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ABSTRACT

Aim To understand climate and landscape drivers of species distributional

shifts across broad spatial extents by integrating dynamic occupancy models

with distribution data collected from the public.

Location New South Wales (NSW), Australia.

Methods We used data on koala (Phascolarctos cinereus) presence and absence

collected across the state of NSW from public surveys between 1987 and 2011.

A dynamic occupancy model was built to quantify the role of climate and land

use change on koala extinction risk and occupancy. We contrasted the model

results against the more usual static occupancy model approach. We then

developed scenarios of future climate, land clearing and urbanization and pre-

dicted the distribution of the koalas over the next 20 years based on the

dynamic occupancy model.

Results The static model indicates koala occupancy in 1987 and in 2011

depended most strongly on annual rainfall and distance to water features.

Housing density and its interaction with Eucalyptus forest cover only minimally

affected koala occupancy. However, for the dynamic occupancy model, extinc-

tion risk (the metric of dominant concern for species conservation) depended

most strongly on Eucalyptus forest cover and its interaction with housing

density, while annual rainfall only minimally affected extinction risk. We

predicted extinction risk to be higher in western NSW than in the east and that

extinction risk may increase under future scenarios of climate and land use

change.

Main conclusions This study underlines the importance of incorporating

extinction dynamics when modelling species distributional shifts under climate

and land use change and we provide an approach for doing so using public-

based surveys. As conservation objectives usually aim to maximize persistence,

this is likely to lead to more reliable identification of conservation priorities

than using static species distribution models. Combining public-based surveys

and dynamic occupancy models provides a powerful approach for achieving

this across broad spatial extents, thus providing an alternative approach when

field-based data collection is impractical.
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INTRODUCTION

Threats to biodiversity posed by global change and multiple

threats have made it imperative that the extinction risk of

species be assessed to guide the conservation of biodiversity

(Bellard et al., 2012; Mantyka-Pringle et al., 2012). Assess-

ments of extinction risk are important because they provide

information about the conservation status of species under

threat. Furthermore, if assessments are spatial, they can

inform management decisions regarding which areas require

immediate conservation actions due to high levels of threat

(Wilson et al., 2005). Despite its importance, species’

extinction risk is often difficult to assess, especially spatially,

as it requires comprehensive and long-term monitoring

data across species’ distributional ranges. For many species,

such data are rarely available (Manley et al., 2004; Field

et al., 2007).

To overcome the lack of long-term monitoring data over

broad extents, conservation decisions often have to be

informed by species’ distribution models (Elith & Leath-

wick, 2009) to predict species’ responses to climate change,

landscape change and other threats. These models typically

rely on the relationships between the present-day species’

occurrences and long-term climate predictors, and other

non-climatic predictors such as land use to predict poten-

tial distributions of species under future scenarios (Pearson

& Dawson, 2003). These static types of models have been

subject to criticism for failing to account for important

dynamic processes influencing species’ distributional change,

such as colonization, extinction and dispersal (Thuiller

et al., 2008). Ignoring dynamic processes may result in

erroneous projections of future species’ distributions (Zurell

et al., 2009). Although the importance of accounting for

dynamic processes has long been recognized (Mackey &

Lindenmayer, 2001), studies that explicitly account for

dynamic processes in these models have only begun recently

(Keith et al., 2008; Anderson et al., 2009). These studies

typically integrate species’ distribution models (Elith &

Leathwick, 2009) with population models (Moilanen et al.,

1998), known as coupled or hybrid models (Conlisk et al.,

2013).

An alternative is dynamic occupancy models (MacKenzie

et al., 2003; Royle & K�ery, 2007) that can be used to infer

the occurrence of species and how dynamic processes, such

as colonization and extinction, affect changes in species’

occurrence over time (Martin et al., 2009). Factors, such as

habitat conditions, climatic variables and data on threats

driving these dynamic processes, are also able to be incorpo-

rated into these models (MacKenzie et al., 2003). Further-

more, these models make it possible to reliably estimate the

proportion of the study extent occupied by a species, explic-

itly accounting for observation errors (Royle & K�ery, 2007).

