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A B S T R A C T

In the context of a changing climate, there is an urgent need to better understand the impact that weather
disturbances have on food affordability in the developing world. While the influence of international
markets on local food markets has received considerable attention, in contrast, the potential influence of
weather disturbances on local food markets has received much less attention. In fact, local weather
disturbances may have an adverse impact on the poorest households in developing countries. Here we
quantify the short-run impact of both weather disturbances as well as international price changes on
monthly food prices across 554 local commodity markets in 51 countries during the period between
2008 and 2012. We find that almost 20% of local market prices were affected by domestic weather
disturbances in the short run, 9% by international price changes and 4% by both domestic weather
disturbances and international price changes during the period. An improved understanding of the
magnitude and relative importance of weather disturbances and international price changes on rural
economies will inform public policies that are designed to mitigate the impact of adverse weather
disturbances.

ã 2015 Z. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

In the context of a changing climate, there is an urgent need to
better understand the impact that weather anomalies have on food
security in the developing world. As Feng et al. (2013) document,
increasing variability in seasonal rainfall is more pronounced in the
tropics. Our analysis is not representative of the developing world
but includes markets in Africa, South Asia, and Latin America—
regions that contain large segments of the world’s poor. Tropical
food insecure countries are also characterized by poor transport
infrastructure and are among the least able to trade and offset
weather risk (Brown 2014; World Bank 2014). The poor small-
holder farmers in these regions are also more likely to engage in
subsistence agriculture (Barrett, 2008b); (World Bank 2008) and
are more likely to face the risks associated with climate-related
domestic weather disruptions.

Despite the large literature that has examined local food prices
in developing countries, there is limited systematic evidence on
the relationship between domestic weather disturbances and
local food prices (Baffes and Dennis 2013; Bradbear and Friel

2013; Garg et al., 2013; Hazell 2013; Headey and Fan 2008; Trostle
et al., 2011; ul Haq et al., 2008; Von Braun 2008; Webb 2010).
These studies involve household surveys that cover two or three
time periods, or use simulated data instead of observations. Here
we examine 60 months of price data for each of the 554 markets
in order to quantify the impact of weather disturbances on food
prices.

Lack of access to food due to affordability is a primary cause of
food insecurity in urban areas, therefore it is important for policy
makers to understand how domestic weather disturbances affect
local prices (FAO, 2012). In the aftermath of the 2008 crisis,
international organizations including the International Food Policy
Research Institute (IFPRI), the World Bank Group, the UN’s Food
and Agricultural Organization, and the Group of 20 (G20) assumed
that local prices in developing countries rose in response to large
increases in international commodity prices (Swinnen and
Squicciarini 2012). In competitive, efficient food markets, local
weather shocks should have no influence on local prices
(Samuelson 1965). We find that local weather disturbances do
affect food prices because the assumptions of the underlying
economic theory are unrealistic. If local production is affected by
weather disturbances, do international commodity prices matter
more to local market prices? Quantifying the influence of
international commodity price changes simultaneously with

* Corresponding author.
E-mail addresses: mbrown52@umd.edu (M.E. Brown),

varun.kshirsagar@gmail.com (V. Kshirsagar).

http://dx.doi.org/10.1016/j.gloenvcha.2015.08.003
0959-3780/ã 2015 Z. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Global Environmental Change 35 (2015) 31–40

Contents lists available at ScienceDirect

Global Environmental Change

journa l home page : www.e l sev ier .com/ loca te /g loenv cha

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gloenvcha.2015.08.003&domain=pdf
mailto:mbrown52@umd.edu
mailto:varun.kshirsagar@gmail.com
mailto:varun.kshirsagar@gmail.com
http://dx.doi.org/10.1016/j.gloenvcha.2015.08.003
http://dx.doi.org/10.1016/j.gloenvcha.2015.08.003
http://www.sciencedirect.com/science/journal/09593780
www.elsevier.com/locate/gloenvcha


domestic weather on local markets during this period is one of the
goals of this paper.

In agricultural economics there is a large literature on market
integration (Barrett 2008a; Cook 1999; Ihle et al., 2011; Zant, 2013).
Taken together, this literature has not quantified the mechanisms
that prevent food markets in developing countries from being
better integrated. Further, we are not aware of a study that
examines the influence of domestic weather disturbances across
large set of countries and markets, although the influence of
weather disturbances on local food markets is widely acknowl-
edged. Consequently, and in contrast to studies that have examined
food market integration across a large set of countries (e.g., Minot
(2011), our study focuses on quantifying impacts of both weather
disturbances and world food prices as drivers of local food prices.
This will help clarify the mechanisms that drive local food price
movements. Further analysis could attempt to bridge our approach
with the food market-integration literature.

