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Abstract

In Computational Fluid Dynamics (CFD) studies composed of the coupling of different

simulations, the uncertainty in one stage may be propagated to the following stage and affect

the accuracy of the prediction. In this paper, a framework for uncertainty quantification in

the computational heat transfer by forced convection is applied to the two-step simulation

of the mechanical design of a swirling jet flow generated by a rotating pipe (Simulation 1 )

impinging on a flat plate (Simulation 2 ). This is the first probabilistic uncertainty analysis

on computational heat transfer by impinging jets in the literature. The conclusion drawn

from the analysis of this frequent engineering application is that the simulated system does

not exhibit a significant sensitivity to stochastic variations of model input parameters, over

the tested uncertainty ranges.

Additionally, a set of non-linear regression models for the stochastic velocity and turbu-

lent profiles for the pipe nozzle are created and tested, since impinging jets for heat transfer

at Reynolds number of Re = 23000 are very frequent in the literature, but stochastic inlet

conditions have never been provided. Numerical results demonstrate a negligible difference

in the predicted convective heat transfer with respect to the use of the profiles simulated via

CFD. These suggested surrogate models can be directly embedded onto other engineering ap-

plications (e.g. arrays of jets, jet flows impinging on plates with different shapes, inlet piping

in combustion, chemical mixing, etc.) in which a realistic swirling flow under uncertainty can

be of interest.
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1 Introduction and Motivation

It is well known that Computational Fluid Dynamics (CFD) is a powerful tool in fluid-related

fields such as optimisation [1, 2], aerospace & aerodynamics industry [3, 4, 5], fire safety modelling

[6], heat transfer [7] or nuclear energy [8], amongst many others. Much effort has been spent to

develop numerical algorithms for CFD, leading to more reliable simulations for decision-making

and validation purposes, where uncertainty plays an important role.

In experimental work, uncertainty and error measurements are often given but, when perform-

ing CFD simulations, this is not a regular practice. If one needs to provide reliable results, this

should be a must to offer the most complete overview by including confidence measures. Gener-

ally speaking, in CFD simulations, boundary conditions and geometries are often imposed, without

considering the effect on performance that real-life stochastic variations in geometry and boundary

conditions may have. Therefore, an option to take into account the stochasticity of some parame-

ters is to use a stochastic analysis instead of a deterministic approach. For this purpose, uncertain

inputs are mathematically modelled by using probabilistic distributions derived from experimental

data. This is sometimes unavailable and scientists may model the relevant input uncertainties by

means of intervals, as well as the study of this propagation, mostly based on experience.

The work presented in this paper is based on the deterministic CFD simulation validated in [9],

whose turbulence model and mesh discretisation errors (Grid Convergence Index, GCI [10]) were

also discussed and validated in several computational works of heat transfer by swirling impinging

jets by the authors [7, 11, 12]. For an efficient computation, the CFD simulation was carried out

in two stages: Simulation 1 & 2 (see Figure 1). Simulation 1 generates the swirling flow to be

used as inlet condition in Simulation 2, where the heat transfer from the flat plate to the swirling

jet is computed. This two-step approach is an efficient alternative to work with different turbulent

models (the flow regime in the pipe is different to the flow regime over the plate) as well as to

impose periodic boundary conditions onto the pipe to get a fully-developed flow (this avoids a

large computational domain) [9]. To properly solve both problems, different turbulent models are

tested. The turbulence models with the best performance were the Reynolds Stress Models (RSM)

for Simulation 1, and the Shear Stress Transport (SST) k − ω for Simulation 2. More details

are given in Section 3, by means of a brief description of the set-up, but the reader is referred to

[9, 7, 11, 12] for further information about the successful application of these turbulent models in

swirling jet flows.

As aforementioned, the main interest is to simulate a swirling flow to enhance the heat transfer

on the flat plate. It has been shown in [7, 13, 12] that the addition of swirl to impinging jets can

increase heat transfer. Note that the swirl can be generated in different ways, such as by using

spiral ducts [14, 15, 13], angled blades at the tip [16], agitation by stirrer blades, or by a rotating

pipe [17]. Depending on the generating mechanism, the outflow will have different patterns and,

thereby, the jet spread rate will be different. This feature is very influential and the degree of swirl

has a dramatic effect on the heat transfer by modifying the shear layer growth and instabilities,

entrainment of ambient air and other properties [15].

As discussed in [9], there is a large amount of research on non-swirling impinging jets [18, 19,

20, 21, 22], and it has been also shown in several works in the literature [13, 15, 14, 12, 7, 23] that

the addition of swirl to these impinging jets can increase the heat transfer under certain conditions.
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Additionally, the existence of some particularities on this type of heat transfer problem also led

to important recent investigations on the most appropriate modelling. For instance, only few

investigations address the use of Large Eddy Simulations (LES) in heat transfer by impingement

[24, 25, 26]. Despite the classic good performance of this high-fidelity simulation for the flow

structures in jets, in the present problem set-up LES usually do not match very accurately the

experimental data for the radial Nusselt distribution on the plate [27, 28]. Actually, for short

nozzle-to-plate distances, the difficulty to match LES data and explain the secondary peak in the

radial Nusselt number is an important investigation attempted by several authors [25, 26, 27].

Recent work such as [29] developed a new version of the SST k − ω and applied it to imping-

ing slot jets for heat transfer by considering the cross-diffusion term and Kato-Launder model.

They found that the model has increased sensitivity to pressure gradients, of high relevance in

heat transfer by impingement. Additionally, in [30] a similar turbulence model is developed by

a combination of the standard SST turbulence model with the crossflow transition model, inter-

mittency transition model and the Kato-Launder model. Their results have a good match with

experimental and numerical high-fidelity data, concluding that the customised turbulence model

accurately simulate the heat transfer and flow structures of the impinging slot jet problem. In [31],

the effect of heat transfer from a flat plate to a swirling jet is analysed according to the Burger’s

vortex, finding optimal configurations considering different vortex parameters (swirl intensity and

vortex cores). Other interesting investigations are [32, 33], where the heat transfer of an impinging

swirling jet at high Reynolds (Re = 35000) is studied both numerically and experimentally, and

their results were used for CFD validation in the predecessor of the present work, [9]. As pointed

out in [26], although the computational study of the heat transfer by impinging jets has been an

extensive area of research for decades, this type of problem is still a challenging investigation that

enhances the importance of the present study.

For the purpose of simulation, a probabilistic approach to estimate uncertainty provides a more

complete overview on the reliability of the numerical computation than a deterministic single-point

simulation. This is because the stochastic variance of some parameters is taken into account in the

simulation and may have effect on the performance. To our knowledge, there is no previous liter-

ature on the effect of simulating impinging jet flows for heat transfer under uncertain conditions,

apart from the early stage work presented by the authors in a conference [34]. This is a motivation

to provide a framework for these complex problems, since the quantification of uncertainties should

be an important common practice in computational engineering.

Regarding the sources of uncertainty, these are classified as aleatoric or epistemic. Aleatoric

uncertainty is considered as implicit to the natural stochasticity in a physical system or quantity. It

is also referred to in the literature as irreducible uncertainty, inherent uncertainty, variability and

stochastic uncertainty [35]. On the other hand, epistemic uncertainty is product of the imprecision

in the modelling as result of a lack of knowledge. This type of uncertainty could, in theory, be

reduced if additional information can be added [36]. Epistemic uncertainty associated to the fidelity

of the simulation can have a significant effect, and different sources of uncertainty may be actually

related. For instance, in [37] uncertainty is quantified by using both Reynolds Averaged Navier

Stokes (RANS) and LES in a heat transfer problem demonstrating that there is an important link

between aleatoric and epistemic uncertainties.
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Figure 1: Sketch of Simulation 1 & 2. Note that the x and r axis are the same in practice and

have their respective origins in the axisymmetry axis, but for the sake of avoiding confusion in the

following plots, r is used in Simulation 1 and x for Simulation 2.

Although the application of Uncertainty Quantification (UQ) to fluid dynamics and heat trans-

fer is increasing in popularity exponentially [38, 39, 40, 41, 42], there are just few documented

applications on applying uncertainty quantification to computational simulations of swirling flows

[43, 44]. In [43] uncertainty in thermoacoustic instabilities in a swirled stabilized combustor were

studied. The motivation of analysing such stochasticity is that the impact of uncertainty could be

noticed in the stability modes. This exhibits the importance of a stochastic modelling approach

to measure the probability of a mode to be unstable with respect to the input random variables.

This is of high relevance in combustor science, since extreme combustion instabilities can highly

damage the system, as mentioned in their work. In [44], a swirling flow with swirl intensity, S,

ranging from 0 to 0.6 confined in a pipe is simulated by means of both RANS and LES. The pipe

is rotating with a Reynolds number of Re = 30000, and it undergoes a sudden expansion. The

numerical quantification of uncertainty was found to be very close to the reported experimental

one, by means of both RANS with the k − ε model and LES with the Smagorinsky model. How-

ever, due to the lower fidelity of RANS simulations, these provided the least accurate and most

sensitive results in the simulations. This work is very close to our problem under study (containing

RANS simulations, rotating pipe, swirling flow suddenly expanded, similar Re, similar S values).