However, there has been a lack of application of these meth-

ods to modelling species’ distributional change across broad

geographical extents, partly due to the fact that suitable sur-

vey data are often not readily available.

One solution is to use sightings of species, as reported by

the general public, as an alternative source of data to assess

species’ distributional change over large spatial extents (Lun-

ney et al., 2009). Well-designed surveys of the public can

provide a credible, cost-effective alternative to traditional field

surveys for direct observations or signs of a species (Devictor

et al., 2010), especially for species that have a unique appear-

ance and easily recognized, and are rare or difficult to detect

otherwise (Van der Hoeven et al., 2004). The use of such data

can facilitate the more general application of dynamic occu-

pancy models to inform conservation decision-making, but

have rarely been applied to the development of dynamic

occupancy models (K�ery et al., 2010; Pillay et al., 2011).

We address this limitation by applying a dynamic occu-

pancy model to public-based survey data on koala (Phasco-

larctos cinereus) presence and absence collected across the

state of New South Wales (NSW), Australia. We show that

this approach can be used to successfully quantify spatio-

temporal changes in species’ distributions and to identify

multiple-threatening processes driving this change. In addi-

tion to the dynamic model, we constructed a static occu-

pancy model as a comparison. We show that the dynamic

model identifies quite different predictors driving species’

distributional change when compared to the conventional

static distribution model approach. Our method presents a

practical approach for developing dynamic occupancy mod-

els across broad spatial extents to assess the potential impacts

of climate change and anthropogenically driven land use

change on species’ distributions.

METHODS

Study species and area

The koala is an arboreal folivorous marsupial primarily

restricted to the Eucalyptus forests of eastern and southern

Australia and is one of Australia’s most recognized native

animals. Our study area was the state of NSW, Australia,

covering an area of around 809,444 km2 (Fig. 1). In NSW,

the koala is mainly distributed in the central and east coast

regions (Reed et al., 1990; Lunney et al., 2009). However,

their populations have been suffering rapid contractions due

multiple threats (Lunney et al., 2009, 2010). The koala is

listed as vulnerable under the Threatened Species Conserva-

tion (TSC) Act 1995 in NSW and under the Environmental

Protection and Biodiversity Conservation (EPBC) Act 1999

at the Federal level. Nonetheless, no studies have attempted

to model dynamic change in the distribution of the koala

using spatio-temporal data over broad spatial extents. Such

analyses are critical if we are to understand the conservation

requirements of the species across its distribution.

Data

To develop the dynamic occupancy model, we used koala

data collected via public-based surveys between 1987 and

Diversity and Distributions, 20, 786–796, ª 2014 John Wiley & Sons Ltd 787

Assessing extinction dynamics using public survey data



2011 and seven environmental variables, including distance

to water features, elevation, Eucalyptus forest cover, mean

annual maximum summer temperature, mean annual rain-

fall, housing density and road density. Prior to analysis, we

divided the state of NSW into grid cells of 10 9 10 km2 in

size and this was used as the resolution of analysis. These

data are described below and in detail in Appendix S1 in the

Supporting Information.

Public-based survey data

State-wide public-based surveys of the koala were undertaken

in NSW as part of a national effort in 1987, 2006 and 2009–

2011 (Reed et al., 1990; Lunney et al., 2009, in press). For

the 1987 survey, respondents were asked whether they had

seen koalas in their area, and where and when they saw the

koalas. Thus, the 1987 survey essentially contains data on the

presence of koalas. For the 2006 and 2009–2011 surveys, in

addition to information on whether respondents had seen

koalas in their area, they were also asked whether they had

seen any of a number of widely recognized species. Besides

the state-wide koala surveys, a Local Government Area

(LGA) public-based survey was also conducted in Bega Val-

ley and Coffs Harbour in 1991, recording only the presence

of koalas (Lunney et al., 1997, 2000).

