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Abstract   40 

High temperatures account for major wheat yield losses annually and, as the climate 41 

continues to warm, these losses will likely increase. Both photosynthesis and respiration 42 

are the main determinants of carbon balance and growth in wheat, and both are sensitive 43 

to high temperature. Wheat is able to acclimate photosynthesis and respiration to high 44 

temperature, and thus reduce the negative affects on growth. The capacity to adjust these 45 

processes to better suit warmer conditions stands as a potential avenue toward reducing 46 

heat-induced yield losses in the future. However, much remains to be learnt about such 47 

phenomena. Here, we review what is known of high temperature tolerance in wheat, 48 

particularly in respect to the high temperature responses of photosynthesis and 49 

respiration. We also identify the many unknowns that surround this area, particularly in 50 

respect to the high temperature response of wheat respiration and the consequences of 51 

this for growth and yield. It is concluded that further investigation into the response of 52 

photosynthesis and respiration to high temperature could present several methods of 53 

improving wheat high temperature tolerance. Extending our knowledge in this area could 54 

also lead to more immediate benefits, such as the enhancement of current crop models.    55 
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Introduction   74 

The warming climate presents a pressing challenge to the global economy and food 75 

security, with food production required to increase by 60% to feed the growing world 76 

population (Ray et al., 2013). Globally, the climate has been steadily warming over the past 77 

century, with the four decades from the 1970s to 2018 each warmer than their predecessor 78 

(CSIRO and The Bureau of Meteorology, 2018). Under a high emission scenario, global 79 

mean temperature will continue to rise by at least 4°C towards the end of this century 80 

(IPCC, 2014). In addition, an increase in frequency, intensity, and durations of heatwaves is 81 

predicted, as well as a diurnal asymmetry in the increase of temperatures, with mean daily 82 

minimum increasing more rapidly than mean daily maximum (Davy et al., 2017; García et 83 

al., 2015; Hatfield and Prueger, 2015; Lobell and Field, 2007). Considering the major role of 84 

temperature in determining the rate of plant growth and development (Berry and Raison, 85 

1981; Hatfield and Prueger, 2015), and that exposure to supra-optimal temperatures can 86 

cause irreversible damage, and even death, in all plant species (Hoffmann et al., 2013), 87 

increases in average temperatures and heatwaves are a considerable concern.  High 88 

temperatures can cause delayed germination, disruption of metabolic processes, and 89 

reproductive failure (Machado and Paulsen, 2001; Wahid et al., 2007). For an economically 90 

and culturally valuable crop like wheat, the effect of heat on yield is of particular 91 

importance.   92 

 Global wheat production exceeds 700 million tonnes annually, making it one of the 93 

most widely grown crops in the world (Food and Agriculture Organization of the United 94 

Nations, 2018). However, increases in temperatures over recent decades have reduced 95 

wheat yields in several regions worldwide, a trend that is predicted to continue (Al‐Khatib 96 

and Paulsen, 1984; Alexander et al., 2006; Asseng et al., 2015; Barnabás et al., 2008). An 97 

example of the global trend can be seen in Australia, where rising temperatures accounted 98 

for 17% of the observed 27% decline in average wheat yield potential between 1990 and 99 

2015 (Hochman et al., 2017). Increases in both mean daily maximum and minimum 100 

temperatures drive these high temperature-induced yield declines (Hunt et al., 2018), with 101 

mean daily minimum temperatures exerting a proportionally greater influence on grain 102 

yields than mean daily maximums (Cossani and Reynolds, 2013; Martre et al., 2017). 103 
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Teamed with the fact that mean night-time temperatures are rising at a faster rate than 104 

those during the daytime (Davy et al., 2017), warming nights loom as a potential source of 105 

significant wheat yield reduction in the near future.  106 

Effects of high temperature on wheat vary with development    107 

Wheat is vulnerable to high temperature throughout its life cycle (Wardlaw et al., 1989b), 108 

with the optimal temperature range varying across different phenological phases (Farooq 109 

et al., 2011; Porter and Gawith, 1999; Slafer and Rawson, 1995). The consequences of heat 110 

stress also vary with development (Table 1). Around reproduction and flowering, high 111 

temperature reduces the number of grains per spikelet and thereby grains per unit area 112 

(when above-average temperature occurs prior to anthesis) (Ferris et al., 1998; Prasad et 113 

al., 2008; Wardlaw et al., 1995; Wheeler et al., 1996), and grain weight (when high 114 

temperature occurs following anthesis) (Stone and Nicolas, 1994; Wardlaw et al., 1989a; 115 

Wardlaw et al., 1989b). High temperature at anthesis is particularly detrimental to yield 116 

because of the narrow optimum temperature range of fertilisation. High temperature 117 

disrupts fertilisation (Prasad and Djanaguiraman, 2014) via the abnormal development of 118 

reproductive organs, such as the ovule or pollen tube, which in turn increases grain 119 

abortion (Saini et al., 1983). It is for these reasons that the effects of high temperature at 120 

anthesis have been so heavily studied to date.  121 

Wheat yields may also be adversely impacted by high temperatures occurring 122 

during developmental stages prior to and following anthesis (Porter and Gawith, 1999; 123 

Skylas et al., 2002; Stone and Nicolas, 1994). High temperatures occurring as early as 124 

sowing can hamper both germination and seedling emergence (Rebetzke et al., 2004). 125 

Supra-optimal temperatures during the vegetative stage speed up development (Al‐Khatib 126 

and Paulsen, 1984; Asseng et al., 2011; Harding et al., 1990), causing plants to flower 127 

earlier in the season and leaving them vulnerable to substantial frost-induced yield losses 128 

(Hunt et al., 2018). An acceleration of wheat development also reduces the window in 129 

which to capture resources (e.g. radiation and water) (Midmore et al., 1982; Shpiler and 130 

Blum, 1986), thus reducing pre-anthesis biomass accumulation (Liu et al., 2010). Up to 131 

80% of total grain production can be drawn from carbohydrates accumulated and stored 132 

prior to flowering, and so less biomass at anthesis can reduce grain number (Prasad et al., 133 
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2008; Slafer and Rawson, 1994) and overall yield (Blum et al., 1994; Villegas et al., 2001). 134 

Furthermore, a plant relies more heavily on stem carbohydrate reserves when 135 

experiencing stresses during the grain filling stage (Bidinger et al., 1977). Thus, supra-136 

optimal temperature earlier in development – prior to grain fill – will reduce the carbon 137 

supply that a plant is able to draw upon to later produce grain (Blum et al., 1994).  Coping 138 

with high temperature during vegetative growth thus requires that wheat be more efficient 139 

in the processes that control net carbon balance (i.e. photosynthesis and respiration) 140 

during vegetative growth.  In this review, we explore what is known, and not known, about 141 

the impacts of heat on these two core carbon exchange processes in wheat. 142 

High temperature responses of photosynthesis and respiration  143 

Photosynthesis and respiration are both temperature sensitive. Net photosynthesis (Anet) 144 

increases as leaf temperature rises, peaking at an optimum temperature (Topt), before then 145 

declining (see Fig. 1), reflecting the impact of temperature on photosynthetic CO2 fixation, 146 

and CO2 release by photorespiration and mitochondrial respiration. However, following 147 

sustained increases in growth temperature, most plants (including wheat) can adjust, or 148 

‘acclimate’, their photosynthetic characteristics (Berry and Bjorkman, 1980; Yamori et al., 149 

2014). Thermal acclimation is a process by which plants adjust metabolic rates to 150 

compensate for a change in growth temperature, potentially resulting in metabolic 151 

homeostasis (i.e. identical metabolic rates in contrasting thermal regimes when measured 152 

in situ). As discussed in more detail in later sections, photosynthetic thermal acclimation 153 

likely involves altered activity of the enzyme responsible for CO2 fixation – Rubisco, 154 

adjustments in electron transport through photosystem II (PSII) in chloroplasts (Yamasaki 155 

et al., 2002), and changes in photo-inhibition susceptibility (Hurry and Huner, 1991, 1992; 156 

Oquist et al., 1993). While the general temperature response of photosynthesis is well 157 

studied, little is known of genotypic variation in wheat photosynthetic thermal acclimation 158 

to high temperature, or of the mechanisms regulating it. This is important in the context of 159 

determining wheat yield under high temperature, as optimising photosynthesis serves to 160 

maximise net carbon gain in the daytime. Even less is known about the temperature-161 

response of the other component of net carbon balance, respiration.  162 
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Wheat leaf respiration increases in response to short-term temperature rise (de 163 

