
sensors

Article

A Secure and Efficient Data Sharing and Searching
Scheme in Wireless Sensor Networks

Binrui Zhu 1, Willy Susilo 2 , Jing Qin 1,3,*, Fuchun Guo 2, Zhen Zhao 2 and Jixin Ma 4

1 School of Mathematics, Shandong University, Jinan 250100, China; zhubinrui1509889@163.com
2 School of Computing and Information Technology, University of Wollongong, Wollongong 2522, Australia;

wsusilo@uow.edu.au (W.S.); fuchun@uow.edu.au (F.G.); zz343@uowmail.edu.au (Z.Z.)
3 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
4 Centre for Computer and Computational Science at School of Computing and Mathematical Sciences,

University of Greenwich, London SE10 9LS, UK; j.ma@greenwich.ac.uk
* Correspondence: qinjing@sdu.edu.cn; Tel.: +86-156-6666-1526

Received: 11 May 2019; Accepted: 3 June 2019; Published: 6 June 2019
����������
�������

Abstract: Wireless sensor networks (WSN) generally utilize cloud computing to store and process
sensing data in real time, namely, cloud-assisted WSN. However, the cloud-assisted WSN faces new
security challenges, particularly outsourced data confidentiality. Data Encryption is a fundamental
approach but it limits target data retrieval in massive encrypted data. Public key encryption with
keyword search (PEKS) enables a data receiver to retrieve encrypted data containing some specific
keyword in cloud-assisted WSN. However, the traditional PEKS schemes suffer from an inherent
problem, namely, the keyword guessing attack (KGA). KGA includes off-line KGA and on-line KGA.
To date, the existing literature on PEKS cannot simultaneously resist both off-line KGA and on-line
KGA performed by an external adversary and an internal adversary. In this work, we propose a
secure and efficient data sharing and searching scheme to address the aforementioned problem such
that our scheme is secure against both off-line KGA and on-line KGA performed by external and
internal adversaries. We would like to stress that our scheme simultaneously achieves document
encryption/decryption and keyword search functions. We also prove our scheme achieves keyword
security and document security. Furthermore, our scheme is more efficient than previous schemes by
eliminating the pairing computation.

Keywords: wireless sensor networks; cloud computing; Internet of Things; public key encryption
with keyword search; off-line keyword guessing attack; on-line keyword guessing attack

1. Introduction

Wireless sensor networks (WSN) and cloud computing have been widely deployed in daily
life. WSN consists of small low-power sensors and lightweight mobile devices connected to the
Internet [1,2]. These devices collect and exchange information in a variety of applications. Cloud
computing has the advantages of unlimited capability in terms of both storage and computation. WSN
is rapidly emerging, which is unprecedentedly driven by the assistance of cloud computing. As an
emerging technology, WSN has utilized cloud computing to store and process data to reduce the
burden of lightweight mobile devices.

More and more attention has been paid to using WSN technology as a crucial part of the
Internet of Things (IoT) in various industries. IoT improves manufacturing efficiency and enables
sustainable production [3–7]. As IoT and cloud-assisted WSN applications, enterprises and individuals
have utilized cloud storage to complete the data storage and data sharing to reduce the burden of
local storage.

Sensors 2019, 19, 2583; doi:10.3390/s19112583 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1562-5105
http://www.mdpi.com/1424-8220/19/11/2583?type=check_update&version=1
http://dx.doi.org/10.3390/s19112583
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2583 2 of 23

As shown in Figure 1, the cloud-assisted WSN typical architecture. In this architecture,
the cloud-assisted WSN system has powerful data processing capabilities and storage resources.
The sensors implanted in the system collect data information and upload them to the cloud server by
using a light mobile device. When the cloud-assisted WSN receives data, it stores and sends the data
to relevant industry workers for utilization. In a specific practical scenario, such as a cloud-assisted
medical system [8], the medical data documents are confidential to anyone except the patient and the
chief physician. Consequently, the stored data should be guaranteed to be secure, since any information
disclosure may result in serious consequences. Therefore, security requirements have become a key
challenge in cloud-assisted WSN.

Figure 1. Functions of a cloud-assisted WSN.

Security issues, such as users’ confidence that their data will remain secure with nobody able
to modify or observe the contents, will remain the stumbling block that hinders the adoption of
cloud-assisted WSN. Generally, users encrypt the data prior to uploading it to the cloud server for
protecting data confidentiality. Unfortunately, this approach eliminates the data search services
provided by modern search engines, which inevitably makes the effective data search function a
challenging research problem. There are two trivial solutions to solve the search problem in encrypted
documents. The first one is that the data receiver downloads the encrypted data locally, then decrypts
the data and searches for the keyword at the local end. However, this method is impractical since
it requires huge communication consumption and occupies a huge local storage space in the WSN.
Another way is for the data receiver to send the authorization key to the cloud server which enables
it to decrypt the encrypted documents in the cloud and to perform a search operation. However,
this approach exposes data privacy to the cloud server and contradicts the original intention of
data encryption. Focusing on the aforementioned problem, searchable encryption was proposed [9].
Searchable encryption enables a data receiver to authorize the cloud server to search in encrypted
documents and returns the associated encrypted files, where the encrypted documents do not need to
be decrypted.

Searchable encryption can be divided into symmetric searchable encryption (SSE) and public key
encryption with keyword search (PEKS). In SSE, a shared key is required to achieve a data sharing
function. PEKS [10] was proposed to eliminate the shared key in SSE. The general PEKS system
includes three participants, that is, data senders, a data receiver and a cloud server. Data senders
encrypt the data file and keywords index using the data receiver’s public key and then send ciphertexts
to the cloud server. The data receiver uses its private key to generate a keyword trapdoor and transmits
it to the cloud server. The cloud server uses the trapdoor to match the keyword ciphertext, if the
keyword in the ciphertext and the keyword in the trapdoor are equal, it outputs equal; otherwise it
outputs not equal.

Unfortunately, the traditional PEKS suffers from an inherent insecurity problem regarding
trapdoor privacy. Anyone can use the data receiver’s public key to generate the valid keyword
ciphertext. If the channel between the data receiver and cloud server is public, then the trapdoor is also

Sensors 2019, 19, 2583 3 of 23

open. If the adversary can execute the test algorithm, then it can verify whether or not the trapdoor
and the ciphertext are matched. When they are well matched, the keyword in the trapdoor is equal to
the keyword in the ciphertext; otherwise, the adversary can continue to guess another keyword until
the correct keyword is found since the keyword space has a much smaller size. This kind of attack is
called an off-line keyword guessing attack (off-line KGA), as shown in Figure 2. The off-line KGA is
divided into an external adversary’s off-line KGA and an internal server adversary’s off-line KGA,
according to which the adversary is an external adversary or an internal server adversary.

Figure 2. Off-line KGA.

Besides, another inherent insecurity problem regarding trapdoor privacy exists in the traditional
PEKS scheme. Since the keyword space has a much smaller size, a malicious data sender (including the
external adversary) can generate a data file ciphertext and associated keyword ciphertext by guessing
a keyword. If the channel between the data receiver and the cloud server is public, then the trapdoor
to locate and return encrypted files is also open. After the cloud server performs the test matching
operation, the related encrypted data files are returned. If the returned files have a encrypted data file
generated by the malicious sender, the malicious data sender can determine the keyword associated
with the encrypted data file, then the keyword in the trapdoor is also known to the malicious data
sender. This kind of attack is called an on-line keyword guessing attack (on-line KGA), as shown
in Figure 3. The difference between on-line KGA and off-line KGA mainly depends on whether the
adversary attacks the scheme through the cloud server.

Figure 3. On-line KGA.

For both types of attacks, a trivial solution is that we need a secure channel to share the secret
between the data receiver and data senders. A secure channel between cloud server and the data
receiver can avoid the off-line KGA initiated by the external adversary and the on-line KGA. But the
cost of building a secure channel prevents a Wi-Fi or 4G method from being utilized in the practical
application. Moreover, for an internal server adversary, the data receiver and every data sender should
share the secret in a secure channel against the off-line KGA initiated by the internal cloud adversary,
while this method breaks the asymmetry property of PEKS. Therefore, it is significant and essential to
resist both off-line KGA and on-line KGA performed by external and internal adversaries.

Sensors 2019, 19, 2583 4 of 23

Considering a specific scenario: Personal Health Records (PHRs) are confidential documents to
anyone except the patient and the chief physician. In order to protect patients’ PHR privacy, patients
need to encrypt the PHR data prior to uploading it to the cloud server. We want to implement a
search function, so a chief physician can search the PHR authorized information. We can use a PEKS
scheme to solve the keyword search problem in encrypted PHR. However, the PEKS scheme suffers
from an inherent problem, namely, the keyword guessing attack (KGA). In the process of searching,
the adversary may obtain the keyword in the trapdoor, which exposes PHR data privacy to the
adversary. Therefore, if we can design an efficient and secure data sharing and searching scheme to
address the off-line KGA and on-line KGA problem, then data privacy will be guaranteed.

