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Abstract  17 

The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its 18 

protein production for human nutrition has rarely been reported. This study unveils the 19 

effects of growth phase and light regime on protein and essential amino acid (EAA) levels 20 

in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark 21 

cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 22 

1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. 23 

Light/dark conditions inferred a higher light-usage efficiency, yielding 5-97% higher 24 

protein and 18-28% higher EAA mass on light energy throughout the growth, 25 

accompanied by 138% faster growth during the light phase of the light/dark cycle, 26 

compared to continuous light. The findings revealed D. salina to be especially suitable for 27 

high-quality protein production, particularly grown under light/dark conditions, with 28 

nitrogen limitation as possible trigger, and harvested in the stationary phase. 29 
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1 Introduction 35 

Novel protein sources are needed to satisfy the increasing demand of proteins for human 36 

consumption in the near future. In this context, microalgae, apart from bacteria, yeast and 37 

fungi, as a type of single-cell protein, are considered as potentially important contributors, 38 

whether produced on renewable or virgin materials, or on recovered resources 39 

(Verstraete et al., 2016). Since the early 1950s, microalgae have been explored as an 40 

alternative protein source, and their large-scale production has been successfully 41 

established since the 1980s (Vigani et al., 2015). From an economic point of view, open 42 

cultivation systems utilizing sunlight have been extensively used and preferred for 43 

commercial production (Vigani et al., 2015). By using natural light, microalgal cells are 44 

subject to a daily light/dark cycle, which will affect their growth rate and protein synthesis 45 

(de Winter et al., 2013). It is known that dark phase during cultivation can negatively 46 

impact biomass production due to respiratory loss (Edmundson and Huesemann, 2015). It 47 

has been reported that up to 35% of the biomass accumulated during the light phase can 48 

be lost through respiration during the dark phase (Torzillo et al., 1991). However, the rate 49 

and extent of biomass loss during the dark phase is dependent on the microalgal species 50 

and the specific cultivation conditions (Edmundson and Huesemann, 2015). Besides the 51 

biomass loss, light/dark regime also imposes changes in the cell’s macromolecular 52 

biochemical composition, impacting for instance protein and carbohydrate content 53 

(Sukenik and Carmeli, 1990). Generally, energy storage compounds like carbohydrates 54 

build up during the light phase and decrease during the dark phase, for the usage of night 55 
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metabolism such as protein synthesis (Cuhel et al., 1984; de Winter et al., 2017, 2013; Han 56 

et al., 2013; Hidasi and Belay, 2018; Ogbonna and Tanaka, 1996; Torzillo et al., 1991). Even 57 

further, smaller molecules composing the macromolecules such as amino acids and fatty 58 

acids will be influenced as well. Consequently, it is important to determine the optimum 59 

harvesting time of biomass considering all variations introduced by different light regimes. 60 

Nevertheless, most studies mainly focused on variations of biochemical compositions 61 

between the light and dark phase, leaving a lack of knowledge on differences between a 62 

continuous light versus a light/dark regime. 63 

Dunaliella salina is one of the most widely used species for commercial microalgae 64 

production, mainly due to its particularly high carotenogenesis, yielding β-carotene 65 

(Borowitzka, 2013). However, with reported protein content of over 57% (on dry weight 66 

basis), the potential of D. salina as protein source has hardly been investigated (Becker, 67 

2007). Over the past 50 years, only a few studies mentioned and researched the protein 68 

synthesis within the Dunaliella genus, and information is far from complete (Sui and 69 

Vlaeminck, 2018). Apart from protein quantity, protein quality of microalgae based on 70 

essential amino acid (EAA) content substantially determines its true nutritional quality for 71 

food applications (Becker, 2007). As reported by several studies, the amino acids profile of 72 

Dunaliella spp. is comparable with commercial Spirulina and Chlorella products, matching 73 

perfectly the FAO/WHO reference for human requirements (Becker, 2007; Fabregas and 74 

Herrero, 1985; Gibbs and Duffus, 1976; Kent et al., 2015; WHO/FAO/UNU Expert 75 

Consultation, 2007). Nonetheless, these EAA profiles were obtained from a single growth 76 
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phase (mostly from the end of the exponential growth phase to stationary phase) and 77 

cultivation conditions without internal comparisons, which makes the potential variations 78 

of its EAA profile triggered by harvesting time or growth phases unclear. Specifically for D. 79 

salina, no insights have been gained regarding the variations of biomass growth together 80 

with protein quantity and quality under different light regimes. 81 

In this study D. salina was cultivated in batch mode, both under 24-h continuous light and 82 

12-h/12-h light/dark cycle to study the effect of different growth phases (e.g. exponential, 83 

linear and stationary phase) on protein content and quality (as EAA content) variations. 84 