Vries et al., 1979), generally doubling with every 10°C increase in sub-optimal temperature 164 

(Table 2, Fig. 2), with the temperature dependence of respiration likely to be primarily 165 

driven by how temperature affects the processes of substrate supply (Azcón-Bieto et al., 166 

1983; Bingham and Stevenson, 1993) and demand for respiratory products, both locally 167 

and in remote tissues (Farrar, 1985; Farrar and Williams, 1991; O'Leary et al., 2018). 168 

Energy demand is derived from processes such as phloem loading, protein turnover, ion 169 

gradient maintenance, and other metabolic activities in leaves and roots (Vos, 1981). 170 

Importantly, short-term changes in temperature have a greater effect on leaf respiration 171 

than on photosynthesis (Dusenge et al., 2019), a factor with important consequences for 172 

leaf carbon economy. Some wheat varieties are able to thermally acclimate respiration to 173 

compensate for sustained increases in growth temperature, minimising respiratory carbon 174 

losses in leaves under hot growth conditions (Figure 2) (Gifford, 1995; Kurimoto et al., 175 

2004). In wheat, capacity to acclimate leaf respiration has also been linked to homeostasis 176 

of relative growth rate with varying growth temperature (Kurimoto et al., 2004). Thus, it 177 

seems likely that the temperature response of leaf respiration, both over the short and 178 

long-term, is central in determining wheat net carbon balance and biomass accumulation 179 

following high temperature exposure. Despite this likelihood, our knowledge of the 180 

connection between respiratory thermal acclimation and wheat growth and yield remains 181 

limited.  182 

Scope of review 183 

In this review, we focus on short and long-term responses of wheat net carbon balance to 184 

high temperature. Specifically, we examine the high temperature responses of wheat 185 

photosynthesis and respiration, and their relationships in the context of crop production. 186 

While acknowledging that the effects of high temperature on wheat can depend on the 187 

presence of other stresses (abiotic and biotic) - including most notably with water stress, 188 

which can cause stomatal closure and increase leaf temperature (Reynolds et al., 2010) - 189 

for the purposes of this review we focus solely to the effects of high-temperature.  We begin 190 

with considering the general mechanisms likely to underpin heat tolerance in wheat, 191 

drawing on studies specific to this crop, as well as from other model systems.  Thereafter, 192 
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we discuss the roles of photosynthesis and respiration in determining leaf level and whole-193 

plant net carbon balance. Next, we explore the response of wheat photosynthesis to short- 194 

and long-term high temperature exposure, including the biochemical mechanisms 195 

potentially underpinning this response. We then review factors that influence respiratory 196 

costs of growth and maintenance processes, and how temperature affects these processes, 197 

including changes associated with thermal acclimation of mitochondrial respiration. The 198 

importance of understanding how both wheat photosynthesis and respiration will respond 199 

to rising temperatures is highlighted throughout, particularly in the context of avoiding 200 

major yield reductions in a rapidly warming world. 201 

Potential mechanisms underpinning heat tolerance in wheat leaves 202 

Various biochemical mechanisms underpin heat tolerance in plants, including wheat, 203 

although the exact nature of these remain unclear. These mechanisms are related to lipid 204 

membrane thermostability, heat shock proteins (HSPs), reactive oxygen species (ROS), 205 

antioxidants, and the activities of important enzymes (e.g. Rubisco, starch synthase), 206 

among other factors. The thermostability of lipid membranes is controlled by the 207 

saturation or unsaturation of membrane fatty acids. Membranes with greater 208 

thermostability enhance protection against ROS, which are a by-product of increased 209 

respiration under high temperatures (Brestic et al., 2012; Christiansen, 1978; Cossani and 210 

Reynolds, 2012; Mohammed and Tarpley, 2009). High temperature causes membranes to 211 

become overly fluid and permeable (Fig. 3) (Allakhverdiev et al., 2008). The degree of 212 

saturation of membrane fatty acids regulates the structure of the membrane, with higher 213 

relative levels of saturated compared to unsaturated fatty acids in a membrane promoting 214 

rigidity (Los and Murata, 2004; Narayanan et al., 2016). Therefore, plants that are more 215 

adept at increasing the ratio of saturated to unsaturated fatty acids in lipid membranes are 216 

likely to be more tolerant of heat stress (Murata and Los, 1997). PSII, a highly heat-217 

susceptible component of the photosynthetic electron transport chain, is embedded in the 218 

thylakoid membrane. A higher degree of membrane thermostability is likely to promote 219 

heat tolerance of PSII, and thus result in a greater degree of photosynthetic thermal 220 

tolerance. Indeed, cell membrane thermostability has been observed to positively correlate 221 
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with biomass and yield under high temperatures in field conditions, independent of 222 

drought or biotic stresses (Blum et al., 2001; Reynolds et al., 1994).  223 

Heat shock proteins are another biochemical mechanism associated with plant 224 

thermal tolerance. These proteins are induced rapidly and in large quantities following the 225 

onset of heat stress, and are thought to assist other proteins to maintain functionality 226 

(Vierling, 1991; Wang et al., 2004). Assistance may include acting as chaperones to other 227 

proteins to ensure that they are able to continue to function during bouts of high 228 

temperature, as well as preventing the aggregation of misfolded proteins(Trösch et al., 229 

2015). Despite persisting uncertainty about how specific HSPs may confer heat tolerance in 230 

wheat, studies in other species have found that they protect PSII during episodes of high 231 

temperature (Heckathorn et al., 1998; Schroda et al., 1999). Although no direct causal 232 

relationship was observed, Krishnan et al. (1989) found a positive correlation between 233 

thermal tolerance and the expression of small HSPs in two wheat varieties differing in 234 

susceptibility to heat stress. Small HSPs have also been associated with enhancing grain 235 

quality (Skylas et al., 2002). Further research is needed to better understand how specific 236 

HSPs promote thermal tolerance in wheat, as well as the effect that the expression of these 237 

proteins may have on grain yield and quality. More specifically, the role of HSPs and 238 

membrane thermostability in protecting respiration and photosynthesis in wheat under 239 

high temperatures remains unclear, although it is likely that they number among the 240 

mechanisms that regulate the thermal tolerance of each of these processes.  241 

Some of the potential biochemical explanations for heat-induced declines of 242 

chloroplast and mitochondrial function are presented in Fig. 3. High temperature has the 243 

effect of increasing the fluidity of cell and organelle lipid membranes, interfering with the 244 

membrane’s ability to regulate what is allowed to pass in and out of the cell/organelle (Fig. 245 

3). Membrane damage of this kind is common to both chloroplast and mitochondrial-246 

located membranes(Niu and Xiang, 2018). In the context of the chloroplast, heat-induced 247 

membrane damage results mainly from the peroxidation of lipids (particularly 248 

polyunsaturated fatty acids), which interferes with the maintenance of the pH gradient 249 

required for ATP synthesis(Yadav and Pospíšil, 2012). Components of the PSII complex 250 

itself are also damaged by ROS under heat stress, most notably the D1 protein (Fig. 3)(Chan 251 
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et al., 2012). Heat stress to mitochondrial membranes has a similarly negative effect on 252 

ATP production. In mitochondria, this stems from the peroxidation of the phospholipid 253 

cardiolipin, which in turn inhibits cytochrome c oxidase activity, thus decreasing electron 254 

transport and, ultimately, ATP synthesis (Pan et al., 2014; Paradies et al., 1998). However, 255 

by increasing the relative amount of saturated fatty acids in cellular and organelle 256 

membranes, the membrane is able to preserve its optimal structure at higher 257 

temperatures. This fortification of membranes at high temperature offers membrane-258 

bound electron transport greater protection from ROS, therefore enhancing the 259 

thermotolerance of photosynthesis and respiration. 260 

Net carbon balance of wheat – importance of photosynthesis and respiration 261 

The net carbon balance within plants is determined by a combination of both 262 

photosynthetic assimilation (A) and respiration (R).  The general ratio of R/A in whole 263 

plants likely ranges between 0.35 – 0.80 (when measured at a common temperature), with 264 

the exact number varying based on both biotic and abiotic factors during plant growth 265 

(Amthor, 2000). For wheat, maize, and rice, the ratio of R/A generally falls between 0.3 – 266 