1.1. Our Contributions

In this paper, we study how to resist both off-line KGA and on-line KGA performed by
external and internal adversaries in PEKS and propose a remedy to these problems. Specifically,
our contributions are as follows:

1. We introduce a dating sharing and searching (DSS) frame that can effectively resist both off-line
KGA and on-line KGA performed by an external adversary and an internal adversary. We also give
a specific dual server DSS construction. The security of the scheme can achieve double ciphertext
indistinguishability against the on-line KGA and indistinguishability against a chosen keyword attack
(IND-CKA). We adopt the dual server method, which divides the cloud server into the forward server
and backward server such that any single server cannot complete the test algorithm independently and
any single server cannot get the correspondence between trapdoor and keyword ciphertext, therefore,
the off-line KGA cannot be conducted successfully.

2. We add data file encryption/decryption to our scheme. In the traditional PEKS scheme, there is
no algorithm for data file encryption/decryption. PEKS mainly focuses on the search process and
omits the data file encryption/decryption process, which means there is only a keyword encryption
algorithm in PEKS and it does not involve a data file encryption/decryption algorithm. However,
in the actual application, a data file encryption/decryption is indispensable. The malicious data sender
adversary may initiate an on-line KGA by observing the encrypted returned files. We adopt the
re-encrypt technique, which the malicious data sender (including backward server) cannot get the
correspondence between a trapdoor and encrypted data file, therefore, the on-line KGA cannot be
conducted successfully.

3. Our scheme can simultaneously resist both off-line KGA and on-line KGA performed by
external and internal adversaries. It does not require a secure channel and keeps the asymmetry
property rather than a trivial solution. Compared to the previous schemes, our scheme also improves
efficiency by eliminating the pairing computation and offers richer functionality by adding the data
file encryption/decryption process.

Technical note: We choose PEKS as the starting point for the design of the scheme. For resisting
KGA, we will discuss on-line KGA and off-line KGA. For an external adversary’s off-line KGA,
the scheme generates a key pair for the cloud server to prevent the external adversary from launching
an off-line KGA after eavesdropping the trapdoor through the public channel. What we need to point
out here is to generate a key pair for the server it cannot entirely resist an external adversary’s off-line
KGA. For example, Baek’s scheme has a fixed trapdoor. By comparing two bilinear pairs, the adversary
can guess a keyword. We also need the trapdoor to satisfy the trapdoor indistinguishability to
overcome this external adversary’s off-line KGA.

For an internal server adversary’s off-line KGA, we can divide the cloud server into two servers,
which are the forward server and the backward server. Any single server cannot complete the test
algorithm independently. Then, any single server cannot get the correspondence between the trapdoor
and the keyword ciphertext, so the off-line KGA cannot be initiated. Therefore, our frame can resist
off-line KGA performed by external and internal adversaries.

Sensors 2019, 19, 2583 5 of 23

For on-line KGA, since the attack is initiated by observing the returned data files, we need to
consider the data file encryption/decryption. We use the encryption scheme to provide data file
encryption/decryption. The malicious data sender observes whether including the returned data
file ciphertext is generated by itself to judge the keyword in eavesdropping on the trapdoor. Since
the cloud server has strong computing power, we let the forward server perform double encryption
for the data file ciphertext. In this way, the generated double ciphertext can satisfy the ciphertext
indistinguishability for a malicious data sender, and therefore the malicious data sender adversary
cannot initiate on-line KGA.

1.2. Related Works

In 2000, Song et al. first proposed an SSE scheme based on a symmetric cryptosystem [9].
Song et al.’s scheme can search any keyword in the ciphertext by word-by-word comparison to
complete the keyword search function, therefore, the efficiency is low. Song et al.’s scheme suffers from
statistical attacks and it cannot be proven secure. After Song et al.’s scheme, many researchers proposed
SSE schemes [11,12]. The symmetric searchable encryption scheme can only be established under the
symmetric cryptosystem, therefore, there is a problem of key distribution. In order to solve this problem,
Boneh et al. proposed the first PEKS scheme based on the asymmetric cryptosystem in 2004 [10].
Boneh et al.’s scheme is transformed from identity-based encryption (IBE), which replaces the identity
in the IBE with the keyword. Boneh et al.’s scheme needs a secure channel between the cloud server and
the receiver for uploading the trapdoor. However, the cost of building a secure channel is expensive as
is the connection between the receiver and cloud server through an insecure communication channel
in IoT environment. In 2005, Abdalla et al. explored the conversion relationship between IBE and
PEKS [13]. It is shown that an anonymous IBE scheme could be transformed into a PEKS scheme and
it proposed the temporary keyword search scheme. Baek et al. proposed a PEKS scheme to remove the
secure channel (dPEKS) [14]. In 2006, Baek et al. proposed a scheme combining a public key encryption
(PKE) scheme and PEKS [15]. The scheme achieves the data file encryption/decryption function and
keyword search function. Baek et al.’s scheme cannot resist off-line KGA, because the trapdoor in the
Baek et al. scheme is fixed, the adversary can test each keyword through a bilinear pair to obtain the
keyword in the trapdoor. Rhee et al. improved Baek et al.’s security model in 2009, which allows the
adversary to obtain correspondence between the ciphertext and the trapdoor [16].

In 2010, Rhee et al. proposed a new dPEKS scheme [17]. The scheme proposed a new security
definition, the trapdoor indistinguishability, and it is a sufficient condition for resisting the external
adversary’s off-line KGA. In 2013, Fang et al. proposed a scheme that can resist the external adversary’s
off-line KGA under the standard model [18]. Fang et al.’s scheme is the first dPEKS scheme to achieve
the indistinguishability against a chosen keyword ciphertext attack that allows the adversary to initiate
test query. Rhee et al’s two schemes and Fang et al’s scheme cannot resist internal server’s off-line
KGA. In 2014, Chen et al. [19] proposed a generalized structure against on-line KGA. Chen et al.’s
scheme [19] only satisfies the trapdoor security against on-line KGA and it also suffers from the off-line
KGA. In 2016, Chen et al. proposed a two cloud server model [20] and any single server cannot
complete the test operation so that it can resist the off-line KGA. However, in Chen et al.’s scheme [20],
anyone who can generate a trapdoor and access the test query can create a security problem. It also
cannot resist on-line KGA.

In 2016, Chen et al. proposed a joint scheme combining PKE and PEKS [21]. This scheme
achieved the IND-CCA security and the indistinguishability against a chosen keyword ciphertext
attack security but it could not resist both off-line and on-line KGA. In 2009, Tang et al. proposed a
PEKS scheme for resisting off-line KGA [22]. Tang et al.’s method is to share the previously registered
keywords between the receiver and every data sender. In 2017, Satio et al. proposed a PEKS scheme
of designed-senders [23]. As a designed data sender, it needs to obtain the receiver’s authentication.
Only the specified data sender can generate valid ciphertext and upload the shared encrypted data to
the cloud server; therefore, the internal server adversary cannot generate valid ciphertext and cannot

Sensors 2019, 19, 2583 6 of 23

initiate the off-line KGA. In the same year, Huang et al. [24] and Jiang et al. [25] also used the idea
of designed-senders. Only designed-senders can generate valid ciphertext so that it can resist the
internal adversary’s off-line KGA. In 2018, Wu et al. proposed an off-line KGA scheme against an
internal server adversary [26]. It is a method for sharing a secret between the data receiver and every
sender. However, all the above five schemes have broken the asymmetry property of PEKS and cannot
resist on-line KGA. Zhu et al. proposed a PEKS with a public verifiability scheme [27]. It achieves the
public verifiability of the search results, but it cannot resist the internal server’s off-line KGA. Han et al.
proposed a survey of keyword search schemes in recent years [28]. Many researchers also studied the
keyword search problem [29,30].

After we finished our work, we found that Noroozi et al. concurrently presented a generalized
PEKS structure against off-line KGA and on-line KGA for an external adversary [31]. It is a method to
combine the PEKS with a designated server structure and the technique of re-randomizing ciphertexts.
However, it is not enough for the PEKS scheme to resist this external adversary alone. The PEKS
scheme still needs to resist an internal server adversary. In our work, we design a PEKS scheme that it
simultaneously resists both external adversary and internal server adversary.

Noroozi et al. also considers that designing a PEKS scheme which is secure against off-line KGA
and on-line KGA, even performed by the internal server adversary, remains a challenging problem.

We also found that this challenging problem still needs to be addressed. We designed a secure
and efficient data sharing and searching (DSS) scheme against both off-line KGA and on-line KGA
performed by external and internal adversaries.

1.3. Organization

The paper is organized as follows. The scheme definition and security model are described in
Section 2. A secure and efficient data sharing and searching scheme against KGA (DSS against KGA)
is proposed in Section 3. We analyze the security and efficiency of the proposed scheme in Section 3.
The paper is concluded in Section 4.

