “void,”

17 In formulating Stalnaker’s Hypothesis this way, we follow a tradition in the literature on conditionals

(e.g. Bennett 2003; Edgington 1995a; Lewis 1976; and Stalnaker 1976). The condition P(A) > 0 can be

dropped if one takes conditional probabilities as primitive (e.g. Dubins et al., 1975; Popper, 1959;

Rényi, 1955)

18 Cf. Skovgaard-Olsen, Singmann, and Klauer (2016a)
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in the same way as a bet on, say, a coin landing heads has no winner if the coin is not

thrown at all (de Finetti, 1936/1995, 1974).19

The latter approach became predominant in the psychology of reasoning, owing to

the considerable evidence from experiments using the truth-table task (e.g. Baratgin,

Politzer, & Over, 2013; Over & Baratgin, 2017; Over & Cruz, 2018). In the truth-table

task, for a conditional “If A, then C”, participants might be asked which A and C states

(i.e. true/false) render the conditional true or would (dis-)prove a conditional rule. It is

often reported, here, that, when A, the antecedent, is false, people prefer to say that the

conditional is neither true nor false but, rather, is irrelevant or void (Over, 2016;

Politzer et al., 2010).20 This result, known as the “defective truth table of the

conditional,” is argued to be best captured by de Finetti’s three-valued system

(Baratgin, Politzer, Over, & Takahashi, 2018).

Since de Finetti’s third value is to be interpreted as representing a state of

ignorance, his logic can be naturally augmented with subjective probability (de Finetti,

1974). The resulting truth table for conditionals, known as the Je�rey table (e.g. Over

& Baratgin, 2017; Over & Cruz, 2018), renders conditionals as true or false, when their

antecedents are true, depending on the truth value of their consequents. The false

antecedent cases, when the conditional’s objective truth value is undetermined or

“void,” receive then a subjective probability assignment, that is, an agent’s degree of

belief in a given statement. Consequently, when the antecedent is false or

undetermined, the evaluation of a conditional amounts to evaluation of the conditional

probability of its consequent given the antecedent.

Since conditionals are often—perhaps even most typically—used when there is

uncertainty about the truth of their clauses (see, e.g., Elder & Jaszczolt, 2016), the

19 See Appendix C for a more detailed discussion of de Finetti’s system, and (Politzer et al., 2010) on

the empirical investigation of the relationship between conditionals and conditional bets.

20 Cf. Schroyens (2010), who question the strength of this finding. See, also, Douven, Elqayam,

Singmann, and van Wijnbergen-Huitink (2018) who found evidence that people are happy to assign

truth values to conditionals with false or undetermined antecedents, depending on the presence and

strength of an inferential connection between the antecedents and consequents.
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question of how people estimate the corresponding conditional probabilities became the

central question of the “New Paradigm” psychology of reasoning. The psychological

process of fixing one’s subjective degrees of belief in a conditional has been argued to

resemble the Ramsey Test, that is, a procedure for deciding whether or not to accept an

indicative conditional suggested by Frank Ramsey in his famous footnote:

If two people are arguing ‘If p will q?’ and are both in doubt as to p, they

are adding p hypothetically to their stock of knowledge and arguing on that

basis about q: so that in a sense ‘If p, q’ and ‘If p, ¬q’ are contradictories.

We can say they are fixing their degrees of belief in q given p (Ramsey,

1929/1990, p. 155).

What the above passage suggests are the acceptability conditions for indicative

conditionals which can straightforwardly be understood in probabilistic terms: the

degree to which we find that “if A, then C” is acceptable, “goes by,” or is correlated

with, our subjective degree of belief in C given A, that is, the corresponding conditional

probability (Adams, 1975).21

Usually, unless we have reasons to believe otherwise, we take speakers to assert

what they believe to be true, or at least highly likely (see, e.g., Pagin, 2016). In other

words, a speaker’s assertion that P conveys that the speaker has a high degree of

belief—a high subjective probability value—for P being true. Analogously, whenever a

speaker asserts a conditional, it follows from the suppositional view on conditionals that

they convey that their subjective probability of that conditional’s consequent is high

under the supposition of its antecedent. It is natural then to understand the learning in

response to an assertion of a conditional, that is, a testimony that “If A, then C,”

assuming that the speaker is su�ciently reliable, as learning that P(C|A) is high. Thus,

21 Note, however, that while there is significant evidence for “The Equation,” the Adams’ Thesis, which

correlates the degree of acceptability of a conditional (since, strictly speaking, one cannot assign

probabilities to linguistic constructions that do not express propositions) with the conditional

probability of its consequent given the antecedent, has been undermined by the data (Douven &

Verbrugge, 2010).
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the account seems to correctly predict that learning a conditional will result in the

increase of the corresponding conditional probability.

However, another consequence of the suppositional account is that we might not

be able to directly apply standard probabilistic accounts of learning to the conditional.

The Bayesian tradition models the e�ect of learning a new piece of information, A, on

one’s degrees of beliefs in terms of conditionalization. That is, the posterior probability

of any arbitrary proposition C upon learning that A is calculated as equal to the prior

conditional probability of C given A:

PA(C) = P(C|A) (1)

Classical Conditionalization applies when an agent, the learner, accepts A categorically.

An agent however may learn A from a not entirely reliable source. In such a case, the

agent may change their degrees of belief in A from P(A) = .3 to, for instance,

PÕ(A) = .9. Now, to calculate the posterior probability of any other proposition, the

agent cannot simply update by Classical Conditionalization. Je�rey (1983) proposed

that in such cases the agent should use Je�rey Conditionalization and assign

PÕ(C) = P(C|A)PÕ(A) + P(C|¬A)PÕ(¬A) (2)

for the new probability of C.

But it is subject to debate if Classical Conditionalization or Je�rey

Conditionalization can be applied to calculate P(A|If A, then C) or P(C|If A, then C),

assuming the suppositional interpretation of the conditional. Since the arguments of the

probability function need to be propositions, it is not at all straightforward how to

calculate the posterior probabilities of A and C, or any other proposition, upon learning

that if A, then C, particularly if conditionals are assumed not to express propositions.

This is not to say, of course, that no proposals have been put forward. The matter is,

however, by no means settled. For instance, Douven and Dietz (2011) show that the

Equation (together with another rather compelling assumption) entails

P(A|If A, then C) = P(A), which they argue to be a challenge for the Equation itself

(see also Douven, 2012). Furthermore, unlike the non-propositional version of the
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Suppositional Theory, de Finetti’s three-valued logic allows conditionals to be

embedded as antecedents or consequents of other conditionals.22 Consequently, as an

anonymous reviewer has pointed out, Sanfilippo, Gilio, Over, and Pfeifer (2020);

Sanfilippo, Pfeifer, Over, and Gilio (2018) provide a way to calculate

P(A|If A, then C), though this method is yet to be extended to belief updating.23

Summary

We have seen that the Suppositional Theory lacks the machinery to fully account

for how people change their beliefs when they encounter a conditional. Aspects of the

theory also mean that it cannot rely on traditional models of belief change in the

Bayesian tradition. The question arises, then, of whether we can extend the theory in

such a way that we can better capture our data on updating on conditionals without

having to forsake a large body of evidence. We turn to other ways to model belief

updating. We consider two approaches. The first, the distance-based approach to

Bayesianism, has emerged as the standard method to model updating on conditionals

in formal epistemology (Eva, Hartmann, & Rad, 2019). The second, Bayesian belief

networks, adapts a method that does precisely what we want but for assertions of

simple propositions.

Modeling the Data

Distanced-based Bayesianism

In light of the previous sections, our goal is to model our data while preserving a

link with the probabilistic approach to conditionals. A promising way to reach this goal

22 Though see Douven (2016b) who showed that, given de Finetti’s table, iterated conditionals are

equivalent to simple conditionals that are unacceptable in natural language.

23 For other proposals of update rules, typically designed to accommodate very specific desiderata

related to various specific situations, see, e.g., Bradley (2005); Douven (2012); Douven and Dietz

(2011); Douven and Romeijn (2011); Eva, Hartmann, and Rad (2019); Gärdenfors (1988); Harper

(1976); Kern-Isberner (2001); van Fraassen (1981).
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is to model the learning process in the distance-based approach to Bayesianism.24 On

this approach, we can understand updating on conditionals as follows: We assume that

an agent has beliefs about some set of propositions. For a simple example, let these

propositions be A and C, and let the beliefs about these propositions be represented by

a prior probability distribution P over them. The agent now learns new information in

the form of a conditional “If A, then C”. We ask: How should she change her beliefs in

light of this new information? Let us assume, for now, that the agent sets the new

conditional probability, PÕ(C|A), to 1. The agent now moves to a new set of beliefs

about A and C, represented by a new probability distribution PÕ, and does so by taking

the conditional probability assignment PÕ(C|A) = 1 as a constraint on PÕ. This

constraint does not fix the full new probability distribution PÕ uniquely. To find PÕ and

to make sure that her new beliefs are coherent, she then minimizes some appropriate

distance measure between PÕ and P. The agent is, in a sense, conservative: given the

constraint, she changes her other beliefs as little as possible.