0.6 (Amthor, 1989). Even small variations in this ratio can significantly affect plant growth, 267 

illustrating the importance of both A and R in determining overall productivity. The 268 

response of photosynthetic and respiratory carbon exchange to temperature is crucial in 269 

this respect, as R/A ratios of whole-plants typically increase with measurement 270 

temperature (Gifford, 1995). This reflects the fact that respiration is typically more 271 

sensitive to rising temperature than is net photosynthesis (Dusenge et al., 2019). Looking 272 

ahead, one strategy to improve net carbon gain of wheat, then, could be to screen 273 

genotypes for variability in: (1) temperature-normalized R/A (i.e. of plants grown and 274 

measured at 25°C); (2) temperature-sensitive changes in R/A values (e.g. via having a 275 

lower differential in the short-term temperature sensitivity of R and A); and, (3) R/A values 276 

of hot-acclimated plants, where the target is to identify genotypes with lower R/A following 277 

acclimation to hot conditions.  278 

A lower R/A could be achieved through improving the rate of photosynthetic CO2 279 

fixation (e.g. via increasing heat stability of Rubisco activity or improving PSII 280 
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functionality), reducing the energy costs associated with cellular maintenance and/or 281 

biosynthesis (and thus limiting the rate of respiratory CO2 release), and/or improving the 282 

efficiency of respiratory ATP synthesis per unit of CO2 released. There is growing evidence 283 

of significant variation in net photosynthetic rate among field-grown wheat varieties 284 

(Reynolds et al., 2000); similarly, a recent study (Scafaro et al., 2017) using a high-285 

throughput technique reported substantial genotypic variation in leaf respiration rates in 286 

wheat. Together, these observations point to the probability that R/A does differ among 287 

wheat lines. Moreover, there are reports of grain yields being higher in ryegrass, tomato 288 

and canola lines that exhibit lower respiratory rates (Hauben et al., 2009; Nunes-Nesi et al., 289 

2005; Wilson and Jones, 1982). While the stability of such traits may vary depending on 290 

planting density (Kraus and Lambers, 2001), the possibility remains that variations in 291 

photosynthesis and/or respiration could influence wheat yields. More work needs to be 292 

done to understand how respiration influences growth and yield in wheat, how these 293 

relationships may be impacted by increased temperature, and whether measurement at the 294 

plant level extrapolates to field canopies. The capacity to identify varieties that maintain 295 

lower respiration rates under high temperatures could be invaluable to efforts to develop 296 

new wheat varieties better suited to a future climate that is increasingly warming and 297 

unpredictable. 298 

Below, we outline possible ways of maintaining favourable net carbon balance in 299 

wheat. We start by focussing on mechanisms underpinning thermal acclimation of 300 

photosynthesis; we then consider factors that could influence respiratory costs associated 301 

with maintenance and growth, and finally, we consider what is known about thermal 302 

acclimation of respiration in wheat.   303 

Thermal tolerance and acclimation of photosynthesis  304 

Photosynthesis is a highly thermolabile process, which can be influenced or altered by high 305 

temperatures in a number of ways. The basic temperature response of photosynthesis has 306 

been well documented and, aside from variations based on species or biome differences, is 307 

largely conserved across plant species. It generally resembles a parabolic curve, with the 308 

photosynthetic rate initially increasing with temperature, before reaching a peak (Topt) and 309 
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then declining with further temperature increases (Fig. 1) (Berry and Bjorkman, 1980). 310 

This means that temperature extremes on either side of Topt can inhibit photosynthesis. 311 

Temperatures significantly higher than Topt can result in a reduction in photosynthesis in 312 

both wheat leaves and ears, which in turn impairs grain fill (Blum et al., 1994). However, 313 

most plants are equipped to deal with non-optimal temperatures by acclimating their 314 

optimal temperature range of photosynthesis to better suit their new climate (Yamori et al., 315 

2014). When a plant experiences a temperature increase, acclimation allows it to become 316 

more efficient at fixing carbon at elevated temperatures. Wang et al. (2011) investigated 317 

the effects that pre-anthesis acclimation can have on photosynthetic characteristics later in 318 

winter wheat development. Following two 2-day exposures to 32/28 °C (day/night) pre-319 

anthesis, plants were later exposed to further heat stress 7 days after anthesis. The plants 320 

that acclimated to high temperature pre-anthesis had smaller decreases in net 321 

photosynthesis, transpiration rate, and stomatal conductance in comparison to those that 322 

had not experienced pre-anthesis heat exposure (Wang et al., 2011). Due to the inhibition 323 

of photosynthesis being directly associated with reduced yield (Scafaro and Atkin, 2016), 324 

the thermal tolerance and acclimation of photosynthesis in a valuable crop like wheat is a 325 

crucial area of study. 326 

Rubisco activation is sensitive to moderate levels of heat stress  327 

A key limiting factor of photosynthesis is the activity of the carbon-fixing protein Rubisco, 328 

and more specifically, its capacity for carboxylation (Demirevska-Kepova and Feller, 2004). 329 

Rubisco itself is a fairly thermostable enzyme, even in cold-adapted species (Salvucci and 330 

Crafts-Brandner, 2004; Yamori et al., 2006). However, Rubisco activity has been observed 331 

to decline under high temperature, including in wheat (Feng et al., 2014; Kobza and 332 

Edwards, 1987). Crafts-Brandner and Law (2000) suggested that the adverse effect of high 333 

temperature on Rubisco activation is caused by the inhibition of interactions between 334 

Rubisco and the enzyme Rubisco Activase (Rca). The main function of Rca is to clear 335 

Rubisco catalytic sites of sugar phosphates, allowing for more efficient activation 336 

(Robinson and Portis, 1988). During an episode of high temperature, the inhibition of 337 

Rubisco activation is thought to be due predominantly to the rate of Rca activity being 338 

outpaced by the rate at which Rubisco is being deactivated (Crafts-Brandner and Salvucci, 339 
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2000). It is reasonable to assume, then, that Rca plays an important role in determining the 340 

response of photosynthesis to increasing temperature. Ristic et al. (2009) indeed found 341 

that, in winter wheat, Rca expression was positively correlated with productivity following 342 

a 16-day heat stress over the anthesis period. Feller et al. (1998) observed a reduction in 343 

Rubisco activation in wheat leaf tissue following just 5 minutes of exposure to 30-35 °C. Rca 344 

also began to aggregate at high temperature, as well as becoming insoluble as temperatures 345 

rose above 37 °C (Feller et al., 1998). Although investigations into the link between Rca and 346 

productivity in wheat have thus far been limited, findings such as these suggest that Rca 347 

plays a key role in the high temperature response of photosynthesis in wheat. Whether the 348 

expression and activity of this protein during periods of supra-optimal temperatures exerts 349 

a significant influence on growth and yield remains unknown.  350 

Damage to photosystem II when leaves become very hot 351 

Another way that high temperature can inhibit photosynthetic rate is by damaging PSII, a 352 

central component of the chloroplast electron transfer chain (Bukhov et al., 1999). 353 

Specifically, it is thought that high temperature may lead to the loss of two manganese ions 354 

from the oxygen-evolving complex of PSII (Enami et al., 1994). PSII is embedded in the 355 

chloroplast thylakoid membrane, which is itself also susceptible to heat-induced damage 356 

(Gounaris et al., 1984), compounding the thermal sensitivity of PSII. Damage to PSII is a 357 

commonly used gauge of photosynthetic heat tolerance, as it is a trait that can be easily 358 

measured (Knight and Ackerly, 2002; O'Sullivan et al., 2013; Zhu et al., 2018). An increase 359 

in variable chlorophyll fluorescence indicates a decrease in the proportion of light energy 360 

used to drive electron transport, and thus an inhibition of the rate of photosynthesis 361 

(Atwell et al., 1999). More specifically, there are a number of chlorophyll fluorescence 362 

parameters that are used to determine heat tolerance, including Fo (minimum fluorescence 363 

yield) and Fv/Fm (the maximum quantum efficiency of PSII). Both traits are commonly used 364 

as indicators of the heat tolerance of photosynthetic machinery in dark-adapted leaves and 365 

correlate strongly with each other (Sharma et al., 2012), despite providing slightly different 366 

insights into the consequences of high temperature. Fo is the minimum fluorescence, 367 

achieved while all PSII reaction centres are open, and provides an indication of non-368 

photochemical quenching (Maxwell and Johnson, 2000). The difference between Fo and the 369 
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maximum fluorescence (Fm) is termed the variable fluorescence (Fv).The Fv/Fm ratio is 370 

taken following a high intensity pulse of light that causes PSII reaction centres to close. 371 