Additionally, for the light/dark regime, diurnal and nocturnal changes of D. salina in terms 85 

of biomass growth and protein synthesis were also studied. Based on the acquired 86 

knowledge, the ultimate goal is to maximize protein production from D. salina with 87 

optimized EAA profile at larger scale, by implementing the optimum light regime and 88 

harvesting time. 89 

2 Materials and methods 90 

2.1 Dunaliella strain and cultivation conditions 91 

D. salina SAG 184.80 was cultivated in 500mL Erlenmeyer flasks filled with 400mL 92 

sterilized Modified Johnson’s medium (Borowitzka, 1988) at 2M salinity provided by table 93 

salt (Everyday, Colruyt Group, Belgium). The initial biomass concentration was set to an 94 

optical density at 680 nm (OD680) of ± 0.03. The culture flasks were kept on a magnetic 95 

stirring plate (Thermo Scientific™ Cimarec™ i Poly 15) at 200 rpm in a temperature 96 
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controlled room at 20°C. Aeration was given by 0.2 µm filtered (Minisart® NML Syringe 97 

Filter) air at a rate of 4.17 vvm from air pumps (TetraTech®, APS100). Light was provided 98 

by fluorescent tubes (Sylvania F58W/GRO) at the intensity of 55 µmol/m2/s. To provide 99 

even light distribution, all flasks were randomized daily. The pH level was corrected daily 100 

to 7.5 by 1M NaOH or 1M HCl. Two light regimes were applied, namely 24-h continuous 101 

light regime and 12-h/12-h light/dark regime. Each light regime was conducted in 102 

triplicate. Samples were collected every 12 hours during the experiment, data from day 4, 103 

7, 10, 13, 16, 19, 24 and 28 were presented in the study. At the linear phase of the 104 

microalgal growth, a 24-hour time series analysis was performed for both light regimes. 105 

During this 24-hour time series analysis, samples were collected every 4 hours for 106 

analyses. All the samples were analyzed freshly for OD680 and saved at -20°C for cell 107 

number, protein and carbohydrate analyses at the end of the experiment. Cell integrity of 108 

stored samples was checked by microscope analysis and cell size distribution, which 109 

presented a nice bell-shaped normal distribution similar with well-maintained culture. A 110 

neglected/damaged culture will show no pattern of size distribution (Ongena et al., 2010). 111 

2.2 Biomass analyses and calculations 112 

Based on OD680, the ash-free dry weight (AFDW) of the biomass was estimated following a 113 

calibration curve (R2=0.99) obtained in advance: 114 

𝐴𝐹𝐷𝑊 (𝑔 𝐿⁄ ) = 0.5069 × 𝑂𝐷680 − 0.0131 115 
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Presented AFDW data in Fig 1A were from day 0, 4, 7, 10, 13, 16, 19, 24 and 28 with 116 

interval of 12 hours. 117 

The maximum specific growth rate was calculated fitting the experimental data to the 118 

Gompertz model (Gompertz, 1825) modified by Zwietering et al. (1990) in GraphPad 119 

Prisma 5 software: 120 

𝐿𝑛 (
𝑁𝑡

𝑁0

) = 𝐿𝑛 (
𝑁𝑚

𝑁0

) × 𝑒𝑥𝑝[−exp
µ𝑚𝑎𝑥 × 𝑒

𝐿𝑛 (
𝑁𝑚

𝑁0
)

× (𝜆 − 𝑡) + 1] 121 

where Nt and N0 are the biomass concentrations at time t and time 0. Nm is the maximum 122 

biomass concentration (at stationary phase). µmax is the maximum specific growth rate, λ 123 

is the lag time and e (2.718) is the exponential constant. Cell number of the sample was 124 

measured with Beckman Multisizer 3 Coulter Counter. Samples for protein and 125 

carbohydrate measurement were analyzed directly without cell disruption due to the lack 126 

of cell wall of D. salina. Samples for protein were from day 0, 4, 7, 10, 13, 16, 19, 24 and 127 

28 and for carbohydrate were from day 7, 19 and 28. The protein and carbohydrate 128 

content were determined using Markwell method, a modified Lowry method (Markwell et 129 

al., 1978) and Dubois method (Dubois et al., 1956), respectively. Samples at day 7, day 10, 130 

day 16 and day 28 from both light regimes were analyzed for EAA. Prior to essential amino 131 

acid analysis, pelletized biomass (10min at 5000g) was hydrolyzed with 6M HCl for 24 132 

hours at 110 °C, in vacuum-sealed hydrolysis tubes (Wilmad LabGlass). To remove all 133 

oxygen, a vacuum was applied alternating with nitrogen gas flushing. After hydrolysis, the 134 

samples were evaporated under vacuum conditions and re-dissolved in a 0.75 mM HCl 135 
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solution to end up with a pH between 3 and 5. Hydrolyzed samples were stored at -20°C 136 

upon further use. Amino acids were derivatized with propyl chloroformate as described by 137 

the EZ:faast amino acid analysis procedure (consisting of a solid phase extraction step, 138 

derivatization and liquid/liquid extraction) (Phenomenex, 2003) and separated using gas 139 

chromatography (Agilent HP 6890) and detected using mass spectrometry (Agilent HP 140 