To express this account formally, we need some way of measuring the distance

between posterior and prior distributions over the same algebra of propositions. There

are several ways to do so. It turns out that all so-called (statistical) divergencies25 in

the class of f -divergences26 (Csiszár, 1967) imply Je�rey Conditionalization (see eq.

24 Following Csiszár (1967), the distance-based approach to Bayesianism was introduced in Diaconis

and Zabell (1982). It has been developed and applied to conditionals in Eva and Hartmann (2018),

Eva, Hartmann, and Rad (2019), Sprenger and Hartmann (2019) and Stern and Hartmann (2018).

Eva, Hartmann, and Singmann (2019) use the approach to explain the MP–MT asymmetry mentioned

in the Background section.

25 Statistical divergencies are not strictly speaking distance measures: they may not be symmetrical

and they may violate the triangle inequality.

26 f -divergences are defined as follows: Let S1, . . . , Sn be the possible values of a random variable S

over which a prior probability distributions P and a posterior probability distribution PÕ are defined.

The f -divergence between PÕ and P is then given by

Df (PÕ||P) :=
nÿ

i=1
P(Si) f

3
PÕ(Si)
P(Si)

4
,

where f is a convex function which satisfies f(1) = 0. Examples of f -divergences are the
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(2)) if the agent entertains beliefs about two propositions and shifts, as a result of the

learning, the probability of one of them to a higher or lower value (see Diaconis and

Zabell (1982); Eva, Hartmann, and Rad (2019)). If the probability of one of them shifts

to 1, then one obtains Classical Conditionalization which, in turn, is a limiting case of

Je�rey Conditionalization. As there are many strong arguments in favor of Classical

Conditionalization and Je�rey Conditionalization (see, e.g., Je�rey (1983); Schwan and

Stern (2007)) we consider the fact that both follow from minimizing an f -divergence

(taking a certain constriant into account) to support our focus on this class of

divergencies.

Formally, then, an agent who learns the conditional “If A, then C” minimizes an

f -divergence between PÕ and P, taking (in the simplest way of deriving a constraint

from the learned conditional) PÕ(C|A) = 1 as a constraint on PÕ. Note that this

approach is intrinsically probabilistic and, in that sense, is a natural way of extending

the probabilistic approach discussed in the previous sections to the learning of

conditionals. It also has the advantage that it gives the intuitively correct results for a

number of challenging examples put forward by Douven such as the Ski Trip Example

(Dietz & Douven, 2010) and the Sundowners Example (Douven & Romeijn, 2011). One

can also show that minimizing an f -divergence between PÕ and P is equivalent to

conditionalizing on the material conditional provided that the corresponding conditional

is strict, i.e. if one takes PÕ(C|A) = 1 as a constraint on PÕ. For details and proofs, see

Eva, Hartmann, and Rad (2019) as well as the discussion below.

What predictions does the distance-based approach make for updating on

conditionals? On the simplest version of this account, the agent fixes the new

conditional probability to 1 and finds the full new distribution PÕ by minimizing an

f -divergence between PÕ and P. One then obtains that she (i) decreases the judgment of

the probability of the antecedent and (ii) increases the judgment of the probability of

Kullback-Leibler divergence (f(x) = x log x), which is also widely used in information theory, the

inverse Kullback-Leibler divergence (f(x) = ≠ log x), the Hellinger distance (f(x) = (1 ≠
Ô

x)2), and

the ‰2-divergence (f(x) = (x ≠ 1)2).
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the consequent (Eva, Hartmann, and Rad (2019)). These qualitative results hold for all

prior probability distributions, but the amount of change depends on the specific prior

distribution. This, of course, is not at all the pattern we saw in our empirical data,

where we saw that probabilities for the antecedent and consequent increased when their

respective priors were low, and did not change when they were moderate.

But there is a fundamental problem with the simplifying assumption that we

made above: that the agent sets the conditional probability to 1. In none of the

experiments did participants, on aggregate, set the conditional probability to 1. But we

do not need to make this assumption; an agent raising the conditional probability to a

value smaller than 1 can also be modeled in the distance-based approach. In this case,

the probability of the antecedent again always decreases and the probability of the

consequent can decrease, increase or stay the same, at least for the most common

f -divergencies such as the Kullback-Leibler diveregence, the Hellinger distance and the

‰
2-divergence. By contrast, for the inverse Kullback-Leibler divergence, which is also an

f -divergence, the probability of the antecedent stays the same (For further details, see

again Eva, Hartmann, and Rad (2019).) More success is to be had with models that

explicitly incorporate the testimonial context.

Bayesian Belief Networks

In this section, we introduce a range of Bayesian Belief Networks which are

intended to explicitly model the testimonial context. The details of this models are

inevitably somewhat technical. But we will start by introducing a simpler model that

can be seen as the basis for the remaining models. For full technical details, we refer

readers to the footnotes and Appendix B. For readers less familiar with this form of

modelling, we will emphasize the outcomes of the models in brief summary sections so

that technicalities can be skipped.

To introduce these models, we first imagine a situation in which a speaker makes a

non-conditional claim about the world. Imagine that a high-school history teacher

makes the claim that Gutenberg invented the printing press. How should we evaluate
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this claim? Relevant factors are (1) whether we consider a high-school history teacher a

reliable source of information and (2) how plausible we find the claim. We can use

subjective probabilities to represent both factors: for (1), the prior probability, or base

rate, of the particular source telling the truth; for (2), the prior probability of the claim.

Being subjective, these probabilities can di�er between recipients of the claim: some

might trust high-school history teachers more than others; some, perhaps who have read

more Chinese history, may have a lower prior probability than others for Gutenberg

being the inventor of the printing press.

This simple situation is captured by a model from Bovens and Hartmann (2003)

depicted in Figure 9. This model is a simple Bayesian Network: the nodes represent

binary propositional variables, and the arcs represent probabilistic dependencies among

the variables. The variable Hyp stands for the hypothesis or claim in question and has

the values Hyp: “The hypothesis in question is true” and ¬Hyp: “The hypothesis in

question in false”. For the example above, the “hypothesis” is that Gutenberg invented

the printing press. The variable Rep stands for the report of the claim and has the

values Rep: “The information source reports that the hypothesis in question is true”

and ¬Rep: “The information source reports that the hypothesis in question is false”.

Lastly, the variable Rel stands for the reliability of the source and has the values Rel:

“The information source is reliable” and ¬Rel: “The information source is not reliable”.

For the example above, the information source is the high-school history teacher.

— Figure 9 here —

Both the beliefs and reliability are represented by a distribution over the binary

states of the respective variables. On this simple model, a reliable source will report

that the hypothesis in question is true (i.e. Rep) if the hypothesis is true (Hyp) and will

report that the hypothesis in question is false (i.e. ¬Rep) if the hypothesis is false. An

unreliable source, by contrast, will ‘randomize’ and report Rep independently of the

truth or falsity of the hypothesis in question—essentially flipping a coin. This can be
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captured in the following prior probability assignments:

P(Rep|Hyp, Rel) = 1 , P(Rep|¬Hyp, Rel) = 0

P(Rep|Hyp, ¬Rel) = µ , P(Rep|¬Hyp, ¬Rel) = µ

Here µ is the so-called randomization parameter. To complete the Bayesian Network,

we also have to assign prior probabilities to the root nodes Hyp and Rel:

P(Hyp) = h , P(Rel) = r

Of course, real-world sources are unlikely to simply pick an answer at random, but

the model is intended to provide a minimal model of an agent who provides us with

testimony, but whose reliability is not exactly known. The randomization parameter

simply allows one to capture the fact that to the extent that this agent is unreliable,

their report is determined independently of the true state of the world. In other words,

the model seeks to capture the essential situation of a recipient who knows little about

her testimonial source. More detailed, psychologically plausible extensions to this model

are possible where suitable evidence about expertise or bias exist (see e.g., Harris,

Hahn, Madsen, & Hsu, 2016). Both these more elaborate models and the basic version

presented here share the same fundamental, qualitative characteristics: evidence reports

a�ect both beliefs about the hypothesis or claim in question and beliefs about the

reliability of the source. Expected evidence will increase both belief in the hypothesis

and in the reliability of the source; unexpected evidence will lead to an increase in belief

in the claim, but will decrease belief in the reliability of the source. These basic

dynamics of testimonial evidence have been confirmed in behavioral studies (Collins,

Hahn, von Gerber, & Olsson, 2018). It has also formed the basis of experimental work

in the studies of Hahn, Harris, and Corner (2009); Harris et al. (2016); Jarvstad and

Hahn (2011).