Habitat predictors and threats

The koala is an obligate folivore, and its diet is restricted

mainly to the foliage of Eucalyptus species, restricting its

habitat to Eucalyptus dominated forest types (Gordon et al.,

1988; Martin & Handasyde, 1999). In addition, the quality of

habitat for the koala can depend on water availability and

proximity to permanent water bodies (Gordon et al., 1988;

Lunney et al., 2009). Elevation can also affect the quality of

Eucalyptus leaves essential for the koala’s dietary require-

ments via a range of environmental factors suitable for koala

habitat such as soil quality, rainfall and temperature (Lunney

et al., 2009). Therefore, we considered the extent of Eucalyp-

tus forest cover, distance to water features and elevation as

key biophysical predictors of koala distributions (sensu

Adams-Hosking et al., 2012). Eucalyptus cover ranged from

0 to 100, where 0 represents no forest cover and 100 repre-

sents complete forest cover. We also used mean annual max-

imum summer temperature and mean annual rainfall as

predictors. These variables were chosen because they repre-

sent the most climatically influential determinants of Euca-

lyptus forest distributions (Hughes et al., 1996) and also

climatic constraints on koala distributions (Adams-Hosking

et al., 2012).

Threats to koalas from vehicle collisions have been studied

in detail in NSW and elsewhere, and have been shown to

have an important impact on koala populations (Dique

et al., 2003; Rhodes et al., 2011; Dudaniec et al., 2013). We

therefore generated a spatial variable representing the density

of roads to reflect this threat. One way in which the presence

of human populations affects koala risk of extinction is

through domestic dog attacks, and attacks by domestic dogs

are particularly common in urban and peri-urban areas

(Dique et al., 2003; Thompson, 2006; Rhodes et al., 2011).

As a proxy for the threat from domestically owned dogs, we

used housing density.

The occupancy models

Dynamic occupancy model

We formulated the dynamic occupancy model as described

below (sensu MacKenzie et al., 2003). Let Ψj,1987 denote the

probability that grid cell j is occupied by koalas in 1987; Pj,t
denote the probability of detecting koalas, given their pres-

ence in year t; Ωj,t denote the probability that grid cell j is

occupied by koalas in survey year t and is unoccupied in

year t+ 1 (extinction); and Θj,t denote the probability that

grid cell j is unoccupied by koalas in survey year t and is

occupied in year t+ 1 (colonization). We assumed four cen-

sus points between 1987 and 2012, each separated by

5 years, that is, t 2 1987; 1992; 2007;2012f g. Data corre-

sponding to these census points were obtained from the

public-based koala surveys conducted in 1987, 1991, 2006

and 2009–2011, respectively, as described in the previous

section.

Following Royle & K�ery (2007), the dynamic occupancy

model was formulated within a Bayesian state-space frame-

work, where each observation from respondent k in the

10 9 10 km2 grid cell j at time t, yk(j,t), was expressed by a

two component process: the observations conditional on the

unobserved state process, that is, yk(j,t)|z(j,t), and the par-

tially observed state process z(j,t). The initial occupancy

Figure 1 Study area in New South Wales (NSW), Australia,

depicting major roads and highways, local government area

(LGA) boundaries, and the extent of Eucalyptus forest.
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probability Ψj,1987 was assumed to have a Bernoulli

distribution

z j; 1ð Þ�Bernoulli Wj;1987

� �
for j ¼ 1; . . .; n;

whereas the occupancy states in the subsequent periods were

assumed to be distributed

for j = 1,. . .,n with n denoting the total number of grid cells,

and t = 1992,1997,. . .,2012. The observation model for each

observation yk(j,t) was then specified conditional on the

latent process z(j,t) and given by

yk j; tð Þjz j; tð Þ�Bernoulli z j; tð ÞPtð Þ:

In this model, the probability of detecting koalas, Pj,t, is

only identifiable if there are repeat observation events, y(j,t)|

z(j,t), within each grid cell and within each survey period

(MacKenzie et al., 2002, 2003). For survey years containing

information on the presence of koalas and the presence of

common species (i.e. the 2006 and 2009–2011 public-based

surveys), we assumed that the number of observation events

within each grid cell was equal to the number of respon-

dents reporting the presence of at least one species in that

grid cell, regardless of whether it was a koala or not (sensu

Lunney et al., 2009, 2010). The rationale for this is that if

respondents had observed at least one common species (even

if they had not observed koalas), they were actively observ-

ing wildlife and so we considered this to be an observation

event. For survey years containing information on the pres-

ence of koalas only (i.e. the 1987 and 1991 surveys), we

assumed that the number of observation events within each

grid cell was the number of respondents reporting the pres-

ence of koalas in that grid cell. In grid cells with no observa-

tion events, or those grid cells with observation events, but

no koalas detected, the true occupancy status of that grid

cell, z(j,t), was assumed unobserved. In all other grid cells

with observation events, koalas were assumed to be

observed, with z(j,t) = 1.

The probability of a 10 9 10 km2 grid cell being occupied

at the initial survey year, that is, Ψj,1987, was modelled as a

logistic function using the following predictors: elevation,

distance to water features, Eucalyptus cover in 1987, housing

density in 1987, mean annual maximum summer tempera-

ture pre-1987, mean annual rainfall pre-1987, road density

and second-order interactions among these variables. The

probability of a 10 9 10 km2 grid cell being occupied at sur-

vey year t and unoccupied at survey year t+1 (probability of

extinction), Ωj,t, was also modelled as a logistic function

using the following predictors: Eucalyptus cover, housing

density, mean annual maximum summer temperature, mean

annual rainfall, road density, all at survey year t and second-

order interactions among these variables.

We assumed that the colonization rate and probability of

detection were constant across space and time, that is,

Θj,t = Θ and Pt = P. We made this assumption because the

primary changes through time and the influence of habitat

and climatic variables are likely to be related to extinction

probability, rather than colonization probability or detect-

ability. In addition, it would be impossible to model explicitly

the full spatially colonization process at the scales used in

this study. Further, as we had no prior information about

detection for each individual survey year, detection probabil-

ities would likely not be identifiable without assuming that

they are constant across time. The primary parameters of

interest that were estimated for the dynamic occupancy

model were the initial occupancy probabilities, Ψj,1987, the

extinction probabilities, Ωj,t, where t ¼ 1992; 1997; :::; 2012,

the colonization probability Θ, and the detection probabil-

ity P.

Static occupancy model

Besides the dynamic model described above, we also con-

structed a competing static occupancy model using only the

current 2009–2011 survey data. The primary parameters of

interest that were estimated for this static model were the

occupancy probabilities, Ψj,2011 and the detection probabil-

ity, P2011. The probability of occupancy Ψj,2011 was mod-

elled as a logistic function using the following predictors:

elevation, distance to water features, Eucalyptus cover in

2011, housing density in 2011, mean annual maximum

summer temperature pre-2011, mean annual rainfall pre-

2011, road density and second-order interactions among

these variables.

Model fitting

We used WinBUGS Version 1.4.3 (Lunn et al., 2000) to estimate

the parameter posterior distributions and the regression coeffi-

cients for Wj;1987; P; H; and Xj;t ; for t 2 1987; 1992; . . .; 2007f g
in the dynamic occupancy model and for Ψj,2011 and P2011 in the

competing static occupancy model. For both the static and

dynamic occupancy models, we assumed a uniform prior for each

variable explaining occupancy and extinction rates, and for the

intercept terms in the colonization and detection probability mod-

els. We applied these as informative prior distributions based on

the generally known direction of the effect of each predictor vari-

able on koala probability of occurrence and extinction.