Decreases in this trait may reflect damage to PSII reaction centres or slowly relaxing 372 

quenching processes (Baker and Rosenqvist, 2004). The primary role that PSII plays in the 373 

electron transfer chain, along with the relative efficiency with which damage to this 374 

complex can be measured, make PSII thermostability a valuable indicator of photosynthetic 375 

thermal tolerance. As a result, a number of studies have employed these techniques when 376 

measuring high temperature tolerance in wheat (Brestic et al., 2012; Haque et al., 2014; 377 

Shanmugam et al., 2013; Sharma et al., 2012; Sharma et al., 2015; Sharma et al., 2014) 378 

Understanding impact of high temperature on photosynthesis through modelling 379 

limitations in the maximum rates of electron transport and Rubisco activity 380 

Two of the main limitations of photosynthesis are the maximum rate of electron transport 381 

(Jmax), and the maximum carboxylation rate of Rubisco (Vcmax). These two processes 382 

determine the upper limit of the photosynthetic rate, assuming there are no limitations on 383 

vascular flow of water within the plant. In light saturated conditions and elevated CO2, 384 

photosynthesis may be limited by the capacity to regenerate RuBP, which reflects Jmax (Sage 385 

and Kubien, 2007). Alternatively, as temperature increases, Vcmax acts as the limiting factor 386 

on the rate of photosynthesis (Fig. 1). As mentioned previously, Jmax may be inhibited by 387 

heat stress via damage incurred by the thermally-sensitive PSII. For Vcmax, temperature 388 

increases between approximately 15 – 30°C lead to an exponential increase; however, a 389 

rapid decline in Vcmax follows as temperatures continue to rise (Hikosaka et al., 2005). This 390 

decline in Vcmax is likely due to the dysfunction of Rubisco Activase, resulting in a decline in 391 

Rubisco activity. The capacity to photosynthetically acclimate to high temperature in wheat 392 

is likely driven by the ability to adjust Vcmax and Jmax in response to increasing temperature. 393 

Photosynthetic rate has been observed to correlate with leaf area index and yield 394 

(Chakrabarti et al., 2013), meaning that limiting high temperature-induced reductions in 395 

photosynthesis and leaf area (likely symptoms of accelerated development) could 396 

potentially protect against yield losses in hot conditions. The capacity to maintain a high 397 

photosynthetic rate at high temperature could aid plants in compensating for a reduction in 398 

net carbon gain resulting from an acceleration in development. Research into the 399 
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relationship between leaf-level photosynthesis and yield in wheat must be explored further 400 

in order to determine the influence of photosynthetic acclimation upon grain yield, as this 401 

link has yet to be demonstrated convincingly in the field.   402 

Reducing the respiratory costs of maintenance and growth  403 

As outlined earlier, one way of enhancing biomass accumulation (and thus yield) is through 404 

minimizing the ratio of respiratory carbon release compared to how much CO2 is fixed by 405 

photosynthesis. From a respiratory perspective, this could be achieved by reducing the 406 

energy demands of growth and maintenance processes, both of which are crucial 407 

components of a plant’s carbon economy (Wohl and James, 1942).  Growth respiration 408 

refers to the respiratory products that are utilised in the conversion of existing materials 409 

into new plant structures (Amthor, 2000). Maintenance respiration encapsulates all 410 

respiration that contributes to the turnover of pre-existing plant proteins and the 411 

preservation of ionic gradients (Penning de Vries, 1975). In the context of improving yields 412 

in wheat and other crops, one strategy is to minimize the energy costs associated with 413 

cellular maintenance, while maintaining the allocation of respiratory products to growth 414 

processes. For such a strategy to work in field conditions, consideration needs to be given 415 

to the extent to which respiratory rates vary throughout development and among organs, 416 

as well as the factors that influence the amount of respiratory ATP produced per unit CO2 417 

released.  The response of growth and maintenance respiration to short- and long-term 418 

changes in temperature – particularly high air temperatures - also needs to be 419 

characterised.    420 

Developmental and organ-to-organ variation in respiration 421 

Wheat respiration varies across developmental stages, and between different plant organs. 422 

Variation in leaf respiratory rates between developmental stages is unsurprising, given that 423 

a plant’s energy demands change as it progresses through its life cycle. When measuring 424 

dark respiration in glasshouse-grown winter wheat, Todd (1982) observed lower shoot 425 

and leaf respiration rates in three week-old plants in the vegetative stage when compared 426 

with individuals in the midst of reproduction. Similarly, canopy respiration of Chinese 427 

winter wheat varieties increased following stem elongation, peaked at anthesis, and then 428 
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decreased as the dough stage was approached (Shuting, 1994). Pinto et al. (2017) found 429 

leaf dark respiration decreased as spring wheat moved from booting and anthesis toward 430 

the latter stages of grain filling. These findings support the notion that wheat leaf 431 

respiration varies phenologically; increasing through the vegetative stage up until anthesis, 432 

then declining in subsequent stages. This trajectory mirrors the pattern of biomass 433 

accumulation throughout the life of many seasonal crops. Ontogenetic changes in 434 

respiration also parallel changes observed in tissue composition over time. McCullough and 435 

Hunt (1993) found that, between the early vegetative stage and anthesis, stores of 436 

structural and non-structural carbohydrates increased in spring and winter wheat, while 437 

protein and lipid levels declined over the same period. Such changes in substrate supply 438 

likely contribute to the observed variation in respiratory rates throughout wheat 439 

development. 440 

As well as varying with phenological stage, wheat respiratory rates also differ across 441 

plant organs. Given the different physiological roles of leaves, shoots, and roots, it follows 442 

that respiratory rates would differ between these tissue types. While leaf respiration 443 

appears to increase through development up to anthesis, Mitchell et al. (1991) found that 444 

shoot respiration decreased as field-grown winter wheat approached anthesis. 445 

Developmental stage and leaf organ also play a role in determining the balance between 446 

growth and maintenance respiration. As wheat approaches maturity, ear respiration 447 

effectively accounts for the entirety of above-ground plant growth respiration (Mitchell et 448 

al., 1991). This is likely typical of most domesticated cereals, having been selected for high 449 

yield over thousands of years. Considering the evidence that respiration varies across 450 

wheat developmental stage and plant organ, it is probable that the effect of high 451 

temperature on net carbon balance would differ in a similar fashion. However, to date 452 

there has been little work comparing the effects of high temperature on wheat respiration 453 

across leaves, shoots, and roots, as well as across phenological stages. Whether variations 454 

in wheat respiration rates are driven predominantly by substrate supply or energy demand 455 

is likely to depend on the extent to which environmental conditions regulate 456 

photosynthesis (influencing substrate supply), and/or influence the processes that use 457 

respiratory products.  458 
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Temperature dependence of growth and maintenance respiration 459 

Temperature is one of the most important abiotic factors that influence plant respiration 460 

(Berry and Raison, 1981). When considering growth and maintenance respiration 461 

independently, both processes are responsive to changes in temperature; however, 462 

maintenance respiration is thought to be more sensitive to temperature change than 463 

growth respiration in mature tissue (Johnson and Thornley, 1985; Slot and Kitajima, 464 

2015a; Vos, 1981). As ambient temperature rises, so too does the rate of activity of 465 

temperature-dependent plant processes, including growth, maintenance, and ion uptake. 466 

Along with this, enzymatic reactions are accelerated, and an increase in demand for 467 

respiratory products ensues. As a result, when measured at low to optimal temperatures, 468 

respiration rate rapidly increases in response to short-term increases in temperature (Fig. 469 

2) (Penning de Vries et al., 1979). In wheat, Penning De Vries et al. (1979) observed growth 470 

respiration increased with temperature from 10 °C, before reaching a maximal rate (Tmax) 471 

at just beyond 30 °C. Following this peak, growth respiration decreased sharply in those 472 

plants experiencing long-term exposure to temperatures above 30 °C (Penning de Vries et 473 

al., 1979). Penning De Vries et al. (1979) also found leaf elongation responded to 474 

temperature increases in a similar fashion, perhaps indicative of restricted cell division 475 

rates as temperatures approached 30 °C, although this possibility was not investigated. A 476 

linear relationship was observed between whole plant above-ground respiration rate and 477 

temperature when measured between 10 – 20 °C (below the temperature at which growth 478 

respiration reaches its maximum rate) (Mitchell et al., 1991). A similar relationship was 479 

observed for canopy respiration in both spring and winter wheat across the range of 5 – 35 480 