2. Scheme Definition and Security Models

2.1. System Model

The model of the dual server DSS against KGA scheme (Dual server DSS against KGA model) that
we proposed is shown in Figure 4. There are four participants in this model including data senders,
a receiver, cloud sever 1 and cloud server 2. The workflow is as follows:

First of all, data senders encrypt the data file M using the data receiver’s public key pkr and
encryption algorithm Enc to form a data file ciphertext C1. Data senders also encrypt the corresponding
keyword index using two servers’ public keys pks,1, pks,2, the receiver’s public key pkr and the
encryption algorithm peks to form keyword ciphertext C2, then sends the ciphertext (C1, C2) to cloud
server 1. Secondly, cloud server 1 generates the double ciphertext C′1 by re-encrypting the data file
ciphertext C1. Then, the data receiver uses its secret key skr to generate a keyword trapdoor Tw and
transmits it to cloud server 1. Next, cloud server 1 uses the trapdoor Tw and keyword ciphertext C2 to
compute the transitional ciphertext CT , and sends the CT to cloud server 2. Afterwards, cloud server
2 outputs the matching result. If the keyword in the ciphertext and the keyword in the trapdoor are
equal, cloud server 2 sends the relevant encrypted data file C′1 to the data receiver. In the final step,
to obtain the message M, the receiver decrypts the data file’s double ciphertext C′1 using its secret
key skr.

Although our scheme uses the re-encryption technique, its computational efficiency is almost
equal to that of Noroozi et al.’s re-randomizing ciphertexts technique. Of course, the re-encryption
technique can also be easily replaced with a re-randomizing ciphertexts technique in our work.

Sensors 2019, 19, 2583 7 of 23

Figure 4. Dual server DSS against KGA model.

2.2. Algorithm Definitions

Before defining our algorithms, we define a notations Table 1 for the mathematical symbols in the
whole paper.

Table 1. Notations.

Notation Description

sp System parameter
pks,1, sks,1 Public/secret key of the cloud server 1
pks,2, sks,2 Public/secret key of the cloud server 2

pkr, skr Public/secret key of the receiver
w Keyword
m Message

Enc(m) Encryption algorithm Enc for the data m
peks(m) Encryption algorithm peks for the keyword w

C1 Message ciphertext
C2 Searchable ciphertext for keyword
C′1 Double message ciphertext
Tw Trapdoor for keyword w
CT The transitional ciphertext
A Adversary
B Challenger or simulator
O(w) Trapdoor oracle for the keyword w

More specifically, a scheme of DSS against KGA consists of the following algorithms:

(1) sp← SysGen(1k): on input a security parameter k and output a system parameter sp.
(2) KeyGen(sp):

• (pks,1, sks,1), (pks,2, sks,2)← KeyGenserver1,2(sp): on input a system parameter sp and output
two pairs of public and secret key (pks,1, sks,1), (pks,2, sks,2) for the cloud server 1 and cloud
server 2, separately.

• (pkr, skr)← KeyGenreceiver(sp): on input a system parameter sp and output a pair of public
and secret key (pkr, skr) for the receiver.

(3) (C1,C2)← PEKS(sp, pks,1, pks,2, pkr,w,M): on input a system parameter sp, the cloud
server 1 public key pks,1, the cloud server 2 public key pks,2, the receiver public key pkr,
the keyword w, the message M and output the ciphertext C1 = Enc(M, pkr, sp), C2 =

peks(pkr, pks,1, pks,2, w, sp).

Sensors 2019, 19, 2583 8 of 23

(4) C′1 ← ReEnc(sp, pkr,C1): on input a system parameter sp, the receiver public key pkr,
the ciphertext C1, and output the double ciphertext C′1.

(5) Tw ← Trapdoor(sp, skr,w, pks,1, pks,2, pkr): on input a system parameter sp, cloud server 1 public
key pks,1, cloud server 2 public key pks,2, the receiver public key pkr, the receiver secret key skr,
the keyword w, and output the keyword search trapdoor Tw.

(6) C′1 or ⊥← Test(sp,Tw,C2, sks,1, sks,2): on input a system parameter sp, the cloud server 1 secret
key sks,1, the cloud server 2 secret key sks,2, the keyword search trapdoor Tw, the ciphertext
(C′1, C2), and output ciphertext C′1 if the keyword search trapdoor Tw matching the ciphertext
C2, and ⊥ otherwise. The matching process as follows:

• Test1(sp,Tw,C2, sks,1)→ CT: the cloud server 1 inputs the trapdoor Tw, the ciphertext C2,
the cloud server 1 secret key sks,1, the system parameter sp, and outputs the transitional
ciphertext CT .

• Test2(sp,CT, sks,2)→ C′1 or ⊥: the cloud server 2 inputs the system parameter sp,
the transitional ciphertext CT , the cloud server 2 secret key sks,2. If the transitional ciphertext
satisfies the condition, it outputs the double ciphertext C′1, and ⊥ otherwise.

(7) M← Dec(sp, skr,C′1): on input a system parameter sp, the receiver secret key skr, the ciphertext
C′1 and output the message M.

2.3. Security Model

We define six security models, including the indistinguishability against a chosen keyword attack
(IND-CKA 1) security model for cloud server 1, the IND-CKA 2 security model for cloud server 2,
trapdoor indistinguishability against the off-line KGA (IND-Trapdoor 1) security model for cloud
server 1, trapdoor indistinguishability against the off-line KGA (IND-Trapdoor 2) security model for
cloud server 2, double ciphertext indistinguishability against the on-line KGA (IND-Double ciphertext)
security model, transitional ciphertext indistinguishability against chosen keyword attack (IND-CKA
3) security model.

It should be noted that both cloud server 1 and cloud server 2 are “honest but curious” and they
will not collude with each other. More specifically, the two servers strictly enforce the testing process
of the algorithm but may be curious about the content of the keyword. It should be noted that these
models implicitly define the security against external adversaries since the external adversary has less
capability than the cloud server.

We define the keyword ciphertext’s semantic security. Any adversary cannot distinguish the
challenge ciphertext unless the trapdoor is available. Formally, we define security model IND-CKA 1
and IND-CKA 2 played between a challenger B and adversary Ai, i = 1, 2.

For the IND-CKA 1 security model, as the Table 2, the challenger B generates three key pairs
(pks,1, sks,1), (pks,2, sks,2), (pkr, skr). It sends public keys pks,1, pks,2, pkr and secret key sks,1 to the cloud
server 1 adversary A1. A1 can access the trapdoor oracle O1(w) to get any keyword trapdoor wi
and outputs two distinct challenge keywords and a message (w0, w1, M∗), which wb 6= wi, b ∈ {0, 1}.
The challenger B generates challenge PEKS ciphertext (C1, C2,b) of (wb, M∗) with a random bit b and
sends it to A1. During the game, the adversary can adaptively continue to query trapdoor oracle
O1(w) unless the challenge keywords w0 and w1. Finally, the adversary A1 outputs b′ as its guess.

For the IND-CKA 2 security model, as the Table 3, the game is similar to IND-CKA 1. We define
security model IND-CKA 2 played between a challenger B and adversary A2. We omit the details here.
The definition is as follows:

Definition 1 (IND-CKA). A scheme of DSS against the KGA is indistinguishable against a chosen keyword
attack if no PPT adversaries A1 can win game IND-CKA 1 and A2 can win game IND-CKA 2 with a
non-negligible advantage, where B is the challenger, A1 is cloud server 1, A2 is cloud server 2.

Sensors 2019, 19, 2583 9 of 23

Table 2. IND-CKA 1.

Game IND-CKA 1 ExpCKA
A1

[DSS]

Kset←− φ
(pks,1, sks,1, pks,2, sks,2, pkr, skr)←− KeyGen(sp);
(w0, w1, M∗)←− AO1 (sp, (pks,1, sks,1), pks,2, pkr);
(C1, C2,b)←− B(M∗, wb, pks,1, pks,2, pkr, b ∈ {0, 1});
b′ ←− AO1 (C1, C2,b, guess);
if {w0, w1}

⋂
Kset = φ, then return 1, if b′ = b;

else return 0.
Oracle O(w):
Kset = Kset

⋃{w}, Tw ←− O(pks,1, pks,2, pkr, skr, w);
return {Tw}

Table 3. IND-CKA 2.

Game IND-CKA 2 ExpCKA
A2

[DSS]

Kset←− φ
(pks,1, sks,1, pks,2, sks,2, pkr, skr)←− KeyGen(sp);
(w0, w1, M∗)←− AO2 (sp, (pks,2, sks,2), pks,1, pkr);
(C′1, C2,b)←− B(M∗, wb, pks,1, pks,2, pkr, b ∈ {0, 1});
b′ ←− AO2 (C′1, C2,b, guess);
if {w0, w1}

⋂
Kset = φ, then return 1, if b′ = b;

else return 0.
Oracle O(w):
Kset = Kset

⋃{w}, Tw ←− O(pks,1, pks,2, pkr, skr, w);
return {Tw}

We define Ai advantage as:

AdvIND−CKA
Ai

= |Pr[b = b′]− 1/2|, i ∈ {1, 2}.