We applied a model selection approach to the interaction

terms by sequentially adding second-order interaction terms

into the initial occupancy component (in 1987) and into the

extinction component in the dynamic occupancy model, and

then selecting the model with the lowest deviance informa-

tion criterion (DIC, Spiegelhalter et al., 2002). We applied a

z
�
j; tÞjz�j; t � 1

��Bernoulli
�
z
�
j; t � 1

��
1� Xj;t�1

�þ�
1� z

�
j; t � 1

��
Hj;t�1

�
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similar approach to the static occupancy model. This is

similar to a standard forward stepwise approach.

For the most parsimonious dynamic occupancy models,

we assessed model adequacy using posterior predictive checks

(Landwehr et al., 1984; Gelman et al., 2004). We first per-

formed global goodness-of-fit tests, using the deviance as a

measure of model fit. We then constructed empirical quan-

tile–quantile plots of the residuals as a graphical assessment

of model adequacy. Details of the procedures used for fitting

the occupancy models are found in Appendix S2.

As well as estimating the change in occupancy for each

10 9 10 km2 grid cell within NSW, we also averaged the

estimated probabilities of occupancy for each time period for

each local government area (LGA), which is the level at

which most decisions about koala management are made.

Future scenarios

We applied our dynamic occupancy model to understand

how the distribution of koalas may shift in the future under

climate, urban and forest cover change. The aim here was

not to make definitive predictions of the future distribution

of koalas, but to explore how distributions may change

20 years into the future under a plausible scenario of climate

change and the continuation of current trends in habitat loss

and household growth. These scenarios are described below

and in detail in Appendix S3.

Projected mean annual rainfall and mean annual maxi-

mum summer temperature surface maps were obtained from

OzClim and provided by the Commonwealth Scientific &

Industrial Research Organisation (CSIRO) (2011). These data

were generated based on the CSIRO MK 3.5 climate model

and the A1FI high-emission scenario (Gordon et al., 2010).

Projected future housing density was modelled based on the

historical census data and allowing for contagion in the

growth of housing. In doing so, we assumed that historical

rates of change in housing density continue into the future.

We also developed a scenario of future reduction in vegeta-

tion cover caused by human activities, for example, for agri-

culture, infrastructure and residential developments. This

was achieved by assuming that the extent of land clearing in

each grid cell follows historical rates of clearing, but modi-

fied by increases in the number of households.

RESULTS

Drivers of koala distributions and extinction risk

The most parsimonious dynamic occupancy models con-

tained the interaction between the extent of Eucalyptus cover

and housing density (Table 1). The second best model was

the main effects model (with no interaction term), while the

third and fourth best models were those containing the

interactions between mean annual maximum summer tem-

perature and Eucalyptus cover or housing density. The

differences in DIC between the first ranking model and the

next three models of the lower rankings were around 2–3

DIC units, indicating some support for the importance of

interactions among anthropogenic land use factors on koala

distributional change, but most importantly, the interaction

between Euclayptus cover and housing density. The good-

ness-of-fit tests for the most parsimonious dynamic occu-

pancy model showed no significant lack of fit (P = 0.16) at a

0.05 significance level. Assessment of the quantile–quantile

plots showed some deviation from the expected 1:1 line but,

in general, most points lay within the simulated 95% bounds

(Fig. S1). This indicated that the model fitted reasonably

well.

For the most parsimonious dynamic occupancy model, the

coefficient sizes of the predictors for initial occupancy (in

1987) provide an indication on the magnitude of the effects

of climate and environmental predictors on koala long-term

occupancy rates (Table 2). The model indicates that mean

annual rainfall, distance to water features, and Eucalyptus

cover had the largest impact on probability of occupancy.

The coefficient sizes of the predictors for the most parsimo-

nious static occupancy model based on 2009–2011 survey

data also indicate that mean annual rainfall and distance to

water features had the largest impact on probability of occu-

pancy, in agreement with the initial occupancy model. How-

ever, the effects of the predictors on extinction risk for the

most parsimonious dynamic occupancy model were quite

different. The coefficient sizes of the predictors for extinction

risk indicate that mean annual maximum summer tempera-

ture, Eucalyptus cover, or combined Eucalyptus cover and

housing density had the largest impact on extinction risk.