°C (McCullough and Hunt, 1993). In both instances, the rate of respiration roughly doubled 481 

with every 10 °C increase in measurement temperature. Such relationships are reflected in 482 

numerous crop growth models that include a respiratory component (Table 3). These 483 

models generally represent the relationship between plant respiration and temperature as 484 

close to the assumption of Q10 = 2 (i.e. a doubling of respiration rate with a 10 °C increase in 485 

temperature). Along with the Arrhenius approach, Q10 has been the most commonly used 486 

way to model the temperature response of respiration in wheat (Table 2). However, 487 

models such as these often fail to capture the complexity inherent in the temperature 488 

response of respiration, notably overlooking the fact that: (1) respiration exhibits a 489 
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decelerating function as leaves warm, reflecting a declining sensitivity to higher 490 

temperatures (Heskel et al., 2016; Kruse and Adams, 2008); and (2) that respiration 491 

acclimates to sustained periods of warming (Atkin and Tjoelker, 2003; Reich et al., 2016; 492 

Slot and Kitajima, 2015a).  493 

Previous studies have found increasing daily minimum temperatures to drive yield 494 

loss in wheat and other crops (Cossani and Reynolds, 2012; Mohammed and Tarpley, 495 

2009), and it is likely that higher respiration rates contribute to this. An increased 496 

respiration rate can increase carbon loss – and therefore, reduce yield – in a number of 497 

ways.  Higher rates of night-time respiratory CO2 release could negatively daily rates of net 498 

C gain (and biomass accumulation) during vegetative growth, and thus negatively affect 499 

yield.   Thus, one strategy for improving wheat yields will be to select lines with reduced 500 

rates of respiratory CO2 release during period of warmer nights.   Another factor is  the 501 

production of ROS, which damage cell and organelle membranes (Narayanan et al., 2015). 502 

It has been suggested that one way that plants manage ROS is to use an alternative pathway 503 

of mitochondrial electron transport, one that uncouples respiratory oxidation from ATP 504 

production (Dahal and Vanlerberghe, 2017; O'Leary et al., 2018; van Aken et al., 2009; 505 

Vanlerberghe, 2013). It is posited that the use of the alternative cyanide-insensitive 506 

pathway may also fulfil other roles during abiotic stress, such as synthesising carbon 507 

skeletons as sources of phosphate or to aid in osmoregulation (Del-Saz et al., 2018; O'Leary 508 

et al., 2018). Our knowledge of the role that the alternative pathway plays in wheat during 509 

episodes of high temperature is still developing; however, recent studies have begun to 510 

explore this area. Results suggested that the activation of the alternative pathway protects 511 

wheat seedling photosynthetic machinery following short-term exposure to 42 °C (Batjuka 512 

et al., 2017), and that the alternative pathway – specifically the alternative oxidase protein 513 

– assists in the acclimation of wheat seedlings to high temperature (Borovik and 514 

Grabelnych, 2018). 515 

Thermal acclimation of respiration – general features 516 

As the global climate becomes more erratic and the frequency and intensity of heatwaves 517 

increase, the trait of thermal acclimation is becoming increasingly relevant. Elevated 518 
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growth temperatures – particularly night-time minimums – and exposure to heatwaves 519 

may elicit greater respiratory carbon losses in plants, so the capacity to thermally acclimate 520 

respiration rate will likely be important in determining wheat productivity going forward. 521 

High temperature acclimation is dynamic, and can refer to short-term, rapid responses to 522 

heat shock, as well as longer-term responses to prolonged exposure to elevated 523 

temperature. It is believed the biochemical mechanisms that underpin rapid acclimation 524 

likely differ from those that drive gradual thermal acclimation (Atkin and Tjoelker, 2003; 525 

O'Leary et al., 2018; Zhu et al., 2018), although understanding of these mechanisms 526 

remains limited. Thermal acclimation of respiration is characterised by a change in Tmax, or 527 

the intercept or slope of the respiratory temperature response curve in order to 528 

compensate for a shift in growth temperature (Fig. 2; (Atkin et al., 2005; Atkin and 529 

Tjoelker, 2003). It has long been assumed that leaf respiration rates double for every 10 °C 530 

rise in temperature, however thermal acclimation prevents respiration from increasing to 531 

an inefficient level and causing excessive losses of carbon when there is no corresponding 532 

demand for such a large increase in ATP (Atkin et al., 2000a; Covey‐Crump et al., 2002). An 533 

example of this is a Reich et al. (2016) field study of boreal and temperate trees, in which 534 

acclimation to a 3.4 °C increase in growth temperature resulted in an 80% reduction in the 535 

observed respiration rate compared to what was expected sans acclimation.  536 

Atkin and Tjoelker (2003) suggested that long-term respiratory acclimation can 537 

occur in one of two ways. The first is ‘type I’ acclimation, in which the slope (Q10) of a 538 

respiratory temperature response curve changes, but the intercept of the curve remains 539 

unchanged. In a high temperature situation, this would manifest as a decrease in the Q10 540 

when plants acclimate to warmer conditions. In ‘type II’ acclimation, the intercept of the 541 

temperature response curve is shifted, resulting in altered respiration rates at both high 542 

and low measuring temperatures (Atkin and Tjoelker, 2003). Type II acclimation may also 543 

include a change in Q10, although this is not necessary for this form of acclimation. Type I 544 

acclimation is thought to be driven by changes in the respiratory substrate supply, the 545 

restriction of adenylates to leaf respiration, and/or changes in protein abundance within 546 

existing organelles (Atkin and Tjoelker, 2003). Contrastingly, type II acclimation is more 547 

likely a product of altered leaf morphology and biochemistry in newly-developed leaves, 548 
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leading to a change in respiratory capacity (Atkin and Tjoelker, 2003). Around the world, 549 

plants vary in their Tmax, and those from colder biomes exhibit greater leaf respiration rates 550 

and higher intercepts of their respiratory temperature response curves in comparison to 551 

warmer biomes (Heskel et al., 2016; O'Sullivan et al., 2017). It has been suggested that 552 

there are no systematic differences among species in acclimating root respiration 553 

(Atkinson et al., 2007), or leaf respiration and photosynthesis (Campbell et al., 2007). 554 

However, Atkin et al. (2007) and Loveys et al. (2002) both found that, while whole-plant 555 

R/A ratio remained constant at moderate growth temperatures, the ratio markedly 556 

increased at high growth temperatures due to increased respiratory costs associated with 557 

ion uptake and cellular maintenance. 558 

Accounting for variability in the temperature response of respiration 559 

A range of factors drive variation in the shape of the temperature response of plant 560 

respiration (i.e. variations in Q10 values), including temperature itself (Covey‐Crump et al., 561 

2002; Loveys et al., 2003; O'Sullivan et al., 2013), water availability (Turnbull et al., 2001), 562 

light availability , and soil nutrients (Turnbull et al., 2005). In wheat, the effects of drought 563 

(Liu et al., 2004), elevated CO2 (Gifford, 1995), light (McCashin et al., 1988; Vos, 1981), and 564 

N supply (Vos, 1981) on respiration have been investigated. However, the temperature 565 

sensitivity and response of wheat respiration remains largely unexplored. Variation in Q10 566 

values may reflect the temperature sensitivity of respiratory enzymes, or a transition from 567 

enzymatic control to limitations imposed by adenylate or substrate demands (Atkin et al., 568 

2005; Atkin and Tjoelker, 2003). Respiration tends to be limited by enzyme capacity at 569 

lower temperatures, while the availability of substrates and adenylates limit respiration at 570 

high temperatures (Atkin et al., 2005). As part of the energy demand that influences 571 

respiratory flux, adenylates can control respiration rates via the energy requirements of 572 

processes such as growth, maintenance, and ion uptake (van der Werf et al., 1988). 573 

Therefore, temperature-driven changes in these processes can influence the extent to 574 

which respiration is regulated by adenylates, particularly at high temperatures. In fact, Slot 575 

and Kitajima (2015b) suggested that the observed decline in Q10 at high temperatures 576 

likely reflects the declining carbon pool which limits further increases in respiration. 577 

Similarly, given the large scope for adjustments of respiration rate via thermal acclimation, 578 
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as well as the increasing variability of the climate, crop growth models should be improved 579 

to more accurately predict productivity in a future, warmer world. Current models (Table 580 