We categorize local food markets as being influenced by
domestic weather disturbances, international commodity shocks,
or both. We are aware that many other influences affect local food
prices, including regional markets, distance to ports, informal
trade, currency and exchange rates, degree of engagement in the
international market and many other factors. We take a minimalist
approach in order to enable analysis and response by international
organizations such as Famine Early Warning Systems Network and
the World Food Program who have a lot of local qualitative
intelligence about the functioning of food markets, but need a way
to analyze food affordability across multiple regions at the same
time. Absent policy interventions, markets influenced by domestic
weather disturbances are more vulnerable to increasing rainfall
variability (Byerlee et al., 2006). To measure weather disturbances
in a way that is comparable across agro-ecosystems and
continents, we use a widely used satellite-derived vegetation
index that integrates rainfall and temperature impacts on biomass
and enables comparability across countries and ecosystems
(Becker-Reshef et al., 2010; Pettorelli et al., 2005; Pfeifer et al.,
2014). A similar approach is used by the Group on Earth
Observation’s Global Agriculture Monitoring Initiative (GeoGLAM)
sponsored by the Group of Twenty (G20), whose objective is to
monitor food production across all major agricultural production
zones.

The international community responded to the 2007/8 interna-
tional food price spike by channeling considerable resources into
the agricultural sectors of developing countries (Swinnen and
Squicciarini 2012). The rationale for these actions was predicated
on the assumption that higher global food prices engendered a
large poverty increase across the developing world (Swinnen and
Squicciarini 2012). In fact, a growing literature provides evidence
that international food price shocks exert a muted impact on food
prices in developing countries (Headey 2013; Minot 2011) Here we
show that, for our sample of 554 local food markets, there are many
more markets in the developing world that are influenced in the
short run by local weather disturbances (23.2%) than those that are
influenced by international food price shocks (12.4%). Consequent-
ly, our results speak to the urgent need for greater policy emphasis
on understanding and mitigating local weather disturbances—
regardless of the frequency and occurrence of international food
price spikes.

Since food staple food demand shifts are rarely large, significant
increases in local prices typically indicate local or regional
shortages. In lower income households that are food insecure,
this results in lower than optimal food consumption and poor
nutrition outcomes (Golden et al., 2011; Handa and Mlay, 2006).
Therefore, food prices are often the most accurate and timely
indicators of changes in both local food scarcity and food
insecurity. Local staple food prices can be collected for

representative markets on a regular basis and at a reasonable
cost, providing insight on the food security of local communities
(Garg et al., 2013). Information on food prices also allows
systematic comparisons across time, agro-ecological food systems,
and political boundaries.

1.1. Model assumptions and structure

Given our hypothesis that domestic weather and changes in the
international price of commodities will affect local food prices, we
develop a set of models is compared against a random walk
benchmark. Samuelson (1965) was one of the first to demonstrate
that under certain conditions (including rational expectations and
behavior) price series would exhibit random walk behavior
(Samuelson 1965). These ideas were further developed in seminal
work by Fama (in particular, (Fama, 1965, 1970; Malkiel, 1973). At
the same time, an influential literature developed a theory of
commodity price dynamics that rested on harvest shocks and
competitive storage with profit maximizing intermediaries (Gus-
tafson 1958; Newbery and Stiglitz 1981; Wright and Williams
1991). An ambitious research program undertaken by Deaton and
Laroque tested this theory using commodity price data (Deaton
and Laroque 1992, 1996).

While Deaton and Laroque’s program could explain commodity
price spikes, they concluded that the autocorrelation of the price
time series was not consistent with the competitive storage model.
Further, none of their methods explicitly measured weather
disturbances. Food price changes in developing countries exhibit
pronounced seasonal behavior (Sahn, 1989). This is due to
inadequate storage and transportation. It is also worth noting
that, even for stock prices that are traded in the most sophisticated
markets in the developed world, it has been shown that price
dynamics may not be random (Lo and MacKinlay, 2011). Food
markets in developing countries are characterized by a wide-range
of inefficiencies (World Bank, 2008) and likely to be far less
efficient than financial markets in developed countries.

In this context, here we test other specifications against a
benchmark model that is a random walk (augmented to adjust for
seasonality). Given the market inefficiencies mentioned above, it is
possible that lagged weather and world price shocks will influence
local food price dynamics. Therefore, we allow for three other
possible data generating processes. First, that food prices may be
influenced by domestic weather disturbances. Second, that food
prices may be influenced by prices at which food commodities are
traded on international markets. And finally, a data generating
process in which food prices may be influenced by both
international prices and weather disturbances. These three models
are described below in Section 3.

