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Drug response plays a key role in exploring how drug toxicity affects the evolution of tumour 
cells. Depending on the tumour size in tissue, we initiate pulsed comprehensive therapies, and 
then construct an impulsive tumour-immune model, in which whether comprehensive therapies 
applied or not only relies on the threshold of tumour size. By employing the definitions and 
properties of the Poincaré map, we show that the effector cell eradication periodic solution is 
globally stable under threshold conditions. In the light of the bifurcation theorems, it is shown 
that transcritical bifurcations can occur with respect to many treatment parameters including 
depletion rate, chemotherapeutic drug concentration, medicine toxicity coefficient and accumu-
lation rate of effector cells. Then we provide conditions for the existence of order−k(k ≥ 1) 
periodic solutions. The results indicate that threshold R0 is sensitive to treatment parameters 
and the proposed system exists with very complex dynamics when treatment parameters are 
chosen as bifurcation parameters. Moreover, the therapeutic protocol with a smaller chemother-
apy drug dosage and more frequent intakes is more effective to maintain higher tumour cell 
depletion rate.
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1. Introduction

With the industrialization degree being increasingly raised, people suffer from the pains and damages 
brought by various types of diseases such as cancer while they enjoy the material civilization brought by 
speedily developing productivity. How to cure cancer has always been a research hotspot. From early surgi-
cal treatment to subsequent radiotherapy and chemotherapy, and to the recently proposed immunotherapy, 
people have been exploring various therapies for curing cancer [Gubin et al., 2014; Ribas et al., 2003; Dear-
naley et al., 1999; Finkelstein & Fishman, 2012]. In order to evaluate the effectiveness of various treatments 
and provide theoretical basis for clinical treatment, many tumour-immune dynamic models with different 
therapies have been proposed and studied.

In 1994, Kuznetsov constructed a two ordinary differential equations to model the interactions between 
tumour cells and immune cells, the results revealed the mechanisms of tumor dormancy and how the
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immune response being stimulated by tumours [Kuznetsov et al., 1994]. Later, Kirschner and Panetta 
extended this work by incorporating immunotherapy into the model, they studied the effects of continuous 
injections of interleukin-2 (IL-2) on the evolution of tumours, and then provided conditions for short-term 
oscillations and long-term relapse for tumour cells [Kirschner & Panetta, 1998]. De Pillis proposed and 
analysed a mathematical model considering immunotherapy and chemotherapy, it was pointed out that 
the mixed therapies were able to eliminate the entire tumour than a single therapy [de Pillis et al., 2006]. 
Shu studied a delay tumour-immune model with immune response to show the phenomena of oscillations 
for tumours [Shu et al., 2014].

All these studies have emphasized the role of immunotherapy and chemotherapy in the control of 
tumours. In reality, the pulsed therapies are often used to cure cancers, which are confirmed by experiments 
and clinics [Hegmans et al., 2005; Yamaguchi et al., 2006; Duffey et al., 2004; Walther et al., 1999]. Thus, 
many tumour-immune models with pulsed therapies have been proposed and analysed. Wei and Yang 
constructed tumour-immune models in the case of immunotherapy and chemotherapy applied at different 
fixed moments [Walther & Lin, 2013; Yang et al., 2015, 2019a,b]. They not only derived conditions for 
the tumour free periodic solution, but also studied the persistence of the system, it was shown that the 
higher the frequencies of Adoptive Cellular Immunotherapy (ACI), the better the treatment for cancer. 
Furthermore, Duffey pointed out that there is a closed-loop control mechanism for cancer therapy, which 
means that comprehensive therapy should only be carried out once the tumour size reaches a threshold 
value (denoted by TL) [Duffey et al., 2004]. Based on the tumour threshold value TL, Tang and co-authors 
proposed a piecewise tumour-immune model with effector cell-guided therapy [Tang et al., 2015, 2017], the 
results suggested that the tumours could either grow unrestrainedly or be controlled below a threshold 
level or stabilized at a constant. Moreover, they further derived an impulsive tumour-immune model with 
closed-loop interventions to study how combinations of surgery with immunotherapy affected the evolution 
of tumours. [Tang et al., 2016]. They pointed out that a single surgery could only maintain the tumour 
size below a threshold, but comprehensive therapy not only maintained the tumour size below a threshold, 
but also retained the activity of immune system.

These studies were assumed that the killing rates caused by chemical control (or the instantaneous 
rate of resection for tumour cells caused by surgery) are constants, which were unreasonable in practice. 
In fact, when the tumours undergo certain stages of development, on the one hand, chemotherapy can kill 
a fraction of tumours with a maximum less than one, on the other hand, the killing fraction may mainly 
depend on the types of the chemotherapy drugs and dosages [Pazdur et al., 2005]. Therefore, based on the 
tumour threshold value TL during treatment and then by employing theory of the impulsive semi-dynamical 
systems [Simeonov & Bainov , 1988; Bainov & Simeonov , 1993], we propose an impulsive tumour-immune 
model with drug response of chemotherapy as nonlinear pulses to model the closed-loop treatments, and 
we will focus on the following questions: (1) How do control parameters including the depletion rate of 
drug toxicity, the concentration of chemotherapy drug, medicine toxicity coefficient and the accumulation 
rate affect the evolution of tumours? (2) How to implement chemotherapy and immunotherapy to better 
treat tumours? (3) How do comprehensive therapy affects the dynamics of the proposed impulsive tumour-
immune model?

The paper is arranged as follows. We will derive the mathematical model in section 2.1 and then 
provide some useful definitions and important lemmas of impulsive semi-dynamical systems in section 2.2. 
In section 3, we not only construct the Poincaré map, but also discuss its main properties. In section 4, we 
first deduce the expression of effector cell eradication periodic solution. Then the transcritical bifurcations 
with respect to key control parameters are studied. Moreover, we give threshold conditions for the existence 
of order-k(k ≥ 1) periodic solutions. In section 5, sensitivity analyses and bifurcation analyses are performed 
to answer the proposed questions, and we also address the biological implications for cancer treatment. At 
last, conclusions are obtained.
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2. Mathematical model

2.1. Model formation

To describe the interactions between tumour cells and immune cells, Kuznetsov proposed a two ordinary
differential equations which are usually of predator-prey type [Kuznetsov et al., 1994]. Let x(t) and y(t) be
the densities of tumour cells and effector cells at time t, respectively. Then the model derived by Kuznetsov
can be formulated by following system

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− ax(t)y(t),

dy(t)

dt
=

bx(t)y(t)

1 + wx(t)
− cx(t)y(t)− dy(t),

(1)

where r is the intrinsic growth rate of tumour cells, K represents carrying capacity of tumour cells, a is the
killing rate of tumour cells due to effector cells, c is the killing rate of effector cells due to tumour cells, d
is the death rate of effector cells, b denotes the maximum immune response rate due to presence of tumour
cells and w is the steepness of immune response.

