
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

The integration of structural mechanics into microstructure solidification
modelling
To cite this article: P Soar et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 861 012054

 

View the article online for updates and enhancements.

This content was downloaded from IP address 90.251.48.112 on 14/06/2020 at 08:03

https://doi.org/10.1088/1757-899X/861/1/012054


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MCWASP XV 2020

IOP Conf. Series: Materials Science and Engineering 861 (2020) 012054

IOP Publishing

doi:10.1088/1757-899X/861/1/012054

1

 

 

 

 

 

 

The integration of structural mechanics into microstructure 

solidification modelling 

P Soar1, A Kao1, G Djambazov1, N Shevchenko2, S Eckert2 and K Pericleous1 

1 Computational Science and Engineering Group (CSEG), University of Greenwich, 

Old Royal Naval College, Park Row, London SE10 9LS, UK 
2 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner 

Landstrasse 400, 01328 Dresden, Germany 

E-mail: p.m.soar@gre.ac.uk 

Abstract. In situ structural mechanics are an often neglected area when modelling alloy 

microstructure during solidification, despite the existence of practical examples and studies 

which seem to indicate that the interaction between thermal or mechanical stresses and 

microstructure can have a significant impact on its evolution and hence the final properties at a 

macroscopic level. A bespoke structural mechanics solver using the finite volume method has 

been developed to solve the linear elasticity equations, with design choices being made to 

facilitate the coupling of this solver to run in situ with an existing solidification model. The 

accuracy of the structural mechanics solver is verified against an analytic solution and initial 

results from a fully coupled system are presented which demonstrate in a fundamental example 

that the interaction between structural mechanics and a solidifying dendrite can lead to a 

significant change in growth behaviour. 

1.  Introduction 

When casting metal alloys, the material properties at the macroscopic level are dependent on the 

underlying morphology of the microstructure as defined by the arrangement of the dendrites that form 

as the liquid metal solidifies. Consequently, the ability to understand and manipulate the development 

of dendrites by controlling the environment in which the solidification occurs has the potential to allow 

for the creation of alloys that possess superior material properties. There are numerous practical 

experiments and numerical models which demonstrate the utility of these principles, the understanding 

of which has been a subject of research for decades as highlighted in the review of the field by Asta et 

al. [1]. More recent work by Kao et al. [2] explores the use of magnetic fields to induce fluid flow to 

further understand defect formation and alter dendritic development. 

Numerical models simulating the process of solidification at the microstructure level can currently 

consider many of the parameters influencing the growth behaviour of the dendrites. However, one area 

of the modelling seemingly neglected so far is the impact of including in situ structural mechanics as a 

factor influencing dendritic growth. This in situ interaction requires that the deformation and 

accumulation of stress under external forces is modelled at the same time as the solidification itself, with 

the processes interacting throughout. Asta et al. [1] identified the interaction between structural 

mechanics and the microstructure solidification causing casting defects as being one of the open 

questions requiring further research, with numerous experimental examples further underlining the 

importance of this currently neglected area. Reinhart et al. [3] demonstrate in an experiment at ESRF 
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that stress and gravity cause defects to occur and the dendrite arms to be impacted mechanically. More 

recently an experiment undertaken by He et al. [4] investigated the impact of pulling, directional 

solidification and temperatures on the microstructural development and mechanical properties of a 

solidified aluminium alloy, finding it to impact both the microstructure and defect formation. A further 

example of structural mechanics behaviour influencing the microstructure has been identified by 

experiments run on a solidifying Gallium 25wt% Indium alloy by N. Shevchenko and S. Eckert from 

Helmholz-Zentrum Dresden-Rossendorf, where the experimental radiograph in figure 1(a) shows that 

the dendrites begin by growing in a seemingly fixed straight orientation, but figure 1(b) shows that later 

in the experiment the highlighted dendrite has deformed under its own weight, leaving it with a clear 

deviation in growth orientation when compared to the start. Any attempts to model this scenario using 

current methods which neglect mechanical effects would ignore this behaviour, leading to the dendrite 

continuing to grow along the initial orientation with no deformation, consequently causing a 

significantly different microstructure.  

 

 

Figure 1. Dendrite growth showing structural mechanics impact. 