Next, we define the keyword trapdoor semantic security. Any adversary cannot distinguish the
challenge trapdoor, that is to say, the challenge trapdoor does not reveal any information about the
keyword. Formally, we define security model IND-Trapdoor 1 and IND-Trapdoor 2 played between a
challenger B and adversary Ai, i = 3, 4.

The IND-Trapdoor 1 and IND-Trapdoor 2 are similar to the IND-CKA 1. The adversary is given
the challenge trapdoor instead of the PEKS challenge ciphertext. For the IND-Trapdoor 1 security
model, as the Table 4, the challenger B generates three key pairs (pks,1, sks,1), (pks,2, sks,2), (pkr, skr).
It sends public keys pks,1, pks,2, pkr and secret key sks,1 to the cloud server 1 adversary A3. A3 can
access the trapdoor oracle O1(w) to get any keyword trapdoor wi and outputs two distinct challenge
keywords (w0, w1), which wb 6= wi, b ∈ {0, 1}. The challenger generates challenge trapdoor Twb of
wb with a random bit b and sends it to A3. During the game, the adversary can adaptively continue
to query trapdoor oracle O1(w) unless the challenge keywords w0 and w1. Finally, the adversary A3

outputs b′ as its guess.
For the IND-Trapdoor 2 security model, as the Table 5, the game is similar to IND-Trapdoor 1. We

define security model IND-Trapdoor 2 played between a challenger B and adversary A4. We omit the
details here. The definition is as follows:

Definition 2 (IND-Trapdoor). A scheme of DSS against the KGA is trapdoor indistinguishability against
off-line KGA if no PPT adversaries A3 can win the game IND-Trapdoor 1 and A4 can win game IND-Trapdoor
2 with non-negligible advantage, where B is the challenger, A3 is cloud server 1, A4 is cloud server 2.

Sensors 2019, 19, 2583 10 of 23

Table 4. IND-Trapdoor 1.

Game IND-Trapdoor 1 Expo f f−line KGA
A3

[DSS]

Kset←− φ
(pks,1, sks,1, pks,2, sks,2, pkr, skr)←− KeyGen(sp);
(w0, w1)←− AO3 (sp, (pks,1, sks,1), pks,2, pkr);
Tb ←− B(wb, pks,1, pks,2, pkr, skr, b ∈ {0, 1});
b′ ←− AO3 (Tb, guess);
if {w0, w1}

⋂
Kset = φ, then return 1, if b′ = b;

else return 0.
Oracle O(w):
Kset = Kset

⋃{w}, Tw ←− O(pks,1, pks,2, pkr, skr, w);
return {Tw}

Table 5. IND-Trapdoor 2.

Game IND-Trapdoor 2 Expo f f−line KGA
A4

[DSS]

Kset←− φ
(pks,1, sks,1, pks,2, sks,2, pkr, skr)←− KeyGen(sp);
(w0, w1)←− AO4 (sp, pks,1, (pks,2, sks,2), pkr);
Tb ←− B(wb, pks,1, pks,2, pkr, skr, b ∈ {0, 1});
b′ ←− AO4 (Tb, guess);
if {w0, w1}

⋂
Kset = φ, then return 1, if b′ = b;

else return 0.
Oracle O(w):
Kset = Kset

⋃{w}, Tw ←− O(pks,1, pks,2, pkr, skr, w);
return {Tw}

We define Ai advantage as:

AdvIND−Trapdoor
Ai

= |Pr[b = b′]− 1/2|, i ∈ {3, 4}.

After that, we define the double ciphertext semantic security. Any adversary cannot distinguish
the challenge double ciphertext. Formally, we define the IND-Double ciphertext security model, as
the Table 6. The IND-Double ciphertext is similar to the IND-CKA 1. The adversary outputs two
distinct challenge ciphertext (C1,0, C1,1). The challenger generates double challenge ciphertext C′1,b
of C1,b with a random bit b and sends it to adversary. The adversary is given the challenge double
ciphertext instead of the PEKS challenge ciphertext. Finally, the adversary outputs b′ as its guess.

Definition 3 (IND-Double ciphertext). A scheme of DSS against the KGA is double ciphertext
indistinguishability against the on-line KGA if no PPT adversary A5 can win the game IND-Double ciphertext
with non-negligible advantage, where B is the challenger, A5 is the malicious data sender (including the cloud
server 2.

Table 6. IND-Double ciphertext.

Game IND-Double ciphertext ExpOnline−KGA
A5

[DSS]

(pks,1, sks,1, pks,2, sks,2, pkr, skr)←− KeyGen(sp);
(C1,0, C1,1)←− A5(sp, pks,1, (pks,2, sks,2), pkr);
C′1,b ←− B(C1,b, pks,1, pks,2, pkr, b ∈ {0, 1});
b′ ←− A5(C′1,b, guess);
Then return 1, if b′ = b; else return 0.

Sensors 2019, 19, 2583 11 of 23

We define A5 advantage as:

AdvIND−Double ciphertext
A5

= |Pr[b = b′]− 1/2|.

Finally, we define the transitional ciphertext semantic security. Any adversary can not distinguish
the challenge transitional ciphertext unless the trapdoor is available. Formally, we define security
model IND-CKA 3, as the Table 7. The IND-CKA 3 is similar to the IND-CKA 1. The adversary is given
the challenge transitional ciphertext instead of the PEKS challenge ciphertext. We omit the details here.

Definition 4 (IND-CKA 3). A scheme of DSS against the KGA is transitional ciphertext indistinguishability
against chosen keyword attack if no PPT adversary A6 can win the game IND-CKA 3 with non-negligible
advantage, where B is the challenger and A6 is an adversary (including the cloud server 2).

Table 7. IND-CKA 3.

Game IND-CKA 3 ExpCKA
A6

[DSS]

Kset←− φ
(pks,1, sks,1, pks,2, sks,2, pkr, skr)←− KeyGen(sp);
(w0, w1)←− AO6 (sp, (pks,2, sks,2), pks,1, pkr);
C2,b1

←− B(wb1
, pks,1, pks,2, pkr, b1 ∈ {0, 1});

Twb2
←− B(wb2 , pks,1, pks,2, pkr, skr, b2 ∈ {0, 1});

CT ←− B(C2,b1
, Twb2

, pks,1, sks,1, pks,2, pkr);
(b′1, b′2)←− AO6 (CT , guess);
if {w0, w1}

⋂
Kset = φ, then return 1, if (b′1, b′2) = (b1, b2);

else return 0.
Oracle O(w):
Kset = Kset

⋃{w}, Tw ←− O(pks,1, pks,2, pkr, skr, w);
return {Tw}

We define A6 advantage as:

AdvIND−CKA 3
A6

= |Pr[(b′1, b′2) = (b1, b2)]− 1/2|.

3. DSS against the KGA

In this section, we will propose a secure and efficient DSS scheme against the KGA. We use the
Hashed Elgama scheme and a free channel PEKS scheme to construct the scheme.

3.1. Our Construction

Our instantiation of the proposed DSS general construction is described as follows: we add
the receiver key generation algorithm, data file encryption/decryption algorithm and re-encryption
algorithm. Meanwhile, we also eliminate the keyword and trapdoor security problem.
SysGen(1k): This algorithm inputs a security parameter 1k. It outputs a cyclic multiplicative group
G1 of prime order p and g, g1, g2 ∈ G1, which g is generator of G1. It selects three cryptographic
hash functions H1 : {0, 1}∗ → {0, 1}n, H2 : {0, 1}∗ → G1, H3 : {0, 1}∗ → {0, 1}logp

2+n. The algorithm
outputs the system parameter

sp = (G1, g, g1, g2, H1, H2, H3).

KeyGen(sp):

Sensors 2019, 19, 2583 12 of 23

• KeyGenserver1,2(sp): This algorithm inputs a system parameter sp. It chooses random number
α1, α2, β1, β2∈ Z∗p, and outputs the following (pks,1, sks,1) and (pks,2, sks,2) as the public/secret key
pair of cloud server 1 and that of cloud server 2, separately.

(pks,1, sks,1) = (gα1
1 gα2

2 , (α1, α2)),

(pks,2, sks,2) = (gβ1
1 gβ2

2 , (β1, β2)).

• KeyGenreceiver(sp): This algorithm inputs a system parameter sp. It chooses random number
c ∈ Z∗p and outputs a pair of public and secret key (pkr, skr) for the receiver,

pkr = gc, skr = c.