Although it might be tempting to assign the conditional to node Hyp, this strategy

is problematic on both conceptual and empirical grounds. The strategy is conceptually

problematic because it requires us to ignore the fact that conditionals refer, in some
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way, to a relationship between the antecedent and consequent propositions.27 The

strategy is empirically problematic because it would not allow us to capture the

separate belief change to antecedent, consequent and conditional probability.

Instead, we propose two models that can be seen as extensions of the above model

of testimony. These models allow us to study the learning of an indicative conditional

“If A, then B” from a partially reliable information source. To do so, we introduce the

following five binary propositional variables.28

1. The variable A has the values A: “The antecedent occurs” and ¬A: “The

antecedent does not occur”.

2. The variable C has the values C: “The consequent occurs” and ¬C: “The

consequent does not occur”.

3. The variable X has the values X: “The indicative conditional ‘If A, then C’ holds”

and ¬X: “The indicative conditional ‘If A, then C’ does not hold”. (Extending the

algebra and introducing the conditional as an additional variable is a trick that

goes back to Garber’s solution to the problem of old evidence.29)

4. The variable RepX has the values RepX: “The information source reports X” and

¬RepX: “The information source does not report X.”

5. The variable Rel has the values Rel: “The information source is reliable” and

¬Rel: “The information source is not reliable.”

To proceed, we represent the probabilistic relations between these variables in a

Bayesian Network. We propose five di�erent models for this: We begin with the

27 We do not have anything specific in mind by using the term “relationship” here. The term could

merely refer to the conditional probability of one proposition given another. We are not committing to

conditionals conveying by default an inferential or causal relationship.

28 We use italics to denote the variables and roman script for the instantiations of the variables.

29 See Garber (1983) as well as Eva and Hartmann (2019), Hartmann and Fitelson (2015) and Sprenger

and Hartmann (2019) for recent developments of the account.
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Baseline Model and show that this model does not account for everything we would like

to explain. A series of modified models are then shown to go some way towards doing

the job. However, none can fully capture our basic data. We discuss these models in

turn.

The Baseline Model

This model assumes the following (conditional) independence relations:

• A ‹‹ X, Rel

• C ‹‹ RepX |X

These (conditional) independence relations are represented in the Bayesian Network in

Fig. 10. To complete the network, we specify the probability distribution as follows.

First, we specify the prior probabilities of the “root nodes” A, Rel, and X:

P(A) = a , P(Rel) = r , P(X) = x (3)

Here we assume that a, r, x, µ œ (0, 1).

Next, we specify the probabilities of C, given its parents.

P(C|A, X) = 1 , P(C|A, ¬X) = – (4)

P(C|¬A, X) = — , P(C|¬A, ¬X) = “

Here we assume that the conditional statement X respects modus ponens, i.e. that

P(C|A, X) = 1. All other parameters (i.e. –, — and “) are not further specified.

Finally, we specify the probabilities of RepX, given the values of its parents.

P(RepX|X, Rel) = 1 , P(RepX|¬X, Rel) = 0 (5)

P(RepX|X, ¬Rel) = µ , P(RepX|¬X, ¬Rel) = µ

To model the report of a partially reliable information source, we assume that the

source is reliable with probability r. If the source is reliable, then it is a truth teller. If

the source is not reliable, then it randomizes with probability µ as described above.
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— Figure 10 here —

At this point, the reader will likely wonder about the interpretation of node X. As

we just noted, it is problematic to assign the conditional to node HYP directly, not

least because it is problematic to treat the conditional as a proposition (see the earlier

discussion of the Triviality Results). Instead we assume simply that when the

propositional variable “The indicative conditional ‘If A, then C’ holds” is true, then C

follows from A. This is reflected in the conditional probability table defining the

relationship between A, C and X. In other words, we assume simply that the

conditional, whatever it may be, respects modus ponens. 30. This is relatively

non-committal about what the conditional itself means. We assume only that when

natural language convention licenses one to assert ‘if A, then C’ then it is acceptable to

infer C from A. We do not seek to spell out what those linguistic conventions actually

are. Hence we intend these models to be light on theoretical commitments concerning

the content and structure of the conditional, focussing instead on an e�ect of what one

believes when one takes the conditional to hold: namely that A entails C.31

How does the baseline model bear on the experimental data? We are now in the

position to calculate how the probabilities of A (antecedent) and C (consequent) change

once we receive the report RepX. We will also calculate how the conditional probability

30 As a reviewer points out, this assumption might be incompatible with some versions of

inferentialism, on which modus ponens is not valid (e.g. Krzyøanowska, Wenmackers, & Douven, 2014),

though see, e.g., Skovgaard-Olsen et al. (2016a) for an alternative approach to inferentiailsm. See also

Mirabile and Douven (2020, in press) for an empirical investigation and a helpful discussion of

inferential conditionals and modus ponens.
31 We note, however, that there remains a sense in which node X refers to a link between nodes A and

C of the same network, raising the question of whether we are conflating object- and meta-languages in

the same representation. In Appendix C, we argue that this can nevertheless be given a coherent,

probabilistic interpretation.
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P (C|A) changes after learning RepX. To do so, we define

�A := P(A|RepX) ≠ P(A)

�B := P(C|RepX) ≠ P(C) (6)

�C := P(C|A, RepX) ≠ P(C|A).

For the proofs, we refer the reader to the numbered theorems, which are given in full in

Appendix B.

Crucially, given the structure of the Bayesian Network, hearing a conditional does

not change the probability of the antecedent: that is, �A = 0 (see Theorem 1). But on

hearing a conditional the probability of the consequent can stay the same, increase, or

decrease, in some conditions. We refer readers to footnotes and to Appendix B for a

precise specification of the conditions under which change is possible (see, in particular,

Theorem 2 and related discussion). Here, we refer readers to the specification of

probabilities under (4) and, particularly, the probabilities – —, and “
32 and note that (i)

— ¥ “ and (ii) – ¥ 1 are jointly su�cient for �B ¥ 0.

Summary of the Baseline Model. Across all of the experiments, there was a

crucial e�ect: that the conditional probability increased in response to the assertion of a

conditional. The Baseline Model captures this e�ect: assertion always increases the

conditional probability (Theorem 3). As a baseline, the model above can account for

some of our data (the first four experiments) under certain conditions. We do not

explore whether these conditions actually hold among participants, however, because

the model has a serious limitation: The model cannot account for the influence of the

priors. We turn, now, to modifications of the baseline model that aim at capturing this.

32 Formally, this change is determined by the following conditions. Let „B := – a + (— ≠ “) a. Then

(i) �B > 0 i� „B > 0, (ii) �B = 0 i� „B = 0, and (iii) �B < 0 i� „B < 0. As a consistency check, it is

easy to see that �B = 0 if P(C|X) = a + — a © P(C|X) = – a + “ a (as it should be). Here and

throughout we use the shorthand notation x := 1 ≠ x and “i�” stands for the biconditional “if and only

if”.
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The Modified Model A

We saw cases in our data where the probability of the antecedent increases: on

being told “if it rains to day, you will get wet” may increase one’s belief in rain, but

only where one’s prior is presently low, that is, �A ”= 0. To account for these cases, we

modify the baseline model by introducing an additional arc from A to RepX. We assign

the same probabilities as in Eqs. (3) and (4), but replace Eqs. (5) by the following

assignments:

P(RepX|X, Rel, A) = 1 , P(RepX|¬X, Rel, A) = 0

P(RepX|X, Rel, ¬A) = 0 , P(RepX|¬X, Rel, ¬A) = 0 (7)

P(RepX|X, ¬Rel, A) = µ , P(RepX|¬X, ¬Rel, A) = µ

P(RepX|X, ¬Rel, ¬A) = µ , P(RepX|¬X, ¬Rel, ¬A) = µ

The crucial modification is that we set P(RepX|X, Rel, ¬A) = 0, i.e. if the antecedent is

false and if X is true, then a fully reliable information source will not submit the report

RepX .

We are now in a position to assess changes to the probability of the antecedent,

the probability of the consequent, and the conditional probability, defined as in

equations (6). Consider the Bayesian Network in Fig. 11 with the probability

distribution defined in Eqs. (3), (4) and (7). Firstly, we note that, as before, the

conditional probability increases on the assertion of a conditional, that is, �Õ
C > 0 (see

Theorem 6). Turning to the probability of the antecedent, �Õ
A, can now stay the same,

increase, or decrease. Once again, we refer readers to the Appendix for precise

specification of the relevant conditions and, in particular, to (Theorem 4). The key

point is that, for a a wide range of values of the reliability parameter, this model can

capture change to the probability of the antecedent.33 So Modified Model A allows one

to capture changes to the probability of the antecedent, at least in principle, where the

33 This change is dependent on the following conditions. Let r0 := µ/(µ + a). Then �Õ
A > 0 i�

(i) r > r0, (ii) �Õ
A = 0 i� r = r0, and (iii) �Õ

A < 0 i� r < r0. For small values of a, r0 is small and hence

�Õ
A > 0 for a whole range of values of the reliability parameter r.
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exact change depends both on the prior and the characteristics of the source.

