
MethodsX 7 (2020) 100947 

Contents lists available at ScienceDirect 

MethodsX 

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x 

Method Article 

An implementation of N-way repeated measures 

ANOVA: Effect coding, automated unpacking of 

interactions, and randomization testing 

✩ 

Thomas Edward Gladwin 

a , b , c , ∗

a Department of Psychology and Counseling, University of Chichester, Chichester, United Kingdom 

b Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands 
c Institute for Lifecourse Development, University of Greenwich, London, United Kingdom 

a b s t r a c t 

The paper presents the details of an implementation of repeated measures ANOVA, consisting of a set of functions 

to organize data and represent contrasts to be tested and run statistical tests. The implementation is focused on 

uses common in experimental psychology. An arbitrary number of within-subject factors, each with an arbitrary 

number of levels, can be used. A non-parametric, randomization- and permutation-based formulation of repeated 

measures ANOVA was defined and implemented. Methods for testing interactions with categorical and continuous 

between-subject variables are implemented. Post-hoc tests for exploring interactions are automated. Simulations 

indicate correct control of false positive rate for all types of test. The software provides output with statistics 

including p -values and partial eta squared. 

- An open source implementation of repeated measures ANOVA based on effect coding. 

- Generates p -values and automatized unpacking of interactions for N-factor designs. 

- A non-parametric test is defined based on permutation tests. 
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Specifications Table 

Subject Area Psychology 

More specific subject area Cognitive psychology, cognitive neuroscience 

Method name teg_RMA 

Name and reference of original method Not applicable 

Resource availability https://github.com/thomasgladwin/teg_RMA 

Method details 

The primary overall aim of the method is to take a matrix of observations, with within-subject

factors nested within each other over columns and independent observations on different rows, and 

a specification of levels of factors, and provide a test of all main effects and interactions. The test

can be parametric, via linear regression and Greenhouse-Geisser correction, or non-parametric, via 

permutation tests. The implementation is in Matlab [15] but should be readily convertible to other

languages. The current version is available online as teg_RMA on Github [3] , https://github.com/

thomasgladwin/teg _ RMA . The method has been used, e.g., in psychological studies on anticipatory

attentional bias and trial-to-trial history effects on attentional bias variability [5 , 6] . 

Method to create effect coding per effect 

The first step of the method is to translate an arbitrary number of factors, each with an arbitrary

number of levels, into sets of { −1, 0, 1} effect coding matrices to be used for testing. This is done in

the function teg_RMA_create_ANOVA_dummy . A vector levels is specified that contains, for every factor, 

the number of levels in that factor. All combinations of levels are generated in a combinations-matrix,

with one combination per row. For instance, if the first factor has two levels and the second factor

has three levels, then the combinations-matrix will be [1 1 1 2 2 2; 1 2 3 1 2 3]. The effect coding

matrices for the main effects are subsequently created based on the combinations-matrix. For a 2 ×
3 design, these will be [ −1 −1 −1 1 1 1]’ for the 2-level factor and [ −1 1 0 −1 1 0; −1 0 1 −1 0 1]’

for the 3-level factor. Note that this representation assumes a nesting of the second factor within the

first factor, which must be followed by the columns of the data matrix. The process for generating the

effect coding matrices is: for each level n after the first, a contrast vector is added to the matrix in

which the first level is coded as −1, level n is coded as 1, and all other levels are coded as 0. These

effect coding matrices provide a basis for all linear contrasts involving the levels of a factor. 

Subsequently, similar effect coding matrices are created for all “tuple ”-way interactions, from 2-way 

to N-way, where N is the number of factors. For each tuple, a combinations-matrix is again created,

now representing all possible combinations of tuple factors. For instance, if there are 5 factors, there

are 10 possible 3-way interactions (that is, there are 5 over 3 ways of selecting 3 factors out of a set

of 5). For each specific interaction, all combinations of the contrast vectors representing the levels of

the involved factors are stored in a combinations-matrix. For instance, for an interaction between a

2-level and a 3-level factor, the combinations-matrix would be 

1 1 

1 2 

The 1 ′ s in the first column represent the single [ −1 −1 −1 1 1 1]’ contrast vector of factor 1. The

1 and 2 in the second column represent the two contrast vectors of factor 2. [ −1 1 0 −1 1 0; −1 0

1 −1 0 1]’. An effect coding matrix for the interaction is created that contains, for each row of the

combinations-matrix, the elementwise-multiplied products of the indicated contrast vectors. In the 2 

× 3 example, the 2-way interaction would thus be represented as the effect coding matrix 

[ 1 − 1 0 − 1 1 0 ; 1 0 − 1 − 1 0 1 ] ′ . 
Within-subject tests per main effect and interaction 