PEKS(sp, pks,1, pks,2, pkr,w,M): This algorithm inputs a system parameter sp, the cloud server public
key pks,1, pks,2, the receiver public key pkr, the keyword w, the message M ∈ {0, 1}n, and chooses
random number r0, r1 ∈ Z∗p. It outputs the message ciphertext C1 = (C11, C12), which

C11 = gr0 , k = pkr0
r , C12 = H1(k)⊕M.

It also outputs keyword ciphertext

C2 = [A, B, C] = [gr1
1 , gr1

2 , pkr1
s,1 · pkr1

s,2 · pkr · H2(w)].

ReEnc(sp, pkr,C1): This algorithm inputs a system parameter sp, the receiver public key pkr,
the message ciphertext C1. It chooses random number r2 ∈ Z∗p and outputs the double message
ciphertext C′1 = (C′11, C′12), which

C′11 = gr2 , k = pkr2
r , C′12 = H3(k)⊕ C11‖C12.

Trapdoor(sp, pks,1, pks,2, pkr, skr,w): This algorithm inputs a system parameter sp, the cloud server
public key pks,1, pks,2, the receiver secret key skr, the keyword w, and chooses random number r3 ∈ Z∗p.
It outputs the keyword search trapdoor Tw = [T1, T2, T3],

T1 = gskrr3
1 , T2 = gskrr3

2 ,

T3 = pkskrr3
s,1 · pkskrr3

s,2 · pk−1
r · H−1

2 (w).

Test(sp,Tw,C2, sks,1, sks,2):

• Test1(sp,Tw,C2, sks,1)→ CT: The cloud server 1 inputs the trapdoor Tw, the ciphertext C2,
the cloud server 1 secret key sks,1, the system parameter sp, and chooses random number d ∈ Z∗p.
It outputs the transitional ciphertext CT = (A∗, B∗, C∗), where

Tw · C2 = (CI,1, CI,2, CI,3),

CI,1 = T1 · A, CI,2 = T2 · B, CI,3 = T3 · C,

A∗ = Cd
I,1, B∗ = Cd

I,2, C∗ = (
CI,3

Cα1
I,1Cα2

I,2
)d.

• Test2(sp,C′1,CT, sks,2)→ C′1 or ⊥: The cloud server 2 inputs the system parameter sp,
the transitional ciphertext CT , the cloud server 2 secret key sks,2, and the double ciphertext
C′1. It outputs C′1, if

C∗

A∗β1 B∗β2
= 1G,

Sensors 2019, 19, 2583 13 of 23

and ⊥ otherwise.

Dec(sp, skr,C′1): This algorithm inputs a system parameter sp, the receiver secret key skr, the double
message ciphertext C′1 and outputs the message

C11‖C12 = C′1,2 ⊕ H3(C
′skr
1,1), M = C1,2 ⊕ H1(C

skr
1,1).

Correctness: When assuming the correctly generated ciphertext C2 = [A, B, C] for wi with a correct
trapdoor Tw = (T1, T2, T3). Then we can verify the equation for correctness if wi = w as follows:

TwC2 = (CI,1, CI,2, CI,3), CI,1 = gr1+cr3
1 , CI,2 = gr1+cr3

2 ,

CI,3 = (gα1
1 gα2

2)r1+cr3(gβ1
1 gβ2

2)r1+cr3 H2(wi)H−1
2 (w).

CT = (A∗, B∗, C∗), A∗ = g(r1+cr3)d
1 , B∗ = g(r1+cr3)d

2 ,

C∗ = ((gβ1
1 gβ2

2)(r1+cr3)H2(wi)H−1
2 (w))d.

C∗

A∗β1 B∗β2
= (H2(wi)H−1

2 (w))d = 1G

3.2. Proof

In the next theorems, we prove that our scheme satisfies indistinguishability against the
chosen keyword attack and trapdoor indistinguishability against the off-line KGA, double ciphertext
indistinguishability against the on-line KGA, transitional ciphertext indistinguishability against chosen
keyword attack.

To prove our scheme security, we will use the widely accepted security reduction method.
The security reduction is that if there is an adversary that can break our scheme, then the adversary can
solve the hard mathematical problem. Mathematical hard problems are widely accepted and difficult
to solve under existing computing ability. By the proof by contradiction, we can prove that our scheme
is secure under the corresponding hard problem. By the security reduction, the scheme’s evaluation
and validation are guaranteed. Related hard problems can be seen in Reference [32].

3.2.1. Keyword Privacy

We prove that our scheme is secure following the Variant Decisional Diffie-Hellman Problem
(Variant DDH) hard problem in Theorem 1 and Theorem 2.

Variant DDH Hard Problem [32]: Given the five tuple (g, ga, gb, gac, Z), g, ga, gb, gac, Z ∈ G1, where G1

is a general cyclic group, all polynomial time algorithms decide the value Z ?
= gbc is intractable.

Theorem 1. Under Variant DDH hard problem, the DSS scheme satisfies the keyword ciphertext
indistinguishability in standard model, where the security reduction loss is 2.

Proof. (1) Suppose there is a cloud server 1 named adversary A1 that can break our scheme in the
IND-CKA 1 security model with advantage ε. In order to solve the Variant DDH hard problem,
let’s construct a simulator B with a problem instance (g1, g2, ga1

1 , ga2
2) over the cyclic group G1.

The simulation process is as follows:

Setup. Let sp = (G1, g, g1, g2, H1, H2, H3). The simulator B chooses random elements α1, α2, β1, β2, c ∈
Z∗p, and sets

(pks,1, sks,1) = (gα1
1 gα2

2 , (α1, α2)),

(pks,2, sks,2) = (gβ1
1 gβ2

2 , (β1, β2)),

pkr = gc, skr = c.

Sensors 2019, 19, 2583 14 of 23

The simulator B sends the public keys pks,2, pkr, pks,1, sks,1 to adversary A1. B keeps the cloud 2’s
secret key and receiver’s secret key for itself.
Trapdoor Query. The adversary A1 can query wi to trapdoor oracle. The simulator chooses random
number r3 ∈ Z∗p and outputs the keyword search trapdoor

Tw = [T1, T2, T3] = [gcr3
1 , gcr3

2 , pkcr3
s,1 · pkcr3

s,2 · pk−1
r · H−1

2 (w)].

Therefore, the simulator completed the trapdoor query.
Challenge. The adversary A1 gives two challenge words w0,w1 and the message m∗ to the simulator
B, which wb 6= wi, b ∈ {0, 1}. The simulator returns a ciphertext (C1, C2,b). b ∈ {0, 1} is randomly
chosen. The simulator chooses random number r0 ∈ Z∗p, and the ciphertext (C1, C2,b) is outputted as:

C1 = (C11, C12), C11 = gr0 , k = pkr0
r , C12 = H1(k)⊕m∗,

C2,b = [ga1
1 , ga2

2 , (ga1
1)α1+β1(ga2

2)α2+β2 gcH2(wb)].

Let r1 = a1. If a1 = a2, we have

C2,b = [A, B, C] = [gr1
1 , gr1

2 , pkr1
s,1 · pkr1

s,2 · pkr · H2(wb)].

Therefore, the challenge keyword ciphertext is a correct ciphertext.
Trapdoor Query. The adversary A1 adaptively makes trapdoor query on wi, wi 6= w0, w1.
The simulator B computes trapdoor in the same way as above trapdoor query.
Guess. The adversary A1 outputs b′ as it’s guess.

Through the above description, we have completed the simulation process of the scheme and the
simulation is correct, since the responses for the trapdoor query and challenge ciphertext are correct.
Next, we will discuss the indistinguishable simulation. Random numbers include

α1, α2, β1, β2, c, r3, a1 = a2.

All random numbers in simulation process are randomness. Therefore, the simulation with a1 =

a2 is indistinguishable, where the adversary wins the game with a probability of 1/2 + ε
2 as the

breaking assumption.
When the a1 6= a2, in the following we show the analysis, the adversary wins the game with a

maximum probability of 1/2.
Let g2 = gz

1, the adversary knows

z, α1, α2, α1 + zα2, β1 + zβ2, c

from the public key. The adversary knows

a1, a2, a1(α1 + β1) + za2(α2 + β2) + logH(wb)
g1 .

from the challenge ciphertext.
Therefore, if α1, α2, β1, β2 are known to the adversary, the adversary can guess the keyword wb

correctly; else the the adversary cannot guess the keyword wb correctly. Since the adversary knows
the α1, α2, but not knows β1, β2, the adversary has no advantage breaking the ciphertext. Therefore,
the adversary wins the game with a probability of 1/2 by random guess.

Sensors 2019, 19, 2583 15 of 23

Next, we will discuss the successful of the simulation, the simulator dose not abort the simulation
in the trapdoor query and challenge phase. Therefore, the probability of successful simulation is Ps = 1.
Therefore, the advantage of the Variant DDH hard problem is

εR = (1/2 +
ε

2
− 1/2) =

ε

2
.