Their outcomes encouraged us to undertake the quantification of experimental uncertainties in

our simulations. The impact of uncertainty in CFD simulations of jets has been also studied by

the authors in [5], where the simulation of a compressible jet flow under uncertain conditions is

analysed, demonstrating that there is a relationship between the input random variables and the

spatial distribution of pressure and velocity arising due to the propagation of uncertainty in the

simulation. Other papers that also offered a reference and motivation are [45], where synthetic
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jets by means of polynomial chaos are studied, [46] where underexpanded jets in a crossflow for

turbulent mixing are investigated, and [47], where uncertainty estimation is developed in RANS

simulations of high-speed aircraft nozzle jets. In several papers [46, 47, 48], a methodology to deal

with the well-known epistemic uncertainty in turbulence models is outlined and tested, by means

of eigenvalue and eigenvector perturbations. In their work, the perturbation of the eigenvalues of

the Reynolds stress anisotropy tensor is modelled by the position in a barycentric triangle map,

whose corners stand for the limiting states of turbulence anisotropy. The eigenvector perturbation

is made to change the Reynolds stress tensor alignment to find the extremal alignments with the

mean strain. Throughout these papers it is highlighted the importance of providing uncertainty

bounds in RANS simulations, and the results suggest that their uncertainty estimation method

can account most of the model inadequacy. During the literature survey no applications of UQ to

heat transfer by impinging jet flows were found.

The structure of this paper is as follows. In Sections 2 and 3, the methodology and a descrip-

tion of the problem are given as an overview. In Section 4, the uncertainty quantification process

is described, in order to understand Stochastic Collocation Method and the use of sparse grids.

The considered sources of uncertainty are also described in this section. In Section 5, the coupling

process between Simulation 1 and Simulation 2 to simulate the entire domain is explained. In

Section 6, the steps followed to model the outflow profiles are discussed and the definitive sug-

gested regression models are given. After this modelling process, in Section 7 a comparison is

made between the propagated uncertainties with and without implementing the models for the

pipe outflow profiles. In this section, different probabilistic distributions for the inputs on the

surrogate models are also tested, for the UQ purposes of this work. Finally, in Section 8, the

relevant conclusions of this work are given. In Appendix A, polynomial models for the coefficients

of the non-linear regression models are shown, and in Appendix B a piece of code is provided for

the implementation of the models by a User Defined Function (UDF) in FLUENT.

2 Methodology

The aim of the Uncertainty Quantification is to provide confidence measures on how the output

of a model, say ŷ, is varied due to the variability of its inputs, say ξ̂i [49] (see Fig. 2). In the

present work, our main investigation is restricted to aleatoric uncertainties arising due to experi-

mental errors or variability. For this reason, most experimentalists provide error bars as reliability

measures. However, output CFD data usually lacks reliable confidence indicators, which can be

obtained by including experimental uncertainty (aleatoric uncertainty) in input CFD data as we do

in this investigation. Any epistemic uncertainty from the use and calibration of turbulence models

is not considered. However, this study contains modelling work, which consists of the search of

mathematical models for the inlet profiles for Simulation 2. Since the considered aleatoric uncer-

tainties are actually the same with and without the models, and the UQ method is also the same,

the impact of the epistemic uncertainty associated to the non-linear regression models is being

quantified. Due to the fact that the concept of epistemic uncertainty may evoke to several sources

to the reader, this specific inaccuracy is referred to as modelling uncertainty in this manuscript.
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Once the input uncertainties are modelled, it is necessary to find an appropriate UQ method.

These methods can be either intrusive or non-intrusive. A non-intrusive approach is chosen since

this does not require additional code implementation in the solver and can deal with any model

as a black-box (FLUENT software in our case). On that basis, Monte-Carlo simulations [50] are

a reliable possibility. This non-intrusive method is based on a random sampling on the input

uncertainties in order to obtain enough outputs to build the statistical output data. As the

convergence of the method is slow, being of order O(1/
√
Ns), with Ns the number of samples,

in order to reduce Ns and increase the efficiency of the method, other sampling methods are

available in literature such as the Latin Hypercube [51], the quasi-random Halton [52] or the Sobol

sequences [53], amongst others. These sampling techniques optimise the sampling by taking also

into account previous positions of the samples in the stochastic space, and the error is essentially

of order O(1/Ns). It is important to point out that this efficiency is mostly noticed for moderate

dimensions of the stochastic space, as for high dimensional problems they behave similarly to

Monte-Carlo (which is dimension independent).

Figure 2: Propagation of uncertainties in a mathematical model.

Sampling based methods are, therefore, a good choice for UQ. However, these usually require

a large number of model evaluations. This is the main disadvantage when performing UQ on

CFD, as each model evaluation requires a large computational time, being often unaffordable. To

overcome this drawback, the Stochastic Collocation Method (SCM) [54] is implemented. This

calculates the statistical moments of the output by dedicated quadrature techniques on tensor

grids. SCM has better performance than sampling methods especially for low dimensions in the

stochastic parameter space. When the dimension is high, the cost leads to the so-called Curse

of Dimensionality, as the number of collocation points to evaluate increases exponentially, and

it is preferable to consider other methods. An efficient way to mitigate the needs of using many

collocation points is to use sparse grids [55], for which the accuracy (that is to say the number of

collocation points) can be consistently increased until convergence is achieved.

SCM based approaches have been used in several applications in the literature. This non-

intrusive method has been successfully applied to problems such as elliptic partial differential

equations with random input data [56], supersonic aircraft jets [4] or cardiovascular research [57].
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In some UQ methods, including SCM, the exact response can be approximated by creating a

surrogate model. Then, sampling techniques can be applied on the surrogate to recover more sta-

tistical information, such as probabilistic distributions of the outputs. For this reason, two types

of input probabilistic distributions were tested in the present work to generate the random inputs

on the surrogates: a uniform and a normal distribution. As experimental uncertainty data is not

available to build the empirical probabilistic functions, to try two different distributions provide

some information about the impact of non-linearity and high-order effects in the propagation of

uncertainty through the CFD simulation. The random variables are sampled to evaluate the SCM

response surface and get converged probabilistic distributions of the outputs.

Since the swirling flow generation in Simulation 1 is decoupled from Simulation 2, it is interest-

ing for reliability reasons to find a way to characterise the outflow velocity and turbulence profiles

from Simulation 1 under uncertain conditions, to impose that data onto Simulation 2. This is the

objective in Section 7.3, where non-linear regression models are sought. A numerical computation

of the uncertainty of the outlet profiles from Simulation 1 is done by means of SCM in the present

paper, at different values of the normalised radial coordinate r/R, where r is the radial coordinate

and R is the radius of the pipe. However, to quantify the uncertainty in the output of Simula-

tion 2, several profiles should be systematically generated from Simulation 1 and then input as

boundary condition to Simulation 2. The alternative to avoid Simulation 1 and provide functions

to generate the profiles as input in Simulation 2 is investigated in this work. These functions can

be coded into FLUENT by means of a User Defined Function (UDF) to any CFD problem, in

contrast to coding a SCM surrogate for every r/R location, which is a very cumbersome option,

as well as potential source of human errors.

Impinging jets at Reynolds number of Re = 23000 have been one of the most studied in the

literature for years on end, e.g. in [14, 58, 59, 31, 26, 60, 18, 27, 9, 13, 25]. Hence, it is useful for

future research to have stochastic/non-stochastic profiles ready to input as boundary condition to

CFD simulations. The use of algebraic functions for modelling jet flow profiles is an established

practice [61, 62, 63, 64], for instance to perform stability analysis of the jet plume [65, 66]; or in

topics closer to the present paper as the jet in [16], whose swirling jet empirical functions were

successfully used as inlet profiles to simulations in [7, 11, 12].

3 A brief description of the set-up simulated by CFD

In this paper, few details on the CFD configuration are given, since a detailed numerical investi-

gation and validation of this mechanical system was developed in [9]. In this study, the impinging

swirling jet is created by using a rotating pipe with a fully-developed flow at its exit. The inlet is

a uniform flow with Reynolds number Re = 4ρQ
πDµ

= 23000, where ρ is the fluid density, Q is the

volume-flow rate, D is the pipe diameter and µ is the dynamic viscosity; whilst the outflow is a

fully developed turbulent flow. This flow spreads from the exit of the pipe (nozzle) and impinges

on the heated flat plate below, located orthogonally at a dimensionless distance H/D = 5, where

H is the distance between the nozzle and the plate. The Prandtl number is Pr = ν
α

= 0.71, where
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ν is the kinematic viscosity of the fluid and α is the thermal diffusivity. The Swirl number is

set to S = πD3Ω
8Q

= 1, with Ω the angular velocity of the pipe. Since dimensionless numbers are

used to describe the working conditions, the angular velocity can be chosen at any value as long

as the S = 1, Re = 23000 and Pr = 0.71 conditions are kept. For instance, air can be chosen

as working fluid (air has Pr = 0.71), so ρ and µ are those values corresponding to air. Then, a

pipe of arbitrary diameter D needs a fixed volume-flow rate Q to achieve Re = 23000. Once Q is

known, Ω can be solved from the Swirl number definition by taking into account that S = 1.