3) should look to incorporate more realistic representations of the high temperature 581 

response of respiration, including a plant’s capacity to thermally acclimate its respiration 582 

rate. This will require extending research into the high temperature response of, and 583 

variation in, respiration rates amongst wheat varieties, on which there has been little work 584 

to date. Assuming varieties do vary in their high temperature acclimation of respiration, it 585 

is still unknown whether this trait is associated with an increase in growth or yield in heat 586 

stressed wheat. However, considering that respiration is more sensitive to increases in 587 

temperature than is photosynthesis (Way and Yamori, 2014), the ability to minimise 588 

respiratory carbon loss under high temperature would likely have a direct impact on 589 

growth and yield. By minimising respiratory carbon losses, particularly at night, the R/A 590 

ratio could be prevented from moving past the point at which the plant experiences net 591 

carbon losses induced by high temperature.  592 

Conclusions and future directions 593 

Despite growing awareness of the negative impacts of high temperature on both 594 

respiration and photosynthesis, as well as the continued warming of the climate, 595 

understanding of how these processes respond to high temperature in wheat remains 596 

limited. In addition, the response of wheat net carbon balance to increases in daily 597 

maximum and minimum temperature looms as a crucial, yet poorly understood area. Given 598 

that the diurnal asymmetry in climate warming favours night-time temperature rises, there 599 

is potential for increased night-time carbon loss via respiration amongst wheat lines and 600 

other major crops going forward. When combined with the possibility of increasing daily 601 

maximum temperatures leading to a reduction in carbon fixed during the day, wheat 602 

biomass accumulation will likely be compromised in a future warming climate. A better 603 

understanding of how plants protect photosynthetic processes against high temperature 604 

may contribute to maintaining net carbon gain over a 24-hour period, and ultimately 605 

productivity. However, because of the more rapid rate of increase of night time 606 

temperatures, the higher thermal sensitivity of respiration, and the previously observed 607 

links between high night temperatures and yield loss, the thermal response of leaf 608 
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respiration will likely be even more influential in determining heat-induced decreases in 609 

wheat biomass accumulation. Plants with a greater capacity for respiratory acclimation to 610 

high temperature could stand to lose 1.5 times less carbon via CO2 efflux (Atkin et al., 611 

2000b). Because of this, the ability to adjust respiratory rates in the face of supra-optimal 612 

temperatures is a highly desirable trait for future wheat varieties. Such varieties could 613 

potentially compensate for a reduced period of biomass accumulation via greater efficiency 614 

in managing net carbon balance under high temperature (i.e. maximising photosynthetic 615 

carbon gain through the day and minimising respiratory carbon losses at night). 616 

Developing new varieties that are more adept at thermally acclimating respiration and 617 

photosynthesis may therefore help to avoid the yield losses that are projected with 618 

increasing average day and night-time temperatures. In order to successfully develop 619 

varieties equipped for high temperature acclimation, identifying the extent of genetic 620 

variation that exists for these traits in wheat is a necessity.  621 

In pursuit of this, future work must determine the extent to which wheat thermal 622 

acclimation of net carbon balance is associated with increased production in hot 623 

conditions. By identifying the biochemical mechanisms that confer chloroplast and 624 

mitochondrial heat tolerance and acclimation, we could then seek to quantify the effect of 625 

these on growth and yield. Screening large numbers of varieties for variability in 626 

acclimation potential and respiratory thermal tolerance (i.e. screening for Tmax, see Fig. 2) 627 

will also be valuable moving forward, with genome wide association studies a potential 628 

option for understanding the genetic basis of such traits. The benefits of better thermally 629 

acclimating varieties could also be enhanced by delayed-flowering mechanisms. The 630 

combination of increasing net carbon gain over a 24-hour period with a delay in flowering 631 

time could aid plants in maximizing their resource capture, particularly when high 632 

temperatures have accelerated phenological development. Finally, incorporating this 633 

knowledge into current crop growth models would also allow for more accurate 634 

predictions of wheat productivity in a future warmer climate. The increasing volatility of 635 

the climate means that high resolution predictions of crop growth and yield will likely 636 

become more difficult. Models of greater accuracy may better inform growers about which 637 

varieties are more suited to cope with either warmer growth temperatures, or the sudden 638 
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onset of heatwaves. Such models could also improve yield estimates for wheat varieties 639 

during growing seasons, including when heatwaves have been experienced, or are 640 

anticipated.   641 
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Table 1: Negative effects of high temperature on wheat across development stages 

Developmental stage 
when heat treatment 

occurred(approximate 
Zadok’s growth stages)1 

Temperature 
treatment 

Key findings of effects of 
high temperature 

Reference 

Pre-anthesis 

 Includes Z10 – 60 Natural warming 
throughout vegetative 
stage 

Shortened pre-anthesis stage, 
reduced biomass at anthesis 

Liu et al. (2010) 

No stage listed – model Increased maximum 
temperatures during 
vegetative growth 
(modeled) 

Increased crop 
evapotranspiration leading to 
reduced soil moisture later in 
seasons 

(Asseng et al., 
2011) 

Z0 – 59 30/23°C for duration of 
vegetative growth until 
ear emergence 

Decreased duration of 
vegetative, spikelet, and 
elongation phases, decreased 
number of spikelets per ear 

Rahman and 
Wilson (1978) 

Anthesis 

 ~Z41 30°C for 3 days Greatly decreased grain set, 
reduced female fertility 

Saini et al. 
(1983) 

~Z61 – 91 31/20°C, from anthesis 
to maturity 

Reduced duration of grain 
filling period 

Dias and Lidon 
(2009) 

~Z59 – 65 12 days, max temp 
+31°C 

Decreased root biomass, 
grain number and yield 

Ferris et al. 
(1998) 

~Z51 – 65 5 days, 36/26°C Decreased floret fertility Prasad and 
Djanaguiraman 
(2014) 

Post-anthesis 

 ~Z69 – 83 3 days, max temp 40°C Reduced individual grain 
mass 

Stone and 
Nicolas (1994) 

~Z69 – 91 24/19°C or 30/25°C 
from anthesis to 
maturity 

Reduced grain mass at 
maturity 

Wardlaw and 
Moncur (1995) 

~Z69 - 75 34/26°C for 16 days, 
beginning 10 days after 
anthesis 

Reduced quantum yield of 
PSII, reduced individual grain 
mass and yield 

Pradhan and 
Prasad (2015) 

~Z69 – 91 34°C/22°C, 32°C/24°C, 
26°C/14°C, and 
24°C/16°C from 7 days 
after anthesis to 
maturity 

Accelerated leaf senescence, 
reduced single grain mass, 
increased lipid peroxidation 

Zhao et al. 
(2007) 
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 1Zadok’s growth stages provided are estimates based on methodology provided in 
respective papers. Most studies did not provide any kind of growth scoring for their plants, 
and estimates with large ranges of growth stage reflect this.  
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Table 2: Summary of past approaches used to quantify the response of wheat respiration to short-term increases in 
temperature. 

Approach used 
to measure 
short term 
temperature 
sensitivity1 

Scope of the study relevant 
to the present review 

Growth stage 
considered for 
measurements 

Organ/organelle 
used for 
respiration 
measurements  

Findings Reference 
 

 

Arrhenius plots      
 To study the effect of 

temperature on mitochondrial 
and shoot segment respiration in 
three wheat varieties grown at 2 
and 18°C 

Compared germinating 
seedling at common 
morphological stage i.e. 
seedlings grown  at 24°C  
for 2 days with seedlings 
at 2°C  for 4 weeks  in 
the dark 

Shoot segments and 
isolated 
mitochondria 
 
 

Respiration decreased 
sharply beyond the transition 
temperature of 6-10°C for 
shoot segments and 10-14°C 
for isolated mitochondria 
indicating increased 
activation energy (Ea) for 
respiration 

Pomeroy and 
Andrews 
(1975) 

 To explore the cyanide-
insensitive respiration among 
wheat genotypes and the effects 
of temperature 

Etiolated coleoptiles at 
20-22°C for 3-4 days in 
the dark 

Isolated 
mitochondria 
 
 

Relatively linear increase in 
respiration increasing 
temperature. A distinct break 
noted at ~17.5 °C and 
alternative respiration was 
maximal around this point as 
the state of mitochondrial 
membrane influenced the 
alternative oxidase in 
germinating wheat. Also, 
respiration declined following 
this point partly owing to 
decreased solubility of oxygen 
when increasing temperature 

McCaig and 
Hill (1977) 
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 To test whether the Ea of wheat 
mitochondrial oxidative activity 
is constant across the 
physiological range of 
temperature and to explore any 
phase transition in membrane 
lipids within this temperature 
range. 

Germinating seedling at 
24°C for 24 to 36 hours 
in the dark 

Isolated 
mitochondria 

The Ea for the oxidation of 
both succinate, α-
ketoglutarate and succinate-
cytochrome c oxidoreductase 
activity were constant across 
the temperature range of 3-
27°C and a phase transition 
has been noted about 0 and 
30°C for wheat membrane 
lipids in chilling resistant 
varieties being similar to their 
chilling sensitive 
counterparts. 