(2) Suppose there is a cloud server 2 named adversary A2 that can break our scheme in the IND-CKA
2 security model with advantage ε. In order to solve the Variant DDH hard problem, let’s construct a
simulator B with a problem instance (g1, g2, ga1

1 , ga2
2) over the cyclic group G1. Simulation process is as

follows:

Setup. Let sp = (G1, g, g1, g2, H1, H2, H3). The simulator B chooses random elements α1, α2, β1, β2, c ∈
Z∗p, and sets

(pks,1, sks,1) = (gα1
1 gα2

2 , (α1, α2)),

(pks,2, sks,2) = (gβ1
1 gβ2

2 , (β1, β2)),

pkr = gc, skr = c.

The simulator B sends the public key pks,2, sks,2, pks,1, pkr to adversaryA2. B keeps the cloud 1’s secret
key and receiver’s secret key for itself.
Trapdoor Query. The adversary A2 can query wi to trapdoor oracle. The simulator chooses random
number r3 ∈ Z∗p and outputs the keyword search trapdoor

Tw = [T1, T2, T3] = [gcr3
1 , gcr3

2 , pkcr3
s,1 · pkcr3

s,2 · pk−1
r · H−1

2 (w)].

Therefore, the simulator completed the trapdoor query.
Challenge. The adversary A2 gives two challenge words w0,w1 and the message m∗ to the simulator
B, which wb 6= wi, b ∈ {0, 1}. The simulator returns a ciphertext (C′1, C2,b). b ∈ {0, 1} is randomly
chosen. The simulator chooses random number r2 ∈ Z∗p, and the ciphertext (C′1, C2,b) is outputted as:

C′1 = (C′11, C′12), C′11 = gr2 , k = pkr2
r , C′12 = H3(k)⊕ C1,

which C1 as the message encryption in the proposed scheme. It also outputs keyword ciphertext

C2,b = [ga1
1 , ga2

2 , (ga1
1)α1+β1(ga2

2)α2+β2 gcH2(wb)].

Let r = a1. If a1 = a2, we have

C2,b = [A, B, C] = [gr1
1 , gr1

2 , pkr1
s,1 · pkr1

s,2 · pkr · H2(wb)].

Therefore, the challenge keyword ciphertext is correct.
Trapdoor Query. The adversary A2 adaptively makes trapdoor query on wi, wi 6= w0, w1.
The simulator B computes trapdoor in the same way as above trapdoor query.
Guess. The adversary A2 outputs b′ as its guess.

As the entire indistinguishable analysis and probability analysis is similar to the above (1), we
omit this process.

Therefore, the simulator solves the advantage of the Variant DDH hard problem

εR = (1/2 +
ε

2
− 1/2) =

ε

2
.

The Theorem 1 is proven.

Sensors 2019, 19, 2583 16 of 23

Because the cloud server has more powerful attack capabilities than the external adversary,
the scheme is also secure to external adversaries (including the receiver) in Theorem 1.

Theorem 2. Under Variant DDH hard problem, the DSS scheme satisfies trapdoor indistinguishability against
the off-line KGA, where the security reduction loss is 2.

Proof. (1) Suppose there is a cloud server 1 named adversary A3 that can break our scheme in
IND-Trapdoor 1 security model with advantage ε. In order to solve the Variant DDH hard problem,
let us construct a simulator B with a problem instance (g1, g2, ga1

1 , ga2
2) over the cyclic group G1.

The simulation process is as follows:

Setup. Let sp = (G1, g, g1, g2, H1, H2, H3). The simulator B chooses random elements α1, α2, β1, β2, c ∈
Z∗p, and sets

(pks,1, sks,1) = (gα1
1 gα2

2 , (α1, α2)),

(pks,2, sks,2) = (gβ1
1 gβ2

2 , (β1, β2)),

pkr = gc, skr = c.

The simulator B sends the public key pks,2, pkr, pks,1, sks,1 to adversaryA1. B keeps the cloud 2’s secret
key and the receiver’s secret key for itself.
Trapdoor Query. The adversary A3 can query wi to trapdoor oracle. The simulator chooses random
number r3 ∈ Z∗p and outputs the keyword search trapdoor

Tw = [T1, T2, T3] = [gcr3
1 , gcr3

2 , pkcr3
s,1 · pkcr3

s,2 · pk−1
r · H−1

2 (w)].

Therefore, the simulator completed the trapdoor query.
Challenge. The adversaryA3 gives two challenge words w0,w1 to the simulator B, which wb 6= wi, b ∈
{0, 1}. The simulator returns a challenge trapdoor Twb . b ∈ {0, 1} is randomly chosen. The ciphertext
Twb is outputted as:

Twb = [(ga1
1)c, (ga2

2)c, ((ga1
1)α1+β1(ga2

2)α2+β2)cg−c H−1
2 (wb)].

Let r3 = a1. If a1 = a2, we have

Tw = [T1, T2, T3] = [gcr3
1 , gcr3

2 , pkcr3
s,1 · pkcr3

s,2 · pk−1
r · H−1

2 (wb)].

Therefore, the challenge keyword trapdoor is a correct trapdoor.
Trapdoor Query. The adversary A3 adaptively makes trapdoor query on wi, wi 6= w0, w1.
The simulator B computes trapdoor in the same way as above trapdoor query.
Guess. The adversary A3 outputs b′ as it’s guess.

As the entire indistinguishable analysis and probability analysis is similar to the above (1), we omit
this process. Therefore, the simulator solving of the advantage of the Variant DDH hard problem is

εR = (1/2 +
ε

2
− 1/2) =

ε

2
.

(2) Suppose there is a cloud server 2 named adversary A4 that can break our scheme in IND-Trapdoor
2 security model with advantage ε. The entire simulation process, solution algorithm and
indistinguishable analysis is similar to the above (1), so we omit this process.

Therefore, the simulator solves the advantage of the Variant DDH hard problem

εR = (1/2 +
ε

2
− 1/2) =

ε

2
.

Sensors 2019, 19, 2583 17 of 23

Therefore, the Theorem 2 is proven.

Because the cloud server has more powerful attack capabilities than the external adversary,
the scheme is also secure to external adversaries in Theorem 2.

We will prove that our scheme is secure following computational Diffie-Hellman (CDH) hard
problem in Theorem 3.
CDH Hard Problem [15]: Given the three tuple (g, ga, gb), g, ga, gb ∈ G1, where G1 is a general cyclic
group of prime order p, all polynomial time algorithms compute the value gab ∈ G1 is intractable.

Theorem 3. Under the CDH hard problem, the DSS scheme satisfies double ciphertext indistinguishability
against on-line KGA in a random oracle model, where the security reduction loss is 1

qH3
.

Proof. Suppose there is an external adversary (including a cloud server 2) A5 that can break our
scheme in double ciphertext indistinguishability against on-line KGA security model with advantage
ε. Suppose H3 as a random oracle, in order to solve the CDH hard problem, let us construct simulator
B with a problem instance (g, ga, gb) over the cyclic group (G1, g, p). Our goal is to compute the value
gab. The entire simulation process is as follows:

Setup. Let sp = (G1, g, g1, g2, H1, H2, H3). The simulator B chooses random elements α1, α2, β1, β2, c ∈
Z∗p, and sets

(pks,1, sks,1) = (gα1
1 gα2

2 , (α1, α2)),

(pks,2, sks,2) = (gβ1
1 gβ2

2 , (β1, β2)),

pkr = ga, skr = a.

skr is unknown to the simulator. The simulator B sends the public key (pks,2, sks,2), pks,1, pkr to
adversary A5 and keeps the cloud 1 secret key for itself.
H3-query: The H3 list is initially empty. The adversary A5 can query ki ∈ G1 to H3. If there exists
a (ki, Xi) in H3 list, then the simulator B responds with H3(ki) = Xi; otherwise, the simulator B
randomly chooses a value Xi ∈ {0, 1}logp

2+n and sets H1(ki) = Xi. It returns to the adversary A5 and
adds the value to H3 list.
Challenge. The adversaryA5 gives two challenge ciphertext C1,0, C1,1 to the simulatorB. The simulator
B returns ciphertext C′1,b0

. b0 ∈ {0, 1} is randomly chosen. The ciphertext C′1,b0
is outputted as:

C′1,b0
= [C′1,1, C′2,2], C′1,1 = gb, C′2,2 = Z∗, Z∗ ∈ {0, 1}d.

Define
H3(gab) = Z∗ ⊕ C1,b0 ,

Guess. The adversary A5 outputs b′0 as its guess.

Z∗ is randomly chosen from {0, 1}d. When the adversary does not query gab to the random oracle,
the challenge ciphertext is correct. Through the above description, we have completed the simulation
process of the scheme and the simulation is correct. Next we will discuss the indistinguishable
simulation. Random numbers include

X1, X2, ..., XqH3
, a, b, α1, α2, β1, β2, c.