Inspired by idea of closed-loop treatment, in the light of the tumour threshold value TL we propose a
nonlinear pulsed model (1) concerning both chemotherapy and immunotherapy, which are formulated by
following system 

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− ax(t)y(t),

dy(t)

dt
=

bx(t)y(t)

1 + wx(t)
− cx(t)y(t)− dy(t),

x(t) < TL,

x(t+) = (1−K1(C0))x(t),
y(t+) = ((1−K2(C0))y(t)) θ + τ,

}
x(t) = TL,

(2)

where TL is the threshold number of tumour cells at which chemotherapy is needed to be applied. In reality,
the chemotherapy drug kills both of tumour cells and effector cells, but that the kill rates differ for tumour
cells and effector cells, and we assume that the response curves satisfy the exponential functions [Panetta
, 1996]. K1(C0) and K2(C0) are killing rates of tumour cells and effector cells due to chemotherapy which
can be described by

K1(C0) = dT (1− exp(−k1C0)),K2(C0) = dE(1− exp(−k2C0)), (3)

where dT (dE) is the rate of tumour (effector) cell depletion of drug toxicity, C0 is the concentration of
chemotherapy drug in the blood and k1(k2) is medicine toxicity coefficient to tumour cells (effector cells).
It is assumed that K1,K2 ∈ [0, 1) to keep all solutions of system (2) from being negative. θ > 0 denotes
the accumulation rate of effector cells due to an external input of IL-2. τ > 0 is the amount of injected
ACI such as lymphokine-activated killer (LAK) and tumour infiltrating lymphocyte (TIL) cells. We let
x(0+) and y(0+) be the initial densities of tumour cells and effector cells, and then assume the initial
density of tumour cells to be less than the threshold TL. If the tumour size reaches threshold TL, then the
comprehensive therapies including chemotherapy and immunotherapy are implemented, and thereby the
amount of tumour cells and effector cells is updated to (1−K1(C0))TL and ((1−K2(C0))y(t)) θ + τ .

2.2. Preliminaries

Consider the following generalized planar impulsive semi-dynamical systems [Simeonov & Bainov , 1988;
Bainov & Simeonov , 1993]:{

dx
dt = P (x, y), dy

dt = Q(x, y), if ϕ(x, y) ̸= 0,

x+ = x+ α(x, y), y+ = y + β(x, y), if ϕ(x, y) = 0,
(1)
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where x+ = x(t+), y+ = y(t+) and (x, y) ∈ R2. P, Q, α, β are continuous functions from R2 to R. Let 
I ⊂ R2 be the impulsive set. For any Z(x, y) ∈ I, the impulsive map I : R2 −→ R2 is defined by

I(z) = (x + α(x, y), y + β(x, y)) = (x+, y+) ∈ R2,

and denote Z+ = (x+, y+) as impulsive point of Z.
Define P = I(I) and P is said to be the phase set. (R2, Π) is defined as a semi-dynamical system 

[Ciesielski , 2004; Kaul , 1990]. For any Z ∈ R2, the positive solution initiating from Z is described by 
C+(Z) = {Π(Z, t)|t ∈ R+}, and we denote C+(Z) as Π+(Z). Further, Let G(Z, t) = {Z ′|Π(Z ′, t) = Z} 
for any t ≥ 0 and Z ∈ R2. Concerning these notations, the following useful definitions can be introduced 
[Ciesielski , 2004; Kaul , 1990].
Definition 1. An impulsive semi-dynamical system (R2, Π; P, I) consists of a continuous semi-dynamical 
system (R2, Π) together with a nonempty closed subset I of X and a continuous function I : I −→ R2 

such that for any Z ∈ I we have G(Z, t) ∩ P ≠ Ø and Π(Z, t) ∩ I ̸= Ø.

Definition 2. A solution Π+(Z) in (R2, Π; P, I) is called order k periodic solution if for two positive 
integers m and k we have Im(Z) = Im+k(Z), where Z ∈ P and k is the smallest integer.

Lemma 1. ([Simeonov & Bainov , 1988; Bainov & Simeonov , 1993]) For system (1), the order k-periodic 
solution (x, y) = (ξ(t), η(t)) is orbitally asymptotically stable and enjoys the property of asymptotic phase 
if the Floquet multiplier µ2 satisfies | µ2 |< 1, where

µ2 =

q∏
k=1

∆k exp

(∫ T

0

[
∂P

∂x
(ξ(t), η(t)) +

∂Q

∂y
(ξ(t), η(t))

]
dt

)
,

with

∆k =
P+(

∂β
∂y

∂ϕ
∂x − ∂β

∂x
∂ϕ
∂y + ∂ϕ

∂x ) +Q+(
∂α
∂x

∂ϕ
∂y − ∂α

∂y
∂ϕ
∂x + ∂ϕ

∂y )

P ∂ϕ
∂x +Q∂ϕ

∂y

,

and function ϕ is continuously differentiable with respect to x, y. (x, y) /∈ I is equivalent to ϕ(x, y) ̸= 0.
P,Q, ∂α/∂x, ∂α/∂y, ∂β/∂x, ∂β/∂y, ∂ϕ/∂x and ∂ϕ/∂y can be calculated at the point (ξ(tk), η(tk)). Denote
P+ = P (ξ(t+k ), η(t

+
k )) and Q+ = Q(ξ(t+k ), η(t

+
k )). tk (k, q ∈ N , N is non-negative integers) is the time of

the k-th jump.

Lemma 2. ([Rasband , 1990]) Let F : R→ R be a one-parameter family of C2 map satisfying
(1) F (0, ρ) = 0 for all ρ; (2) ∂F

∂x (0, 0) = 1;

(3) ∂2F
∂x∂ρ(0, 0) > 0; (4) ∂2F

∂x2
(0, 0) < 0.

Then for ρ1 < 0 < ρ2 and any ε > 0 we have (i) if ρ1 < ρ < 0, then Fρ has two fixed points 0 and
ρ∗ > 0 ∈ (−ε, ε) with 0 being asymptotically stale and ρ∗ being unstable. (ii) if 0 < ρ < ρ2, then Fρ has
two fixed points 0 and ρ∗ < 0 ∈ (−ε, ε) with 0 being unstable and ρ∗ being asymptotically stale.

In order to study the global dynamics of system (2) and further to address their biological implications
with respect to cancer treatment, we first need to discuss all possible dynamics of system (1). The vertical
isocline of system (1) which plays a key role in defining the domain of impulsive set is denoted as L1,

L1 : y = r
a

(
1− x

K

)
.

System (1) has a trivial equilibrium E0(0, 0), a boundary equilibrium or effector cell eradication equilibrium
EK(K, 0), and two interior equilibria E1,2(x1,2, y1,2) under certain conditions where

x1,2 =
b− c− dw ±

√
(b− c− dw)2 − 4cwd

2cw
and y1,2 =

r

a

(
1− x1,2

K

)
.

By direct calculation, we have following results [Kuznetsov et al., 1994].
Proposition 1. (i) if b− c− dw < 2

√
cwd or b− c− dw ≥ 2

√
cwd and x2 ≥ K, then system (1) exists a

trivial equilibrium E0(0, 0) and a globally stable boundary equilibrium EK(K, 0);
(ii) if b − c − dw > 2

√
cwd and x2 < K ≤ x1, then system (1) exists a trivial equilibrium E0(0, 0), a

boundary equilibrium EK(K, 0) and a globally stable equilibrium x2;
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(iii) if b− c−dw > 2
√
cwd and x1 > K, then system (1) exists a trivial equilibrium E0(0, 0), a local stable

boundary equilibrium EK(K, 0), a local stable equilibrium x2 and a saddle point x1.
In reality, if tumour cells invade into an organism, then tumour cell proliferation will gradually destroy

the immune system of the organism. As a result, the tumour size will continuously grow and at last reach its
carrying capacity K in the absence of treatments involving chemotherapy and immunotherapy. Therefore,
unless otherwise specified we assume that b − c − dw < 2

√
cwd or b − c − dw ≥ 2

√
cwd and x2 ≥ K hold

true, in this case system (1) exists a trivial equilibrium E0 and a globally stable boundary equilibrium
EK . Meanwhile, there does not exist interior equilibria E1,2 for system (1) and any solution initiating from
first quadrant of system (1) will finally tend to the effector cell eradication equilibrium EK . The main
objective of comprehensive therapy including chemotherapy and immunotherapy is to control tumour cells
below a given threshold which should be especially below the carrying capacity, in addition to show how
the strength of treatment affects the outcomes of tumour proliferation. Thus, we assume TL < K holds
true throughout the paper, and the comprehensive therapy is implemented once the tumour size reaches
threshold TL.