However, the model fares less well with the probability of the consequent, �Õ
B. On

the assertion of a conditional, this probability always increases (see Theorem 5). In the

data, change to the probability of the consequent depended on its prior.

Summary of Model A. Model A is an advance on the Baseline Model, then,

in allowing change to the probability of the antecedent that is dependent on the prior

probability and source characteristics. But in Model A assertion always increases the

probability of the consequent, and so the model fails to allow for dependence on the

prior that we saw in the data.

— Figure 11 here —

The Modified Model B

We now consider whether this dependency on priors can be captured through an

alternative modification to the Baseline Model. Instead of Eqs. (4) we make the

following assignments:

P(C|A, X) = ‘ , P(C|A, ¬X) = – (8)

P(C|¬A, X) = — , P(C|¬A, ¬X) = “

with a small parameter ‘. Contrary to Eqs. (4), we now assume that the consequent B

only occurs with high probability (and not with probability 1) if the antecedent holds

and if the conditional is true. This might be psychologically more realistic. Considering

the Bayesian Network in Fig. 10 and the probability distribution defined in Eqs. (3), (5)

and (8), we observe the following.34 There is no change in the probability of the

antecedent, that is, �A = 0 (Theorem 7). The probability of the consequent, in

contrast, can stay the same, increase, or decrease (Theorem 8).35 Lastly, the conditional

34 Obviously, for ‘ = 0, we recover Theorems 1 to 3.

35 The change depends on the following conditions. Let „̃B := (– ≠ ‘) a + (— ≠ “) a. Then (i) �B > 0 i�

„̃B > 0, (ii) �B = 0 i� „̃B = 0, and (iii) �B < 0 i� „̃B < 0.
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probability can also stay the same, increase, or decrease (Theorem 9).36

Summary of Model B. Adding a small error parameter ‘ comes at the cost of

ruling out change to the antecedent; hence, at the cost of not capturing an important

pattern in our data. In Model B, assertion can also lead to the conditional probability

staying the same or even decreasing, whereas our data show a consistent increase in the

conditional probability. More data would be needed to test whether the conditional

probability might stay the same or even decrease. For present purposes, it su�ces to

note that, like the preceding models, this model cannot capture all the patterns in our

data.

The Modified Model C

In this section, we study another extension of the Baseline Model: we introduce

an additional arc from C to RepX. We assign the same probabilities as in Eqs. (3) and

(4), but replace Eqs. (5) by the following assignments:

P(RepX|X, Rel, C) = 1 , P(RepX|¬X, Rel, C) = 0

P(RepX|X, Rel, ¬C) = 0 , P(RepX|¬X, Rel, ¬C) = 0 (9)

P(RepX|X, ¬Rel, C) = µ , P(RepX|¬X, ¬Rel, C) = µ

P(RepX|X, ¬Rel, ¬C) = µ , P(RepX|¬X, ¬Rel, ¬C) = µ

The crucial modification is that we set P(RepX|X, Rel, ¬C) = 0, i.e., if the

consequent is false and if X is true, then a fully reliable information source will not

submit the report RepX . Considering the Bayesian Network in Fig. 12 and the

probability distribution defined in Eqs. (3), (4) and (9), we observe the following. The

probability of the antecedent always increases, that is, �A > 0 (Theorem 10). So, too,

does the probability of the consequent, that is, �B > 0 (Theorem 11); and, likewise, the

conditional probability, that is, �C > 0 (Theorem 12).

36 This change depends on the relationship between the parameters – and ‘. The conditional

probability (i) increases (�C > 0) if and only if – > ‘, (ii) stays the same (�C = 0) if and only if – = ‘,

and (iii) decreases (�C < 0) if and only if – < ‘.
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Summary of Model C. In Model C, adding an additional arc from C to RepX

means that assertion of the conditional leads to an increase in the conditional

probability. This is an aspect of the data that was lost in Model B. But assertion also

always leads to increases in the probability of the antecedent and the probability of the

consequent. Although such increases were seen in our data, there was a dependency on

priors that this model cannot capture.

— Figure 12 here —

The Modified Model D

Finally, we study a model that introduces an additional arc from A and C to

RepX. This model can be seen as a combination of Models A and C. We assign the same

probabilities as in Eqs. (3) and (4), but replace Eqs. (5) by the following assignments:

P(RepX|X, Rel, A, C) = 1 , P(RepX|¬X, Rel, A, C) = 0

P(RepX|X, Rel, A, ¬C) = 0 , P(RepX|¬X, Rel, A, ¬C) = 0

P(RepX|X, Rel, ¬A, C) = 0 , P(RepX|¬X, Rel, ¬A, C) = 0

P(RepX|X, Rel, ¬A, ¬C) = 0 , P(RepX|¬X, Rel, ¬A, ¬C) = 0

P(RepX|X, ¬Rel, A, C) = µ , P(RepX|¬X, ¬Rel, A, C) = µ (10)

P(RepX|X, ¬Rel, A, ¬C) = µ , P(RepX|¬X, ¬Rel, A, ¬C) = µ

P(RepX|X, ¬Rel, ¬A, C) = µ , P(RepX|¬X, ¬Rel, ¬A, C) = µ

P(RepX|X, ¬Rel, ¬A, ¬C) = µ , P(RepX|¬X, ¬Rel, ¬A, ¬C) = µ

The crucial modification is that for a reliable source only P(RepX|X, Rel, A, C) = 1.

All other conditional probabilities of RepX vanish. Considering the Bayesian Network in

Fig. 13 with the probability distribution defined in Eqs. (3), (4) and (10), we observe

the following. The probability of the antecedent always increases, that is, �A > 0

(Theorem 13); as does the probability of the consequent, that is, �B > 0 (Theorem 14);

and the conditional probability, that is, �C > 0 (Theorem 15).

Summary of Model D. Adding an extra from nodes A and C to RepX results

in the same pattern as Model C: an increase in all probabilities and no dependency on



CONDITIONALS 40

the priors. Hence this model, too, fails to capture the data.

— Figure 13 here —-

Summary of Modeling

How well, then, do these models do in accounting for the data? As we have seen,

the explicit models of the information-gathering process (the testimonial context) we

constructed have more success than the distance-based approach to Bayesianism (which

does not take the information-gathering into account). But each model only ever

matches some trends within the data. Of the five models we describe, only Model A

shows the required dependency on prior probability, but only for the probability of the

antecedent.

Even though we have only considered model fit in a loose, qualitative sense, we

can reasonably conclude that this method, though an apparently plausible extension of

the probabilistic approach to the conditional, fails to capture our simple data set.

The Challenge to Other Accounts of Conditionals

We began with an assumption that the Suppositional Theory is a good starting

point for developing an account of learning from a conditional testimony. While it itself

does not provide us with an explanation of how hearers accommodate new conditional

information, the massive empirical support, even if qualified, for the probabilistic

interpretation of the conditional, motivated our own model. Our data, however, pose a

challenge to the Suppositional Theory of the conditional, and its extension, and one

could wonder if these negative results do not undermine the Bayesian paradigm entirely.

In this section we show that they do not only pose a challenge for this account. Indeed,

we will demonstrate in this section that the data pose a broader challenge by considering

the possible worlds semantics, the material conditional account, and Mental Models

Theory. The table below summarizes, once more, the constraints our empirical results

put on any accounts of indicative conditionals that aspires to descriptive accuracy.

— Table 7 here —
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The possible worlds account

As outlined earlier, the Suppositional Theory was inspired by the idea of the

Ramsey Test, which seems to capture our intuitions about the mental procedure we

follow when evaluating indicative conditionals: when deciding whether to accept a

conditional, we suppose its antecedent and then decide on the basis of that supposition

whether to accept the consequent. The probabilistic Suppositional Theory is, however,

just one way of formalizing this idea. An alternative theory of conditionals, which also

aims at capturing the intuition expressed by Ramsey, has been developed by Stalnaker

(1968, 1975) and, independently, by Lewis (1973). Since Lewis’s account was meant as a

semantics for counterfactuals, not indicatives, and it was Stalnaker who made an explicit

appeal to the Ramsey Test, we will follow Stalnaker’s presentation. It should be noted,

nevertheless, that the di�erences between the two accounts of conditionals lay mainly in

the details, and thus it is justified—and customary—to treat them as one approach.37

In possible worlds semantics, a proposition expressed by a sentence P is a set of

possible worlds in which P is true. Possible worlds are to be understood, roughly, as

di�erent ways our actual world might be or might have been, that is, di�erent

alternatives to our world. They correspond to what we imagine when we suppose that

things were di�erent than they actually are, or when we suppose things to be in a

particular way when we don’t know what is actually true.38 Take, for instance, the

sentence “Berlin is the capital of Germany.” We can imagine, for instance, that Berlin is

the capital of Germany while San Francisco is the capital of the United States, or while

Seattle is the capital of the United States, or while it is Washington, D.C., and so on.