Therefore, the simulation of the scheme is indistinguishable.
When the hash query is not a challenge hash query gab, the challenge message ciphertext is

randomness, therefore, the adversary wins the game with a advantage 0.
The number of hash query is qH3 . A5 can break our scheme with advantage ε as the breaking

assumption. Therefore, from the H3(k) list, we may find the correct challenge hash query gab.

Sensors 2019, 19, 2583 18 of 23

The probability of finding the correct challenge hash query is Pc = 1
qH3

. The simulator does not

abort the simulation, therefore, the successful probability of the simulation is Ps = 1.
The simulator solves the advantage of the CDH hard problem as

εR =
ε

qH3

.

Therefore, the Theorem 3 is proven.

To secure against cloud server 1’s on-line KGA, we can let cloud server 2 use a re-encryption
technique or a randomizing ciphertexts technique, we omit here the details.

Theorem 4. Under Variant DDH hard problem, the DSS scheme satisfies the transitional ciphertext
indistinguishability in the standard model, where the security reduction loss is 2.

Proof. Suppose there is a cloud server 2 named adversary A6 that can break our scheme in IND-CKA
3 security model with advantage ε. In order to solve the Variant DDH hard problem, let us construct a
simulator B with a problem instance (g1, g2, ga1

1 , ga2
2) over the cyclic group G1. The simulation process

is as follows:

Setup. Let sp = (G1, g, g1, g2, H1, H2, H3). The simulator B chooses random elements α1, α2, β1, β2, c ∈
Z∗p, and sets

(pks,1, sks,1) = (gα1
1 gα2

2 , (α1, α2)),

(pks,2, sks,2) = (gβ1
1 gβ2

2 , (β1, β2)),

pkr = gc, skr = c.

The simulator B sends the public key (pks,2, sks,2), pks,1, pkr to adversary A6. B keeps the cloud 1’s
secret key and receiver’s secret key for itself.
Trapdoor Query. The adversary A6 can query wi to trapdoor oracle. The simulator chooses random
number r′3 ∈ Z∗p and outputs the keyword search trapdoor

Tw = [T1, T2, T3] = [gcr′3
1 , gcr′3

2 , pkcr′3
s,1 · pkcr′3

s,2 · pk−1
r · H−1

2 (w)].

The simulator completed the trapdoor query.
Challenge. The adversary A6 gives two challenge words w0, w1 to the simulator B. wb1 , wb2 6=
wi, b1, b2 ∈ {0, 1}. The simulator generates a ciphertext C2,b1 and trapdoor Twb2

. b1, b2 ∈ {0, 1} are
randomly chosen. The ciphertext C2,b1 and the trapdoor Twb2

as:

C2,b1 = [ga1
1 , ga2

2 , (ga1
1)α1+β1(ga2

2)α2+β2 gcH2(wb1)],

Twb2
= [gcr3

1 , gcr3
2 , pkcr3

s,1 · pkcr3
s,2 · pk−1

r · H−1
2 (wb2)].

Let r1 = a1. If a1 = a2, we have

C2,b1 = [A, B, C] = [gr1
1 , gr1

2 , pkr1
s,1 · pkr1

s,2 · pkr · H2(wb1)].

Therefore, the transitional ciphertext is CT∗ = (A∗, B∗, C∗), where

Twb2
C2,b1 = (CI,1, CI,2, CI,3), A∗ = Cd

I,1, B∗ = Cd
I,2,

C∗ = ((g(a1+cr3)β1
1 g(a2+cr3)β2

2)H2(wb1)H−1
2 (wb2))

d.

Sensors 2019, 19, 2583 19 of 23

Therefore, the transitional ciphertext is a correct ciphertext.
Trapdoor Query. The adversary A6 adaptively makes trapdoor query on wi, wi 6= w0, w1.
The simulator B computes the trapdoor in the same way as above trapdoor query.
Guess. The adversary A6 outputs (b′1, b′2) as it’s guess.

When a1 = a2, the indistinguishable analysis is similar to Theorem 1, we omit this process.
When the a1 6= a2, in the following we show the analysis, the adversary wins the game with

probability of 1/2.
Let g2 = gz

1, the adversary knows z, β1, β2, α1 + zα2, β1 + zβ2, c from the public key.
The adversary knows

(a1 + cr3)d, (a2 + cr3)d,

(a1 + cr3)dβ1 + z(a2 + cr3)dβ2 + log
(H(wb1

)H−1
2 (wb2

))d

g1 .

from the challenge ciphertext.
Therefore, if the d is known, the adversary will guess keywords (wb1 , wb2) correctly; else the

(a1 + cr3)dβ1 + z(a2 + cr3)dβ2 + log
(H(wb1

)H−1
2 (wb2

))d

g1

hides the (wb1 , wb2). Since the adversary does not know the d, it also has no advantage in breaking
the ciphertext.

Next, the successful simulation probability is Ps = 1. The simulator solves the advantage of the
Variant DDH hard problem as

εR = (1/2 +
ε

2
− 1/2) =

ε

2
.

Therefore, the Theorem 4 is proven.

3.2.2. Message Privacy

Regarding the security of the message, the proof is similar to Theorem 3 and is based on the CDH
hard problem in the random oracle model. Since it is too similar, we omit the proof here.

3.3. Analysis and Comparisons

We use Tables 8 and 9 to show two comparisons between our scheme and previous schemes.
In this section, the word abbreviation Trap Ind, MCiph Ind, KCiph Ind, In-off-line KGA, Ex-off-line
KGA, on-line KGA, MCiph, KCiph to denote trapdoor indistinguishability, message ciphertext
indistinguishability, keyword ciphertext indistinguishability, off-line keyword guessing attack for
internal attacker, off-line keyword guessing attack for external attacker, on-line keyword guessing
attack, message ciphertext, keyword ciphertext. We use e, E1, E′1, E′2, h, I, PM to denote a pairing
operation, an exponentiation operation in cyclic multiplicative group G1, an exponentiation operation
in G′1 from paring, an exponentiation operation in G′T from paring, a hash operation maps a string to
an element of cyclic group, an inverse operation, a multiplication in G′1 from paring. We ignore other
hash operations and multiplication.

Table 8. Computation comparison.

BCOP [10] BSW [14] RPSL [17] Our

MCiph - - - 2E1
KCiph 2E′1 + h + e E′1 + E′2 + h + 2e 2E′1 + h + e 4E1 + h
ReEnc - - - 2E1
Trapdoor E′1 + h E′1 + h 3E′1 + 2h + I + PM 4E1 + h + 2I
Test e E′1 + e + PM 2E′1 + h + e + PM 7E1
Dec - - - 2E1

Sensors 2019, 19, 2583 20 of 23

Table 9. Security comparison.

BCOP [10] BSW [14] RPSL [17] Our

Trap Ind NO NO YES YES
MCiph Ind - - - YES
KCiph Ind YES YES YES YES
In-off-line KGA NO NO NO YES
Ex-off-line KGA NO NO YES YES
on-line KGA NO NO NO YES

To evaluate the efficiency of our scheme, we implemented theses schemes on a Core(TM) i7-6500U
CPU at 2.50GHz and 4GB RAM (3.89GB is available) running Ubuntu 18.04. We used a Type-A
pairing elliptic curve and implemented in the PBC library. For these four schemes, we tested the
running time of keyword ciphertext generation, trapdoor generation and test algorithms, respectively.
The comparison results are shown in Figures 5–7. From these three figures, we found that our scheme
is the most efficient in terms of keyword ciphertext generation and trapdoor generation algorithms.
Although our scheme’s test algorithm is slightly less computationally efficient than BCOP [10] scheme.
However, in comparison with other PEKS schemes, our efficiency remains high by eliminating the
pairing computation and exponentiation operation in G′1. Furthermore, our scheme also offers a
stronger security guarantee for keyword security.

Figure 5. Computation cost of keyword ciphertext generation.

Figure 6. Computation cost of trapdoor generation.

Sensors 2019, 19, 2583 21 of 23

Figure 7. Computation cost of test algorithm.

3.4. Research Method

In our paper, we researched the trapdoor security problem in a WSN environment in the following
way, which is motivation⇒ application scenario⇒ technical rote⇒ frame architecture⇒ security
model⇒ concrete construction⇒ security reduction⇒ efficiency analysis and comparisons.

4. Conclusions

The combination of cloud computing and WSN provides a promising solution to handle massive
data. Data security requirements have become a key challenge in cloud-assisted WSN. To address
limitations inherent in data security problems, in this paper, we defined a secure and efficient DSS
scheme that can resist both off-line KGA and on-line KGA performed by external adversary and
internal adversary, and we proposed a specific construction. This construction can simultaneously
resist both on-line KGA and off-line KGA in cloud-assisted WSN. Our scheme not only realizes
the keyword search function in the cloud but also implements the data files encryption/decryption
function. The performance analysis shows the computation overhead at lightweight mobile devices is
significantly reduced. We also formally proved that our schemes are provably secure.