The impact of mechanical interaction during the solidification process has been identified as an 

important modelling consideration in many studies, however many such cases take a post processing 

approach where the stresses will have no effect on the development of the solidification of the cast 

structure [5, 6]. Furthermore, the modelling that does consider these interactions largely restrict 

themselves to macroscopic models where the only mechanical behaviour considered is temperature 

driven [7, 8]. A solidification model created by Fackeldey, Ludwig and Sahm [9] considers these in situ 

effects, however this is achieved by modelling the process macroscopically and accounting for the 

microstructure in a more general sense using parameters to describe the primary and secondary arm 

spacing and eutectic fraction within a region of the macrostructure, as opposed to directly modelling the 

dendrites comprising the microstructure as this research intends. 

Numerical models developed within this research group by Kao et al. [10] have been used to 

investigate how external parameters such as fluid flow and electromagnetics can be used to control the 

microstructural evolution. This work can be expanded further with the introduction of structural 

mechanics as an additional parameter in the microstructural solidification process, with the potential to 

lead to more accurate simulations of the dendritic growth behaviour.  

The aim of this research will be to design a structural mechanics model that can be coupled with the 

ThermoElectric Solidification Algorithm (TESA), a bespoke code developed in house by CSEG which 

runs large scale simulations of microstructural growth in parallel [11]. This code has been designed to 

simulate the processes of solidification, fluid flow and electromagnetics within a single model capable 

of solving complex multi-physics phenomena such as casting [2], freckle defect formation [12] and 

undercooled growth [13]. However, to avoid some of the complications of coupling straight to this 

complex code, a more straightforward solidification code using the enthalpy method [14] was utilised 

for the initial coupling to demonstrate the fundamental changes in behaviour from the in situ interaction. 
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2.  Numerical modelling 

2.1.  Solidification model 

The solidification model that has been chosen for the initial tests of coupling with in situ structural 

mechanics is the enthalpy based method described by Voller [14]. This approach to solidification 

introduces the order parameter f to formulate an enthalpy-based method for a diffuse interface, where f 

represents the liquid fraction where f = 1 is fully liquid and f = 0 is fully solid. 

The governing equations for this approach relate f to the volumetric enthalpy H, by defining H as the 

sum of the latent heats: 

 H = cpT + fL (1) 

where cp is the specific heat, T is the temperature and L is the latent heat of the volume. With the 

conservation of enthalpy being given by 

 ∂H

∂t
 = ∇.(K∇ T) (2) 

which assumes that the thermal conductivity K is constant. The interface is undercooled to the 

temperature Ti: 

 
Ti = Tm - 

Γ(θ)

L
Tmκ (3) 

where κ is the curvature, Tm is the melting temperature and the surface stiffness is defined via an often 

utilised fourfold symmetry model: 

 Γ(θ) = d0(1 - 15ϵ4cos(4θ)) (4) 

The numerical approach Voller took was to convert this equation set into a dimensionless system 

which was discretised onto a Cartesian grid. In this paper the same approach was taken, so for the sake 

of brevity the detail of this approach has not been repeated. 

2.2.  Governing equations & assumptions for structural mechanics 

Due to the fundamental nature of the research being undertaken, it was decided the linear elasticity 

equations would make for an appropriate choice of material model. This describes the behaviour of 

materials where the following assumptions are true: the deformations are ‘small’, there is a linear 

relationship between the stress and the strain and that the results of the problem show no plastic 

behaviour. Furthermore, as the model is currently only working in two dimensions, plane strain has been 

assumed. These simplifying assumptions will not hold for all solidification problems, but due to the 

paucity of existing published work exploring this phenomenon, it makes intuitive sense to begin by 

ensuring the most fundamental material model provides meaningful results. For example, effects such 

as thermal contraction and solidification driven density changes would introduce shrinkage flows, but 

the inclusion of these hydrodynamical effects is currently beyond the scope of the work. The material 

properties also have temperature dependence, but aside from interfacial undercooling the dendrite can 

be considered predominantly isothermal at the melting temperature with little spatial variation in 

material properties. 