37 Yet another related account has been proposed by Kratzer (1979, 1986).

38 The notion of a possible world, although primarily a formal construct, is not devoid of psychological

reality. Rips and Marcus (1977), for instance, discuss suppositions as cognitive analogues of the

possible worlds. The notion of a possible world also proved to be useful in the context of developmental

research on counterfactual reasoning (see, e.g., Leahy, Rafetseder, & Perner, 2014; Rafetseder,

Cristi-Vargas, & Perner, 2010).
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We can imagine Berlin being the capital of Germany when there are no other countries

on the planet. All these possible, alternative scenarios or descriptions of the world are

what semanticists call possible worlds belonging to the proposition expressed by “Berlin

is the capital of Germany.” But the capital of Germany might have been Munich, or it

might have been Düsseldorf, or it might have been Amsterdam, and so on. These are

the ways “Berlin is the capital of Germany” might have been false, that is, imagining

the capital of Germany being Munich, Düsseldorf, or Amsterdam, corresponds to

considering di�erent possible worlds in which the sentence is false. Moreover, we might

find some of those ways the world might have been di�erent more or less plausible. An

imaginary world in which the capital of Germany is Munich seems more plausible, more

similar to the actual world, than a world in which it is Amsterdam. We may also

imagine things whose truth value we don’t (yet) know, and order them according to

their plausibility. For instance, we might imagine a world in which California becomes

independent from the United States by the year 2050, even if we find it more plausible

that it will not.39

On the possible worlds account, conditionals express propositions, which means

that they can be true or false. But the truth value of a conditional is not simply a

function of the truth values of its parts, i.e., possible worlds semantics is not

truth-functional. It is, however, truth-conditional, that is, one can define the conditions

under which conditionals are true. Evaluation of a conditional, “If A, then C,” on

Stalnaker’s account, begins, as suggested by Ramsey, with a supposition of the

antecedent, that is, with imagining the nearest possible world (or worlds, on Lewis’

version of the theory) in which the antecedent, A, is true (the nearest A-worlds, for

short). This means imagining the world as it actually is except for what needs to be

di�erent for A to be true. For instance, to evaluate “If California becomes an

independent country, then the United States will be a federation of 49 states,” we

39 There is psychological evidence that people often have clear intuitions about which alternatives to

the reality are more plausible than others. See, e.g., Byrne (2005); Kahneman and Miller (1986);

Markman, Gavanski, Sherman, and McMullen (1993); Perner and Rafetseder (2011).
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imagine that California declared independence, and perhaps that it is recognized as

independent by other states and so on, but everything else that we know about our

actual world remains fixed. The worlds in which Alabama is also an independent

country, or the worlds in which the states are not united at all, are not the nearest

possible worlds in which “California becomes an independent country” is true. Once we

fix the nearest antecedent world, we evaluate the consequent of the conditional in that

world. More formally, Stalnaker’s conditional, denoted by A > C, is true in the actual

world if and only if C is true in the nearest possible A-world (or, on Lewis account, in

all nearest A-worlds). A proposition expressed by A > C is then the collection of all

worlds in which A > C is true. There are two types of relevant worlds, namely, all those

worlds in which both A and C are true and all those ¬A-worlds such that C is true in

their nearest A-worlds. Since how we order the possible worlds, that is, which worlds we

consider to be close to each other, depends on our epistemic states (e.g. our background

knowledge), the same conditional may express di�erent propositions for di�erent

speakers in di�erent contexts (cf. Stalnaker, 1984, p. 109).

What would happen, then, if people updated their beliefs on a Stalnaker

conditional? Since conditionals on Stalnaker’s account express propositions, the first

step in modeling learning from a conditional seems straightforward: we fix the posterior

probability of a conditional to a new, higher value. When the source of the testimony is

reliable, we assign a higher probability value to the conditional than when the source is

not fully reliable. What, then, is the conditional probability of the consequent given the

antecedent? Stalnaker himself proposed that the probability of a conditional should

equal the corresponding conditional probability.40 For convenience we repeat, here,

Stalnaker’s formulation from above:

Stalnaker’s Hypothesis (“The Equation”): For all probability

functions P such that P(A) > 0, P(“If A, C”) = P(C|A).

However, Stalnaker’s semantics does not validate “the Equation.” In fact, as proven by

40 Note, however, that, unlike the Suppositional Theory, Stalnaker’s theory faces the challenge of the

Triviality Results (Lewis, 1976). We will not discuss this issue here.



CONDITIONALS 44

Lewis (1976), P(A > C) is the probability of C, not after conditioning on A, but after

imaging on A, denoted by P(C)[A].41 Intuitively, updating by imaging on A amounts to

taking the probability of each ¬A-world, and moving it to its closest A-world. As

Figure 14 illustrates, none of the ¬A-worlds keeps its original probability, but all

A-worlds do, and, additionally, some A-worlds become more probable when an

additional share of the probability is shifted from some ¬A-worlds. The outcome of

Imaging depends then on how we order the possible worlds, which might vary

depending on the context of an utterance or on our epistemic states. For instance, if the

model shown on Figure 14 were such that w3 was closer, i.e., more similar to w1 than

w2, in (b) we would have transfered the probability assigned to w1 to w3, and thus the

posterior probability of w3 would have been .8, while the probability assigned to w2

would have stayed the same, that is, it would have remained .2. At the same time,

ordering of the possible worlds has no e�ect on the Bayesian updating, and hence the

posterior probability distribution would have been the same (c).42

— Figure 14 here —

While the probability of a Stalnaker’s conditional itself is given by imaging, one

can use the conditional to update other beliefs via conditionialization (as the

conditional expresses a proposition). Consequently, an agent learning a conditional can,

in principle, update either by classical conditionalization or by imaging.43 In both cases,

the conditional probability of C given A increases; however, the e�ect on the posterior

41 For experimental investigations of learning a categorical information via imaging, see, e.g., Baratgin

and Politzer (2010) and Zhao and Osherson (2014). See also Lucas and Kemp (2015) for a discussion of

imaginig on counterfactual conditionals in causal Bayes nets.

42 One of the consequences of the fact that the probability of a Stalnaker’s conditional is obtained by

imaging is that its probability and the conditional probability of its consequent given the antecedent

can come apart: the conditional probability can be high when the conditional is not very probable, and

vice versa.

43 Or by Je�rey’s version of either of these update rules. For a recent model of learning a Stalnaker’s

conditional by Je�rey Imaging, see Günther (2017).
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probability of A and C is less straightforward. Depending on the possible worlds model

we construct, which in turn might depend on the context in which the conditional is

asserted, learning a conditional can result in an increase or a decrease of the probability

of a proposition, or it can have no e�ect on it at all. Although this might seem to be an

advantage, as observed by Douven (2012, p. 246–247), such flexibility does not mean

that the posterior probability assignments resulting from either imaging or

conditionalization on a conditional will correspond to our intuitions about any

particular case.44 To account for the outcomes of the experiments reported above,

Stalnaker’s semantics would need to be accompanied by an auxiliary (possibly

pragmatic) account that would not only explain how people construct their similarity

orderings and how they choose the update rule, but also, and most importantly, why

they change their beliefs when the semantics does not predict that they would: given

that at the heart of the Stalnaker conditional is supposition (“what would the world be

like for C if A were true”), it is unclear why one’s beliefs about the conditional itself, or

A, or C should change at all. Without a systematic account to that e�ect, however,

relegating the explanation of the unpredicted changes to broadly construed pragmatics

may strike one as an ad hoc solution.

The Material Conditional

We have so far considered theories of the conditional which aim at capturing the

mental process involved in the evaluation of the conditional known as the Ramsey Test.