2. Data

2.1. Vegetation index data and pre-processing strategy

We use the vegetation index measure derived from remote
sensing observations as a proxy for yield changes. Vegetation index
data have long been used to examine changes in agricultural
production due to changes in plant biomass from abiotic stresses
(Becker-Reshef et al., 2010; Fensholt 2004; Hoefsloot et al., 2012;
Karnieli et al., 2010; Vrieling et al., 2011). A review of the NDVI-crop
literature given by Funk and Budde (2009) focuses on the strong
relationship between vegetation indices and crop yields in tropical
countries such as the Sahel, where 93% of the variation in yields
could be detected in semi-arid ecosystems (Rasmussen 1992).
Using vegetation index from NASA’s moderate resolution imaging
spectroradiometer (MODIS), Funk and Budde (2009) were able to
estimate variations in crop production in Zimbabwe in a period
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when rainfall datasets were poorly calibrated due to lack of ground
observations and crop models were reporting variations in
production that were unrealistic due to a massive reduction in
the baseline production from land redistribution in 2001. Becker-
Reshef et al. (2010) describe how vegetation remote sensing is
making a contribution to global estimates of cropland distribution,
crop development and yield estimation through the USDA Foreign
Agriculture Service, and is the foundation for the GeoGLAM project
sponsored by the Group of Twenty (G20).

Biophysical parameters observed with satellite remote sensing
are direct measures of the light or electromagnetic radiation
reflected from plants on the earth surface. Measures of vegetation
health occur on spatial scales of sub-meter to tens of kilometers
and in temporal resolution from hourly to monthly. Vegetation
data provides information on the amount of photosynthetic
activity of chlorophyll molecules that is linearly scalable from cell
to leaf to plant to landscape. The normalized difference vegetation
index (NDVI) is a ratio of the light reflected in the red portion (RED)
of the electromagnetic spectrum versus the light reflected in the
near-infrared (NIR) (Tucker 1979). The index is computed by as
follows:

NDVI ¼ NIR " RED
NIR þ RED

NDVI provides a measure of the greenness of the plants on a
landscape and is often used as a proxy for the productivity of a
cereal crop and therefore its yield (Pettorelli et al., 2005; Vrieling
et al., 2011). Here we use vegetation data from the moderate
resolution imaging spectroradiometer (MODIS) monthly data for
each country from the 0.05$ resolution climate modeling grid
(CMG) data from the NASA Moderate Resolution Imaging
Radiometer (MODIS) instrument from 2002 (Justice et al., 1998).
One can analyze many consecutive measurements of NDVI over
weeks, months or years to gain an understanding of how
vegetation is performing in a region over time. The data is
available within one day after observation, and thus can be used in
near real time in an operational system.

We calculate the monthly anomaly for any one 5 km % 5 km
location by subtracting the observation from the current month
from the mean for the month from 2002 to 2012. Although these
data are available at 250 m resolution, we selected the 5000 m or
0.5$ resolution to reduce processing time and to reduce error by
averaging across regions. For this analysis, we consider only those
anomalies greater than 10% or 0.1 NDVI units. To make the data
usable within the modeling framework, we extracted without
averaging the CMG data into a comma-delimited file with latitude,
longitude, country code, and land cover type for all pixels within
each countries’ borders.

The measurements are aggregated across time to a monthly
time scale and across space to four domestic clusters (using a k-
means clustering algorithm). The models are run for each of the
four clusters and the optimal model is reported. Further, pixels that
satisfy the following criteria are used to calculate the average: (i)
marked as being cropland or cropland-mix according to the MODIS
land cover classification (Friedl et al., 2002) and (ii) the median
maximum monthly change is greater than 0.5 NDVI units and the
median minimum monthly change is less than "0.5 NDVI units (to
further ensure that the pixels cover areas that are seasonal). Only
months for which the median change is increasing by 0.2 are
considered, with all other months are set to zero. This ensures that
the weather disturbance signals are not confounded with a harvest
and the signal is restricted to months that coincide with the
growing season.

2.2. Local food prices

The monthly consumer food prices used in this paper paper are
from a continuously up-dated price database comprised of food
prices from 60 months from 2008 to 2012, with a maximum of
three months missing during the time series. Data is from
215 markets in 51 countries, collected by the United Nations Food
and Agriculture Organization (FAO) and the World Food Program
(WFP) with 554 unique commodity-location pairs. Most of the data
is available from the FAO at the Global Information and Early
Warning Sys-tem (GIEWS) website: (http://www.fao.org/giews/
pricetool2/) and WFP (http://foodprices.vam.wfp.org/Analysis-
Monthly-Price-DataADV.aspx). There are several data sources for
each country’s information. Monthly international prices of maize,
wheat and rice are obtained from the World Bank. The
international price of maize is used for the millet and sorghum
price locations, since there is no commonly reported international
price for these commodities.