The equations for linear elasticity in two dimensions are described as follows: 

 

ρ
∂

2
 ux

∂t2
 = 

∂σx

∂x
 + 

∂τyx

∂y
 + Fx (5) 

 
ρ

∂
2
uy

∂t2
 = 

∂σy

∂y
 + 

∂τxy

∂x
 + Fy (6) 

where ρ is the density of the material, ux and uy the displacements in the x and y directions respectively, 

σx and σy the stresses in the x and y direction, τxy is the shear stress and Fx or Fy represent the x and y 

components of a body force acting upon the material. 



MCWASP XV 2020

IOP Conf. Series: Materials Science and Engineering 861 (2020) 012054

IOP Publishing

doi:10.1088/1757-899X/861/1/012054

4

 

 

 

 

 

 

The target application of his work is ultimately directional solidification in casting, where growth 

velocities are typically on the order of 10µm/s, with computational grid sizes of 10µm and time steps of 

1ms giving a characteristic solidification length of 0.01µm per time step. For structural mechanics to 

have any noticeable effect the displacements per time step should be on a similar order of magnitude or 

notably longer, allowing the structural mechanics to be treated as a quasi-stationary process for a broad 

range of problems. This assumption simplifies the implementation, however as each solution is steady 

state the force component is changed from the full body force components to ΔFx and ΔFy, representing 

the change in the force exerted between the current time and the last timestep the structural mechanics 

was resolved. 

Using Hooke’s law equations (5) and (6) can be transformed into a displacement formulation, leading 

to the following pair of partial differential equations which are then solved simultaneously: 

 

(2μ + λ)
∂

2
ux

∂x2
 + (λ + μ)

∂
2
uy

∂x∂y
 + μ

∂
2
ux

∂y2
 + ΔFx = 0 (7) 

 
(2μ + λ)

∂
2
uy

∂y2
 + (λ + μ)

∂
2
ux

∂x∂y
 + μ

∂
2
uy

∂x2
 + ΔFy = 0 (8) 

where 𝜇 and 𝜆 are the two Lamé constants defined as follows: 

 
λ = 

vE

(1 + v)(1 - 2v)
; μ = 

E

2(1 + v)
 (9) 

defining E and v are respectively as the Young’s Modulus and Poisson’s ratio of the material. 

2.3.  Structural solver development  

When solving structural mechanics problems, it is generally taken for granted that the Finite Element 

Method (FEM) will be the most appropriate choice of model. However, the process of meshing the 

structure intrinsic to the FEM approach can present a problem in the framework of coupled solidification 

with structural mechanics since every change in the structure due to solidification, would require 

computational power to constantly be diverted to re-meshing the structure to remain accurate. 

Furthermore, FEM generally models the geometry using unstructured grids, presenting a complication 

in coupling to TESA as the interpolation required to pass information between solvers to the Cartesian 

grid would increase complexity.  

Instead a Finite Volume Method (FVM) approach has been taken as it synergises with solidification 

processes that are typically represented as a change in volume on a fixed grid, this change in volume 

providing the mechanical model with a straightforward means of calculating the change in forces exerted 

as solidification progresses. FVM is often associated with Computational Fluid Dynamics due to the 

volume conserving approach. However this is mere convention, as the attainable accuracy of results is 

comparable when modelling structural mechanics problems, as shown by Oñate, Cervera and 

Zienkiewicz [15] where for a simple structure under constant loads both the FEM and FVM produce the 

same results, with other groups supporting this position by finding modelling using the FVM to be in 

good agreement with analytic solutions [16, 17].  

The FVM can be found applied to structural mechanics in many existing multi-physics problems 

such as fluid-structure interaction, both in a general sense [18] and how it can be related to solidification 

fronts [19] and welding [20]. In this related area, while models using different numerical schemes can 

certainly be coupled together, it is generally more straightforward and efficient for a similar numerical 

method to be used for both the fluid and solid equations. 

For the purposes the future coupling to TESA, the FVM employed uses a Cartesian grid, which 

simplifies the discretisation of the governing equations down to relatively straightforward numerical 

schemes, which synergise well with the staggered grid Finite Difference approach being used to model 

solidification. As both approaches store material properties in the volume centred nodes with 

displacements and velocities on the corresponding cell faces due to the staggered mesh, meaning that 
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less work is required to pass any quantities required by both solvers between the corresponding grids 

without requiring any complicated interpolations.  