Prior to the simulation of the heat transfer, the velocity and turbulent profiles of the impinging

swirling jet are to be produced in a separate simulation of a rotating pipe. This is Simulation 1,

shown in Fig. 1. In Fig. 3(a), the pipe problem is depicted, for which a 2D RANS simulation

was developed in FLUENT. The flow under study is axisymmetric, steady, incompressible and

becomes fully-developed. To obtain the fully-developed pipe flow from a uniform inflow requires

a pipe length greater than a specific characteristic one. In order to reduce the cost of this com-

putation, a piece of pipe has been simulated with periodic boundary conditions, with a mass-flow

rate corresponding to Re = 23000 and S = 1. The turbulence model used in this simulation was

the Reynolds Stress Model (RSM). The finite-volume discretisation used the axisymmetric mesh

of the pipe shown in Fig. 3(b). The mesh size is [nr ×nz] = 68× 450 cells, having a dimensionless

wall distance of y+ < 1 along the wall of the pipe. The mesh convergence of Simulation 1 was

reported in [9], where three grids of [nr×nz] = 30×200, 45×300 and 68×450 (mesh in the current

work) were analysed. The grid discretisation error for the 68× 450 mesh was reported as a 0.2%,

by means of the Grid Convergence Index (GCI) method. Regarding the quality of the simulation,

one can find in the literature that other authors generated similarly the rotating pipe profiles that

we obtained in our deterministic CFD simulation. These authors also used the RSM model for the

rotating pipe flow simulation [67, 68, 69], as this model exhibits the best performance. In addition,

the experimental results reported by [17, 70] were used to validate the accuracy of the CFD simu-

lation in [9], being very interesting to observe a nearly perfect match for the axial velocity profile.

Simulation 1 was found to be very accurate even at very high Reynolds number (Re = 50000),

validated with experimental data from [70], as shown in the validation plots in Fig. 4.

Once Simulation 1 is completed, its output is used as inlet boundary condition for Simulation

2. In Fig. 5, the detail of its discretisation and boundary conditions of the 2D axysimmetric

simulation are depicted. The computational mesh is in this case [nx × nh] = 140 × 250 cells,

ensuring an y+ < 1 all along the plate. The mesh convergence analysis of this simulation was

reported in [9], where the same mesh was used, being the reported discretisation error (calculated

with the GCI method) of Simulation 2 equals to a 0.4%. The dimensionless nozzle-to-plate distance

is H/D = 5 and a piece of the swirling pipe of length D has been included in the domain in order

to enable the pressure field to properly develop inside the pipe prior the expansion Simulation 1.

For the sake of clarity, the x axis is the same as the r one, but different notation is used to avoid

confusion between the parameters at the exit of the pipe and those on the flat plate. In Fig. 5 since

the flow is not confined, the upper boundary is not a solid wall but a pressure boundary where the

usual boundary condition of known constant pressure is imposed, whereas null Neumann boundary
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Figure 3: (a) Sketch of the swirling flow generator by a rotating pipe. The axial periodic flow

is initialised with a uniform profile and without swirl, and develops over time as turbulent fully-

developed pipe flow with swirl. (b) Axisymmetric 2D mesh of the rotating pipe. In the simulation,

the flow goes from left (inlet boundary condition) to right (outlet boundary condition) to impose

the periodic condition. The bottom side is the axis (axis boundary condition) and the top side is

the pipe wall (wall boundary condition with rotation imposed).

conditions are used for the remaining fluid magnitudes, also the turbulent ones, which means that

these are extrapolated from interior cells to satisfy that their first derivative is zero. Regarding the

turbulence model, the SST k − ω has been used. Simulation 2 has been tested and validated in

[9] against experimental and numerical data at Re = 23000, but also at a higher Reynolds number

of Re = 35000 with several swirl intensities, using experimental data from [33], as shown in Fig.

6, both for the most extreme case of H/D = 2. To sum up, both the turbulent models RSM for

the rotating pipe and the SST k − ω for the impinging problem have been exhaustively analysed

and validated in [9]. Additionally, the mesh convergence and turbulent models of the impinging

jet simulation were validated against experimental data in [9, 7, 11, 12]. The authors suggest to

see these three last publications for further information on the computational features in these

simulations, including the grid convergence analysis, comparisons against experimental results and

other tested turbulence models.

Once the deterministic CFD simulations are ready, these can be run a number of times with

different values of the input parameters to perform the uncertainty analysis. In this work, the

chosen method is the Stochastic Collocation, which is formally described next.

4 Uncertainty Quantification

4.1 Stochastic Collocation Method

The method implemented here for UQ is the Non-Intrusive Stochastic Collocation Method (SCM).

It was originally developed by Mathelin and Hussaini [54] at NASA as alternative to other UQ

methods, which demanded higher costs. SCM represents a very efficient option for lower dimension

problems in comparison with sampling techniques such as e.g. Monte-Carlo. For higher dimension
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Figure 4: Validation of axial and azimuthal velocity profiles of the fully-developed swirling flow

with Re = 50000 and S = 1. The experimental data Yamada & Imao (Exp) are taken from [70]

with 2% error bars. RSM linear enh stands for RSM with Linear Pressure-Strain and Enhanced

Wall Treatment, k − ε real. enh. stands for the k − ε realizable turbulence model with Enhanced

Wall Treatment, k−ω sst and k−ω std are the k−ω turbulence models with option Shear Stress

Transport and Standard, respectively. All simulations were developed in [9].

problems, sampling techniques tend to be more suitable.

Consider the differential operator on an output of interest of a stationary problem, y(x, ξ(η))

as

L(x, ξ(η); y(x, ξ(η))) = Q(x, ξ(η)), (1)

with L and Q differential operators on D × Ξ, where x ∈ D ⊂ Rd, d ∈ {1, 2, 3}. η denotes events

in the complete probabilistic space (Ω̂, F̂ , P̂ ), with F̂ ⊂ 2Ω̂ the σ-algebra of subsets of Ω̂ and P̂

a probability measure. Ξ ⊂ RNξ , is the stochastic space on which the random variables ξ(η) are

defined and Nξ stands for the number of random variables (two in our case under study). The

objective is to find the i-th statistical moments, µ(x, ξ)yi , of the output of the model by

µ(x, ξ)yi =

∫
Ξ

y(x, ξ)ifξ(ξ)dξ, (2)

with fξ(ξ) standing for the density function fξ : ξ 7→ R+. In many applications this is not

sufficient and incomplete information of the variable of interest is given. The reason is that

two very different probabilistic distributions can have, for instance, the same mean and standard
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Figure 5: Sketch of the impinging jet flow and the boundary conditions chosen in FLUENT. A

portion of the pipe of length D is simulated for a less abrupt adaptation of the inlet from Simulation

1 in Simulation 2.

deviation. Therefore, this can be misleading when further information is required, such as finding

out whether the solution is multimodal. Consequently, the probabilistic distribution of y(x, ξ) is

often sought by sampling surrogates as in this manuscript.

When implementing SCM, special attention must be paid to the probabilistic density function

of the random variables ξ ∈ Ξ, as we have to perform a mathematical transformation from the

physical random variable space to an artificial stochastic space, known as α-domain or α-space:

α = S(ξ). (3)

This transformation is a difference with respect to other UQ methods, as the stochastic space α

is defined in the domain of Lagrange interpolating polynomials in [−1, 1].1 It is hence useful that,

for each collocation point, the CFD problem is solved deterministically and the solution can be

reconstructed by

ŷ(x, α) '
Nq∑
j=1

yj(x) lj(S−1(α)) =

Nq∑
j=1

yj(x) lj(α), (4)

where yj(x) are the deterministic solutions from y(x, ξj) now transformed into y(x, αj), Nq the

number of collocation points and lj the Lagrange interpolation polynomials defined in the new

1It is interesting to point out that in several papers [54, 71], α is referred to as an artificial stochastic space, but

the space is in fact Γ, as α ∈ Γ. In this work, Γ will be referred to as the α-space in order to be consistent with the

existing notation in the literature.
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Figure 6: (a) Validation of the turbulence model for H/D = 2 and Re = 23000. The different

configurations of the SST k − ω turbulence model correspond to: with transitional flow, with

Low Reynolds correction, without Low Reynolds correction, Transition SST with the Production

Kato-Launder option and Transition SST with the Production Limiter option. Lee et al. [14]

experimental data have their reported 3.3% uncertainty; and Baughn & Shimizu [18] includes

their 2.4% of uncertainty. (b) Validation of CFD simulation by pressure coefficient at Re = 35000

and S = 0, 0.16 and 0.27. The experimental data (EXP) are taken from [33], including their 5%

uncertainty in the error bars. All simulations were developed in [9].

stochastic space. Note that S−1(α) denotes the inverse mathematical transformation to α ∈ Γ.

The integral of Eq. (2) now can be approximated as

µ(x,α)ŷi =

Nq∑
j=1

yj(x)i
∫

Γ

lj(α) fξ(α) J(α) dα, (5)

where J(α) the Jacobian of the differential transformation. Finally, it can be numerically computed

by quadrature as

µ(x,α)ŷi '
Nq∑
j=1

yj(x)i
Nq∑
k=1

lj(αk) fξ(αk) J(αk) zk, (6)

with zk and αk standing for the quadrature weights and points respectively. Both the quadrature

and collocation points are the same in this work. For the Lagrange interpolating polynomials, must

be taken into account that li(αj) = δij for i, j = [1, 2, ..., Nq]. Therefore, with these assumptions,

the integral from Eq. (6) above can be finally rewritten for a uniform probabilistic input defined

in [−1, 1] as

µ(x,α)ŷi '
1

2

Nq∑
j=1

yj(x)izj. (7)

The choice of collocation points is an important matter. If tensor grids are chosen, the com-

putational cost would be very high, especially when Nξ is not low. A very efficient alternative
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is the use of sparse grids. In the present paper, the collocation points of the sparse grids have

been determined according to the Clenshaw-Curtis (C-C) quadrature nested rule [72] and Smolyak

construction [73]. With sparse grids, several levels of accuracy were tried in the problem, in order

to test the convergence. In Fig. 7 the evolution of the sparse grid collocation points is shown up

to the fourth level for Nξ = 2.
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Figure 7: Clenshaw-Curtis Smolyak’s nested Sparse Grids for different levels of accuracy.