3. Poincaré map

3.1. Domain of the Poincaré map

The existence of periodic solutions which implies periodic applications of comprehensive therapy of system
(2) is influenced not only by a prescribed threshold level TL, but also determined by the strength of
comprehensive therapy denoted by killing rates K1(C0) and K2(C0), the amount τ of injected ACI and
the accumulation rate θ of effector cells. Because these key factors related to comprehensive therapy would
affect the domains of the Poincaré map and further the existence of its fixed points. So we first need to
give the exact domains of the Poincaré map.

For simplicity, we denote by

L2 : x = (1−K1(C0))TL, L3 : x = TL,

where K1(C0) is defined by equation (3). Due to 0 < TL < K, we denote the intersection point of L1 with
L3 as Q(TL, yTL), the intersection point of L1 with L2 is denoted as P ((1−K1(C0))TL, yK1TL), here

yTL =
r

a

(
1− TL

K

)
, yK1TL =

r

a

(
1− (1−K1(C0))TL

K

)
.

It follows from the definitions of the impulsive semi-dynamical system (1) that

α(x, y) = −K1(C0)x, β(x, y) = ((1−K2(C0))θ − 1) y + τ,

the impulsive set is defined by

I =

{
(x, y) : x = TL, 0 ≤ y ≤ r

a

(
1− TL

K

)}
,

and the impulsive map is denoted as

I(TL, y) = (x+, y+) = ((1−K1(C0))TL, ((1−K2(C0))y(t)) θ + τ) .

After one single pulse, we obtain the phase set as follows

P = I(I) =
{
(x+, y+) | x+ = (1−K1(C0))TL, y

+ ∈ Dom
}
,

where Dom =
[
τ,
(
(1−K2(C0))

r
a

(
1− TL

K

))
θ + τ

]
. Without loss of generality, we assume that any start-

ing point satisfies (x+0 , y
+
0 ) ∈ P. Based on the domains of the phase set and impulsive set, it enable us to

construct the important Poincaré map.
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3.2. Poincaré map and main properties
To define the Poincaré map, we choose L2 as a Poincaré section. It follows from the globally stability of
the equilibrium EK that any solution initiating from point U+

k ((1 − K1(C0))TL, y
+
k ) ∈ L2 has a unique

intersection point with L4 which is denoted by Uk+1(TL, yk+1). Based on the Cauchy-Lipschitz Theorem,
we obtain yk+1 = g(y+k ) which means yk+1 only depends on y+k . After a single pulse, point Uk+1 maps to
point U+

k+1((1−K1(C0))TL, ((1−K2(C0))yk+1) θ + τ). Thereby, the Poincaré map can be defined as

y+i+1 =
(
(1−K2(C0))g(y

+
i )

)
θ + τ , Ψ(y+i ). (2)

The Poincaré map Ψ(y+i ) defined by (2) is an abstract expression which implies that it is hard to
discuss its properties. Thus, we need to deduce its explicit expression. To do this, we rewrite model (2) as
follows 

dy

dx
=

bxy
1+wx − cxy − dy

rx
(
1− x

K

)
− axy

.
= ψ(x, y),

y((1−K1(C0))TL) = y+0 .

(3)

Define an important open set as

D =
{
(x, y) | x > 0, y > 0, y <

r

a

(
1− x

K

)}
, (4)

then it is obviously that function ψ(x, y) is continuously differentiable in open set D. Note that x+0 =
(1−K1(C0))TL, let the vertical component y+0 of the initial point be y+0

.
= S < yK1TL and S ∈ P. Define

y(x) = y(x; (1−K1(C0))TL, S) = y(x, S), (1−K1(C0))TL ≤ x ≤ TL,

then model (3) becomes

y(TL, S) = S +

∫ TL

(1−K1(C0))TL

ψ(s, y(s, S))ds. (5)

From (5), the Poincaré map defined by (2) has the following expression

Ψ(S) = ((1−K2(C0))y(TL, S))θ + τ. (6)
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Fig. 1. The fixed point of Poincaré map Ψ with parameters fixed as r = 5, K = 100, a = 0.8, w = 1, b = 0.3, c = 0.23,
d = 0.3, dT = 0.2, dE = 0.4, k1 = 0.5, k2 = 1, C0 = 0.65, τ = 0.5 and ET = 0.5. (a) θ = 1.2; (b) θ = 1.35; (c) θ = 2.
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Theorem 1. The Poincaré map Ψ has the following main properties:
(I) The range of the Poincaré map Ψ is [0,+∞) with its domain defined on [τ,Ψ(yK1TL)] = [τ, ((1 −
K2(C0))y((1 − K1(C0))TL, yK1TL))θ + τ ]. Meanwhile, Ψ is increasing on [0, yK1TL ] and decreasing on
[yK1TL ,+∞).
(II) Ψ is not only continuously differentiable, but also concave on [0, yK1TL).
(III) Ψ always has a unique fixed point.
(IV) A horizontal asymptote Ψ = τ exists as y+k → +∞.

Proof. (I) Because the boundary equilibrium EK is globally stable, all solutions of system (2) will finally
tend to EK , which means that any solution initiating from the line x = (1−K1(C0))TL will approach the
line x = TL. Thereby, Ψ is defined on [0,+∞). For any y+i , y

+
j ∈ [0, yK1TL ] with y+i < y+j , the Cauchy-

Lipschitz Theorem indicates that the vertical coordinates of the trajectories ψ(t; (1−K1(C0))TL, y
+
i ) and

ψ(t; (1−K1(C0))TL, y
+
j ) satisfies yi+1 = y(t1, (1−K1(C0))TL, y

+
i ) < yj+1 = y(t2, (1−K1(C0))TL, y

+
j ) with

x(t1, (1−K1(C0))TL, y
+
i ) = x(t2, (1−K1(C0))TL, y

+
j ) = TL. Due to one time pulse,

Ψ(y+i ) = ((1−K2(C0))yi+1) θ + τ < ((1−K2(C0))yj+1) θ + τ = Ψ(y+j )

holds such that Ψ is increasing on [0, yK1TL ]. Similarly, for any y+i , y
+
j ∈ [yK1TL ,+∞) with y+i < y+j , since

the region above the line L1 satisfies dy/dt < 0 and dx/dt < 0 and the region below the line L1 satisfies
dy/dt < 0 and dx/dt > 0, the trajectories ψ(t; (1−K1(C0))TL, y

+
i ) and ψ(t; (1−K1(C0))TL, y

+
j ) will first

meet the isocline L1, then across x = (1 −K1(C0))TL and finally approach the line x = TL after time t1
and t2, respectively. Thereby, at times t1 and t2, the vertical coordinates of these two trajectories satisfy
yi+1 = y(t1, (1−K1(C0))TL, y

+
i ) > yj+1 = y(t2, (1−K1(C0))TL, y

+
j ). After one time pulse, one obtains

Ψ(y+i ) = ((1−K2(C0))yi+1) θ + τ > ((1−K2(C0))yj+1) θ + τ = Ψ(y+j ),

it suggests that Ψ is decreasing on [yP ,+∞) with its range defined on [τ, ((1 − K2(C0))y((1 −
K1(C0))TL, yK1TL))θ + τ ].

(II) To show that Ψ is both continuous and differentiable, we focus on two cases: y < yK1TL and
y ≥ yK1TL . Let

M(x, y) = rx
(
1− x

K

)
− axy, N(x, y) =

bxy

1 + wx
− cxy − dy.