3. Methods

In this paper, we incorporate monthly domestic weather
disturbances and international commodity prices in a state space
model using a Kalman Filter to estimate parameters of a price
dynamic system (Shumway and Stoffer 2010). We apply two
criteria to determine whether a particular model works better than
another for a location-commodity pair: the corrected Akaike
Information Criterion (AICc) is lower than the seasonal random
walk as well as all other specifications, and the estimated
coefficient has the expected sign with an attached p-value for a
one-sided t-test that is below 0.05. The model uses weather
disturbances estimated by satellite-derived normalized difference
vegetation index over cropped regions of each country as well as
shocks from international commodity prices, as measured at
international ports, and their interactions. In this section, we first
describe the models, then we present the state space Kalman filter
approach, and then model selection and post-estimation analysis.

3.1. Model description

3.1.1. Model I: a (generalized) seasonal random walk
The first model is used as a benchmark against which the others

are measured. Define Ft to Net Food Demand at time t and at to be
the time varying slope at time t. Ft is assumed to be directly
proportional to food scarcity and price. The slope at is allowed to
change over time and may be mean reverting (|a2| < 1) or a random
walk (a2 = 1). This formulation is intended to capture the idea that
there are (latent) factors associated with changing expectations
that influence local food price dynamics. In periods when prices
may be rising quickly, a forward momentum may develop that puts
pressure on prices, independent of fundamental factors. We do not
assume this effect, but rather allow for the possibility. It is also
possible that these mechanisms are absent—in which case, either
a1 will simply be estimated to be zero or zt will be zero and a2 will
be one.

Ft ¼ Ft"1 þ a1at þ b1sin
2pt
12

! "
þ b2cos

2pt
12

! "
þ et ð1Þ

at ¼ a2at"1 þ zt ð2Þ

The error terms are assumed to be iid normal and independent
of each other.

et ( NIDð0; s2
e Þ; zt ( NIDð0; s2

zÞ; St ( NID s2
e 0
0 s2

z

# $
ð3Þ
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To simplify notation, this system can be expressed in matrix
form in the following manner.

S ¼ Ft
at

# $
; A ¼ 1 a1

0 a2

# $
; c ¼ b1 b2

0 0

# $
; C ¼

sin
2pt
12

! "

cos
2pt
12

! "

2

664

3

775 ð4Þ

Note, the state vector at time t,St, consists of the net food demand
term at time t (which is related to price) as well as the momentum
term (at).

St ¼ ASt"1 þ cC þ St ð5Þ

Let pt be the natural log of the observed food price at time t. We
assume that pt is related to Ft with no observation error.

pt ¼ ZtS2 ¼ ½1 0*St ð6Þ

This system represents a generalized random walk. Assigning
values for 4 parameters transforms the system to a random walk
with a drift. Specifically, the evolution of Ft collapses to a simple
random walk with a drift if b1 = 0, b2 = 0, sz2 = 0 and a2 = 1. Further,
if a1 is also 0, then the system collapses to a simple random walk.
We use Eqs. (4)–(6) as the benchmark model. The next three
probability models involve amendments to the coefficient matrix
(c) and the exogenous vector (C) that allow for the influence of
weather and/or international price shocks.

3.1.2. Model II: weather disturbances influence local prices
To allow for the influence of weather disturbances, we augment

the coefficient matrix and exogenous vector in Eqs. (4)–(6) by
incorporating a lagged normalized difference vegetation anomaly
(NDVI) term. Consequently, the two matrices are now expressed in
the following manner.

c ¼ b1 b2 bNDVI
0 0 0

# $
;C ¼

sin
2pt
12

! "

cos
2pt
12

! "

NDVIt"1

2

6666666

3

7777777

ð7Þ

Note, the lagged NDVI anomaly acts as a shock to the price
dynamical system and may amplify the (normal) seasonal effects.
We would expect bNDVI to be negative. This is because a positive
NDVI anomaly is associated with a greater than normal rainfall
event and a negative NDVI anomaly is associated with an adverse
rainfall event. The magnitude of bNDVI depends on the slope of the
local food demand curve. In other words, bNDVI is expected to be
closer to zero when local food markets are better connected to the
outside world. This is because local weather disturbances will have
a smaller influence on local food prices. Conversely, when markets
are isolated, local food supply is largely determined by local
weather. It is well documented (World Bank, 2007) that the
poorest regions are often tenuously connected with outside
markets. As a consequence, for this type of market, a given
weather disturbances will have a larger influence on local food
prices. There have been, in the recent past, considerable invest-
ments financed by the international donor community to
strengthen local food supply chains that may reduce the influence
of local weather disturbances. However, as we show, there remains
a strong relationship between local weather disturbances and local
food price dynamics for a significant proportion of the markets that
we study.