In order to validate the accuracy of the structural mechanics solver, a problem was set up that could 

be modelled by the Euler Bernoulli Beam theory, which provides an analytic solution for the deflection 

of a beam with a point load applied to the end of a cantilever beam. The results of this validation can be 

observed in figure 2 and show the FVM is returning results in close agreement with the analytic solution, 

clearly within the 3% interval beam theory is held to be accurate for. 

However, as some assumptions of the Euler-Bernoulli beam theory limit the scenarios that can be 

modelled, this validation was further verified by modelling several 2D scenarios violating these 

assumptions. Here the FVM results were found to be in close agreement with solutions obtained using 

the commercial code COMSOL. This is reassuring to see as COMSOL, aside from being used widely 

both in academia and industry, also uses the FEM to obtain its answers, so the close agreement that can 

be found here seems to further support that the use of FVM to solve structural mechanics will not have 

any negative implications on the accuracy of the model. 

 

 

Figure 2. Comparison of deflections calculated 

using beam theory analytic solution and finite 

volume structural mechanics solver along 

16m×4m×4m cantilever beam with a -1N Point 

load applied at the free tip using grid spacing 

∆x = 0.1m and material properties E = 1000Pa, 

v = 0.33 and ρ = 8960kgm-3. 

2.4.  Advection of solid material 

After the displacements are obtained, an advection-based process is used to account for changes in the 

solid fraction profile after the change in external forces have been accounted for. This process can be 

represented by the following equation: 

 Δf + ∇∙u f = 0 (10) 

where Δf is the change in solid fraction and u is the vector of displacement values obtained from the 

structural mechanics code. To avoid the results showing a bias caused by a dependence on the order of 

the x and y sweep, an operator split scheme was written to discretise this equation. The scheme 

implemented utilises a Volume of Fluid (VOF) method with a Simple Line Interface Calculation (SLIC) 

approach as described by Noh and Woodward [21] to reconstruct the interface so that unrealistic 

diffusion of the solid material from the advection process is avoided.  

2.5.  In situ coupling process 

In order to bring the previously outlined elements together in a loosely coupled solver they must be able 

to pass information between them. This begins by identifying which areas of the domain, represented 

by a liquid fraction profile f are to be considered solid by marking areas with a sufficiently low f value. 

Once the solid domain is identified, the structural mechanics code runs to obtain u which contains the 

displacements in x and y at the faces of each cell for the current timestep. These displacements are then 

used to drive an advection process causing solidified material to move into the surrounding cells to 

generate an updated profile for f. This f can then be used as an initial condition for the solidification 

solver, itself producing an updated f after a period of solidification has occurred. This represents a 
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complete iteration of the coupled solver, which can be repeated for as many steps as the scenario being 

modelled requires with the final f profile after solidification acting as the initial condition for the next 

iteration of the structural mechanics solver. As the structural mechanics solver is steady state, the 

displacement is calculated on the difference between the previous force and the updated force from f. 

With the body force is dependent on f, if no solidification occurs the solution would remain the same as 

the previous calculation as it remains in steady state. However, as f is modified by the solidification 

solver, the change in force gives a new displacement. The magnitude of the change in force is dependent 

on the time interval between successive calls to the structural mechanical solver. Frequent calls give 

small displacements, while less frequent calls will give larger displacements. Thus, while the structural 

mechanical solver is steady state, this inherently introduces a time scale dependent on solidification. 

3.  Results  

To understand the behaviour of the fully coupled model a simple test case of columnar growth with a 

body force applied to the solid cells was conducted. In this problem set up all of the domain boundaries 

are considered adiabatic, with the top surface where solidification initiates being a solid wall and the 

other boundaries considered to be Neumann conditions which allow no flux. A dimensionless approach 

is taken where the variables ∆x = ρ = E = 1 which are scaled using base SI scaling factors to obtain the 

values in m, kg and s allowing the system to be governed by the dimensionless force. A consequence of 

this approach is that for a given set of material properties i.e. ρ and E, the dimensionless force scales 

with the meter SI unit. The dimensionless temperature is scaled by T* = (T – Tm)/(L/c), where L is the 

latent heat of fusion, c the specific heat and Tm the melting temperature. The initial conditions of the 

domain area assume dimensionless undercooling of ∆T = -0.643. In this context, high undercooled 

growth gives very small dendrites with high solidification velocities, while conversely in low 

undercooled growth the dendrites are much larger and grow more slowly. However, dendrites exhibit 

self-similarity across a wide range of undercooling and so while the real force required to influence 

solidification will vary significantly, this dimensionless force should be similar in magnitude. 