4.2 Sources of Uncertainty

The sources of uncertainty in the present work are based on a mixture of outcomes of literature

review and information extracted from experimentalists through critical analysis and discussions

on the mechanical characteristics of a similar rotating pipe experimental facility at University of

Málaga. The idea of this research is to conduct the propagation of uncertainties in the computa-

tional problem, with the view to improve the reliability of deterministic simulations. To define our

sources of uncertainty, we referred to a set of relevant literature. [44] is a very related paper and

motivation for this work, where a 2.5% of variance in uniform distribution in the swirl number and

in the inlet velocity was applied, that means a 2.5% of variance in Q. In [74] a ±3% of variation

as uniform inlet velocity was applied. Also, in [75] velocity was measure within a ±1% with the

described measurement techniques. As a consequence of the mentioned reviews, a conservative

value of uncertainty for Q has been chosen as a 5% of variance. In addition, in the Fluid Me-

chanics laboratory at University of Málaga, the mechanical tolerance of the pipe angular velocity
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measurement was found to be 0.5%. We have set this uncertainty for the angular velocity of the

simulated pipe. Despite the nozzle-to-plate distance H/D could be another parameter subject to

uncertainty, H/D usually exhibits very low uncertainty in experiments. Thus, it has been observed

in [9] that around H/D = 5, a variation of a 1% in H/D would be less than 1 unit of variation

in both the Nusselt number at the stagnation point and Nusselt surface averaged value. This,

together with the emerging difficulties in generating a new mesh for each H/D sample, lead us to

exclude H/D as random input.

Let Q̄ and Ω̄ denote the deterministic mean values of the two uncertain parameters Q and

Ω. Within this framework, and being conservative with respect to the literature results afore-

mentioned, the source of uncertainties have been determined as the uniform distributions Q ∼
Unif(0.95Q̄, 1.05Q̄ ) and Ω ∼ Unif(0.995Ω̄, 1.005Ω̄). The main motivation in modelling the in-

puts by this type of distribution is conservativeness. The same probability is assigned to every

value in the ranges of the variables, so it is ensured that the worst performance scenario is analysed.

This approach has been used in the literature when insufficient information about experimental

uncertainty is available, as e.g. in [44, 76]. In [76] a study of the impact of both Gaussian and

uniform distributions was developed in CFD simulations of the flow over an airfoil. In our work,

in order to observe the response to other distributions, truncated Gaussian distributions were also

input in Section 7.2, besides the uniform distributions.

The advantage of dealing with Q as stochastic input is that several uncertainties such as

those related to measurement tools tolerance, pipe diameter, loss of pressure or density variations

can be accounted in only one parameter. This also supports the idea of being conservative. If

one wants to study each parameter separately, the dimension of the stochastic space would be

unnecessarily increased and correlation-based sampling techniques must be used. That is, both the

cost and difficulty would increase. In this work, there is no correlation amongst the chosen random

variables, and this is important because the SCM applied in this work assumes independence

amongst variables.

5 Coupling of the Computational Simulations

Since the turbulence closure used to model the pipe flow and the one used for the impinging

heat transfer problem are both different, a single CFD simulation of the whole system cannot be

developed. Moreover, the computational cost of the problem would be unnecessarily increased if

the computed duct is long enough to ensure a fully-developed flow, resulting to an unnecessarily

expensive domain to simulate.

To overcome this problem, two-step CFD simulations are coupled in the following way: Firstly,

the CFD simulation of the swirling flow confined in a rotating pipe solved with the RSM turbulent

model are completed (Simulation 1 ). Secondly, both the velocity and some turbulent dimensionless

profiles at the exit of the pipe are input as inlet boundary conditions for the heat transfer simulation

(Simulation 2 ). In particular, the turbulent parameters are defined by

k =
2

3
(UI)2, (8)
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ω = ρ
k

µ

(
µt
µ

)−1

= ρ
k

µ
β−1, (9)

where k is the turbulent kinetic energy, I is the turbulence intensity, U is the time-average velocity

of the flow, ρ is the density of the fluid, ω is the specific turbulent dissipation rate and µt/µ ≡ β

is defined as the turbulent viscosity ratio, represented by β throughout this paper. The turbulent

kinetic energy is available from the RSM simulations, and the turbulent dissipation rate can be

evaluated by Eq. (9) prior to running Simulation 2.

In order to couple the two simulations for the modelling, two options have been tested in this

work for Simulation 2, as shown in Fig. 8. The first one is to impose the simulated profiles

at the exit of the rotating pipe in Simulation 1 as inlet conditions onto Simulation 2, for each

required deterministic simulation for uncertainty quantification. The second option is to develop

non-linear regression models for the fully-developed swirling turbulent flow profiles emerging from

the pipe, avoiding to compute Simulation 1. To avoid the simulation of the rotating pipe would

be then possible because the regression profiles introduced in Section 6 can be directly input as

parametric functions onto Simulation 2 by means of a User-Defined Function (UDF). The definitive

parametric regression profiles are only dependent on the parameters Q and Ω, which are CFD input

parameters. These new profiles are imposed in the inlet boundary condition of Simulation 2 as

profiles for velocity (axial and azimuthal velocity profiles) and turbulence (turbulent viscosity ratio

and turbulent kinetic energy profiles). The differences between these approaches will be analysed

in this work to test whether these provide equivalent results in the heat transfer by impinging jets.

If swirling jet flow profiles with/without uncertainty estimates are required for other applications

(for instance, for a plate with variations on its surface [7]), the use of these empirical models would

avoid to simulate the rotating pipe flow.

Regression 
models

Figure 8: Two alternatives for conducting Simulation 2 : using the CFD profiles at the exit of the

nozzle or to impose mathematical models.
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6 Modelling of Dimensionless Profiles From the Rotating

Pipe Flow of Simulation 1

To quantify the uncertainty of the output of Simulation 2, several profiles should be systematically

generated from Simulation 1 and then be input as boundary condition into Simulation 2. In

Section 7.1, SCM is applied r/R point by r/R point to the output profiles from Simulation 1.

Then, in Section 7.2, the uncertainty in the Nusselt number is quantified. Despite the fact that

SCM provides a Q−Ω dependent response surface for the profiles, the dependence of these profiles

on the spatial coordinate r/R makes inefficient to code hundreds of surrogates in the UDF, one

for each r/R point.

Another option to compute uncertainty could be to include r/R as an additional parameter of

the stochastic space. This would be even more cumbersome, because the number of collocation

points (CFD simulations) would be dramatically increased to deal with this new parameter of high

non-linearity in the profiles. The suggested approach by means of non-linear regression models

overcomes both problems, providing easy functions to code in any CFD software. The differences

between the direct SCM approach and the use of the models is investigated in this work.

This type of surrogate model has been studied in [16] and successfully implemented in [7, 11, 12].

The use of such modelling is in fact useful in industrial and academic applications, and one can

find this, e.g. in stability analysis of jets flows as in [65, 66], where researchers used empirical

functions of jet flows from [61, 62, 63, 64] to test their approaches.

In the investigation of the non-linear regression models, a Reynolds number of Re = 23000 is

considered. Despite the modelling may seem focused on a particular application, this Reynolds

number is one of the most studied test cases in the literature with/without swirl, e.g. in [14, 58, 59,

31, 26, 60, 18, 27, 9, 13, 25]. Thus, the proposed models for the swirling flow under uncertainty can

be directly input as boundary condition to other investigations with similar set-up such as systems

with arrays of impinging jets [77, 78], swirling jets impinging on a plate with bumps/dimples [7],

or swirling turbulent flows in an axisymmetric sudden expansion [79, 44], amongst others. The

computational efforts to perform UQ/CFD on these new applications would be only restricted to

a single simulation. It is also relevant to mention that an analytical solution based on physics

ground was not considered and this is the main limitation of this approach, as the flow is turbulent

and this makes a pure mathematical analysis not feasible.

In the present study, four dimensionless models are given: axial velocity (vz), azimuthal ve-

locity (vt), turbulent kinetic energy (k) and turbulent viscosity ratio (β) profiles. These models

approximate the response of the CFD RANS profiles for the different Q and Ω, although initially

introduced in this section for the deterministic base case (Re = 23000 and S = 1). In the litera-

ture one can find often that inlet boundary conditions for turbulence quantities are modelled as

a percentage (turbulence intensity), as in [44, 74, 80]. Therefore, to provide specific profiles for

both the turbulent kinetic energy and viscosity ratio instead of broad percentages, intends a more

accurate insight.