3.1.3. Model III: international prices influence local prices
Alternatively, to allow for the influence of international price

shocks, we augment the coefficient matrix and exogenous vector in
Eqs. (4)–(6) by incorporating a lagged price change term. Since,
international prices are not seasonal, a change from the last period

is interpreted to be a shock. Note, in contrast, the NDVI anomaly
represents a difference from the median for a given month.
Therefore, to capture the influence of international price shocks,
the two matrices are now expressed in the following manner.

c ¼ b1 b2 bWprice
0 0 0

# $
;C ¼

sin
2pt
12

! "

cos
2pt
12

! "

wpricet"1

2

66664

3

77775
ð8Þ

In a similar manner to the NDVI anomaly (Eq. (7)), the possible
influence of the lagged international price shock is assumed to be a
shock to system. In contrast, bwprice is expected to be positive. For
local markets that are connected to world markets, we expect
bwprice to be significantly different from zero. Further, the
magnitude of bwprice is directly related to the degree to which the
local market is influenced by world market prices.

3.1.4. Model IV: world prices and weather disturbances influence local
prices

Finally, to allow for the influence of both international price
shocks and anomalous weather, we augment the coefficient matrix
and exogenous vector in Eqs. (4)–(6) by incorporating a lagged
price change term as well as the lagged NDVI anomaly.

c ¼ b1 b2 bNDVI
0 0 0

bwprice
0

# $
; C ¼

sin
2pt
12

! "

cos
2pt
12

! "

NDVIt"1
wpricet"1

2

6666664

3

7777775
ð9Þ

This dynamical system has just eight free parameters (a1, a2, sc2,
sz2, b1, b2, bNDVI, bwprice), yet it incorporates the time-varying
latent momentum, seasonal influences, anomalous weather influ-
ences, as wellworld price influences. Given that the price time series
we study has only 60 observations, this formulation provides a
balance between parsimony and the flexibility required to capture
fairly complex local food price dynamics.

In this section, we presented four probability models used to
integrate remote sensing observations of domestic weather
disturbances and international price changes into a set of plausible
data generating processing for each price time series we study. In
reality it is possible that a food prices switch between processes for
a given market. However, given the short sample (60 observations)
we assume that each price series is best modeled (and
approximated) by only one of the processes. Section 3.2 below
presents the statistical inference technique that has two steps. In
the first step, we estimate (for all four probability models)
parameters and a goodness of fit measure – the corrected Akaike
Information Criterion (AICc) – under the assumption that the price
time series is a realization of a given probability model. In the next
step, we use the AICc measure, as well as the magnitudes, signs and
significance of the estimated parameters to classify each price time
series as belonging to one of the four models discussed in this
section.

3.2. The statistical estimation method

State Space models that employ the Kalman filter have been
widely used to estimate parameters of linear dynamical systems
(Durbin and Koopman, 2012; Harvey, 1990; Shumway and Stoffer,
2010). In our context this estimation method is appealing for two
reasons. First, food price dynamics are inherently non-stationary.
As mentioned above, there are some periods when momentum,
which is the influence of recent price increases after controlling for
seasonality and other shocks, drives food prices. Error correction
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models and OLS are unable to capture this easily, while a Kalman
filter is ideally suited to model this latent momentum in
parsimonious manner. By controlling for this latent momentum,
estimated by Eq. (2), we are better able to estimate the impact of
market fundamentals. This is demonstrated by the simulations
presented here, but also see Meinhold and Singpurwalla (1983) for
an intuitive explanation. Second, we are able to directly test and
reject the random walk hypothesis even after controlling for
seasonality, which is a core assumption in economics (Samuelson
1965).

Assume that the state vector St has an initial state that has a
normal distribution as follows:

S1 ( Nða1;s1Þ ð10Þ

Let vt be the difference between the realized price and the
predicted price.

nt ¼ pt " Ft ð11Þ

Define Gt to be the variance of vt conditional on information in
period t"1.

G ¼ ZSt sZ
0 þ St ð12Þ

aðtjtÞ ¼ at þ stZ0G"1
t vt ð13Þ

sðtjtÞ ¼ st þ stZ0G"1
t Zst ð14Þ

Let information at time t be given by It. Then the mean and
variance of the state vector are updated in the following manner.

atþ1 ¼ AEðStjItÞ ð15Þ

Stþ1 ¼ AVðStjItÞA0 þ St ð16Þ

These equations lead to the key prediction step.

at"1 ¼ AatþKtvtKt ¼ AstZG"1
t ð17Þ

Here, Kt is the Kalman gain, which measures the extent to which
new information changes the estimates of the state vector. It is
increasing in the estimated variance of the state vector but
decreasing in the estimated variance of the error covariance matrix
(St). The estimation is complete when the st matrix converges to a
steady state. The system is estimated using maximum likelihood.
See Durbin and Koopman (2012) for a complete treatment of the
estimation methodology.