We turn, now, to two theories that start from a di�erent angle and take the classical

propositional logic as their main inspiration. Take, first, the material interpretation of

the conditional. Although the material conditional interpretation of the conditional has

lost popularity in philosophy (though see Rieger (2013) for a recent defense of the

material interpretation), it has arguably had a lasting influence on the psychology of

44 Douven (2012, p. 246–247) presents three models that di�er only in how the possible worlds are

ordered to show that, first, this is enough for the Stalnaker’s conditional to express a di�erent

proposition in each of the models, and that both imaging and classical conditionalization on those

propositions result in di�erent posterior probability distributions.
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reasoning, as we will see below. The material conditional, A ∏ C, is true if and only if

either A is false or C is true (in other words ¬A ‚ C). Since the material conditional is

truth functional, and hence its truth value does not depend on what its antecedent and

consequent are actually about, it is prone to well-known counter-intuitive consequences,

such as the paradoxes of material implication: the material conditional renders true

both conditionals whose antecedent and consequent are true but entirely unconnected

such as “If kangaroos are mammals, Paris is the capital of France” and, even worse, all

conditionals whose antecedents are false such as “If Paris is the capital of Belgium, then

Paris is the capital of France.” This is because a true consequent or a false antecedent

su�ces to establish the truth value of a conditional; the content of the remaining

clauses has no bearing on the evaluation of the whole sentence. To explain the

divergence from our intuitions, the material conditional account is usually supplemented

by a pragmatic account allowing separation of conditionals’ truth conditions and their

assertability conditions (Grice, 1989; Jackson, 1979).

If a natural language conditional is interpreted as A ∏ C, learning that “if A, then

C” can be modeled as updating by means of Classical Conditionalization on a

proposition expressed by a disjunction, ¬A ‚ C. For any proposition B in the algebra

over which the probability measure P is defined, we can now calculate its posterior

probability as P(B|¬A ‚ C). What happens to the probability of the antecedent and the

probability of the consequent on such an account? Popper and Miller (1983) observed

the following fact (see Douven 2012):

Popper and Miller (1983): For all A, C, such that P(A) < 1 or P(C) < 1

(or both), P(A | A ∏ C) Æ P(A). For all A and C such that 0 < P(A) < 1

and P(C | A) < 1, P(A | A ∏ C) < P(A).

This means that, as long as our prior P(A) is greater than 0 and less than 1, learning

that A ∏ C should make us decrease our degrees of belief in A. At the same time, as

long as our prior P(C) < 1 and greater than 0, we should become more confident that C

is the case. The reader will recall that these are exactly the predictions made by the

distance-based approach (which is equivalent to conditionalizing on the material
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conditional if the conditional is strict, i.e. if one takes PÕ(C|A) = 1 as a constraint on

PÕ).

As we saw for the distance-based account, our data do not support this pattern of

belief change. The data suggest a dependence on prior probabilities, and this

dependence has no place in the material account. By contrast, for P(A) > 0 and

P(C) < 1, our PÕ(C|A) should be higher than our prior P(C | A), which is exactly what

we expected. Note, however, that the probability of a conditional, P(A ∏ C), does not

equal the corresponding conditional probability, P(C|A), since it is a theorem of the

probability calculus that:

P(A ∏ C) = P(¬A) + P(A) · P(C|A). (11)

Furthermore, it is easy to see from Eq. (11) that the less likely the antecedent, the more

likely the conditional, represented by the material conditional, provided that the

conditional probability P(C | A) does not change (cf. Douven, 2016a, p. 57). Eq. (11)

also shows that P(A ∏ C) = 1 if and only if P(C | A) = 1 (provided that P(A) is

non-extreme). This fact and the result mentioned above that Classical

Conditionalization follows from the minimization of an f -divergence explains why

conditionalizing on the material conditional and the minimization of an f -divergence

are equivalent if the learned conditional is strict, i.e., if one takes PÕ(C|A) = 1 as a

constraint on PÕ. At the same time, it is easy to see that P(C|A) = 1 ≠ ‘ does not imply

that P(A ∏ C) is also close to 1. That is, if the conditional is non-extreme, then we

would expect, in general, the material conditional plus Je�rey Conditionalization and

the conditional probability approach to make di�erent predictions (see eq. (11)). This

parallels the counter-intuitive e�ects of introducing a parameter ‘ to allow

P(C|A) = 1 ≠ ‘ in Modified Model B above. For further discussion, see Eva, Hartmann,

and Rad (2019).

However, the material conditional can, at least, deal with our reliability

manipulation. Since a material conditional expresses a proposition which can be

represented by the set of all those worlds in which the disjunction ¬A ‚ C is true, one

can model the e�ect of the reliability manipulations in a straightforward way, namely,
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by assigning a higher probability value (for instance 1) to the proposition ¬A ‚ C when

the conditional comes from a reliable source, and a lower probability value when the

source is not reliable. The account provides no guidance as to what these values should

actually be, but it is, at least, qualitatively compatible. This strategy should work for

any account on which an indicative conditional expresses a proposition.

Mental Models Theory

In the psychology of reasoning, although the material conditional account has

been long since rejected as an interpretation of natural language conditionals, it has

nevertheless influenced a vast amount of reasoning research in its early days. These

early reasoning experiments contributed to the development of one of the leading

theories in the psychology of reasoning, the Mental Models Theory (MMT)

(Johnson-Laird & Byrne, 2002; Johnson-Laird et al., 2015; Khemlani, Byrne, &

Johnson-Laird, 2018). On this theory, the core meaning of an indicative conditional

refers to the conjunction of the following possibilities:

A C

¬A ¬C

¬A C

An interpretation of a conditional amounts to imagining (not imaging!) the possibilities

(referred to as “mental models”) that are compatible with the conditional: the

possibility that both A and C are the case, the possibility that neither A nor C are the

case, and the possibility that A is not the case but C is the case. When interpreting a

conditional, however, people do not always imagine the fully explicit model. They may

stop, for instance, already after representing the possibility that A and C:

A C

. . .

The ellipsis indicates that the model did not make all the relevant possibilities explicit.

Such a mental model is what underlies intuitive reasoning, although the fully fleshed
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out explicit models can be evoked if the tasks are simple enough (e.g. Khemlani et al.,

2018, p. 9).

It is important to emphasise that, although there seems to be a correspondence

between the set of possibilities that comprise the core meaning of the conditional, on

the one hand, and the set of cells in a truth table for the material conditional in which

the conditional is true, the logic of a conditional on MMT is not that of the material

conditional. On the most recent version of the MMT (Hinterecker, Knau�, &

Johnson-Laird, 2016; Johnson-Laird et al., 2015; Khemlani et al., 2018; Khemlani,

Lotstein, & Johnson-Laird, 2015), it is not only the case that the conditional is

compatible with the three mental models shown above, but it is true only if all the

three situations represented by the fully explicit model are possible. That is, “If A, then

C” is true, on the MMT, if and only if it is possible that A and C, and it is possible

that ¬A and ¬C, and it is possible that ¬A and C. In other words, the conditional is

equivalent to the following formula (where ⌃ is read as “possibly”):

⌃(A · C) · ⌃(¬A · C) · ⌃(¬A · ¬C) (12)

Additionally, given that the conjunction of possibilities is supposed to be interpreted as

exhaustive, one can infer from it that A and ¬C is impossible: ¬⌃(A · ¬C).

Consequently, the revised MMT seems to predict that what an agent learns when they

hear a conditional is precisely (12), and, implicitly, the impossibility of A and ¬C.

How should an agent adjust their degrees of belief upon hearing a conditional, if

that conditional is indeed represented as the MMT predicts? To account for the

growing body of data on probabilistic reasoning, the initially qualitative Mental Models

Theory has been extended by the theory of “naive probability” (Hinterecker et al., 2016;

Johnson-Laird et al., 2015; Khemlani et al., 2015), which is a dual-process account of

probabilistic reasoning. On this account, the slow and deliberative System 2 tends to

comply with Bayesian probability theory, while the fast, intuitive System 1 gives

estimates based on certain simple heuristics. More specifically, Khemlani et al. (2015)

provide an algorithm for estimating intuitive probabilities of unique events and their
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compounds: conjunctions, disjunctions, and conditional probability. The latter, P(C|A)

is computed as the ratio of P(A · C) to P(A) by the deliberative System 2.45 If only

System 1 is employed, however, the conditional probability is said to be estimated by

adjusting the probability of C, P(C), depending on whether the antecedent, A, increases

or decreases it (Johnson-Laird et al., 2015, p. 211). In other words, the intuitive System

1, on this account, treats A as evidence for the estimates of the probability of C, and

that probability becomes the conditional probability P(C|A) (Khemlani et al., 2015, p.

1233).

Interestingly, Khemlani et al. do not say anything about estimating the

probabilities of natural language conditionals and how these relate to the corresponding

conditional probabilities, given that conditionals are represented as conjunctions of

(epistemic) possibilities. It is di�cult to see how the probability of (12) could even

approximate the conditional probability of C given A, and, how it could have various

degrees of probability less than 1 unless there is still a possibility, even if highly

unlikely, that A and ¬C is the case.46 Consequently, it is unclear how the MMT could

account for di�erent conditional probability assignments depending on the reliability of

the speaker.47

There is however one finding with respect to which the new MMT might be used

to make a (qualitatively) correct prediction, namely, that the probabilities of

antecedents and consequents change in response to learning the conditional in the

situation in which their prior probabilities are extremely low. For instance, if we believe

that it is highly unlikely that Lisa, a Liberal Arts College, is majoring in astrophysics,

accepting the testimony “If Lisa, a student, is majoring in astrophysics, then she’s

working late in the library” forces us to represent the situation in which Lisa is

45 Khemlani et al. (2015) points out, however, that individuals “have no deliberative method for

computing conditional probabilities about unique events” (p. 1233).