 In figure 3 there are three cases displaying the solid fraction and thermal field behaviour under 

different body force conditions. The cases considered are zero force, a body force acting in the direction 

of solidification and a body force acting against the direction of solidification. These cases were chosen 

as large deformations tangential to the growth direction will modify the preferential growth of the 

dendrite, which is behaviour currently unaccounted for in the solidification model.  

Using the no force case in figure 3(b) as a reference, it is clear that when the force is applied in the 

direction of solidification as in figure 3(c) the dendrite arm is extended, while conversely when the body 

force is applied against the direction of solidification as in figure 3(a) the structure becomes shorter and 

 

Figure 3. Dendrite behaviour under forces with thermal field T. (a) Positive force opposing growth 

direction, (b) no force, (c) negative force in growth direction. 
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wider. The components of the normal and shear strains which accumulate during the in situ solidification 

occurring under these positive and negative force conditions have been provided in figure 4 and figure 

5 respectively. For growth under the positive force, it can be observed in figure 4 that for all types of 

strain the largest component seems to be running through the centre of the dendrite, caused as the tip of 

the dendrite is the region of the highest growth of new solid material, meaning that this is the region 

where the largest deformations occur with each run of the structural mechanics solver. In the negative 

force case in figure 5, while there is a corresponding high strain region running through the centre for 

the same reasons, the largest components of the strain can be found near the wall which is accumulating 

strain due to being stretched throughout the process by a dendrite increasing in solid mass at a greater 

rate.  

 

Figure 4. 

Accumulated strains 

in dendrite grown 

under positive body 

force. (a) Normal x 

strain, (b) normal y 

strain and (c) shear 

xy strain. 

 

Figure 5. 

Accumulated strains 

in dendrite grown 

under negative body 

force. (a) Normal x 

strain, (b) normal y 

strain and (c) shear 

xy strain. 

 

Although the cases represent the unrealistic situation of high undercooled growth and large body 

forces, these results are consistent with expectations and provide further qualitative understanding of 

the potential mechanisms for more realistic systems. When the force is in the direction of solidification 

structural deformations cause the dendrite to extend into the bulk. The deformation per unit time, which 

represents an added velocity allows the dendrite tip to extend further into the melt condensing isotherms 

which provides additional heat transfer. Conversely, the resisting force in figure 3(a), has the opposite 

effect where the slowing of the tip allows the thermal boundary to extend decreasing heat transfer. In 

more realistic casting situations of alloys, structural mechanics will have much less effect on the thermal 

problem compared to the solute problem, where mass transfer has very similar mechanisms, except there 

is a large disparity in both time and length scales, with a typical Lewis number on the order of 10000. 

However, with the focus on understanding the coupling of structural mechanics to solidification this 

simplified problem removes the necessity to also consider advection of solute through the displacement 

field, but requires very large forces to have a significant morphological change. 
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4.  Conclusion 

In summary, a coupled system modelling microstructure solidification while considering in situ 

structural mechanics was described which utilised a FVM approach due to constraints endemic to the 

nature of solidification modelling. This was done by creating a purpose-built structural mechanics solver 

to allow for coupling with the existing numerical code TESA, which was then validated against an 

analytic solution and coupled to an enthalpy-based solidification model. This coupled system was used 

to explore the fundamental case of a dendrite growing under the influence of a body force, both 

following and opposing the growth orientation of the dendrite. This demonstrates the behaviour that 

would be intuitively expected and is supported by observations of the analogous case of crystal growth 

under flow, where complementary forces induce comparatively elongated and slender dendrites, whilst 

opposing forces induce dendrites which appear compressed. Two key aspects still requiring inclusion 

are to account for the spatial variation as the dendrite deforms which alter the growth orientation and 

for implementing for alloy systems a similar advective process capable of redistributing f within a 

partitioned solute. These promising results highlight that the in situ effect of structural mechanics on the 

solidification process can be captured using the described approach and act as proof of concept, 

justifying the further development, where the structural mechanics code will be ultimately be fully 

coupled to the main TESA code enabling studies to be run which allow the impacts of these interactions 

to be better understood. 
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