These models are composed of several functions chosen according to the features of the profiles

and trained against data from Simulation 1. Interpolation/splines fit was considered, however,
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a new model should be built for each CFD simulation profile, not being a good alternative to

model a link between the profiles and Q and Ω. For this reason, a non-linear parametric regression

approach for the profiles plus a polynomial regression for the coefficients is preferred, as this

approach makes possible to build profiles dependent on both the physical parameters Q and Ω

under uncertainty. These coefficients are found by a MATLAB custom code which calls Curve

Fitting Toolbox functions that use a Non-Linear Square method with Trust-Region algorithm [81].

The introduced piecewise-like process to fit these models can be reproduced by other researchers

in CFD/experimental profile modelling purposes.

Several parametric models were tested for the axial and azimuthal radial velocities as shown

in Fig. 9 2. For the axial velocity radial profile, it can be observed that the profile shape is non-

linear with different piecewise curvatures. It is specially relevant for the proper modelling of the

boundary layer, since this plays an important role in the further development of the flow. This led

to select a parametric function with a hyperbolic tangent for vz/U
(1), vz/U

(2), vz/U
(best). This is

consistent with the past work of [82, 16] that reports boundary layer of flows under rotation having

a hyperbolic tangent shape. In jet flows this feature has also been observed since a hyperbolic

tangent profile takes place when two flows are in contact with different but uniform axial velocities

[83]. As the flow is turbulent and with swirl, the axial velocity radial profile differs from the

classic parabolic profile of a Hagen-Poiseuille flow. Nevertheless, this modelling was also tried

with a cubic polynomial in vz/U
(3), which requires only three constants to estimate, but had a

poor performance. Amongst vz/U
(1) and vz/U

(2) there are some clear differences. A cubic power

factor in vz/U
(1) is introduced to deal with the non linearity, which is not introduced in vz/U

(2),

undergoing a bad fit. The combination of the power function featured in vz/U
(1) with the flexibility

of the third order polynomial vz/U
(3) led to the selected model in Eq. (10), the vz/U

(best), which

performs the best fit among the tested ones.

The procedure to model the azimuthal velocity profile was simpler. It was already shown in

[17] that this radial profile is nearly parabolic. However, an exponential constant was also tried.

In Fig. 9, it is shown that the power function fitted the best, and the predicted values of the

constants are at = 0.9709 and bt = 2.0052, thus vt/U ∼ (r/R)2.

The modelling of k/U2 was the most complicated parametric regression because of the less

smooth changes in slope. Four different regression models were tested, as shown in Fig. 10. The

best function for the region near to the wall was the hyperbolic tangent. k/U2 (2) did not have a

bad fit in that region without that term, however, its fit was not good for the rest of the profile.

Thus, efforts were focused on improving the exponential term of k/U2 (1), consistently to its shape.

As shown in Fig. 10, k/U2 (3) is far from the training points.

The coefficients were found to be difficult to regress using the MATLAB curve fitting algorithm.

The reason may be that the algorithm struggles to fit the k/U2 data with four coefficients, being

required to reduce the dimension in the search space. An accurate initial guess may solve this issue,

but even with the k/U2 (best) coefficients as initial guess, the fitting search was not possible. In

k/U2 (3), it was observed that the a coefficient tended to a value close to 0.05327. Despite the fact

that the fitting is very accurate, to fix the 0.05327 and 1.2 coefficients in the equation is reducing

2In this manuscript the superscript (i) denotes the i-th fitted profile, and (best) stands for the best fitting function

amongst the tested ones.
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Figure 9: Axial and azimuthal velocity profiles from CFD and the non-linear regression models for

Re = 23000 and S = 1.

the flexibility of the model to adapt to changes in Q and Ω.

The turbulent viscosity ratio, β, was also modelled with four regression models and their

performance can be seen in Fig. 11. An exponential decay was tested, β(1), which reproduces well

the shape of the profile. The power function was suitable to model the curvatures. Since the shape

in the intermediate region is similar to the shape observed in the axial velocity profile, the same

power functions were tried with a hyperbolic tangent in β(2). But unfortunately the fit close to

the wall was fully linear, with no curvature approaching β = 0. This led to testing the product of

exponential functions in β(3). Some difficulties in fitting the r/R < 0.8 region were noticed and

the addition of a coefficient d in the power of the left hand exponential solved that successfully.

In order to reduce the dimension in the search space, the d coefficient in β(3) was fixed to 13, as it

mainly controls the curvature approaching β = 0.

After fitting the non-linear regression models to the CFD data profiles, the proposed ones are

those labelled as best in Figs. 9-11:

vz
U

=

(
az

( r
R

)3

+ bz e
−(cz ( r

R
))2

)
1

2

(
− tanh

(
dz

( r
R

)
− 1
))

, (10)
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Figure 10: Dimensionless turbulent kinetic energy profile from CFD and the non-linear regression

models for Re = 23000 and S = 1.

vt
U

= at

( r
R

)bt
, (11)

k

U2
=

0.05327 tanh
(
bk ( r

R
)− 1

)
ak + eck ( r

R
)1.2 , (12)

β = aβ e
−bβ ( r

R
)
dβ
(
e−cβ (( r

R
)13−1) − 1

)
. (13)

The coefficients of the mathematical models, addressed for sake of notation as γi, where γ =

a, b, c, d and i = z, t, k, β, are shown in Table 1. In Figs. 12-14, the goodness of fit is plotted by

the 95% confidence prediction bound and goodness measures. The higher the Reynolds number

at constant S value, the less noticed the curvature of vt/U as seen in [9], so the experimental vt/U

profile in Fig. 12 is expected to be closer to the simulated and modelled profiles. The model with

the widest confidence interval is k/U2. The model for vt/U has a notable prediction bound as

well, which likely results from the relatively simple formulation (only two unknown coefficients).

A more complex parametric function would be required to capture the negative curvature shown

by the CFD data over the range 0.95 < r/R < 1.
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Figure 11: Viscosity ratio profile and the non-linear regression models for Re = 23000 and S = 1.

It is important to ensure that the regression coefficients are enclosed within a short confi-

dence bound, which denotes a good fit. The confidence bounds for the regression coefficients are

calculated as

cb = γi ± t0.95,vSEγi , (14)

where t0.95,v refers to the two-tailed value of the inverse of t-Student distribution for v degrees of

freedom and a 95% level of confidence, and SEγi refers to the estimated standard error of γi. The

results can be seen in Table 1 for the deterministic base case (Re = 23000 and S = 1). These values,

as well as the goodness of fit metrics in Table 2, were monitored for all the fittings of the collocation

points when studying the propagation of uncertainty, showing almost identical performance. In

Table 2 it can also be found the goodness indicators of the fit for the deterministic base case. As

the coefficient of determination (defined in this manuscript as R̂2, to avoid confusion with R, the

radius of the pipe) is not the best measure for the goodness of a fit in non-linear responses or with

overfitting, the Sum of Squares due to Error (SSE), Adjusted-R̂2 and Root Mean Squared Error

(RMSE) are also given. When increasing the number of terms in the models, R̂2 increases, despite

of the model can be overfitted. It is hence important to consider the Adjusted-R̂2, whose value in

case of overfitting starts to decrease.

In the coefficient estimation process described above, the regression models do not depend on
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Table 1: Fitting coefficients of the dimensionless profiles for the deterministic base case (Re =

23000 and S = 1).

Coefficient Value, γi 95% confidence bound, cb
az -1.0474 (-1.1231, -0.9718)

bz 3.0230 (3.0169, 3.0291)

cz -0.6538 (-0.6765, -0.6310)

dz 34.1414 (32.6899, 35.5929)

at 0.9709 (0.9563, 0.9854)

bt 2.0052 (1.9048, 2.1056)

ak -0.1708 (-0.1815, -0.1602)

bk -0.0880 (-0.0890, -0.0870)

ck -1.6985 (-1.7538, -1.6432)

aβ 1.9314 (1.7141, 2.1486)

bβ 0.7933 (0.7712, 0.8154)

cβ 4.0472 (3.9363, 4.1581)

dβ 1.8621 (1.8048, 1.9194)
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Figure 12: Axial and azimuthal velocity profiles from CFD and non-linear regression model fits

with prediction bounds for Re = 23000 and S = 1. Imao et al. are the experimental data from

[17] with reported error bars of a 2%.

Q and Ω. Therefore, Eqs. (10)-(13) are written as

(vz/U, vt/U, k/U2, β)t = F(γi). (15)

To turn Eqs. (10)-(13) into Q and Ω dependent functions, polynomial regression models can
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Figure 13: Dimensionless kinetic energy profile from CFD simulations and non-linear regression

model fits with prediction bounds for Re = 23000 and S = 1.
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Figure 14: Turbulent viscosity ratio profile from CFD simulations and non-linear regression model

fits with prediction bounds for Re = 23000 and S = 1.

be built as

(vz/U, vt/U, k/U2, β)t = F(γi) = G(Q,Ω). (16)

As a consequence of this approach, the suggested models for the profiles are linked to the input

random variables. These polynomial fits are shown in Appendix A, with the corresponding equa-

tions, goodness of fit and plots. In addition to this, in Appendix B the User Defined Function

(UDF) for its implementation in FLUENT is given.