3.3. Model selection and post-estimation analysis

The corrected Akaike Information Criterion (AICc) is computed
for all four models. The optimal model is one that minimizes the
AICc described below. In these equations, p is the number of
parameters to be estimated, n is the sample size, and L is the log
likelihood. Model I has 6 parameters, Models II and III have
7 parameters and Model IV has 8 parameters. All estimations use
59 observations. We use the AICc here as it is appropriate for time
series with small samples and has strong theoretical properties
(Brockwell and Davis 2009; Hurvich and Tsai 1989).

AICc ¼ 2p " 2lnðLÞþð2pÞðp þ 1Þ
n " p " 1

ð18Þ

In simulation results in the next section, we show that a
selection method that uses the corrected AIC successfully

categorizes data generating processes for the short sample sizes
that we study.

In addition to using the corrected AIC, we also use the signs and
significance of the parameters to select models. Specifically, for
models that use lagged NDVI anomalies, only those estimations for
which bNDVI< 0 and tNDVI< "1.7 (i.e., 5% level of significance for a
one sided test) are selected as candidate models. Similarly, for
models that use lagged world prices, only those estimations for
which bwprice > 0 and twprice > 1.7 (i.e., 5% level of significance for a
one sided test) are selected as candidates. Consequently, the
selected models are consistent with economic theory and
commonsense and not merely the result of a data-mining exercise.

4. Estimation results using synthetic data

In this section we test our methodology against a simple
dynamic OLS benchmark to demonstrate the value of a state space
methodology. We generate 100 realizations of 60 observation time
series for each data generating process described in Section 1.1.
Where relevant, we assign the following values for the parameters:
a1 ¼ 1:2; a2 ¼ 1; s2

e ¼ 1, s2
z ¼ 1; b1 ¼ 0:5;b2 ¼ "0:5; bNDVI ¼ "0:1;

bWPrice ¼ 0:1; with an initial value of the log price of 1. We use
changes in the World Bank’s monthly cereal price index and
average NDVI anomaly changes from the sample as the exogenous
drivers/values taken by the explanatory variables. For each data
generating process (i.e., Models I–IV) we estimate parameters
using the four models (one each for each of the four data
generating process). We then report two sets of results. First, we
compare bias and efficiency for each state space and dynamic OLS
specification for each data generating process. Second, we study
our model selection methodology using the synthetic data set
described above.

Table S1 and Figs. S1–S4 in the Supplementary material
summarize results of the state space methodology used in the
paper and compare them with results from a more standard
dynamic Ordinary Least Squares (OLS) regression. The latter is a
standard (time series) regression that includes a lagged dependent
variable as one of the covariates. Taken together, the results
suggest that for all four data generating processes the estimates of
the parameters of interest are both less biased and more efficient
using the state space methodology. Further even if the estimation
specification is mis-specified (for example when an M2 model
estimation is used for a true M1 process), the mean errors are
closer to zero using the state space methodology. For all models,
the root mean square divergence of the estimated coefficient from
the true parameter is between three and four times as large using a
least squares regression instead of the state space method
employed in the paper. For example, when the true process is
Model IV and the estimation is consistent with a model IV process,
then the mean error for the lagged NDVI anomaly coecient is 2.9%
using the state space methodology and "14.5% using the dynamic
OLS estimation. The RMSPE using the state space method is 28.5%
and the RMSPE using the dynamic OLS is 88.5%. Similarly, when the
true process is Model IV and the estimation is consistent with a
model IV process, then the mean error for the lagged international
price coecient is 1.8% using the state space methodology and "6.8%
using the dynamic OLS estimation. The RMSPE for the estimated
lagged international price parameter using the state space method
is 26.5% and the RMSPE using the dynamic OLS is 72.5%.
Figs. S1 and S2 are box plots that provide a visual confirmation
of these results. Using the methodology employed in the paper,
both the distribution of the estimated lagged NDVI coecient as well
as the distribution of the lagged international price coefficient are
less dispersed using the state space methodology. Figs. S3 and S4
show the distribution of the t-statistics. Less than 5% of the t-
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statistics are above "1.7 (below 1.7) for the NDVI (International
price) coefficients. These results underscore the importance of
using an iterative estimation procedure when estimating param-
eters from relatively small samples of a noisy data generating
process. Other iterative methods that estimate parameters of
dynamic linear systems may also work well. We used the Kalman
filter technique because it is both flexible and well studied (e.g.,
Harvey, 1990; Durbin and Koopman, 2012; Shumway and Stoffer,
2010).

4.1. False-positive and false-negative error rates

Tables 1a, 1b and 1c summarize the results of the model
selection process using the synthetic data. As may be expected,
average AICs are lower when the model specification is consistent
with the true data generating process. Table 1b shows that the
model selection method is robust to mis-specification. Both the
false positive and false-negative error rates are low. Just 7% of the
series are categorized as being influenced by weather disturbances
when if fact the data generating process is consistent with no
influence. Further, 7% of the series are generated by a process that
has a weather influence for those series for which the methodology
estimates no influence.