Raison et al. 
(1977) 

 To explore the effect of 
carbohydrate status on 
temperature dependence of 
respiration in darkened and 
illuminated wheat leaves 

Mature leaves of 30-day-
old plants grown at 
25/20°C and at day 
length of 13 hours. 
Measurement 
temperatures began at 
20°C  and increased 
rapidly up to 42°C 

Mature leaves CO2 efflux increased following 
photosynthetic activity due to 
carbohydrate accumulation 
and a dramatic change 
observed in the shape of 
respiration-temperature 
showing different Ea above 
and below 20°C. 

Azcón-Bieto 
and Osmond 
(1983) 

Q10      
 The temperature coefficient of 

respiration in the short term 
Instantaneous 
temperature response of 
respiration was 
measured between 14 
and 27°C 

Various organs 
including shoot, 
roots, stem, sheath, 
leaf laminae and ears 

The Q10 remained closer to 2.2 
yet varied from 1.8 to 2.4 
when tested between 14-
27°C. A representative Q10 

value of 2.2 has been 
suggested by authors for 
vegetative organs of wheat 
irrespective of the treatment, 
age, organ, and temperature 
range.   

(Vos, 1981) 

 
 
 

 

Effect of temperature on dark 
respiration and temperature 
sensitivity of wheat varieties in 
vegetative stage 

14 hour photoperiod 
and measurement 
temperatures ranged 
from 5 - 35°C, with 
exposure for between 
30 – 60 minutes. 

Shoots during 
vegetative stage 

Respiration increased when 
increasing temperature up to 
35°C. Q10 was 1.89 at 15/5°C 
(day/night), 1.37 at 25/15°C, 
and 1.98 at 35/25°C. 
Respiration rate at 35°C was 
higher in vegetative stage 
than at reproductive stage. 

(Todd, 1982) 
 
 
 
 
 

 

 Effect of temperature on dark 
respiration and temperature 
sensitivity of wheat varieties in 
reproductive stage. 

14 hour photoperiod 
and measurement 
temperatures ranged 
from 5 - 35°C, with 

Flag leaf and spike 
during reproductive 
stage 

Respiration gradually 
increased when increasing 
temperature from 5°C to 35°C. 
Consistently higher 

(Todd, 1982) 
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exposure for between 
30 – 60 minutes. 

respiration values than 
vegetative stage at same 
measuring temperatures. Q10 
value decreased from 3.74 for 
plants at 15/5°C  (day/night) 
to 2.04 at 35/25°C 

 Observe response of leaf dark 
respiration in winter wheat to 
natural variations in night 
temperature 

Plants experienced 
ambient night-time 
temperature 
fluctuations (10 -21°C), 
leaf dark respiration 
measured at four time 
points throughout one 
night during booting 
stage 

Mature flag leaves From four measurements 
taken throughout one night, 
Q10 value was 1.977 

(Tan et al., 
2013) 

1 Measure relationship between 
dark respiration of shoots and 
ears with N, water availability, 
temperature, and simulated 
photosynthesis 

Shoots measured 
through vegetative stage 
to anthesis, ears 
measured from anthesis 
to maturity.  

Main shoots and ears Although not explicitly 
provided by the authors, Q10 
could be estimated from 
figure. Q10 for shoots was 
roughly 2; for ears, Q10 was 
approximately 2 when 
measured near anthesis, yet 
less than 2 when measured 
closer to maturity 

(Mitchell et 
al., 1991)2 

Arrhenius plot 
and Q10 

     

 Compare short and long term 
effects of temperature on dark 
respiration, its components and 
its relationship to the ratio of 
respiration to net assimilation 

Plants were grown at 15, 
20, 25 and 30°C and 
then exposed to 15, 20, 
25, or 35°C for 4 hours. 

Whole plants Arrhenius coefficients of 
1.2x106, 46 x103, 5x103, 
0.3x103 and Q10 values of 
1.80, 1.59, 1.49 and 1.32 were 
found at 15, 20, 25, 30°C, 
respectively. The absolute 
sensitivity of specific 
respiration was independent 
of temperature across 15-
25°C and then declined at 
30°C 

(Gifford, 
1995) 
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1Q10, extent of increase in respiratory rate with an increase in temperature of 10 °C;  2 the authors do not mention the term Q10, but they provided results that allow for 
the calculation of Q10 
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Table 3: Selection of popular crop growth models and how these models incorporate photosynthesis, respiration, and the 
temperature responses of each.  

Model 
Species 

modelled 
Incorporation of respiration 

(R) 
Incorporation of CO2 

assimilation (A) 
Temperature responses of R & A 

References 

APSIM 
Wheat, maize, 
rice, and others 

When modelling transpiration 
demand for wheat, potential 
biomass accumulation is 
intercepted radiation minus R, 
divided by transpiration 
efficiency. Assumes R is 0. 

A represented as potential 
biomass accumulation resulting 
from radiation interception, 
accounting for stress factors. 

Includes temperature factor in 
models of biomass accumulation, 
calculated based on mean daily 
temperature. No temperature 
response of R included.  
 

(Zheng et al., 
2014) 

CERES-
wheat  

Over 42 crops 
(mainly annual 
crops such as 
wheat, rice, 
maize, and grain 
legumes) 

R is calculated as proportional 
to A rather than calculated 
individually. It is assumed to 
increase exponentially with 
temperature up until the 
maximal rate is reached. 

Represented as potential daily 
carbohydrate production, minus 
low temperature, water stress, 
and N stress. 

Temperature stress component of 
photosynthesis calculation is based 
on weighted mean of daily 
maximum and minimum 
temperatures. The optimum 
daytime temperature for 
photosynthesis is considered to be 
18°C. 

(White, 2001) 

DAISY 
Spring barley, 
winter wheat 

Respiration considered as a 
combination of growth 
respiration and temperature 
dependent maintenance 
respiration.  

Daily gross canopy 
photosynthesis based on 
assumptions that gross leaf 
photosynthesis is described as a 
single light response curve, and 
that Beer’s law describes crop 
canopy light distribution. 
 

Assumes Q10 of maintenance 
respiration is 2, and therefore a 
constant relationship between R/T 
(i.e. for every 10°C increase, R 
doubles). 

(Hansen et 
al., 1991) 

MONICA 
(derived 

from 
HERMES) 

Wheat and eight 
crops 

 Maintenance respiration is 
calculated separately for day 
and night periods using 
AGROSIM algorithms. 
 

A based on gross canopy CO2 
assimilation, consisting of light 
response curve of leaves, green 
area of canopy, leaf 
arrangement, and incident 
irradiation.  

Estimations of impacts of extreme 
heat on growth and yield via 
reduction of biomass accumulation 
based on Challinor et al. (2005). 
Maintenance R Q10 = 2. 

(Mirschel and 
Wenkel, 

2007; Nendel 
et al., 2011; 

van Keulen et 
al., 1982)  
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WOFOST 
Wheat, barley, 
rice, maize and 
others 

Maintenance R calculation 
based on plant organ dry weight 
and chemical composition. 
Assumes maintenance R cannot 
outstrip gross A.  

Calculation of daily gross CO2-
assimilation rate is based on 
absorbed radiation (incoming 
radiation and leaf area) and 
photosynthesis-light response 
curve of leaves. Leaf age and 
temperature also influence A. 

Maintenance R Q10 = 2.  
Daily minimum temperature can 
reduce A, based on low 
temperature inhibiting transition 
of assimilates to structural biomass 
in the night. 

(de Wit et al., 
2018) 

CropSyst 
Most crops 
(including 
wheat) 

Has no respiration component. 
Daily biomass accumulation is 
mediated only by N, 
transpiration, and temperature 
factors.  

Represents A as unstressed 
biomass accumulation, 
calculated as intercepted PAR-
dependent biomass growth, 
which comprises of RUE, 
intercepted PAR. 

The RUE component of A is limited 
by low temperature during early 
growth. RUE is assumed to linearly 
increase with increases in air 
temperature from base 
temperature for development to an 
optimum temperature for early 
growth. 
There are no high temperature 
limitations on growth.  