If y < yK1TL , then M(x, y) ̸= 0 for any (x, y) ∈ {(1 − K1(C0))TL ≤ x ≤ TL, 0 ≤ y < y(t, (1 −
K1(C0))TL, yK1TL)}

.
= Υ(x,y). Note that ψ(x, y) = N(x, y)/M(x, y), then

∂ψ

∂y
=
rx

(
1− x

K

)
(bx− (cx+ d)(1 + wx))

(1 + wx)(rx
(
1− x

K

)
− axy)2

. (7)

Thus ∂ψ/∂y is continuous on Υ(x,y) which means that Ψ is continuously differential on [0, yK1TL). If

y+0 ≥ yK1TL , then any trajectories starting from ((1 − K1(C0))TL, y
+
0 ) will turn around point P ((1 −

K1(C0))TL, yK1TL) and then across line x = (1−K1(C0))TL at point ((1−K1(C0))TL, y
+
0 ) (y

+
0 < yK1TL),

and meet x = TL in a finite time. We denote the map ω : ω(y+0 ) = y+0 , and ω is a continuously differentiable
function in the light of the standard theory of Poincaré application. Moreover, Ψ is the composite function
of Ψ and ω for any y ∈ [0, yK1TL). Due to the fact that Ψ is continuously differential on [0, yK1TL) and ω
is also continuously differential, we know that Ψ is continuously differential on [yK1TL ,+∞).

Now we show that Ψ is concave on [0, yK1TL). First of all, on [0, yK1TL) equation (7) holds, further,

∂2ψ

∂y2
=

2rax2
(
1− x

K

)
(bx− (cx+ d)(1 + wx))

(1 + wx)(rx
(
1− x

K

)
− axy)3

.

In the light of y < yK1TL , we obtain rx
(
1− x

K

)
− axy > 0 and bx − (cx + d)(1 + wx) < 0 provided

b− c− dw < 2
√
cwd. So ∂ψ/∂y < 0 and ∂2ψ/∂y2 < 0. Therefore,

∂y(x,S)
∂S = exp

[∫ x
(1−K1(C0))TL

∂ψ
∂y dz

]
> 0,
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and

∂2y(x,S)
∂S2 = ∂y(x,S)

∂S

∫ x
(1−K1(C0))TL

∂2ψ
∂y2

∂y(x,S)
∂S dz < 0.

According to (5) and (6), the Poincaré map Ψ is concave on [0, yK1TL) (Fig.1).
(III) From the above analysis, we have proved that the Poincaré map Ψ(y) is increasing on [0, yK1TL)

and decreasing on [yK1TL ,+∞). So for any yI ∈ [0, yK1TL) and yII ∈ [yK1TL ,+∞) we obtain Ψ(yI) > yI

and Ψ(yII) < yII . If Ψ(yK1TL) < yK1TL , note that Ψ(0) = τ > 0, then the intermediate value theorem of
continuous functions indicates that the Poincaré map Ψ exists at least one fixed point yf and 0 < yf < yK1TL
(Fig.1(a)). If Ψ(yK1TL) ≥ yK1TL , on [yK1TL ,+∞) we have Ψ(yII) < yII , then the Poincaré map Ψ has at
least one fixed point yf and yK1TL ≤ yf < yII (Fig.1(b) and Fig.1(c)). Furthermore, the concavity of Ψ
implies the uniqueness of the fixed point yf .

(IV) Let the closure of D be

D̄ =
{
(x, y)|x > 0, y > 0, y <

r

a

(
1− x

K

)}
,

denote

L = y − r

a

(
1− x

K

)
.

If [
(P (x, y), Q(x, y)) ·

( r

aK
, 1
)]

L=0
=

[
bx

1 + wx
− cx− d

]
y < 0,

where · is the scalar product of two vectors, then the vector field will finally enter into the boundary D̄. It
implies that D̄ is an invariant set. Concerning property (I), we have Ψ([yK1TL ,+∞)) ⊂ Ψ([0, yK1TL ]) which
reveals that Ψ(y) is bounded in the definition domain. Note that in the region above the line L1 we have
dy/dt < 0 and dx/dt < 0 and the region below the line L1 we have dy/dt < 0 and dx/dt > 0, and on the
line x = (1−K1(C0))TL the component y satisfies dy/dt < 0, any trajectory ψ(t; (1−K1(C0))TL, y

+
0 )(y

+
0 ∈

(yK1TL ,+∞)) will first meet the isocline L1, then across x = (1 − K1(C0))TL and finally approach the
line x = TL after a certain time. These results show that the solution ψ(t; (1 − K1(C0))TL, y

+
0 ) satisfies

limy+0 →+∞ ψ(t; (1−K1(C0))TL, y
+
0 ) = 0. After one single pulse,

lim
y+0 →+∞

Ψ(y+0 ) = lim
y+0 →+∞

(
(1−K2(C0))ψ(t; (1−K1(C0))TL, y

+
0 )

)
θ + τ = τ.

Therefore, Ψ has a horizontal asymptote τ , Fig.1. This completes the proof. �

4. Order-k periodic solutions

4.1. Effector cell eradication periodic solution

If a patient does not have a strong immunity, then the immune cells in his body will eventually be annihi-
lated by tumour cells. Thus, it is a disaster for the people. To avoid this from happening, we have to show
the effects of the key control parameters on the eradications of the effector cells. To this end, we first need
to investigate the effector cell eradication periodic solution. Let y(t) = 0 and τ = 0 in system (2) and then
we focus on the following subsystem:

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
, x(t) < TL,

x(t+) = (1−K1(C0))x(t), x(t) = TL,
(8)

where K1(C0) represents the treatment term of chemotherapy and is defined by (3). Solving equation (8)
with initial condition x(0+) = (1−K1(C0))TL yields

xT (t) =
(1−K1(C0))TLK exp(rt)

K − (1−K1(C0))TL + (1−K1(C0))TL exp(rt)
,
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denote the period of this solution by T , then solving

(1−K1(C0))TLK exp(rT )

K − (1−K1(C0))TL + (1−K1(C0))TL exp(rT )
= TL

with respect to T , we obtain the expression of the period T , i.e.,

T = 1
r ln

K−(1−dT (1−exp(−k1C0))TL
(1−dT (1−exp(−k1C0)))(K−TL) , dT = TL+(K−TL) exp(rT )

(K−TL)(exp(rT )−1)(1−exp(−k1C0))
. (9)

Thereby, the boundary periodic solution of model (2) with period T gives{
xT (t) = (1−dT (1−exp(−k1C0)))TLK exp(r(t−(k−1)T ))

K−(1−dT (1−exp(−k1C0)))TL+(1−dT (1−exp(−k1C0)))TL exp(r(t−(k−1)T )) ,

yT (t) = 0.
(10)

Theorem 2. The effector cell eradication periodic solution (xT (t), 0) of system (2) is globally asymptotically
stable provided

R0 , (1−K2(C0))θ
(
(1−K1(C0))(K−TL)
K−(1−K1(C0))TL

) d
r
(

K−TL
K−(1−K1(C0))TL

)Kc
r(

(1+wTL)(K−(1−K1(C0))TL)
(K−TL)(1+w(1−K1(C0))TL)

) Kb
(1+wK)r

< 1,

(11)

where K1(C0) = dT (1− exp(−k1C0)),K2(C0) = dE(1− exp(−k2C0)).

Proof. From Lemma 1, denote

P (x, y) = rx
(
1− x

K

)
− axy, Q(x, y) = bxy

1+wx − cxy − dy,

α(x, y) = x(−K1(C0)), β(x, y) = y((1−K2(C0))θ − 1) + τ,
ϕ(x, y) = x− TL, (x

T (T ), yT (T )) = (TL, 0),
(xT (T+), yT (T+)) = ((1−K1(C0))TL, 0) .