46 We owe this observation to a Reviewer for this journal.

47 On various problems following from the new revised version of the MMT, see Baratgin et al. (2015)

or Oaksford, Over, and Cruz (2019).
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majoring in astrophysics and in which she’s working late in the library as possible.

Once such a possibility is brought to our attention, we might indeed find it more

probable that Lisa is indeed majoring in astrophysics.

Finally, an important addition to the MMT are mechanisms of semantic and

pragmatic modulations that are said to a�ect what we find possible or impossible, and

how the mental models are constructed (Johnson-Laird & Byrne, 2002; Khemlani et al.,

2018; Quelhas, Johnson-Laird, & Juhos, 2010). Perhaps, then, MMT proponents might

invoke these modulations to try and reconcile their theory with our findings on how

people change their beliefs upon learning a conditional. However, unless developed into

a full-fledged, systematic account, such a move risks being an ad hoc solution.

Conclusions

We presented a number of simple, fundamental intuitions about people’s responses

to the testimonial assertion of a conditional: that hearing a source assert a conditional

will lead to in an increase in the conditional probability of the consequent, given the

antecedent (at least for conditional relationships that we do not yet have full knowledge

of). At the same time, that increase is modulated by the reliability of the source. And,

finally, assertion of a conditional can alter our beliefs about the probability of the

antecedent and the consequent: raising that probability when we took it to be low, and

potentially lowering it by casting doubt (“if. . . ”) when it is high. These intuitions were

largely confirmed in behavioral experiments. Despite the fact that the uncertainty

involved seems to lend itself naturally to a probabilistic treatment, we showed that once

one takes the details of such a treatment seriously, the basic data stubbornly resist

Bayesian conditionalization, Je�rey conditionalization, imaging and a distance-based

approach to Bayesian learning. In order to capture the basic feature of testimony,

namely that perceived reliability of the source matters, one needs to model that aspect

of testimony explicitly. In other words, to capture fully the e�ect of a conditional on

our beliefs, one needs to include aspects of the data gathering process by which we have

come to ‘know’ that assertion. However, we have seen the failure to capture our data of
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even a common model of testimony, based on a simple Bayesian belief network, that has

seen considerable theoretical and empirical empirical success (Bovens, Fitelson,

Hartmann, & Snyder, 2002; Bovens & Hartmann, 2002, 2003; Collins et al., 2018; Hahn

et al., 2009; Hahn, Oaksford, & Harris, 2012; Harris et al., 2016; Jarvstad & Hahn,

2011; Landes, Osimani, & Poellinger, 2018). This model fails to adequately capture our

data even with multiple modifications. Hence, a very simple phenomenon raises

unexpected technical challenges and complexities on closer inspection.

In short, this paper has asked a superficially simple question: how do we change

our beliefs when we hear (read) the assertion of a conditional by a partially reliable

source? A set of simple experiments delivered apparently straightforward and intuitive

results. But these data are enough to challenge major theories of the conditional. We

have demonstrated the challenges for the Suppositional Theory (fleshed out both with a

distance-based approach and with Bayesian belief networks); the Stalnaker conditional;

the material conditional; and Mental Models Theory.

We are left with a paradox and a dilemma. One of the most basic things we could

ask about conditionals, namely how we modify our beliefs upon hearing one, seems

stubbornly outside the remit of present theories of the conditional. Despite the fact

that people find the task of reporting their (new) beliefs on having heard a conditional

straightforward and unremarkable, no present theoretical account of the conditional

accommodates the very intuitive data patterns that ensue. Moreover, trying to model

these data, on any present account found in the literature, raises thorny conceptual

questions about what the conditional actually is.

In recent decades, research on conditional reasoning in psychology has made

progress in part precisely because it has tried to sidestep questions about the semantics

of conditionals. Researchers such as Oaksford and Chater (1994) and following have

tried to commit only to the idea that uttering a conditional indicates that the

conditional probability is high. In a similar spirit, we have sought to remain agnostic

about the meaning of the conditional in the probabilistic models presented in Section

“Modeling the Data,” assuming only that the variable X represents the indicative
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conditional ‘If A, then B.’ Nevertheless, semantic tensions arise about the meaning of

this variable, and the fact that it would seem to, in some sense, refer to a link within

the Bayesian Network (so implying a meta-statement within an object level

representation). Our account, outlined in Appendix C, was the best attempt to render

this approach semantically well-formed. The reader may or may not find this attempt

fully convincing. The di�culties raised, however, apply not just to the specific models

presented, but to any probabilistic account that would seek to use the machinery of

belief revision within a Bayesian Network as its basis. A broader probabilistic

framework thus seems required, but those considered (imaging and the distance-based

approach without an explicit consideration of the reliability of the source) sit uneasily

with the data. Of course, new probabilistic methods for the transition between models

may be found, which capture better the change to beliefs prompted by hearing a

conditional. However, we know of no obvious further route to pursue.

We have collected only simple data on how beliefs change in response to a

conditional, and yet these data pose a considerable challenge. This fact seems to have

profound implications for the study of conditional reasoning, which has long been the

focal point of research on conditionals. In particular, conditional reasoning seems rather

more poorly understood than previously recognized. If an account of conditional

reasoning starts only at the point where a conditional is magically in place, it is

arguably missing a key part of what we do with conditionals in everyday cognition.

As mentioned earlier, it is arguably the historical focus of classical logic that has

allowed this fundamental gap to be missed. Classical logic concerns itself with what

follows from given premises, not the truth or falsity of those premises as such.

Consequently, the question of how we come to know those premises is outside of the

focus of theoretical attention. A key contribution of the present paper is to highlight

how a complete account of conditional reasoning must involve not just an account of

where those premises come from, but also an account that can fit with how we reason

from whatever it is we have acquired.

This also poses a challenge for potential routes beyond the framework of either
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probability or logic. One might, for example, be tempted to move beyond normative

frameworks, such as probability theory or logic, and try to seek a purely descriptive

account of how we learn conditionals (Elqayam & Evans, 2011). However, a primary

interest in conditionals is in the inferences they license, which is a normative question.

The challenge is thus a mirror image to that just highlighted for classical logic. A

theory of what is learned must be able to interface meaningfully with a theory of

subsequent inference. In this case, a purely descriptive cognitive model must provide

the right building blocks for a follow-on theory of inference and implication.

Finally, this “interface problem” is also relevant to a final route readers may be

tempted to pursue. On this route, which we referred to above, a critic might

compartmentalize some of our findings: changes to the probability of the antecedent or

the probability of the consequent. Perhaps these changes are merely pragmatics, and

should be explained by general principles of conversation; when we build and evaluate

our theories of conditionals and conditional reasoning, we can safely ignore them.

We believe this reasoning underestimates the challenge posed by our results.

What we have identified is a set of simple, straightforward intuitions about how people

change their beliefs on hearing a conditional. These intuitions are supported by

experimental data. These straightforward patterns of belief change are part of human

dealings with conditionals, and need capturing in a framework that fits with other

aspects of belief change – change that arises through subsequent reasoning.

If we are to construct a successful theory of how people respond to the assertion of

conditionals, our theory must deliver the right “objects” for subsequent reasoning. By

simply pointing to pragmatics, we leave the challenge unaddressed. Our pragmatics

needs to be expressed in terms compatible with the rest of our theory of reasoning.

Take, for instance, the probabilistic approach. Many pragmatic frameworks are defined

over formal objects, such as discourse representation theory (see, for example, Asher &

Lascarides, 2003), that do not presently interface with the kind of probabilistic

reasoning from conditionals seen in the literature. For the probabilistic approach, a

(future) probabilistic pragmatics would, of course, fare better, perhaps of the kind that
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has become the focus of recent research (Franke & Jäger, 2016; Goodman & Lassiter,

2015). However, this probabilistic pragmatics would need to solve the fundamental

problem demonstrated in our modeling sections: the di�culty lies in getting the

mechanics of probability theory to work for the straightforward patterns of belief

change we identify. Ultimately the same challenge applies to other theories of

conditionals and conditional reasoning and their respective mechanics.