The domain of Eq. (16) for the uncertainty analysis is constrained to Q ∈ [0.95Q̄, 1.05Q̄] and

Ω ∈ [0.995Ω̄, 1.005Ω̄], which is set by the domain of the uniform input uncertainties introduced in
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Table 2: Goodness of fit for the non-linear regression model profiles for the deterministic base case

(Re = 23000 and S = 1).

Profile SSE R̂2 Adjusted−R̂2 RMSE m v

vz/U 0.0044 0.9997 0.9997 0.0082 4 65

vt/U 0.0536 0.9947 0.9946 0.0283 2 67

k/U2 3.9766e-06 0.9865 0.9861 2.4546e-04 3 66

β 16.6794 0.9999 0.9999 0.5066 4 65

Section 4.2. The performance of the proposed models for larger values of S (and therefore, Ω), can

be seen in Fig. 15(a)-(c). In these plots, it is shown a comparison between the CFD and modelled

profiles with a very good match. In these figures it is observed that S can be varied at least from

0 to 1, with Q fixed at its deterministic base value, and these fitting results provide a promising

fit [2]. Amongst the studied profiles, the turbulent kinetic energy develops a near-wall peak that

is not rendered by the current fit. Further numerical models can be investigated to suitably model

this feature, which is out of scope in this work. The coefficients of these fittings are provided in

Figs. 16 and 17.

7 Uncertainty Quantification Results of the Two-Step CFD

Simulation.

7.1 Simulation 1. Uncertainty Quantification of the Fully-developed

Turbulent Swirling Flow Generated by the Rotation of a Pipe

Regarding the uncertainty quantification process, in Section 4 the Stochastic Collocation method

has been introduced and the results of analysing Simulation 1 are shown in Table 3 & 4. It can

be observed that even using few points for the C-C Sparse Grid, the statistical moments are not

changing remarkably. This is because despite of the non-linear behaviour behind the equations

that govern the problem, the outputs of interest have a linear response with respect to the ranges

of the random inputs in the simulation of the pipe. A budget (Design of Experiment, DoE) of few

collocation points was enough, as increasing the number of collocation points there is no change, as

expected (see Table 3 & 4). However, the budget of 65 collocation points was necessary to monitor

the convergence of the stochastic variance of the Nusselt number in Simulation 2, and therefore,

65 profiles for each velocity and turbulent parameter are required from Simulation 1 when the

mathematical models coded in the UDF are not used as substitute.

The outputs of interest from Simulation 1 are the dimensionless velocity and turbulent profiles

at the exit of the pipe, as the pipe becomes the nozzle for the impinging problem and these

profiles will be used as inlet boundary conditions. The uncertainty analysis of these profiles can

be seen in Fig. 18 and 19, where the mean and standard deviation envelopes of those profiles are

shown. Experimental data was only available for the velocity profiles, used to validate the CFD
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Figure 15: Dimensionless profiles from CFD and their suggested models for (a) axial and azimuthal

velocity, (b) turbulent kinetic energy and (c) turbulent viscosity ratio, for S varied from 0 up to

1.5.

simulations in [9] and also included in Fig. 18. The plots show that for the values of Q and Ω
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Figure 16: Coefficients for the dimensionless velocity profiles in Figure 15.
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Figure 17: Coefficients for the dimensionless turbulent profiles in Figure 15.

Level Points λ r/R=1 I(%) r/R=0.5 (vz/U) r/R=0.5 (vt/U) r/R=0.5

1 5 0.01373401 8.45783368 1.28350388 0.26677295

2 13 0.01373399 8.45774137 1.28350593 0.26676999

3 29 0.01373404 8.45773429 1.28350567 0.26676957

4 65 0.01373401 8.45773957 1.28350436 0.26676961

Table 3: Stochastic means of the friction factor (λ), turbulent intensity (I) , dimensionless axial

(vz/U) and azimutal (vt/U) velocity at r/R = 0.5, at the exit of the rotating pipe.
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Level Points λ r/R=1 I(%) r/R=0.5 (vz/U) r/R=0.5 (vt/U) r/R=0.5

1 5 0.22152010e-06 0.72630289e-03 0.75705236e-04 0.22938667e-03

2 13 0.22059469e-06 0.72520829e-03 0.75256672e-04 0.22639809e-03

3 29 0.22066632e-06 0.72553382e-03 0.75245877e-04 0.22636540e-03

4 65 0.22067550e-06 0.72554659e-03 0.75261365e-04 0.22636600e-03

Table 4: Stochastic variances of the friction factor (λ), turbulent intensity (I) , dimensionless axial

(vz/U) and azimutal (vt/U) velocity at r/R = 0.5, at the exit of the rotating pipe.

ranging within the considered uncertainty source intervals, the variance in the profiles is relatively

small, as evidenced by the modest width between the dashed lines. Fig. 18 shows that the CFD

predictions of the axial velocity perfectly match with experimental data, but also the reported

experimental uncertainty. Regarding the azimuthal velocity, we recall that the deterministic CFD

simulation validated in [9] had a good match with the experimental data, but systematically over-

predicted vt/U . Despite this, the achieved simulation is very accurate, especially near the wall,

where the azimuthal velocity is higher and has greater impact on the results. Whilst the reported

experimental uncertainty in [17] is a 2%, the propagated uncertainty in the simulation is around

a 3− 4%, which is still very low and realistic, taking into account that the CFD simulation over-

predicts the azimuthal component. So, overall, the standard deviation was not large, which means

that the simulation of the pipe under uncertainty is not sensitive to the modelled random inputs,

as experimental data from the literature also reported.

As these output uncertainties will be propagated to the next simulation, these may affect the

further behaviour of the impinging jet. For this reason, the uncertainty analysis in Simulation 2

is developed in the next section.

7.2 Simulation 2. Uncertainty Quantification on the Impinging Swirling

Jet for Heat Transfer: Boundary Conditions from first-step CFD

simulations.

In Simulation 2, a heat transfer process from a heated flat plate to an impinging swirling jet takes

place. For uncertainty quantification purposes, the same Stochastic Collocation method with the

Clenshaw-Curtis nested rule with sparse grid quadrature points is used as in Simulation 1. In

order to be consistent with the deterministic simulations from the rotating pipe for different values

of Q and Ω, the same collocation points simulated in that previous step are systematically used.

In this framework, uncertainties are propagated from the input of Simulation 1 to the output

of Simulation 2. The convective heat transfer is quantified by the Nusselt number Nu both at

the stagnation point and its surface averaged value on the plate, denoted respectively by Nu0 and

Nuavg, with the latter defined by

Nuavg =
1

πR2
int

∫ Rint

0

Nu(s) 2πs ds, (17)

where Rint is the radius of the impinged flat plate and its value is set to 7.5D. The stochastic mean
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Figure 18: Radial distribution of the dimensionless axial and azimuthal velocity profiles at the

exit of the pipe for the level 4 of the C-C Sparse Grid at Re = 23000 and S = 1. Imao et al. are

the experimental data from [17], where 2% is reported as experimental uncertainty represented by

error bars.
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Figure 19: Radial distribution of the dimensionless turbulent kinetic energy and turbulent viscosity

ratio profiles at the exit of the pipe for the level 4 of the C-C Sparse Grid at Re = 23000 and

S = 1.

and variance, for the Nu are presented in Tables 5 & 6. The radial distribution of the Nusselt

number along the plate is shown in Fig. 20, where it is plotted with its standard deviation as

uncertainty measure. It can be observed that the most sensitive part to the input uncertainties

is the stagnation area, whereas for x/D values far from the stagnation, input uncertainties are

irrelevant. In the same manner as in the UQ study in Simulation 1, it can be noted that even by

using fewer points for the C-C Sparse Grid, statistical convergence in Nu0 and Nuavg is generally

achieved. Only the stochastic variance needed 29 collocation points to achieve convergence. In

addition, since the results are integrated quantities, it is frequent to exhibit some numerical vari-

ability due to precision error that do not necessarily mean any oscillation in the convergence rate
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of the UQ technique.

To compare with existing experimental data, most experimentalists studying jets at Reynolds

number at/close to our Re = 23000 test case have reported experimental uncertainty in the Nusselt

distribution as a maximum percentage of uncertainty. In our results, the maximum uncertainty

is 2.2%, which occurs in the stagnation area. In [14], for Re = 23000 and S = 0.77 the reported

uncertainty of the Nusselt distribution is below a 3.33% (this said maximum value corresponds

to their largest spacing of H/D = 10). In [84], they estimate a maximum of a 3% uncertainty

for the Nusselt distribution in their swirling impinging jet flows, but they do not specify at which

H/D, whose value is ranged between 2 and 10. Finally, in [18] an uncertainty estimation of a

2.4% is reported for their non-swirling impinging jets at Re = 23750, which is almost identical to

the uncertainty in our simulation. We can thence conclude that our computational uncertainty

estimation is realistic, according to existing experimental uncertainty on swirling impinging jets

from the literature.

Level Points Nu0 Nuavg
1 5 187.8183333 51.45473951

2 13 187.7914166 51.45413825

3 29 187.8031984 51.45457487

4 65 187.7993255 51.45497083

Table 5: Stochastic means of the Nusselt number at the stagnation point and of the surface average

over the flat plate.

Level Points Nu0 Nuavg
1 5 15.24348189 1.50945541

2 13 15.56881637 1.50878302

3 29 15.47284719 1.50909036

4 65 15.47621431 1.50822473

Table 6: Stochastic variance of the Nusselt number at the stagnation point and of the surface

average over the flat plate.