Taking the derivations we obtain
∂P
∂x = r − 2rx

K − ay, ∂Q
∂y = bx

1+wx − cx− d,
∂α
∂x = −K1(C0),

∂β
∂y = (1−K2(C0))θ − 1,

∂ϕ
∂x = 1, ∂α

∂y = ∂β
∂x = ∂ϕ

∂y = 0,

and then

∆1 =
P+( ∂β

∂y
∂ϕ
∂x

− ∂β
∂x

∂ϕ
∂y

+ ∂ϕ
∂x

)+Q+( ∂α
∂x

∂ϕ
∂y

− ∂α
∂y

∂ϕ
∂x

+ ∂ϕ
∂y

)

P ∂ϕ
∂x

+Q ∂ϕ
∂y

=
P+(xT (T+),yT (T+))(1+ ∂β

∂y
)

P (xT (T ),yT (T ))
= (1−K2(C0))θ(1−K1(C0))(K−(1−K1(C0))TL)

K−TL .

Moreover, ∫ T
0

[
∂P
∂x (x

T (t), yT (t)) + ∂Q
∂y (x

T (t), yT (t))
]
dt

=
∫ T
0

[
r − d− 2rxT (t)

K + bxT (t)
1+wxT (t)

− cxT (t)
]
dt

= (r − d)T − Kc+2r
r ln

(
(1−K1(C0))TLe

rt+K−(1−K1(C0))TL
K

)
|T0

+ Kb
r(Kw+1) ln

(
(Kw+1)(1−K1(C0))TLe

rt+K−(1−K1(C0))TL
K

)
|T0

= r−d
r ln

(
K−(1−K1(C0))TL
(1−K1(C0))(K−TL)

)
+ Kc+2r

r ln
(

(K−TL)
K−(1−K1(C0))TL

)
+ Kb
r(Kw+1) ln

(
(K−(1−K1(C0))TL)(1+wTL)
(1+w(1−K1(C0))TL)(K−TL)

)
.

Thus the Floquet multiplier µ2 can be calculated

| µ2 | = ∆1 exp
(∫ T

0

[
∂P
∂x (x

T (t), yT (t)) + ∂Q
∂y (x

T (t), yT (t))
]
dt
)

= (1−K2(C0))θ
(
(1−K1(C0))(K−TL)
K−(1−K1(C0))TL

) d
r
(

K−TL
K−(1−K1(C0))TL

)Kc
r(

(1+wTL)(K−(1−K1(C0))TL)
(K−TL)(1+w(1−K1(C0))TL)

) Kb
(1+wK)r , R0.

(12)
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It follows from (11) that | µ2 |< 1, which means the effector cell eradication periodic solution (xT (t), 0) is 
orbitally asymptotically stable.

In view of the Theorem 1, for any i ≥ 0, the impulsive point series y+i ∈ [0, yK1TL ] is monotonically
decreasing on the whole definition domain and finally tends to zero. Thus the effector cell eradication
periodic solution (xT (t), 0) is globally attractive. This completes the proof. �

4.2. Transcritical bifurcation

4.2.1. Transcritical bifurcation with respect to killing rate K2

When τ = 0, to discuss the occurrence of the transcritical bifurcation, we consider the Poincaré map Ψ(y+i )
defined by (2). For simplicity, assume that y ≥ 0 be small enough and then let u = y+i . So the Poincaré
map becomes

u→ (1−K2(C0))θg(u) ≡ F (u,K2). (13)

The uniqueness of solutions ensures g(0) = 0. It follows from continuously differentiable of function g
that the function F (u, q) is also continuously differentiable with respect to both u and K2, and obviously
lim
u→0+

g(u) = g(0) = 0. The following results hold true based on Lemma 2.

Theorem 3. If TL < K, then system (2) exists with a stable order-1 periodic solution when K2 ∈ (K∗
2 −

ε,K∗
2 ) through transcritical bifurcation at K2 = K∗

2 with ε > 0, where K∗
2 is defined by (11) and satisfies

µ2 |K2=K∗
2
= 1.

Proof. To show that the Poincaré map undergoes the transcritical bifurcation, we need to verify that all
conditions of Lemma 2 are satisfied. Any solution with initial condition ((1−K1(C0))TL, u) (0 ≤ u ≤ u0,
u0 ∈ Dom) have intersection point (TL, g(u)) with x = ET . Note that in the area between L2 and y = 0
we have dx/dt > 0, then system (1) becomes

dy

dx
=
Q(x, y)

P (x, y)
. (14)

Let (x, y(x;x0, y0)) be an orbit of system (14), and denote as x0 = (1 −K1(C0))TL, y0 = u, 0 ≤ u ≤ u0,
then we get

y(x; (1−K1(C0))TL, u) = y(x, u), 0 ≤ u ≤ u0, (1−K1(C0))TL ≤ x ≤ TL, (15)

then,

∂y(x,u)
∂u = exp

[∫ x
(1−K1(C0))TL

∂
∂y

(
Q(s,y(s,u))
P (s,y(s,u))

)
ds
]
,

and

∂2y(x,u)
∂u2

= ∂y(x,u)
∂u exp

[∫ x
(1−K1(C0))TL

∂2

∂y2

(
Q(s,y(s,u))
P (s,y(s,u))

)
∂y(x,u)
∂u ds

]
.

Clearly, ∂y(x, u)/∂u > 0, and

g′(0) = ∂y(TL,0)
∂u = exp

[∫ TL
(1−K1(C0))TL

∂
∂y

(
Q(s,y(s,0))
P (s,y(s,0))

)
ds
]

= exp
[∫ TL

(1−K1(C0))TL

bs−(cs+d)(1+ws)
rs(1+ws)(1− s

K
) ds

]
=

(
(1−K1(C0))(K−TL)
K−(1−K1(C0))TL

) d
r
(

K−TL
K−(1−K1(C0))TL

)Kc
r(

(1+wTL)(K−(1−K1(C0))TL)
(K−TL)(1+w(1−K1(C0))TL)

) Kb
(1+wK)r

.

Furthermore,

g′′(0) = g′(0)
∫ TL
(1−K1(C0))TL

π(s)∂y(x,0)∂u ds,
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where

π(x) = 2ax(bx−(cx+d)(1+wx))

(1+wx)(rx(1− x
K
))

2 , x ∈ [(1−K1(C0))TL, TL].

In the light of b−c−dw < 2
√
cwd or b−c−dw ≥ 2

√
cwd and x2 ≥ K, we have π(x) < 0 when x ∈ (0,+∞),

which implies g′′(0) < 0.
Due to these facts, we now verify conditions of Lemma 2 one by one.

(1) F (0,K2) = (1−K2)θg(0) = 0;
(2) Secondly,

∂F (0,K2)
∂u = (1−K2)θg

′(0) = R0,

condition (11) ensures that

∂F (0,K∗
2 )

∂u = 1.

It indicates that (0,K∗
2 ) is a fixed point (with eigenvalue of 1) of the map (16);

(3) Thirdly,

∂2F (0,K∗
2 )

∂u∂K2
= θg′(0) > 0,

(4) Finally, follows by g′′(0) < 0 we obtain

∂2F (0,K∗
2 )

∂u2
= (1−K∗

2 )θg
′′(0) < 0.

Therefore, we have shown that all conditions of Lemma 2 are satisfied. This completes the proof. �

Remark. Notice that K2(C0) = dE(1 − exp(−k2C0)), there must be constants d∗E , k
∗
2 and C∗

0 such that
µ2 |dE=d∗E

= 1, µ2 |k2=k∗2= 1 and µ2 |C0=C∗
0
= 1. It indicates that the key control parameters dE , k2 and

C0 play significant roles in determining the stability of the effector cell eradication periodic solution, and
these factors also guarantee the occurrence of the transcritical bifurcation near the effector cell eradication
periodic solution.