Amount of rainfall only had a minimal impact on extinction

risk.

Based on the most parsimonious dynamic occupancy

model, the probability of occupancy in a 10 9 10 km2 grid

cell was generally higher in the eastern part of NSW than in

the western part (Fig. 2a). This is due to higher rainfall and

higher Eucalyptus forest cover in the eastern part of NSW.

The estimated koala probability of occupancy suggests a

rapid decline over the past 20 years. In the period 1987–

1992, the probability of occupancy in each 10 9 10 km2 grid

cell in eastern and western LGAs was approximately 0.7 and

Table 1 Rankings of dynamic occupancy models, pairwise

interaction term included in the models, and DIC values for all

models within 7 DIC units of the best model. Model rank 2

contains only the main threat variable effects

Model

rank

Pairwise interaction

included in the dynamic

occupancy model DIC ΔDIC

1 Eucalyptus cover 9 Housing density 22459.39 0.00

2 – 22461.43 2.04

3 Eucalyptus cover 9 Temperature 22461.84 2.45

4 Housing density 9 Temperature 22462.31 2.92

5 Temperature 9 Rainfall 22465.95 6.56
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0.5, respectively, on average. However, the probability occu-

pancy in a 10 9 10 km2 grid cell in eastern and western

LGAs in 2012 was estimated to be approximately 0.3 and

0.15, respectively, on average.

Based on the intercept of the extinction model, 5-year

koala extinction rates in a 10 9 10 km2 grid cell across

NSW were estimated to be high on average (mean of 0.426

and 95% credible interval of 0.419–0.433). Similarly, 5-year

colonization rates in a 10 9 10 km2 grid cell were estimated

to be low on average (mean of 0.119 and 95% credible inter-

val of 0.118–0.121). Koala populations in western LGAs

appear to be generally more susceptible to extinction com-

pared with the populations in eastern LGAs (Fig. 2b). This

reflects the fact that the western part of NSW has lower

Eucalyptus cover and a higher mean annual maximum sum-

mer temperature than the eastern region. In the eastern

region, LGAs with high housing density, for example, Sydney

and surrounding LGAs, also had high estimated extinction

rates.

Future koala distributions and extinction risk under

projected environmental change

Under projected environmental and anthropogenic change, it

is estimated that koala probabilities of occupancy in each

10 9 10 km2 grid cell in the eastern LGAs in 2022 and 2032

will fall to 0.25 and 0.22, respectively, on average, under our

future scenario (Fig. 3a). For western LGAs, the koala proba-

bility of occupancy in each 10 9 10 km2 grid cell in 2022

will fall below 0.1 on average.

For eastern LGAs, with the exception of Sydney and sur-

rounding LGAs, the risk of koalas becoming extinct in a

10 9 10 km2 grid cell in 2022 and 2032 was estimated to be

0.35 and 0.4, respectively, on average (Fig. 3b). The risk of

koalas becoming extinct in a 10 9 10 km2 grid cell in the

western LGAs by 2022 and 2032 was estimated to be 0.55

and >0.6, respectively, on average. The pattern of increase in

risk of extinction generally moved gradually over time from

the western to the eastern region. This is partly driven by

increases in mean annual maximum summer temperatures

shifting from the west to the east (Fig. S3). The fact that the

western region has lower Eucalyptus forest cover than the

eastern region also contributes to this pattern.

DISCUSSION

The dearth of spatio-temporal species monitoring data over

broad spatial extents and over long time periods is a major

obstacle for assessing the distributional change of species

(Manley et al., 2004; Field et al., 2007). As an alternative,

public-based surveys of species distributions can provide a

practical and achievable means of collecting this type of data.

However, the use of this data to develop dynamic occupancy

models over broad extents has received limited attention.