Further, as Table 1c shows, when the model is correctly
specified, the state space methodology employed in the paper
successfully categorizes weather influence 95% of the time. In
contrast, the dynamic OLS methodology is successful less than 50%
of the time. Taken together, these results suggest that the model
selection process used in the paper is reasonably robust to mis-
specification. Further it significantly out-performs dynamic OLS
estimation when the model is correctly specified.

5. Results

The results show that for most of the developing world, there
are a much larger fraction of local food markets that are influenced
by local weather disturbances than by the prices at which
agricultural commodities are traded on international markets
(Fig. 1). During 2008–2012, 19% of the 554 commodity-location
pairs in the model were affected by local weather disturbances, 9%
by international prices and 4% by both weather and international
prices. The model was able to identify an exogenous driver for
177 of the 554 market-commodity pairs examined (See Table S2 for
detailed estimation results for weather that include the goodness
of fit, the relevant parameters and t-statistics). For maize, 29% of
the 160 market locations were affected by domestic weather
disturbances (exclusively or in combination with international
prices), while 13% were affected by international prices (exclu-
sively or in combination with weather disturbances). In contrast,
rice prices are affected by domestic weather in 15% of the
114 locations where prices were available, with 17% being affected
by international prices (Table 2). The markets affected by local

weather disturbances are nearly all in regions that grow rice
locally.

The categorization of food price dynamics and the estimation of
the influence of weather and international prices are robust for the
following three reasons. First, both explanatory variables of
interest enter with a one-month lag. Second, weather disturbances
are exogenous and world prices are exogenous for most countries
we study. For the overwhelming majority of countries studied,
with the exception of Argentina, South Africa, Pakistan and Mexico,
countries export and import only a small fraction of world trade.
Third, the corrected Akaike Information Criterion (AICc) provides
an additional penalty for additional explanatory variables used. For
a fifth of our sample, the lagged weather disturbance provides a
better fit (i.e., lower AICc) than a seasonal random walk
benchmark.

Fig. 2 describes the relationship between a few select local food
prices and local NDVI anomalies and. Note these figures do not
come from statistical estimations, but rather represent the price
data without adjustments. Even without controlling for harvest
cycles and other influences it is clear that there is a relationship
between domestic weather disturbances and local food prices.
Eldoret, Kenya is in the middle of the fertile Rift valley, a major
maize-producing region in East Africa. Favorable rainfall (a positive
NDVI anomaly) in 2010 engendered a large fall in maize prices.
After controlling for other factors, an NDVI anomaly of 10% is
associated with a 9% decrease in price of maize in Eldoret. This
decline was compounded by typical seasonal declines associated
with the harvest cycle. In 2011 and 2012, adverse weather resulted
in large increases in local maize prices.

Table 1a
Model selection performance using a synthetic data set. Goodness of fit and model selection using the synthetic data (n = 100).

Average corrected AIC Model selection (%)

True data generating process True model

M1 M2 M3 M4 M1 M2 M3 M4

Estimation model M1 219.2 231.4 233.0 244.7 Selected model M1 0.8 0.04 0.08 0.01
M2 221.5 221.5 234.8 234.8 M2 0.07 0.83 0.0 0.02
M3 221.4 233.0 221.4 233.0 M3 0.13 0.0 0.79 0.02
M4 223.1 223.1 223.1 223.1 M4 0.0 0.13 0.13 0.95

Note: The left panel compares corrected AICs for every estimation model for each of the four underlying data generating processes (probability models). The right panel
provides evidence on model selection using the synthetic data.

Table 1b
Error rates in identifying weather and international drivers.

True model % False positive % False negative

M2/M4: weather influence 0.07 0.07
M3/M4: world price influence 0.13 0.11

Table 1c
Estimates with model IV estimation and model IV process.

Coefficient t-Stat % Influenced

State space
World price 0.98 3.955 95%
NDVI "0.10 "3.678 95%

Dynamic OLS
World price 0.093 1.848 48%
NDVI "0.087 "1.275 33%

Notes: The table provides mean estimates of coefficients and t-statistics for
estimation IV assuming the data generating process is also model IV. The last
column measures the average number of time series for which the weather or price
influence is correctly classified.
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We found that NDVI anomalies exert a significant influence on
millet prices in Kaolack. The large price increases in 2011 and
2012 were preceded by large negative NDVI anomalies. An NDVI
anomaly of 10% is associated with a 6% decrease in price for millet
in Kaolack, after controlling for other factors (Table 2). Afghanistan
suffered from severe adverse weather for the 2011/12 season.
While the coefficient for the lagged NDVI anomaly for Rice in
Kabul, Afghanistan is not particularly high ("0.4), the large
magnitude of the shock ("30%) engendered a 12% increase in local
rice prices, which was further compounded by typical seasonal
increases (Table 2). Fig. 2 shows that Rice grown locally in West

Fig.1. Maps showing domestic weather, international price or both drivers of local consumer maize (a), rice (b), millet (c), sorghum (d), and wheat (e) price observations from
2008 to 2012. Each circle represents one commodity-location pair. Grey circles show markets that the model without the driver had lower errors than the models with drivers.