4.2.2. Transcritical bifurcation with respect to accumulation rate θ

For the existence of transcritical bifurcation for θ∗, defining the Poincaré map as

u→ (1−K2(C0))θg(u) ≡ F (u, θ). (16)

Under conditions of b − c − dw < 2
√
cwd or b − c − dw ≥ 2

√
cwd and x2 ≥ K, we also obtain that

x ∈ (0,+∞) reveals π(x) < 0 and g′′(0) < 0. Thus, we also examine whether conditions of Lemma 2 holds.
(1) F (0, θ) = (1−K2)θg(0) = 0; (2) we have

∂F (0,θ)
∂u = (1−K2)θg

′(0) = R0,

and (11) yields ∂F (0,θ∗)
∂u = 1. where θ∗ satisfies µ2 |θ=θ∗= 1, it implies (0, θ∗) is a fixed point (with eigenvalue

of 1) of (16); (3) ∂2F (0,θ∗)
∂u∂θ = (1−K∗

2 )g
′(0) > 0, (4) In view of g′′(0) < 0,

∂2F (0,θ∗)
∂u2

= (1−K2)θg
′′(0) < 0.

Therefore, we have following results.

Theorem 4. If TL < K, then system (2) exists with a stable order-1 periodic solution when θ ∈ (θ∗, θ∗+ ε)
through transcritical bifurcation at θ = θ∗ with ε > 0, where θ∗ is defined by (11) and satisfies µ2 |θ=θ∗= 1.

From above analyses, we find that the transcritical bifurcation near the effector cell eradication periodic
solution can occur with respect to many treatment parameters including accumulation rate θ, depletion rate
dE of drug toxicity, chemotherapy drug concentration C0 and medicine toxicity coefficient k2. Meanwhile,
the transcritical bifurcation occurs at µ2 = 1 (or R0 = 1) which does not rely on the treatment parameter,
with the effector cell eradication periodic solution being stable for 0 < µ2 < 1 and unstable for µ2 > 1.
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4.3. Periodic solutions when τ > 0

Since the case of τ = 0 has been investigated, the coming section deals with order-k periodic solutions
when τ > 0. As discussed before, any solution with initial point ((1 − K1(C0))TL, y0

+) will experience 
finite or infinite many pulses, we let Ψn(y0

+) = yn+ be the impulsive point series yn+(n = 1, 2, · · · ) for 
simplicity. Theorem 1 reveals that there always exists with an order-1 periodic solution (ξ(t), η(t)). By
utilizing methods of Theorem 2, we have the following generalized results.

Theorem 5. The order-1 periodic solution (ξ(t), η(t)) is orbitally asymptotically stable provided∣∣∣∣∣ (1−K2(C0))θ(1−K1(C0))
(
r
(
1− (1−K1(C0))TL

K

)
−a((1−K2(C0))η0)θ+τ)

1+w(1−K1(C0))TL

)
r(1−TL

K
)− aη0

1+wTL

exp
(∫ T

0 G(t)dt
)∣∣∣∣∣ < 1,

where G(t) = r − d− 2rξ(t)
K − (a+ c)η(t) + bξ(t)

1+wξ(t) .

Proof. Denote the initial point and end point of (ξ(t), η(t)) by M(TL, η0) and M
+((1−K1(C0))TL, ((1−

K2(C0))η0)θ + τ). By calculation we obtain the Floquet multiplier µ2

µ2 = ∆1 exp
(∫ T

0

[
∂P
∂x (ξ(t), η(t)) +

∂Q
∂y (ξ(t), η(t))

]
dt
)

=
(1−K2(C0))θ(1−K1(C0))

(
r
(
1− (1−K1(C0))TL

K

)
−a((1−K2(C0))η0)θ+τ)

1+w(1−K1(C0))TL

)
r(1−TL

K
)− aη0

1+wTL

exp
(∫ T

0 G(t)dt
)
.

It follows from | µ2 |< 1 that the order-1 periodic solution (ξ(t), η(t)) is always orbitally asymptotically
stable. This completes the proof. �

Theorem 6. If Ψ(yK1TL) < yK1TL, then system (2) exists with an globally asymptotically stable order-1
periodic solution.

Proof. Due to the property (III) of Theorem 1, if Ψ(yK1TL) < yK1TL , then the Poincaré map Ψ exists with
a unique fixed point yf (0 < yf < yK1TL). To show its globally stability, we further need to prove that it is
globally attractive.

In the light of properties (II) and (IV) of Theorem 1, giving an initial condition ((1−K1(C0))TL, y
+
0 ),

if y+0 ∈ [0, yf ), then y
+
0 < Ψ(y+0 ) < yf . By induction, Ψn(y+0 ) is monotonically increasing and this leads to

limn→+∞Ψn(y+0 ) = yf (Fig. 1(a)).
In the case of y+0 ∈ (yf ,+∞), if Ψn(y+0 ) > yf holds naturally, then Ψ(y+0 ) < y+0 results in that Ψn(y+0 )

is monotonically decreasing and we have limn→+∞Ψn(y+0 ) = yf . If Ψn(y+0 ) > yf holds not for all n.
Thereby, there is a n1 such that Ψn1(y+0 ) < yf . As discussed above, there is a n2 (n2 > n1) such that
Ψn2(y+0 ) is increasing monotonically, and this results in limn2→+∞Ψn2(y+0 ) = yf . In a word, the fixed point
yf of Ψ is globally attractive. This ends the proof. �

Theorem 7. If Ψ(yK1TL) > yK1TL and Ψ2(yK1TL) ≥ yK1TL, then system (2) exists with the order-1 and
order-2 periodic solutions.

Proof. If Ψ(yK1TL) > yK1TL , the property (I) of Theorem 1 guarantees that on [0, yK1TL ] the map Ψ is
monotonically increasing, which reveals that in this interval there is no fixed point for Ψ. Thereby, there
must be an constant i such that y+i−1 = Ψn−1(y+0 ) < yK1TL and y+i = Ψn(y+0 ) ≥ yK1TL . On the interval

[yK1TL ,+∞), since Ψ is strictly decreasing and Ψ2 is strictly increasing,

Ψ([yK1TL ,Ψ(yK1TL)]) = [Ψ2(yK1TL),Ψ(yK1TL)] ⊂ [yK1TL ,Ψ(yK1TL)].

It indicates that [yK1TL ,Ψ(yK1TL)] is an invariant set for Ψn(y+0 ). Hence, the fixed points of Ψ relies on the
initial value of y+0 . For any y+0 ∈ [yK1TL ,Ψ(yK1TL)], we denote y+1 = Ψ(y+0 ) ̸= y+0 , y

+
2 = Ψ2(y+0 ) ̸= y+0 . If

y+1 = Ψ(y+0 ) = y+0 and y+2 = Ψ2(y+0 ) = y+0 , then y
+
0 is just the fixed point of Ψ. Otherwise, for the relations

among yP , Ψ(yP ), y
+
0 , y

+
1 and y+2 , there are four cases:
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(C1) If yK1TL ≤ y+2 < y+0 < y+1 ≤ Ψ(yK1TL), then y
+
1 = Ψ(y+0 ) < Ψ(y+2 ) = y+3 and y+4 = Ψ(y+3 ) < Ψ(y+1 ) =

y+2 . Thus y
+
4 < y+2 < y+0 < y+1 < y+3 . By induction we have

yK1TL ≤ · · · < y+2n+2 < y+2n < · · · < y+2 < y+0
< y+1 < · · · < y+2n−1 < y+2n+1 < · · · ≤ Ψ(yK1TL).