Subsequently, the effect coding matrices are used, together with the data matrix, to test each main

effect and interaction as follows. The core function for this is teg_RMA_ANOVA . For each test, the first

https://github.com/thomasgladwin/teg_RMA
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tep is to create a reduced data matrix which only reflects variability due to the combinations of levels

elevant to the effect. For instance, when testing the main effect of the 2-level factor in a 2 × 3 design,

he raw data matrix with six columns of independently varying values has its data “reduced” to two

ets of three columns within which the values per row are the same, and represent the centered

ifference scores between mean of the last three columns and the mean of the first three columns.

his reduction is done by performing a regression separately for each centered (i.e., mean-subtracted)

ow of the raw data. The vector of scores per row serve as observations, with the effect coding matrix

eing used as the set of predictors, and the predicted vector replaces the raw data. Thus, variance

ver cells unrelated to the current test is removed. For instance, for a 2-level factor, each row will

ave columns consisting of plus and minus some value. This procedure is illustrated in the following

xample, for one line from a raw data matrix containing the data of a 3 × 2 within-subject design,

or which the main effect of the second factor is to be tested: 

raw _ data _ line = [ −2 4 3 − 7 1 1 ] 

predictor = [ −1 1 − 1 1 − 1 1 ] 

red uced _ d ata _ matrix = [ −. 667 . 667 − . 667 . 667 − . 667 . 667 ] ′ 
Subsequently, the reduced data matrix is vectorized, each column placed under each other. The

ectors of the effect coding matrix are repeated for every participant, so that the −1 / 0 / 1 elements

re matched correctly to the vectorized reduced data matrix. For instance, for a 2-level factor and N

articipants, the first N values of the vectorized effect coding matrix will be −1, and the second N

alues will be + 1. 

Finally, all columns are centered, and the data vector is regressed onto the effect coding vectors

note that there is no offset, as the effects are symmetrical around zero for each predictor). If there is

nly one degree of freedom (i.e., with a 2-level factor or an interaction between 2-level factors), the

egression test is performed as normal. This results in the p -value of the tested effect via the F -test

f the ratio of the mean square model (the sum of squares of the regression prediction divided by

he model degrees of freedom) and mean square error (the sum of the squares of the regression error

ivided by the error degrees of freedom). The model degrees of freedom are the number of predictor

olumns, and the error degrees of freedom are ( N – 1) ∗ the number of predictor columns, where N

s the number of participants. Partial eta squared is calculated as the model sum of squares divided

y the sum of the model and error sum of squares [10 , 13] . 

If the effect coding matrix consists of multiple columns (e.g., the two contrast vectors necessary

o test a 3-level factor), Greenhouse-Geisser correction is performed using previously described

alculations [1 , 7] . Epsilon, the measure of violation of the sphericity assumption, is calculated as

ollows. The vector of eigenvalues, L , of the covariance matrix of the reduced data matrix is calculated

sing Matlab’s eig function. Epilson is the square of the sum of the eigenvalues divided by the product

f the number of non-zero eigenvalues and the sum of the squared eigenvalues: 

epsilon = sum ( L ) . ∧ 2 / ( N ∗ sum ( L. ∧ 2 ) ) 

The model degrees of freedom and error degrees of freedom were multiplied by epsilon before

erforming the F -test. We note that there are alternative ways to correct for sphericity such as Huynh-

eldt correction [1 , 11 , 14] , for which this code could be adjusted if desired. 

For higher-order, N -way interactions, follow-up tests are performed in two ways, both aimed

t providing a descriptive understanding of what caused a statistically significant interaction. First,

he interaction is systematically explored by “unpacking” the interaction: all lower-order, (N-1)-way

nteractions are performed for each level of the final factor of the interaction, recursively until a

ingle factor is being tested for a specific combination of levels of the other factors involved in the

nteraction. Second, pairwise t-tests between all conditions defined by all combinations of levels of

he factors involved in the higher-order interaction are performed. Because these sets of tests are

protected” by a significant interaction effect and are considered here to have a descriptive purpose

ot served by losing statistical power, they are not corrected for multiple testing. 
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Interactions with between-subject variables 

In the above formulation of the analysis, all tests are performed per effect, independently from

all other tests. Accordingly, addition of a between-subject variable as specified below does not affect

the results of within-subject tests. Note that this approach to tests involving between-subject effects 

is dissimilar to, e.g., SPSS, and will give slightly different results. The current effect-wise approach

was considered preferable for certain experimental goals: first, to remove fluctuations in results that 

depend on the choice of included variables (although of course other approaches can be taken to deal

with this as well), and second, because this approach is conceptually clearly close to common research

questions about whether the size of a specific contrast is associated with individual differences rather

than the traditional focus on noise-reduction of ANCOVA. 

For between-group effects, the between-group factors are transformed into effect coding matrices 

in the same way as the within-group factors. Interactions with within-subject effects are tested by

multiplying the elements of the vectorized effect coding matrix for within-subject effects with the 

centered contrast scores representing the contrast vectors of the between-group effect coding matrix. 