Author Contributions: Conceptualization, B.Z.; methodology, B.Z., W.S., J.Q., F.G.; formal analysis, B.Z.;
writing–original draft preparation, B.Z.; writing–review and editing, Z.Z., W.S., J.M.; supervision, J.Q.

Funding: This work is supported by the National Nature Science Foundation of China under Grant No: 61772311,
No: 61272091 and the Open Project of the State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, No: 2019-ZD-03.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bista, R.; Chang, J.W. Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks: A Survey.
Sensors 2010, 10, 4577–4601. [CrossRef]

2. Zhang, P.; Ma, J. Channel Characteristic Aware Privacy Protection Mechanism in WBAN. Sensors 2018, 18,
2403. [CrossRef] [PubMed]

3. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges,
opportunities, and directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [CrossRef]

4. Pease, S.G.; Trueman, R.; Davies, C.; Grosberg, J.; Yau, K.H.; Kaur, N.; Conway, P.; West, A. An intelligent
real-time cyber-physical toolset for energy and process prediction and optimisation in the future industrial
Internet of Things. Future Gener. Comput. Syst. 2018, 79, 815–829. [CrossRef]

5. Jung, H.; Lee, I.H. Secrecy Performance Analysis of Analog Cooperative Beamforming in Three-Dimensional
Gaussian Distributed Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2019, 18, 1860–1873. [CrossRef]

6. Xie, H.; Yan, Z.; Yao, Z.; Atiquzzaman, M. Data Collection for Security Measurement in Wireless Sensor
Networks: A Survey. IEEE Internet Things J. 2019, 6, 2205–2224. [CrossRef]

http://dx.doi.org/10.3390/s100504577
http://dx.doi.org/10.3390/s18082403
http://www.ncbi.nlm.nih.gov/pubmed/30042302
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1016/j.future.2017.09.026
http://dx.doi.org/10.1109/TWC.2019.2897763
http://dx.doi.org/10.1109/JIOT.2018.2883403

Sensors 2019, 19, 2583 22 of 23

7. Yaqoob, I.; Hashem, I.A.T.; Ahmed, A.; Kazmi, S.A.; Hong, C.S. Internet of things forensics: Recent advances,
taxonomy, requirements, and open challenges. Future Gener. Comput. Syst. 2019, 92, 265–275. [CrossRef]

8. Tan, H.; Chung, I. A Secure and Efficient Group Key Management Protocol with Cooperative Sensor
Association in WBANs. Sensors 2018, 18, 3930. [CrossRef]

9. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the
2000 IEEE Symposium on Security and Privacy, S&P 2000, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

10. Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G. Public Key Encryption with Keyword Search.
In Proceedings of the Advances in Cryptology—EUROCRYPT 2004, Interlaken, Switzerland, 2–6 May 2004;
pp. 506–522.

11. Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R. Searchable symmetric encryption: Improved definitions
and efficient constructions. J. Comput. Secur. 2011, 19, 895–934. [CrossRef]

12. Chang, Y.C.; Mitzenmacher, M. Privacy Preserving Keyword Searches on Remote Encrypted Data.
In Proceedings of the Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005;
pp. 442–455.

13. Abdalla, M.; Bellare, M.; Catalano, D.; Kiltz, E.; Kohno, T.; Lange, T.; Malone-Lee, J.; Neven, G.; Paillier, P.; Shi,
H. Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions.
In Proceedings of the Advances in Cryptology—CRYPTO 2005, Santa Barbara, CA, USA, 14–18 August 2005;
pp. 205–222.

14. Baek, J.; Safavi-Naini, R.; Susilo, W. Public key encryption with keyword search revisited. In Proceedings of
the International conference on Computational Science and Its Applications, Perugia, Italy, 30 June–3 July
2008; pp. 1249–1259.

15. Baek, J.; Safavi-Naini, R.; Susilo, W. On the Integration of Public Key Data Encryption and Public Key
Encryption with Keyword Search. In Proceedings of the Information Security, Samos Island, Greece, 30
August–2 September 2006; pp. 217–232.

16. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Improved searchable public key encryption with designated
tester. In Proceedings of the 4th International Symposium on Information, Computer, and Communications
Security, Sydney, Australia, 10–12 March 2009; pp. 376–379.

17. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Trapdoor security in a searchable public-key encryption scheme
with a designated tester. J. Syst. Softw. 2010, 83, 763–771. [CrossRef]

18. Fang, L.; Susilo, W.; Ge, C.; Wang, J. Public key encryption with keyword search secure against keyword
guessing attacks without random oracle. Inf. Sci. 2013, 238, 221–241. [CrossRef]

19. Chen, Y.C. SPEKS: Secure server-designation public key encryption with keyword search against keyword
guessing attacks. Comput. J. 2014, 58, 922–933. [CrossRef]

20. Chen, R.; Mu, Y.; Yang, G.; Guo, F.; Wang, X. Dual-server public-key encryption with keyword search for
secure cloud storage. IEEE Trans. Inf. Forensics Secur. 2016, 11, 789–798. [CrossRef]

21. Chen, Y.; Zhang, J.; Lin, D.; Zhang, Z. Generic constructions of integrated PKE and PEKS. Des. Codes Cryptogr.
2016, 78, 493–526. [CrossRef]

22. Tang, Q.; Chen, L. Public-key encryption with registered keyword search. In Proceedings of the European
Public Key Infrastructure Workshop, Pisa, Italy, 10–11 September 2009; pp. 163–178.

23. Saito, T.; Nakanishi, T. Designated-Senders Public-Key Searchable Encryption Secure against Keyword
Guessing Attacks. In Proceedings of the 2017 Fifth International Symposium on Computing and Networking
(CANDAR), Aomori, Japan, 19–22 November 2017; pp. 496–502.

24. Huang, Q.; Li, H. An efficient public-key searchable encryption scheme secure against inside keyword
guessing attacks. Inf. Sci. 2017, 403, 1–14. [CrossRef]

25. Jiang, P.; Mu, Y.; Guo, F.; Wen, Q.Y. Private Keyword-Search for Database Systems Against Insider Attacks.
J. Comput. Sci. Technol. 2017, 32, 599–617. [CrossRef]

26. Wu, L.; Chen, B.; Zeadally, S.; He, D. An efficient and secure searchable public key encryption scheme with
privacy protection for cloud storage. Soft Comput. 2018, 22, 7685–7696. [CrossRef]

27. Zhu, B.; Sun, J.; Qin, J.; Ma, J. The Public Verifiability of Public Key Encryption with Keyword Search.
In Proceedings of the International Conference on Mobile Networks and Management, Melbourne, Australia,
13–15 December 2017; pp. 299–312.

28. Han, F.; Qin, J.; Hu, J. Secure searches in the cloud: A survey. Future Gener. Comput. Syst. 2016, 62, 66–75.
[CrossRef]

http://dx.doi.org/10.1016/j.future.2018.09.058
http://dx.doi.org/10.3390/s18113930
http://dx.doi.org/10.3233/JCS-2011-0426
http://dx.doi.org/10.1016/j.jss.2009.11.726
http://dx.doi.org/10.1016/j.ins.2013.03.008
http://dx.doi.org/10.1093/comjnl/bxu013
http://dx.doi.org/10.1109/TIFS.2016.2599293
http://dx.doi.org/10.1007/s10623-014-0014-x
http://dx.doi.org/10.1016/j.ins.2017.03.038
http://dx.doi.org/10.1007/s11390-017-1745-8
http://dx.doi.org/10.1007/s00500-018-3224-8
http://dx.doi.org/10.1016/j.future.2016.01.007

Sensors 2019, 19, 2583 23 of 23

29. Wu, A.; Zheng, D.; Zhang, Y.; Yang, M. Hidden Policy Attribute-Based Data Sharing with Direct Revocation
and Keyword Search in Cloud Computing. Sensors 2018, 18, 2158. [CrossRef] [PubMed]

30. Guo, Y.; Liu, F.; Cai, Z.; Xiao, N.; Zhao, Z. Edge-Based Efficient Search over Encrypted Data Mobile Cloud
Storage. Sensors 2018, 18, 1189. [CrossRef]

31. Noroozi, M.; Eslami, Z. Public-key encryption with keyword search: A generic construction secure against
online and offline keyword guessing attacks. J. Ambient Intell. Humaniz. Comput. 2019. [CrossRef]

32. Cramer, R.; Shoup, V. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 23–27
August 1998; pp. 13–25.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18072158
http://www.ncbi.nlm.nih.gov/pubmed/29973569
http://dx.doi.org/10.3390/s18041189
http://dx.doi.org/10.1007/s12652-019-01254-w
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Contributions
	Related Works
	Organization

	Scheme Definition and Security Models
	System Model
	Algorithm Definitions
	Security Model

	DSS against the KGA
	Our Construction
	Proof
	Keyword Privacy
	Message Privacy

	Analysis and Comparisons
	Research Method

	Conclusions
	References