In order to give a wider insight of the propagation of uncertainties, it is recommended to plot

the Probabilistic Distribution Functions (PDF) of the outputs. To obtain such information, Latin

Hypercube Sampling (LHS) (see Fig. 21), has been applied on the construction from Eq. (4).

With this technique, since the response surface has a negligible cost of evaluation, it has been

sampled with 5 million samples to get converged PDFs.

The PDFs for the Nusselt average and at the stagnation point are plotted in Fig. 22. These

outputs accurately approximate a Nu0 ∼ Unif(181, 194.5) and Nuavg ∼ Unif(49.32, 53.6) dis-

tributions. The reasons of having uniform distributions also for the output variables seems to

be related to the already discussed predominant linear input-output relationship. The input un-

certain parameters have been also modelled as truncated Gaussian distributions to observe their
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Figure 20: Radial distribution of the stochastic mean of the Nusselt number over the plate ± its

stochastic standard deviation for level 4 of the C-C sparse grid.

contribution to the probabilistic functions of the output. For such constructions, the definition of

the input from a standard Gaussian distribution is defined as

Q = Q̄+ σQθ, (18)

Ω = Ω̄ + σΩθ, (19)

with

θ ∼ N(0, 1), (20)

σQ = CoVQ Q̄, (21)

σΩ = CoVΩ Ω̄, (22)

where N refers to the Gaussian distribution, CoV the coefficient of variation (2.5% for Q and

0.25% for Ω), θ the normal distribution of zero value mean and unit variance, and σ the standard

deviation.

In this paper, the truncated Gaussian distribution is denoted as N (µo, σ
2
o ; ∆l,∆u), where µo

and σ2
o are the mean and variance of the original Gaussian distribution respectively, and ∆l and

∆u the lower and upper limits that define the truncation interval.

The coefficient of variation of the original Gaussian distributions have been chosen as half of

the corresponding ranges in the considered uniform probabilistic distributions. Since the objective

is just to observe the propagation of the uncertainty by different distributions, the coefficients of

variation can be set at a lower value if necessary. Also, the shorter the variance, the less the effect

of truncation. In our truncated Gaussian functions, the distributions lie within an interval, which

is the one defined by the uniform distributions. In other words, these are restricted to the intervals

Q ∈ (0.95Q̄, 1.05Q̄) and Ω ∈ (0.995Ω̄, 1.005Ω̄). An example of their sampling is shown in Fig. 23

for Ns = 2000 samples.

29



Figure 21: PDFs for Nu0 (left) and Nuavg (right) when sampling the uniform probabilistic distri-

butions.
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Figure 22: PDFs for Nu0 (left) and Nuavg (right).

The distributions of the output variables are plotted in Fig. 24 for two different number

of samples by means of the LHS method. Again, Ns = 5000000 samples have been used to

evaluate the response surface and get a converged probabilistic distribution. The output vari-

ables follow the truncated Gaussian distributions Nu0 ∼ N (187.9, 3.4; 181, 194.5) and Nuavg ∼
N (51.4, 1.06; 49.32, 53.6). The sampling of these estimated distributions is plotted in Fig. 24 in

red, with an accurate match. The type of distribution of the inputs has been again preserved, as

expected. In addition, one can see in Table 7 and 8 a comparison of the mean and variance of
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Figure 23: Sampling with Ns = 2000 samples.

the Nusselt number predicted with the uniform and with the Gaussian inputs. It can be noticed

in Table 8 that the variances from the Gaussian input are almost half of the corresponding values

using a uniform one. This is because the coefficient of variance was halved for the original Gaussian

ones and the predominant linearity preserves this proportion.
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Figure 24: PDFs forNu0 (left) andNuavg (right) when sampling the truncated normal probabilistic

distributions.
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Input uncertainties Nu0 Nuavg
Uniform 187.80547444 51.45682557

Gaussian 187.82027016 51.45935403

Table 7: Stochastic means of the Nusselt number at the stagnation point and its average value

along the flat plate for the two different input uncertainties by sampling the response surface from

the SCM.

Input uncertainties Nu0 Nuavg
Uniform 15.44029670 1.50541134

Gaussian 9.01274706 0.87362700

Table 8: Stochastic variance of the Nusselt number at the stagnation point and its average value

along the flat plate for the two different input uncertainties by sampling the response surface from

the SCM.

7.3 Simulation 2. Uncertainty Quantification of the Impinging Swirling

Jet for Heat Transfer: Use of Non-linear Regression Models for

Simulation 1 input.

In Section 7.2, the computed CFD profiles have been used as new inlet conditions for Simulation

2. However, the use of the modelled regression profiles is another option to run Simulation 2.

The outputs by this approach are compared to those by running Simulation 1. Since the colloca-

tion points are the same, the difference between these outputs is pointing out the impact of the

modelling errors.

To quantify the propagation of uncertainties, the Stochastic Collocation method has been

applied for levels 1 and 2 of the Clenshaw-Curtis sparse grid, in order to compare the use of the

inlet regression models with the direct CFD inlet condition case (coupling between Simulation 1

and 2 ). The numerical results are shown in Tables 9 and 10. Note that negative values in the

relative error show an increase of the Nusselt number when using the regression models. It can

be seen that, despite the models had a very accurate goodness of fit with CFD data profiles in

the modelling stage, the small fitting errors are propagated through the simulation leading to a

relative error of almost a 8.7% in the Nusselt number at the stagnation point with respect to the

direct CFD inlet condition case. Such percentage of error may seem large in principle, however, by

plotting the radial distribution of Nu for both the modelled and direct CFD approach (Fig. 25),

it can be noticed that the results are not remarkably different. Therefore, the suggested regression

models for the inlet of Simulation 2 are introducing very low uncertainty.

8 Conclusions

A framework for computational simulations of a two-step heat transfer mechanical device has been

carried out to model the propagation of uncertainty, in order to measure the impact of experimen-
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Level Points Nu0 Nuavg Nu0,model Nuavg,model εr,Nu0(%) εr,Nuavg(%)

1 5 187.81833 51.454739 188.886500 51.245621 -0.5687 0.4064

2 13 187.79141 51.454138 188.859827 51.244494 -0.5689 0.4074

Table 9: Stochastic means of the Nusselt number case at the stagnation point and its average value

along the flat plate. Relative error (in %) between the CFD and model input results.

Level Points Nu0 Nuavg Nu0,model Nuavg,model εr,Nu0(%) εr,Nuavg(%)

1 5 15.243481 1.509455 16.467074 1.521298 -8.026989 -0.784601

2 13 15.568816 1.508783 16.930460 1.521590 -8.745970 -0.848853

Table 10: Stochastic variances of the Nusselt number case at the stagnation point and its average

value along the flat plate. Relative error (in %) between the CFD and model input results.
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Figure 25: Comparison between radial distribution of the Nusselt number when using the CFD

profiles and regression models for the inlet boundary conditions.

tal (aleatoric) uncertainties on the computational performance. The outflow from Simulation 1

(generation of a fully-developed swirling turbulent flow due to the rotation of a round pipe mech-

anism) has been mathematically modelled, in order to provide numerical stochastic radial profiles

for turbulent and velocity variables. The Stochastic Collocation Method with Clenshaw-Curtis

nested rule has been applied considering the angular velocity Ω and the volume flow rate Q as

input uncertainties.

In the UQ study on Simulation 1, results have shown that the considered experimental un-
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certainties in Q and Ω slightly vary the computation of the friction factor, λ, and the turbulent

intensity, I. In the dimensionless velocity profiles, these uncertainties have only a modest im-

pact. The most sensitive part of the dimensionless axial velocity profile is near r/R = 0, and near

r/R = 1 for the azimuthal one. All the axial velocity experimental data lies within the standard

deviation envelopes. The azimuthal velocity profiles matched the trend of the experimental data

well, but the magnitude is systematically slightly over-predicted by the base case CFD simulation.

In the computational uncertainty analysis of the dimensionless turbulent kinetic energy, k/U2, the

most sensitive region is the part located at the beginning of the decay, due to the strong effect of

the wall. Finally, for the laminar to turbulent viscosity ratio, β, the sensitivity trend is very simi-

lar to the dimensionless axial velocity one, exhibiting around the nozzle axis the largest variances.

This is the most sensitive computational profile to the input uncertainties, but not remarkable.

The UQ study on the heat transfer process in Simulation 2 was developed in two different ways:

by imposing the dimensionless outflow profiles from Simulation 1, and by imposing the non-linear

regression models by User Defined Functions as inlet boundary conditions to Simulation 2. With

both approaches, it was observed that the random inputs have a modest impact on the predicted

Nusselt number along the plate. It was also noticed that Q was the most influential parameter,

since Ω had a very low contribution to uncertainty. As a result, in an experimental facility with

similar sources of uncertainty, engineers should put more effort in reducing the stochastic variance

in the volume-flow rate by, e.g., reducing pressure losses.

Within the tested ranges ofQ and Ω, it has been observed a linear relationship of most quantities

of interest analysed, with respect to the uncertain inputs. As a consequence, in most uncertainty

results presented in this paper can be noticed that, even by using few collocation points with the

Clenshaw-Curtis sparse grid, the statistical moments do not change dramatically. Only the con-

vergence in the stochastic variance of the Nusselt number required a greater number of collocation

points (i.e. CFD simulations of Simulation 1 and 2 ) with important computational efforts.