In summary, conditionals pervade our daily lives, but a basic understanding of

how we use them remains elusive. Decades of multi-disciplinary research e�orts have

focused on their semantics, the inferences they license, and on descriptive psychological

accounts. But these e�orts have overlooked the question of what happens when we hear

a conditional in the first place, and how our beliefs change in response. This basic

question, and the trivial seeming behavioral responses our research reveals, pose a

challenge to every theory of the conditional in the literature.
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Experiment Fixed E�ect Test Statistic p value

1 - Antecedent Assertion ‰
2(2) = 4.55 p = .10

1 - Consequent Assertion ‰
2(2) = 5.13 p = .08

1 - CP Assertion ‰
2(2) = 11.55 p < .001

Null - Single t(11.04) = 3.63 p = .01

Null - Multiple t(15.87) = 4.38 p = .001

Single - Multiple t(50.52) = -.50 p = .87

2 - Antecedent Assertion ‰
2(2) = 3.03 p = .22

2 - Consequent Assertion ‰
2(2) = 2.41 p = .30

2 - CP Assertion ‰
2(2) = 17.41 p < .001

Null - Single t(46.55) = 6.09 p < .001

Null - Multiple t(24.98) = 5.78 p < .001

Single - Multiple t(103.98) = .77 p = .72
Table 1

Parameter estimates for Experiments 1 and 2; note that CP stands for Conditional

Probability.
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Experiment Fixed E�ect Test Statistic p value

3 - Antecedent Expertise ‰
2(1) = .01 p = .93

3 - Consequent Expertise ‰
2(1) = 3.28 p = .07

3 - CP Expertise ‰
2(1) = 8.18 p < .01

4 - Antecedent Expertise ‰
2(2) = .77 p = .68

4 - Consequent Expertise ‰
2(2) = 1.34 p = .51

4 - CP Expertise ‰
2(2) = 20.39 p < .001

Null - Inexpert t(10.55) = 6.02 p < .001

Null - Expert t(14.33) = 10.47. p < .001

Inexpert - Expert t(16.59) = 3.72 p = .005
Table 2

Parameter estimates for Experiments 3 and 4; note that CP stands for Conditional

Probability.

Experiment Fixed E�ect Test Statistic p value

5 - Antecedent Point Values ‰
2(2) = 1.49 p = .47

Ranges ‰
2(2) = 3.08 p = .21

5 - Consequent Point Values ‰
2(2) = .10 p = .95

Ranges ‰
2(2) = .45 p = .80

5 - CP Point Values ‰
2(2) = 17.76 p < .001

Null - Single t(72.70) = 5.30 p < .001

Null - Multiple t(37.93) = 5.35 p < .001

Single - Multiple t(148.91) = .66 p = .79

Ranges ‰
2(2) = 7.26 p = .027

Table 3

Parameter estimates for Experiment 5; note that CP stands for Conditional Probability.
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Experiment Fixed E�ect Test Statistic p value

6 - Antecedent Point Values ‰
2(2) = 1.88 p = .39

Ranges ‰
2(2) = 1.25 p = .53

6 - Consequent Point Values ‰
2(2) = 1.27 p = .53

Ranges ‰
2(2) = .0008 p = 1

6 - CP Point Values ‰
2(2) = 23.84 p < .001

Null - Inexpert t(75.78) = 4.77 p < .001

Null - Expert t(81.95) = 8.59 p < .001

Inexpert - Expert t(67.75) = 3.79 p < .001

Ranges ‰
2(2) = 16.84 p < .001

Null - Inexpert t(117.56 = -2.05 p = .10

Null - Expert t(152.25) = -4.18 p < .001

Inexpert - Expert t(122.69) = -2.03 p = .11
Table 4

Parameter estimates for Experiment 6; note that CP stands for Conditional Probability.
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Experiment Fixed E�ect Test Statistic p value

7 - Full Interaction ‰
2(2) = 81.12 p < .001

7 - Low Prior Assertion ‰
2(2) = 18.04 p < .001

Null - Single t(25.39) = 5.99 p < .001

Null - Multiple t(40.71) = 6.13 p < .001

Single - Multiple t(55.24) = .21 p = .98

7 - High Prior Assertion ‰
2(2) = 8.47 p = .01

Null - Single t(14.80) = -2.23 p = .10

Null - Multiple t(32.39) = -3.20 p = .008

Single - Multiple t(25.11) = .37 p = .93

8 - Full Interaction ‰
2(2) = 10.11 p = .006

8 - Low Prior Expertise ‰
2(2) = 13.13 p = .001

Null - Inexpert t(19.29) = 4.48 p < .001

Null - Expert t(19.72) = 5.22 p < .001

Inexpert - Expert t(44.72) = 1.76 p = .19

8 - High Prior Expertise ‰
2(2) = 1.90 p = .39

Table 5

Parameter estimates for Experiments 7 and 8; note that CP stands for Conditional

Probability.
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Experiment Fixed E�ect Test Statistic p value

9 - Full Interaction ‰
2(2) = 120.16 p < .001

9 - Low Prior Assertion ‰
2(2) = 18.19 p < .001

Null - Single t(27.87) = 7.05 p < .001

Null - Multiple t(15.85) = 5.78 p < .001

Single - Multiple t(41.48) = .10 p = .99

9 - High Prior Assertion ‰
2(2) = 5.48 p = .06

10 - Full Interaction ‰
2(2) = 48.66 p < .001

10 - Low Prior Expertise ‰
2(2) = 20.79 p < .001

Null - Inexpert t(33.39) = 4.33 p < .001

Null - Expert t(35.64) = 7.51 p < .001

Inexpert - Expert t(41.67) = 3.57 p = .003

10 - High Prior Expertise ‰
2(2) = 1.12 p = .57

Table 6

Parameter estimates for Experiments 9 and 10; note that CP stands for Conditional

Probability.
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Prior (no testimony) Posterior (after learning that “If A, C”)

P(C | A) < P“If A, C”(C | A)

very low P(A) < P“If A, C”(A)

P(A) = P“If A, C”(A)

very high P(A) Øú P“If A, C”(A)

very low P(C) < P“If A, C”(C)

P(C) = P“If A, C”(C)

very high P(C) Øú P“If A, C”(C)
Table 7

The table summarize the results reported in Section on the e�ect of learning “If A, C”

on participants’ judgments of P(C|A), P(A) and P(C). These results constitute

constraints that the data impose on any theory of learning from conditional information

that aspires to descriptive accuracy. The asterisk (*) indicates that the increase in

probability is only marginally significant.
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Figure 1 . The Figure shows the descriptive data for P(Antecedent) for the

Number-of-Assertions Task in the left-hand panel and the Expertise task in the

right-hand panel. The error bars show the standard error.
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Figure 2 . The Figure shows the descriptive data for P(Consequent) for the

Number-of-Assertions Task in the right-hand panel and the Expertise task in the

left-hand panel. The error bars show the standard error.

Figure 3 . The Figure shows the data for P(Consequent|Antecedent) for the

Number-of-Assertions Task in the right-hand panel and the Expertise task in the

left-hand panel.The error bars show the standard error.

Figure 4 . The Figure shows the instructions and response scale for the intervals studies.
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Figure 5 . The Figure shows the e�ect of Number of Assertions on the three

probabilities as measured with sliders. The left-hand panel shows the data as point

values. The right-hand panel shows the data as slider ranges. The error bars show the

standard error.

Figure 6 . The Figure shows the e�ect of Expertise on the three probabilities as

measured with sliders. The left-hand panel shows the data as point values. The

right-hand panel shows the data as slider ranges. The error bars show the standard

error.

Figure 7 . The Figure shows the e�ects of Testimony and Prior Probability on

P(Antecedent) for the Number-of-Assertions Task in the left-hand panel and the

Expertise Task in the right-hand panel. The error bars show the standard error.



CONDITIONALS 80

Figure 8 . The Figure shows the e�ects of Testimony and Prior Probability on

P(Consequent) for the Number-of-Assertions Task in the left-hand panel and the

Expertise Task in the right-hand panel. The error bars show the standard error.

Rep

RelHyp

Figure 9 . A Bayesian network for simple (non-conditional) testimony, from Bovens and

Hartmann (2003).

A X Rel

C RepX

Figure 10 . The Bayesian Network for the Baseline Model.

A X Rel

C RepX

Figure 11 . The Bayesian Network for the Modified Model A.
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A X Rel

C RepX

Figure 12 . The Bayesian Network for the Modified Model C.

A X Rel

C RepX

Figure 13 . The Bayesian Network for the Modified Model D.

Figure 14 . The Figure shows a simple possible worlds model, consisting of three words

and representing two propositions, A and its negation, ¬A. Worlds w2 and w3 belong to

the proposition A, are A-worlds, while w1 is a ¬A-world. The world w2 is the nearest

possible A-world accessible from w1. Figure (a) shows the prior probability assignment.

Figures (b) and (c) illustrate the e�ect of updating on A: (b) shows the new probability

assignment after imaging on A, and (c) shows the new probability assignment after

conditionalizing on A.