(C2) If yK1TL ≤ y+0 < y+2 < y+1 ≤ Ψ(yK1TL), then Ψ(y+1 ) = y+2 < y+3 = Ψ(y+2 ) < Ψ(y+0 ) = y+1 and
y+2 = Ψ(y+1 ) < Ψ(y+3 ) = y+4 < y+3 = Ψ(y+2 ) = y+1 , i.e., y

+
0 < y+2 < y+4 < y+3 < y+1 . By induction

yK1TL ≤ y+0 < y+2 < · · · < y+2n < y+2n+2

< · · · < y+2n+1 < y+2n−1 < · · · < y+1 ≤ Ψ(yK1TL).

(C3) If yK1TL ≤ y+1 < y+2 < y+0 ≤ Ψ(yK1TL), as shown in case (C2),

yK1TL ≤ y+1 < · · · < y+2n−1 < y+2n+1 < · · ·
< y+2n+2 < y+2n < · · · < y+2 < y+0 ≤ Ψ(yK1TL).

(C4) If yK1TL ≤ y+1 < y+0 < y+2 ≤ Ψ(yK1TL), as shown in case (C1)

yK1TL ≤ · · · < y+2n+1 < y+2n−1 < · · · < y+1 < y+0
< y+2 < · · · < y+2n < y+2n+2 < · · · ≤ Ψ(yK1TL).

For cases (C2) and (C3), because Ψ
2n(y+0 ) = y+2n is strictly increasing and Ψ2n+1(y+0 ) = y+2n+1 is strictly

decreasing, there must be a positive constant yf such that

lim
n→+∞

y+2n+1 = lim
n→+∞

y+2n = yf , yf ∈ [yK1TL ,Ψ(yK1TL)].

For case (C1) and (C4), there are two positive constants y∗f and yf∗ such that

lim
n→+∞

y+2n+1 = y∗f and lim
n→+∞

y+2n = yf∗ ,

where y∗f , yf∗ ∈ [yK1TL ,Ψ(yK1TL)] and y
∗
f ̸= yf∗ . All these results implies that system (2) exists with the

order-1 and order-2 periodic solutions (Fig.1 or Fig.2). This completes the proof. �
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Fig. 2. Fixed points of Poincaré map Ψ. (a) Period-2 fixed points for θ = 3.7; (b) Period-4 fixed points for θ = 4.2. All other
parameters were fixed as r = 5, K = 100, a = 0.8, w = 1, b = 0.3, c = 0.23, d = 0.3, dT = 0.2, dE = 0.4, k1 = 0.5, k2 = 1,
C0 = 0.65, τ = 0.5 and ET = 0.5.

Theorem 8. Denote y+min = min{y+ : Ψ(y+) = yK1TL}. If Ψ(yK1TL) > yK1TL and Ψ2(yK1TL) < y+min, then
system (2) exists with an order-3 periodic solution.
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Proof. If Ψ(yK1TL ) > yK1TL , in the light of Theorem 1 and Theorem 7, on (yK1TL , Ψ(yK1TL )) there exists a 
unique fixed point yf for Ψ. Theorem 1 also ensures that Ψ3(y) is also continuous on [0, +∞), then for Ψ3

we have: (I) Ψ3 is increasing on [0, ymin) and Ψ3(0) = Ψ2(τ) > 0; (II) Ψ3(y+min) = Ψ2(yK1TL) < y+min. Due
to continuity of Ψ3, it follows from the intermediate value theorem that there is a constant ȳ ∈ (0, y+min)
such that Ψ3(ȳ) = ȳ and y+min < yK1TL . Moreover, yf ∈ (yK1TL ,Ψ(yK1TL)) and thus ȳ ̸= yf . All these
results confirm that there is a fixed point ȳ ∈ (0, y+min) for Ψ

3. This completes the proof. �

5. Numerical results and biological implications

In this section, we first carry out sensitivity analyses to show how key control parameter values affect
the efficacy of chemotherapeutic drug and outcomes of tumours. Then we choose the control parameters
representing the treatment intensity as the bifurcation parameters and provide one-dimensional bifurcations
to address the complexity of system (2). Meanwhile, biological conclusions are also presented.

5.1. Sensitivity analyses
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Fig. 3. The effects of key parameters on dT of chemical control. (a) r = 5, K = 100, k1 = 1, C0 = 0.65 and TL = 5; (b)
r = 5, K = 100, T = 10, k1 = 1 and TL = 5.

Since we derive the expression of the effector cell eradication periodic solution in section (4.1), this
enable us to explore the effects of period and dosage of chemotherapeutic drugs on the efficacy of chemother-
apy. Based on (9) and fixed the parameters, the results indicate that the tumour cell depletion rate dT
is decreasing when period T (or chemotherapy drug concentration C0) is increasing, and the trend is
more profound for a smaller T or C0 (Fig.3). It is concluded that the therapeutic regimen with a smaller
chemotherapy drug dose and more frequent intakes is more effective to maintain higher tumour cell de-
pletion rate (i.e., killing rate of tumours). Thus, smaller period T and lower concentration C0 make great
contributions to the efficacy of chemotherapy.

Threshold condition (11) is a very important criterion: if R0 < 1, then the effector cell eradication
period solution is globally stable; if R0 = 1, then the effector cell eradication period solution becomes
unstable; if R0 > 1, then the tumours and effector cells coexist along an interior periodic solution which
is generated from transcritical bifurcation. Biologically, it is of great importance to analyze the effects of
each control parameters against R0. From Fig.4(a), R0 decreases as dE increases. For fixed dE(dE = 1.35),
R0 first increases and then decreases as threshold TL increases. Particularly, R0 < 1 for a small threshold
TL, R0 ≥ 1 once TL exceeds a critical value and again R0 < 1 as TL further increases. R0 also decreases as
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Fig. 4. The effects of control parameters on the threshold condition R0. All baseline parameter values were fixed as r = 5,
K = 100, a = 0.8, w = 1, b = 0.3, c = 0.23, d = 0.3, k1 = k2 = 1, C0 = 0.65, dT = 0.2, dE = 1.35, θ = 3.5, ET = 5 and τ = 0.

dT increases (Fig.4(b)). R0 decreases from R0 ≥ 1 to R0 < 1 as C0 and k1 increase (Fig.4(c) and Fig.4(d)).
The differences are that the trends are more significant for a smaller dE in Fig.4(c) and for a larger TL
in Fig.4(d). From a biological view of point, for a single chemotherapy, to control tumours the feasible
ways include: increasing dE , or increasing dT , or decreasing dE and increasing TL, or decreasing dE and
increasing C0, or increasing k1 and increasing TL. Therefore, the controllable treatment parameters of dE ,
dT , TL, C0 and k1 play decisive roles in maintaining the tumours below a given threshold.

Though sensitive analysis reveals that mall changes of these factors will result in the sharp changes in
the evolution of tumours, the deeper influence of these elements on the dynamics still needs to be explored.
To do this, we will carry out a one-dimensional bifurcation analysis with respect to key parameters, because
it not only shows the innate dynamical properties of the proposed system, but also indicates how dynamics
rely on the parameter.