Four non-linear parametric regression models have been suggested for the fully-developed state

of the swirling flow confined in the rotating pipe and used as jet nozzle (dimensionless profiles

vz/U, vt/U, k/U
2 and β). The objective was to provide computational models for one of the most

studied impinging jet regimes in the literature with/without swirl: the Re = 23000. These models

fitted well with the computational data from Simulation 1. It was shown that the sensitivity of

the distribution of the Nusselt number to the modelling errors is negligible, when the regression

models are imposed onto Simulation 2. Thus, these models are recommended to replace the use of

deterministic profiles or stochastic computation of Simulation 1, and can be an interesting option

to save computational costs in related engineering applications such as systems with arrays of

impinging jets, inlet piping in combustion or chemical mixing, swirling jets impinging on a plate

with variations on the surface, or swirling turbulent flows with axisymmetric sudden expansions.
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A Appendix: Models for the fitting coefficients.

As aforementioned in Section 7.3, the γi parameters are modelled by polynomial regressions. These

are introduced in Eqs (23) - (35). The goodness of the fits can be seen in Figs. 26-29.

From these results, the equations to model vz
U
, vt
U
, k
U2 and β are only dependent on Q and Ω, and

ready to use for any application. Note the equations are normalised via Qn = Q−Q̄
σ′
Q

and Ωn = Ω−Ω̄
σ′

Ω
,

where overbar denotes mean values and σ′ stands for the standard deviation.

In Table 11 can also be found the goodness indicators of the fit. As the coefficient of deter-

mination (R̂2) is not the best measure for the goodness of a fit, specially in non-linear cases, the

Sum of Squares due to Error (SSE), Adjusted-R̂2 and Root Mean Squared Error (RMSE) are also

given. Over-fitting has been avoided for all the fits by using the minimum order polynomial that

reasonably satisfied the goodness.

az = −1.048 + 0.001532Ωn − 0.01444Qn − (4.147e− 05)Ω2
n − 0.0009388ΩnQn (23)

+0.01183Q2
n − (5.997e− 05)Ω3

n + (3.648e− 05)Ω2
nQn − 0.0005627ΩnQ

2
n

+0.005394Q3
n,

bz = 3.023 + 0.004779Ωn − 0.05368Qn + (5.742e− 06)Ω2
n − 0.0005031ΩnQn (24)

+0.003906Q2
n,

cz = −0.6536− 0.002857Ωn + 0.03038Qn + (1.346e− 05)Ω2
n + 0.0003585ΩnQn (25)

−0.004234Q2
n,

dz = 34.16 +−0.05319Ωn + 1.362Qn + 0.0008092Ω2
n + 0.02154ΩnQn − 0.3225Q2

n (26)

+0.002316Ω3
n + 0.0001007Ω2

nQn + 0.01276ΩnQ
2
n − 0.1631Q3

n,

at = 0.9708 + 0.003415Ωn − 0.03677Qn − 0.0001444ΩnQn + 0.001342Q2
n, (27)

bt = 2.005− 0.006083Ωn + 0.06979Qn + 0.0004104ΩnQn − 0.004283Q2
n, (28)

ak = −0.1709− 0.0001532Ωn − 0.000986Qn + (7.86e− 05)ΩnQn + 0.0007671Q2
n (29)

−0.0001781ΩnQ
2
n − (6.527e− 05)Q3

n − (3.653e− 05)ΩnQ
3
n − 0.0003428Q4

n

+(8.297e− 05)ΩnQ
4
n + 0.0001397Q5

n,

bk = −1.698 + 0.001364Ωn − 0.002698Qn + (3.023e− 05)Ω2
n − 0.0002644ΩnQn (30)

−0.002849Q2
n + (3.223e− 05)Ω2

nQn + 0.0001315ΩnQ
2
n − 0.001438Q3

n

−(6.665e− 05)Ω2
nQ

2
n + (7.724e− 05)ΩnQ

3
n + 0.001602Q4

n,
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ck = −0.08801 + (5.075e− 05)Ωn + 0.0005716Qn + (3.703e− 06)Ω2
n (31)

−(2.574e− 05)ΩnQn + 0.0001155Q2
n,

aβ = 1.932− 0.01402Ωn + 0.4053Qn − 0.0006922ΩnQn + 0.02551Q2
n, (32)

bβ = 0.7933 + 0.001219Ωn + 0.003093Qn − (7.063e− 06)ΩnQn + 0.001437Q2
n (33)

+(1.968e− 06)ΩnQ
2
n − 0.0002586Q3

n,

cβ = 1.862− 0.000533Ωn − 0.04129Qn − 0.0002055ΩnQn + 0.005018Q2
n, (34)

dβ = 4.047 + 0.008784Ωn − 0.1622Qn − 0.0009475ΩnQn + 0.00729Q2
n. (35)

Figure 26: Models for the vz
U

coefficients.
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Figure 27: Models for the vt
U

coefficients.

Figure 28: Models for the k
U2 coefficients.
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Figure 29: Models for the β coefficients.

Coefficient SSE R̂2 Adjusted R̂2 RMSE

az 8.206e-05 0.9903 0.9887 0.001221

bz 4.892e-07 1 1 9.105e-05

cz 3.278e-05 0.9995 0.9994 0.0007453

dz 0.07246 0.9991 0.999 0.0363

at 6.173e-08 1 1 3.208e-05

bt 4.583e-07 1 1 8.74e-05

ak 3.357e-07 0.9904 0.9887 7.884e-05

bk 1.371e-05 0.9925 0.991 0.0005086

ck 1.238e-08 0.9994 0.9994 1.448e-05

aβ 4.878e-06 1 1 0.0002851

bβ 2.248e-08 1 1 1.969e-05

cβ 1.954e-06 1 1 0.0001805

dβ 7.532e-06 1 1 0.0003543

Table 11: Goodness of the fitting for the coefficients of the models.

45



B Appendix: User-Defined Functions to implement the

models.

The models have been implemented in FLUENT by means of a User-Defined Function (UDF)

coded in C. In this appendix, a simple example about how to implement the UDF is given. Please

note that the mathematical expressions of the coefficients, introduced in Appendix A should be

implemented in the UDF as well. For sake of simplicity, these models are not implemented and

the coefficients are supposed to be calculated and used as defined variables in the UDF.

/****** UDF FOR THE PROFILES ******/

#include "udf.h"

#define az <input_value>

#define bz <input_value>

#define cz <input_value> /* These are the constants for v_z/U */

#define dz <input_value>

#define at <input_value>

#define bt <input_value> /* These are the constants for v_t/U */

#define ak <input_value>

#define bk <input_value> /* These are the constants for k/U^2 */

#define ck <input_value>

#define avr <input_value>

#define bvr <input_value>

#define cvr <input_value> /* These are the constants for \beta */

#define dvr <input_value>

#define rho <input_value> /* Density */

#define mu <input_value> /* Viscosity */

#define D <input_value> /* Diameter */

#define Re <input_value> /* Reynolds number */

DEFINE_PROFILE(vz,t,i) /* Function for the v_z/U profile */

{

real x[ND_ND]; /* this will hold the position vector */

real r;

face_t f;

real U=Re*mu/(D*rho); /* Calculates the velocity from the Reynolds */

46



begin_f_loop(f,t)

{

F_CENTROID(x,f,t);

r = x[1]/(D/2);

F_PROFILE(f,t,i) = U*(az*pow(r,3)+bz*exp(-pow(cz*r,2)))*(-tanh(dz*(r-1.0)))/2.0;

}

end_f_loop(f,t)

}

DEFINE_PROFILE(vt,t,i) /* Function for the v_t/U profile */

{

real x[ND_ND];

real r;

face_t f;

real U=Re*mu/(D*rho);

begin_f_loop(f,t)

{

F_CENTROID(x,f,t);

r = x[1]/(D/2);

F_PROFILE(f,t,i) = U*at*pow(r,bt);

}

end_f_loop(f,t)

}

DEFINE_PROFILE(k,t,i) /* Function for the k/U^2 profile */

{

real x[ND_ND];

real r;

face_t f;

real U=Re*mu/(D*rho);

begin_f_loop(f,t)

{

F_CENTROID(x,f,t);

r = x[1]/(D/2);

F_PROFILE(f,t,i) = U*U*(0.05327/(ak+exp(pow(r,1.2)*ck)))*(tanh(bk*(r-1)));

}

end_f_loop(f,t)

}

DEFINE_PROFILE(omega,t,i) /* Function for the \omega profile from k and
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* \beta profiles, as the turbulence model to be used is k-\omega */

{

real x[ND_ND]; /* this will hold the position vector */

real r,k,tvr;

face_t f;

real U=Re*mu/(D*rho);

begin_f_loop(f,t)

{

F_CENTROID(x,f,t);

r = x[1]/(D/2);

k=U*U*(0.05327/(ak+exp(pow(r,1.2)*ck)))*(tanh(bk*(r-1)));

tvr=avr*exp(-bvr*pow(r,dvr))*(exp(-cvr*(pow(r,13)-1))-1);

F_PROFILE(f,t,i) = rho*k/(tvr*mu);

/* This is the expression to obtain \omega */

}

end_f_loop(f,t)

}
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