Here, we have demonstrated the power of linking public-

based surveys with dynamic occupancy models using data onT
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koala populations collected over the past three decades. In

particular, this allowed us to understand climatic and habitat

drivers of extinction that would not have been possible with

the limited field survey data otherwise available, or by taking

a static modelling approach. As such, our approach provides

a novel and important framework for modelling dynamic

change in species’ distributions across broad spatial extents.

The modelling approach

Dynamic occupancy models provide a powerful means of

assessing change in species distributions over time and to

infer how environmental factors drive these changes based on

processes of colonization and extinction. However, to build

such models traditionally requires comprehensive field moni-

toring data of the species over time (Pellet & Schmidt, 2005).

This is a major obstacle for rapidly declining species, where

conservation action may be required urgently. For widely dis-

tributed species, such as the koala, this poses further chal-

lenges, as data on the species must be collected over broad

spatial extents. Based on the approach we have developed

here, public-based surveys of species can provide a practical

means of collecting species occurrence data under time and

resource constraints for use in dynamic occupancy models.

One of the greatest challenges for doing so is developing

detection/non-detection histories from public responses to

surveys to enable detection errors to be estimated. We used

information on records of other common species to identify

non-detections, and this allowed us to construct the detec-

tion/non-detection histories (sensu Lunney et al., 2009). K�ery

et al. (2010) used a similar approach to this based on data

from the Swiss Avian Information Service, but these data

were quite different, being field surveys conducted by the

public, rather than surveys of the public to obtain sighting

information, which are potentially more challenging to deal

with. An alternative approach is to construct detection/non-

detection histories based on formal interviews to extract

information on species sightings (Pillay et al., 2011).

(a)

(b)
Figure 3 (a) Estimated future koala

probabilities of occurrence and (b) risks

of extinction, for each LGA in NSW. The

map on the far left in (a) was obtained

by redrawing the map on the far right in

Fig. 2a with different colour levels. Black

line represents the boundary between the

western and the eastern LGAs.

(a)

(b)

Figure 2 (a) Estimated historical mean koala probabilities of occurrence, and (b) mean extinction rates, for each LGA in NSW. Black

line represents the boundary between the western and the eastern LGAs.
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However, this approach is likely to be much more resource-

intensive than the mail-based survey that the data we used

were based on and are likely to be impractical over, very large

areas, particularly for species occurring on private lands.

By being able to integrate broad-scale public-based survey

data into dynamic occupancy models allowed us to move

beyond commonly used methods for predicting species dis-

tributions under future climate and environmental change.

These are often static and typically use presence-only data

collected from community sightings at a single point in time

(Elith & Leathwick, 2009). In particular, we show that, had

we only used snapshot data from 2009 to 2011 to understand

the drivers of changes in occupancy, we may have introduced

considerable bias into our estimates of the effect of environ-

mental change. Based on the static occupancy model derived

from the 2009–2011 data, we found that mean annual rain-

fall and distance to water features had the largest influence

on koala probability of occupancy in NSW. However, the

drivers of extinction risk in the dynamic occupancy model,

the metric that we are predominantly concerned about in

conservation, were quite different, and we found that Euca-

lyptus forest cover and its interaction with housing density

had the greatest influence. In this case, annual rainfall only

minimally affects the extinction risk of koalas. If inference regard-

ing the relative impact of climate and habitat variables was based

on the static occupancy model alone, then this could have mis-

leading implications for recovery planning. Although the short-

comings of the static distribution modelling approaches have

previously been pointed out (Zurell et al., 2009), this is one of the

first studies to quantify this limitation over broad spatial extents.