(Stöckle et al., 
2003) 

Abbreviations: Respiration rate, R; photosynthetic rate, A; nitrogen, N; radiation use efficiency, RUE; photosynthetically active radiation, PAR; Q10, extent of 

increase in respiratory rate with an increase in temperature of 1
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Box: High temperature tolerance and acclimation of photosynthesis and respiration 

Box Text: Figures 1 and 2 depicts the typical temperature responses of net CO2 assimilation 

(Anet) and leaf dark respiration (R), respectively, with a focus on what occurs at high 

temperatures when these processes peak (i.e. at the temperature of maximum photosynthetic 

rate – Topt, and respiration rate – Tmax )and then begin to fall. Figure 1 compares the 

temperature response of light-saturated Anet in a cold-acclimated and hot-acclimated plant. Anet 

increases with measuring temperature, until it reaches a maximum rate of assimilation (Topt). 

Anet reflects the balance between photosynthetic carbon gain and photorespiratory carbon loss. 

Thus, Topt is not necessarily an optimum temperature for photosynthetic carbon gain, but rather 

the point at which photosynthetic carbon gain is maximized in respect to respiratory carbon 

loss. Increases in temperature beyond Topt result in Anet sharply declining. Anet is determined by 

a combination of the carboxylation rate of Rubisco (Vc), the oxygenation rate of Rubisco (Vo), 

and respiration in the light (Rlight). The equation for this comes from Farquhar et al. (1980): 

𝐴net = 𝑉c − 0.5𝑉o  −  𝑅light 

The effects of these factors on Anet change with temperature, as is represented in the bars 

below Fig. 1. The increase in Anet prior to reaching Topt is driven by the rise in Vc outpacing that 

of Vo or Rlight. However, beyond Topt Vo and Rlight begin to increase with temperature at a rate 

greater than that of Vc. This results in carbon loss outpacing carbon gain, and thus the observed 

decrease in Anet. 

At low temperatures in light saturated conditions carbon assimilation is limited by the rate of 

electron transport. When temperatures approach and exceed Topt the maximum rate of 

carboxylation by Rubisco (Vcmax) becomes the predominant factor limiting assimilation. 

Therefore, Topt is partly a reflection of Vcmax, and so a higher Topt may be indicative of a greater 

Vcmax. Applying this to Fig. 1, it is likely that the Vcmax of the cold-acclimated plant is greater than 

that of the hot-acclimated plant at temperatures below and around its Topt. However, as 

temperatures increase beyond this point, the Vcmax of the hot-acclimated plant continues to 

increase, while that of the cold-acclimated plant falls. The difference in Anet at high measuring 

temperatures between the cold- and hot-acclimated genotypes in Fig. 1 therefore reflects the 

difference in Vcmax between the two plants. Because of the important role of Rubisco Activase 

(Rca) in maintaining Rubisco function at high temperatures, Vcmax represents the capacity of Rca 

to continually activate Rubisco under heat stress. The higher Topt of the hot-acclimated plant in 

Fig. 1 suggests that it has a greater Vcmax at high measuring temperatures, and thus likely a 

greater abundance of and/or a more thermally stabile Rca.  

Figure 2 shows dark respiration plotted against measurement temperature for a hot acclimated 

and a cold acclimated plant. This figure was generated using the Schoolfield model of 

temperature-dependent enzyme activity (Schoolfield et al., 1981). The acclimation effect 

observed was generated within the model by increasing the high temperature tolerance of 

enzyme activity and decreasing the rate of enzyme activity at 25°C in the hot-acclimated plant 
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when compared to the cold-acclimated plant. As is the case for Anet in Fig. 1, respiration 

increases with temperature until it peaks at Tmax, at which point respiration rate decreases with 

subsequent increases in temperature. The thermal acclimation of respiration can be seen when 

comparing the curves of the two plants at different measuring temperatures. Respiration in the 

hot-acclimated plant is lower than the cold-acclimated plant at lower measuring temperatures. 

Tmax also occurs at a higher temperature in the hot-acclimated plant, and so respiration begins 

to fall at lower temperatures in the cold-acclimated plant than in the hot-acclimated one. At 

30°C, R is greater in the cold-acclimated plant than the hot-acclimated one. This corresponds to 

what is occurring at the same temperature in Fig. 1, where Anet is lower in the cold-acclimated 

than the hot-acclimated plant. The decrease in Anet in the cold-acclimated plant at 30°C is likely 

driven in part by an increase in carbon loss via R. Similarly, the hot-acclimated plant’s ability to 

maintain Anet at higher temperatures than the cold-acclimated plant is aided by a comparatively 

lower respiratory rate at these temperatures. 
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Figure Legends 

Figure 1: Typical temperature response curves of net CO2 assimilation (Anet) for a cold-

acclimated plant (blue, solid line) and hot-acclimated plant (orange, dotted line). Bars 

underneath plot indicate factors limiting Anet as temperature increases. Anet is 

predominantly limited by Rubisco capacity (Vc) at sub-optimal temperatures and by the 

rates of oxygenation of Rubisco (Vo) and respiration in the light (Rlight) at supra-optimal 

temperatures.  

Figure 2: Typical high temperature responses of leaf dark respiration in a cold acclimated 

(blue solid line) and hot-acclimated (orange dashed line) plant. Figure was generated using 

the Schoolfield model of temperature-dependent enzyme activity (Schoolfield et al., 1981). 

The parameters of the model that were altered to achieve the acclimation response 

pictured were enzyme activity (arbitrary units) at 25°C (V25) and the high temperature 

tolerance (in K) of enzyme activity (TH). For the cold acclimated plant, V25 = 14, TH = 337 K; 

for the hot-acclimated plant, V25 = 18, TH = 347 K. 

Figure 3: Schematic diagrams of thylakoid membrane and inner mitochondrial membrane 

following heat shock exposure. In both organelles, high temperature-generated reactive 

oxygen species damage membrane-bound proteins and inhibit electron transfer. In each 

case this has the effect of decreasing ATP synthesis, and contributes to the falling rates of 

Anet and R that are observed at high temperatures in Figures 1 and 2. In the case of the 

mitochondrial membrane, the plant can also activate an alternative pathway for oxidation 

when experiencing heat stress. This alternative pathway (represented by the membrane 

components in white – external dehydrogenase, ED; internal dehydrogenase, ID; 

alternative oxidase, AOX) uncouples ATP synthesis from oxidation by not including any of 

the proton pumping characteristic of Complexes III – IV. This is thought to curb the 

production of toxic reactive oxygen species (ROS; like 1O2). The membrane also contains 

uncoupling proteins which serve to limit the buildup of ROS. The negative effects of ROS 

are also counteracted by the induction of small HSPs, which assist proteins in maintaining 

their structure under high temperatures. 
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Figure 1: Typical temperature response curves of net CO2 assimilation (Anet) for a cold-

acclimated plant (blue, solid line) and hot-acclimated plant (orange, dotted line). Bars 

underneath plot indicate factors limiting Anet as temperature increases. Anet is 

predominantly limited by Rubisco capacity (Vc) at sub-optimal temperatures and by the 

rates of oxygenation of Rubisco (Vo) and respiration in the light (Rlight) at supra-optimal 

temperatures.  
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Figure 2: Typical high temperature responses of leaf dark respiration in a cold acclimated 

(blue solid line) and hot-acclimated (orange dashed line) plant. Figure was generated using 

the Schoolfield model of temperature-dependent enzyme activity (Schoolfield et al., 1981). 

The parameters of the model that were altered to achieve the acclimation response 

pictured were enzyme activity (arbitrary units) at 25°C (V25) and the high temperature 

tolerance (in K) of enzyme activity (TH). For the cold acclimated plant, V25 = 14, TH = 337 K; 

for the hot-acclimated plant, V25 = 18, TH = 347 K.  
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Figure 3: Schematic diagrams of thylakoid membrane and inner mitochondrial membrane 

following heat shock exposure. In both organelles, high temperature-generated reactive 

oxygen species damage membrane-bound proteins and inhibit electron transfer. In each 

case this has the effect of decreasing ATP synthesis, and contributes to the falling rates of 

Anet and R that are observed at high temperatures in Figures 1 and 2. In the case of the 

mitochondrial membrane, the plant can also activate an alternative pathway for oxidation 



47 
 

when experiencing heat stress. This alternative pathway (represented by the membrane 

components in white – external dehydrogenase, ED; internal dehydrogenase, ID; 

alternative oxidase, AOX) uncouples ATP synthesis from oxidation by not including any of 

the proton pumping characteristic of Complexes III – IV. This is thought to curb the 

production of toxic reactive oxygen species (ROS; like 1O2). The membrane also contains 

uncoupling proteins which serve to limit the buildup of ROS. The negative effects of ROS 

are also counteracted by the induction of small HSPs, which assist proteins in maintaining 

their structure under high temperatures.  