Note that centering is essential to avoid group differences from inducing false interaction effects in

the presence of a within-subject effect. All resultant pairs of multiplied vectors are used for the final

regression, in the same way as for within-subject effects, adjusting the degrees of freedom error given

k groups to ( N – k ) ∗ the number of within-subject predictor columns. 

To test interactions with a continuous between-subject variable, cv , in a line-by-line way, all

participants’ effect coding values were multiplied with their respective centered cv value. The same 

test as for the within-subject effect was then performed to determine whether the within-subject 

effect depends on the cv . Correlations between the cv and both pairwise contrasts and individual

conditions are reported to explore the cause of a significant result involving an interaction term. 

Non-parametric test 

A non-parametric version of the repeated measures ANOVA was implemented as follows. The 

method is followed as above, up to the final regression. Then, instead of calculating statistics as

above, for a user-specified number of iterations (e.g., 10,0 0 0) the direction of within-subject effects is

randomly, with 50% chance, reversed per participant, thereby preserving the dependencies between 

columns. This generates samples from a null hypothesis in which the positive versus negative

direction of the effect per condition is exchangeable, providing a test of whether the consistency over

participants of effects in the observed data is unlikely under this null hypothesis. For interactions

with continuous variables, instead of this random reversal of effects, the individual scores in the cv

are randomly permuted, removing any systematic relationship between the continuous variable and 

the within-subject effects. For each iteration the regression is performed and the F-values are stored.

This provides a null-hypothesis distribution of F-values. The p-value is defined as the proportion of

F-values in the null distribution equal to or greater than the F-value of the unpermuted, observed

data. 

For further information on such randomization- and permutation-based testing procedures, please 

see, e.g., Hooton [8] , Kennedy [9] , Supplementary Materials 1 on the history of the randomization test

in Bouwmeester and Jongerling [2] , and Pesarin and Salmaso [12] . 

Additional information 

The current paper describes an implementation of an effect coding approach to repeated measures 

ANOVA, with independent effect-wise tests, automated drilling-down into interactions, and a non- 

parametric permutation test for when data do not have an approximately normal distribution. The 

paper is hoped to be of use to researchers interested either in automated analyses or in open-source

code that exposes the details of calculations for understanding or adjustments. 

Within-subject effects and interactions involving them are common in, e.g., experimental 

psychology. It is often the case that researchers wish to work from the perspective of null hypothesis

significance testing (NHST). Despite its limitations, NHST plays a valid role in experimental research 
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4] , in which the researcher is often primarily interested in a test of an idea rather than primarily

iming to provide such estimates of population parameters as might be centrally important in, e.g.,

pidemiology. One essential feature the current method was considered to need was therefore to

roduce a p -value, although an effect size is also produced (and of course, simple mean scores

nd differences are often perhaps most informative given a theoretical context). Further, the primary

nterest in the relationship between within-subject effects and between-subject variables was in terms

f separate effects; adding between-subject variables should not influence other tests. This led to a

line-by-line” analysis, in which each test was done via a regression analysis specifically generated for

hat test. This also allowed for a formulation of the method that can be broken down and understood

recisely by reasonably statistically informed researchers or students, in terms of effect coding and

egression. It also allows variations and improvements to be made where desired or necessary, by

reaking in to the method at a point at which all the information necessary for the test is provided,

hus possibly efficiently re-using the logistics of organizing data and creating effect coding matrices.

t is also envisioned that the software might have educational purposes for students or researchers

nterested in the “behind the scenes” machinery and computations of within-subject analyses. 

Simulations were performed to check whether the implementation correctly recovered simulated

ffects in the data and controlled for false positives. Initially, ad-hoc simulations were run on a

ange of designs, with multiple within- and between-subject factors and continuous variables. Within-

ubject and continuous scores were drawn from a normal distribution (Matlab’s randn function).

andom between-group assignment was done using the floor function on multiplications of values

rawn from the uniform distribution (using the rand function). Dependency between within-subject

onditions was created by creating a matrix of random noise, in which for a random selection of

alf the columns, the column was replaced by the weighted sum of (1 – dep) times itself and dep

imes the mean of the other columns, the scaling factor dep being the dependency factor. Both

he parametric and permutation tests consistently controlled the false positive rate and recovered

imulated effects as expected. More simulations were run to check whether false positive rates

ere controlled for the parametric tests, for a design with 3 × 4 level within-subject factors, 3

3 level between-subject factors, and a single continuous between-subject variable. Dependency

actors were varied from 0 to 1 in steps of 0.1. For each dependency factor, 25,0 0 0 iterations were

erformed, and the p-values of all tests were stored. The mean p-values over all iterations were

sed to indicate whether false positive rate was controlled. Over all dependencies and all effects,

he worst-case p-value was 0.054, indicating that the false positive rate was controlled for all types

f effect. Visual inspection did not suggest any pattern over the p-values related to the degree of

ependency. 
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