5.2. Bifurcation analysis

In subsections (4.1) and (4.2), the effector cell eradication periodic solution is stable provided 0 < µ2 < 1
and unstable provided µ2 > 1, and the transcritical bifurcation near this periodic solution occurs at µ2 = 1
(or R0 = 1) with respect to the treatment parameters dE , θ, k2 and C0. Fixed parameter values as shown in
Fig.5(a), if dE > d∗E ≈ 1.53, then we observe a stable effector cell eradication periodic solution, the stability
changes from stable to unstable and also the transcritical bifurcation occurs at dE = d∗E which subsequently
generates an order-1 periodic solution. As dE decreases, the order-1 periodic solution becomes unstable and
then there is an stable order-2 periodic solution. When the intensity of immunotherapy is enhanced, i.e.,
the dosage of external input of IL-2 increases from θ = 3.5 to θ = 7 (Fig.5(b)), then d∗E ≈ 1.832. It is found
that the transcritical bifurcation occurs at d∗E , then the period-doubling bifurcations leading system (2)
to chaos as dE decreases. Meanwhile, complex dynamics includes chaotic bands, periodic windows, crisis,
period-halving bifurcations were also observed. Biologically, the depletion rate dE and accumulation rate
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Fig. 5. Bifurcation diagrams with respect to dE when (K, 0) is globally stable with parameters fixed as: r = 5, K = 100,
a = 0.8, w = 1, b = 0.3, c = 0.23, d = 0.3, k1 = k2 = 1, C0 = 0.65, dT = 0.2, ET = 5 and τ = 0. (a) θ = 3.5; (b) θ = 7.

θ play significant roles in tumour treatment, small dE and θ will stabilize the tumour and effector cells
along periodic solutions and so will make the treatment more stable.

It follows from subsection (4.2.2) that system (2) will also undergo the transcritical bifurcation with
respect to parameter θ. Fix parameter values as shown in Fig.6(a), we obtain θ∗ ≈ 1.115, when 0 < θ < θ∗,
there is an unstable effector cell free periodic solution. As θ increases, the transcritical bifurcation occurs at
θ∗ and then period-doubling bifurcations lead to chaos. When τ > 0, in subsection (4.3) we have shown that
system (2) exists with periodic solutions of any period, the numerical investigations confirm our results.
For example, let τ = 0.5 and fix all parameters as shown in Fig.6(a), then system (2) exhibits complexity
includes period-doubling bifurcations, period-halving bifurcations, etc. Moreover, in the case of τ > 0, if
we choose dE and τ as bifurcation parameters, then chaos can be observed and period-having bifurcations
lead system (2) from chaos to an stable order-1 periodic solution (7).

In a word, the value of µ2 (or R0) can be viewed as a key criterion for the stability of the effector cell
eradication periodic solution, which was greatly affected by treatment parameters dE , dT , TL, C0 and k1.
The introduce of immunotherapy has contributed greatly to the coexist of tumours and effector cells, as
indicated by periodic solutions or chaos. These results indicate that immunotherapy plays a decisive role
in evolution of tumours.

6. Conclusions

Using mathematical models to study the inner relationships between tumour cells and immune cells and
the effects of various treatments on the evolution of tumours have always been one of the hot topics
[Walther & Lin, 2013; Yang et al., 2015, 2019a,b; Tang et al., 2015, 2017]. For tumour-immune systems
with control, many factors affecting the outcomes of treatment have been extensively studied, such as
surgery, chemotherapy, radiotherapy, immunotherapy or their combinations [Kirschner & Panetta, 1998;
de Pillis et al., 2006; Walther & Lin, 2013; Yang et al., 2015; Tang et al., 2015, 2017]. While the depletion
rates of tumours and immune cells caused by treatment are often assumed to be constants. To study the
effects of key factors of treatment on the evolution of tumours more profoundly, we proposed a novel
tumour-immune model with pulsed chemotherapy and immunotherapy concerning a tumour threshold
value TL.
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Fig. 6. (a) Bifurcation diagrams with respect to θ and when τ = 0; (b) Bifurcation diagrams with respect to θ and when
τ = 0.5. All other parameters are fixed as: r = 5, K = 100, a = 0.8, w = 1, b = 0.3, c = 0.23, d = 0.3, k1 = 0.5, k2 = 1,
C0 = 0.65, dT = 0.2, dE = 0.4 and ET = 5.
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Fig. 7. (a)Bifurcation diagrams with respect to dE when τ = 0.5; (b) Bifurcation diagrams with respect to τ when dE = 0.2.
All other parameters are fixed as: r = 5, K = 100, a = 0.8, w = 1, b = 0.3, c = 0.23, d = 0.3, k1 = 0.5, k2 = 0.5, C0 = 0.65,
dT = 0.3, θ = 5 and ET = 5.

First of all, the Poincaré map is defined in the domain and some important properties are discussed.
Then we derive the expression of effector cell eradication periodic solution, and obtain the expressions of
the period T and the depletion rate dT . Threshold condition for the globally asymptotically stability of
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this periodic solution is also provided. It indicates that the key control parameters play significant roles 
in determining the stability of the effector cell eradication periodic solution, and transcritical bifurcations 
with respect to the accumulation rate, the depletion rate, medicine toxicity coefficient and the concentra-
tion of chemotherapy are also addressed. When immunotherapy (i.e., τ > 0 and θ > 0) is initiated, we 
study the order-k(k ≥ 1) periodic solutions and give conditions for its stability. The results show that a 
single chemotherapy may stabilize the tumours along the effector cell eradication periodic solution under 
certain conditions, while tumours and immune cells may coexist along order-k periodic solutions when 
immunotherapy is introduced.

Furthermore, sensitivity analyses are carried out to show how key treatment parameter values affect the 
efficacy of chemotherapeutic drug and outcomes of tumours. We find that the tumour cell depletion rate dT 
is decreasing when impulsive period T or chemotherapy drug concentration C0 is increasing, and the trend 
is more profound for a smaller T . It indicates that the therapeutic regimen with a smaller chemotherapy 
drug dose and more frequent intakes make great contributions to the efficacy of chemotherapy. For a 
single chemotherapy, the feasible treatment for cancer is increasing the depletion rate dE of effector cell, or 
increasing dT , or decreasing dE and increasing tumour cell threshold TL, or decreasing dE and increasing C0, 
or increasing medicine toxicity coefficient k1 and increasing TL. Therefore, the treatment parameters dE , 
dT , TL, C0 and k1 play decisive roles in maintaining the tumours below a given threshold. At the same time, 
treatments with different types of chemotherapeutic drugs, an appropriate dosage, a reasonable impulsive 
period and a critical tumour cell threshold have significant impacts on the outcomes of cancer treatment. 
Moreover, the transcritical bifurcation occurs at R0 = 1 with respect to the treatment parameters dE , θ, k2 
and C0, bifurcation analyses show that many complex dynamics includes chaotic bands, periodic windows, 
crisis, period-halving bifurcations can be observed when these parameters changes. The results reveal that 
the introduce of immunotherapy has contributed greatly to the coexist of tumours and effector cells, as 
indicated by periodic solutions or chaos.

Now, we show some of the highlights of this study compared to previous studies with pulsed treatments 
[Tang et al., 2016]: (1) the depletion rates or reductions of chemotherapy are usually being constants, but 
we consider the dose responses as nonlinear pulses in the model (2); (2) transcritical bifurcations with 
respect to the accumulation rate, the depletion rate, medicine toxicity coefficient and the concentration of 
chemotherapy are investigated; (3) we address the importance of the key treatment parameter values on 
the efficacy of chemotherapeutic drug and outcomes of tumours; (4) system (2) has very complex dynamics 
with respect to not only parameters of chemotherapy, but also parameters of immunotherapy.

For the tumour-immune model, we consider the effects of the dose responses on tumours and immune 
cells as nonlinear pulses. A very important assumption is that the tumour cells and effector cells are followed 
by deterministic laws. However, almost all of natural phenomena undergo stochastic processes rather than 
only by strictly deterministic laws [Renshaw , 1995]. For example, the conditions of the environment (such 
as temperature, pH value, nutrition and so on) may change the enzymatic activity of the proteins, and 
finally have impacts on the evolution of tumours [Caravagna et al., 2010]. Future work is required to 
consider both pulsed treatment and environmental noise in the tumour-immune systems.
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