In recent years, there has been a recognition that we need

to account for dynamic processes in predicting species distri-

butions under future climate and environmental change

(Keith et al., 2008; Anderson et al., 2009). So-called coupled

models that link static species distribution models with pop-

ulation models have become the favoured approach for

addressing this issue. However, they can be data intensive to

develop and have inherent uncertainties, particularly with

respect to the choice of species distribution model (Pearson

et al., 2006; Buisson et al., 2010) and the parameterization of

the population model (Dunham et al., 2006). Although

dynamic occupancy models are not immune to uncertainties

inherited from model input, such as low sample sizes and

low species detection (Rota et al., 2009), our approach pre-

sents an alternative way for assessing the impacts of climate

and land use change on species distributions. A key advan-

tage of our approach of combining dynamic occupancy

models with public-based surveys is that the models can be

developed cost effectively and, because they are a statistical

model, we can importantly obtain statistical measures of

uncertainty. Furthermore, the approach could potentially be

extended to model community level dynamics using multi-

species dynamic occupancy models (K�ery et al., 2009) if

public-based surveys could be developed to collect informa-

tion on multiple species. This would offer a distinct advan-

tage over current approaches.

Limitations and future research

In the absence of any other information, we assumed con-

stant detection probabilities across grid cells and surveys and

this may have introduced some bias into our estimates of

occupancy and extinction risk (Rota et al., 2009). Given the

decline of koala populations and the species’ symbolic status,

the probability of detection may have increased over time

(e.g. because of its increasing profile). If this is the case, then

we may have underestimated detection probability and over-

estimated occupancy rates and underestimated extinction risk

in later years. However, even in the absence of information

to estimate variation in detection among surveys (e.g. K�ery

et al., 2010), accounting for detection errors is still likely to

result in lower bias than if detection errors had been ignored

(K�ery, 2011).

A further issue is that the state-wide surveys conducted

in 2006 and 2009–2011 applied the same methods and

both contained information about the presence of koalas

and other common species, but the 1987 state surveys and

the 1991 local surveys contain information only about the

presence of koalas. To deal with this, we assumed that

detection probabilities were the same for these surveys as

in later surveys, but that the number of trials in each grid

was the same as the number of presences. This would

tend to cause an overestimation of detection probability.

However, the probability of detection calculated from data

from all survey years (mean of 0.51) was found to be very

similar to the probability of detection for the 2009–2001

survey data alone (mean of 0.53), so it appears that this

has little impact on our parameter estimates. Nonetheless,

further research to develop ways of incorporating variation

in public survey sampling methods through time is impor-

tant.

We did not explicitly consider koala–habitat responses to

climate change in our model, but it is likely that their pre-

ferred food tree species will contract towards the east coast

as a result of climate change over the next 50 years (Adams-

Hosking et al., 2012). This means that the impact of climate

change may have been underestimated to some extent.

Explicitly incorporating future shifts in the distributions of

Eucalyptus may improve model predictions, particularly in

the western LGAs where climate conditions may become

unsuitable for many koala habitat tree species (Adams-

Hosking et al., 2012). Furthermore, we did not consider the

fact that there may be spatial variation in the effect of land-

scape and climate change on koalas across the study region.

It has been shown that koala–habitat relationships can vary

substantially from region to region (McAlpine et al., 2008;

Rhodes et al., 2008), so this may be an important factor that

drives spatial variation in responses across NSW. Therefore,

our model could be improved by explicitly incorporating

spatial variation (non-stationarity) in these relationships

across spatial scales (Hochachka et al., 2012). However, addi-

tional data collected at a range of scales may be necessary to

enable this.
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CONCLUSIONS

This study demonstrates the value of combining public sur-

veys and dynamic occupancy modelling to assess species risk

of extinction and help to identify priority areas requiring

conservation action due to pressing climate and anthropo-

genic threats. Our approach is a significant advance over the

conventional static species distribution modelling approaches.

Our approach also presents an alternative to the coupled

species distribution model and population model approach

by allowing explicit estimation of the importance of environ-

mental predictors on extinction probability and a formal

estimation of statistical measures of uncertainty. Although

static species distribution models will continue to be used to

inform conservation decisions under future climate change

scenarios when long-term monitoring data on species’

occurrence are not readily available, well-designed public-based

surveys in the future should allow for increasing development of

dynamic models.
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