Table 2
Summary of results by commodity and influence.

Driver of local food prices

Weather International Both Neither Total

Maize 36 10 11 103 160
Wheat 13 8 8 39 68
Rice 17 19 1 77 114
Millet 13 1 0 53 67
Sorghum 17 2 1 48 68
Other 12 8 0 57 77
Total 108 48 21 377 554
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Africa (Niarela, Mali) is also influenced by domestic weather
disturbances.

6. Discussion

To the best of our knowledge, the following features of our
methodology and results are novel. First, our analysis uses data on
both local food prices as well as information from remote sensing
of vegetation to estimate parameters of a price dynamical system
(see Eqs. (4)–(6)). As the simulations in section 1.3 of the
supplementary information shows, this method is both parsimo-
nious yet flexible enough to capture complex local food price
dynamics for the sample sizes we study. In the supplementary
section (Figs. S1–S4 and Tables S1 and 1) we show that our
methodology outperforms a dynamic ordinary least squares
regression. Second, we estimate weather impacts using real data
(as opposed to simulations) for 51 countries in multiple regions in
the developing world. Third, the analysis explicitly quantifies both
a key domestic driver (i.e., domestic weather disturbances) and a
key external driver (international prices) and categorizes local food
markets across a large sample of locations and countries on these
two dimensions.

We do not identify a major driver for 377 of the 544 markets.
There are three possible reasons for this result. First, we are only
capturing short run impacts. In the short run prices may not
respond. Further analysis is needed to develop methods that can

tease out long-run impacts while still remaining parsimonious.
Second, government interventions could mitigate, perhaps only in
the short run, the impacts of the two drivers we study. Third,
markets may be oligopolistic with, for example, a few market
intermediaries, and as a consequence prices may not reflect
demand and supply shocks. Yet, it is worth noting that our
framework is able to explain local food price movements for a third
(32%) of the markets we study, especially given the fact that
available food price time series are typically short and noisy and
that many of the markets studied are in isolated, data-sparse areas
of the world.

Tschirley and Jayne (2010) have convincingly argued that
discretionary government policies also play an important role in
influencing local food price dynamics. While our findings are able
to quantify the influence of a major driver of local food price
dynamics (i.e., weather disturbances), we are unable to measure,
and therefore account for, the influence of agricultural policies for a
wide range of countries. In future work, the influence of policies
may also be studied along with the important drivers of local food
prices whose influence we are able to identify and measure in this
study. Further, even though we cannot account for the influence of
food policies, we still find a robust impact of lagged weather
disturbances for 20% of the markets in our sample. It is also worth
noting that, while we focus on measuring short-run impacts, our
methodology is flexible enough to allow for a given anomaly to
engender a price response over several periods. This is because we
allow for a time-varying and stochastic trend. Consequently, the

Fig. 2. Local consumer prices and NDVI anomaly time series for maize in Kenya, for millet in Senegal, rice in Mali and wheat in Afghanistan.
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indirect influence of a given anomaly may, in fact, take several
months to dissipate.

In addition to our inability to measure the influence of policies,
there are, at least, two other major limitations to our study. First, as
mentioned above, we focus on estimating the short run impacts of
world prices and weather shocks. In fact, world prices may exert an
impact in the longer run. A more elaborate empirical framework
may first measure the impact of world prices on major regional
hubs and then examine whether shocks get transmitted from these
regional hubs to other markets. Second, and related, our model
does not measure the impact of weather shocks in the context of
food market integration within countries. In part, this is because
the markets for which we have data are not representative at the
national level. While there exists a large literature on food market
integration in developing countries, for example, the references in
Minot (2011), taken together, the majority of this literature does
not quantify other factors that may influence local food markets.
Baffes et al. (2015) constitutes one exception but differs from this
study in that it focuses exclusively on one country. Future work
may build on our framework to develop a more comprehensive
understanding of local food price movements across a large
number of countries in the developing world.

An improved understanding of the influence of weather
disturbances and international price shocks on rural economies
will inform public policies that are designed to mitigate the
adverse impacts of weather disturbances on the poorest commu-
nities in the developing world. Food price time series data can be
usefully combined with remote sensing data to provide more
accurate quantitative assessments of the economic interventions
on rural livelihoods and poverty. In particular, understanding and
adjusting for the role of weather disturbances remains a challenge
to any quantitative analysis of rural livelihoods. Continuous
monitoring of these relationships will allow us to understand
where domestic disturbances are affecting local food availability.
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