5973). Bovine Serum Albumin (BSA) was used as control from which the amino acid 141 

recovery after hydrolysis was calculated. Norvaline was applied as internal standard 142 

during EZ:faast sample preparation. Essential amino acid index (EAAI) was calculated 143 

following equation: 144 

𝐸𝐴𝐴𝐼 = √
𝑎𝑎1

𝐴𝐴1
×

𝑎𝑎2

𝐴𝐴2
× … … ×

𝑎𝑎𝑛

𝐴𝐴𝑛

𝑛

 145 

using FAO/WHO established adult indispensable amino acid requirements as reference 146 

(Oser, 1959; WHO/FAO/UNU Expert Consultation, 2007). Here, aan and AAn stand for the 147 

content of one specific EAA relative to the total protein content (mg EAA/g protein) in the 148 

sample and corresponding FAO/WHO reference, respectively. As indicated by EAAI, a 149 

value of 1 or above refers to a matching quality, between 0.95 and 1 high quality, between 150 

0.86 and 0.95 good quality, between 0.75 and 0.86 useful, and below 0.75 inadequate 151 

(Zhang et al., 2009). As a reference, some conventional food products such as egg and 152 

soybean have an EAAI of above 1 (Becker, 2007). 153 

The biomass protein and carbohydrate contents were expressed as fractions of the 154 

biomass (%AFDW). The suspension protein and carbohydrate contents (g/L) were the 155 
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results of multiplying the biomass concentration (g AFDW/L) with corresponding biomass 156 

protein and carbohydrate contents (%AFDW). The biomass and protein productivity 157 

(mg/L/d) were calculated as the biomass concentration (g AFDW/L) or the suspension 158 

protein content (g/L) divided by the time period of cultivation (days) at each sampling 159 

point. The biomass and protein yield on light energy (mg/mol photon) were calculated as 160 

follows: 161 

𝑌 =
𝐶𝑡 × 𝑉

∑ 𝐿𝑡 × 𝐴 × 3600 × 24𝑡=𝑡
𝑡=0

 (𝑚𝑔 𝑚𝑜𝑙⁄ 𝑝ℎ𝑜𝑡𝑜𝑛) 162 

where Ct is the biomass or protein concentration on day t (mg/L); V is the volume of the 163 

reactor flask (L); Lt is the light input on day t (µmol/m2/s) and A is the illuminated surface 164 

area (m2). 165 

The cell number and cell volume changes were calculated as follows: 166 

%𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑋𝑡+12 − 𝑋𝑡

𝑋𝑡
× 100% 167 

in the case of 24-h light regime, Xt+12 is the cell number/volume measured 12 hours after 168 

the cell number/volume measured at time t (Xt). In the case of 12-h/12-h light/dark 169 

regime, Xt+12 is the cell number/volume obtain after each light (dark) phase and Xt is the 170 

cell number/volume obtained prior each light (dark) phase. Time t is every 12 hours. 171 

2.3 Statistics 172 

The experiment was performed in triplicate with results expressed as means ± standard 173 

deviations in tables and figures. Independent sample t-test in SPSS statistics 24 was used 174 
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to compare data in Table 1. A significance level p < 0.05 was considered as statistically 175 

different. 176 

3 Results and discussion 177 

3.1 Impact of light regime and growth phase on biomass level and protein quantity 178 

Growth curves of D. salina under both light regime are shown in Fig. 1A. Microalgal 179 

growth evidently benefited more from a longer lighting period, obtaining a maximum 180 

specific growth rate of 0.45 d-1 and biomass concentration of 1.36 g AFDW/L, higher than 181 

0.35 d-1 and 0.81 g AFDW/L obtained from light/dark regime. As shown in Fig. 1B, the 182 

biomass protein content of both light regimes presented an increase-decrease pattern, 183 

with a maximum around 80% AFDW reached during the exponential phase. The decrease 184 

in protein content towards the stationary phase was 54% for continuous light regime and 185 

32% for light/dark regime, respectively (Fig. 1B). This pattern has been described for other 186 

microalgae such as Chlorella and Scenedesmus, but it has not been reported for D. salina 187 

(Piorreck and Pohl, 1984). Between the two light regimes, no difference of biomass 188 

protein content was observed until day 20, after which continuous light regime resulted in 189 

more drastic decrease (Fig. 1B). At the end of the experiment (day 28), the biomass 190 

protein content of the light/dark regime was 54% AFDW, 45% higher than in the 191 

continuous light regime (Fig. 1B). These changes in protein level can be related to the 192 

nitrogen availability, as nitrogen is a major protein-composing element. As reported, 193 

microalgal biomass in the exponential phase is characterized by a higher protein content 194 

with excess nitrogen availability for protein synthesis, while in the stationary phase the 195 
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protein content is lower due to insufficient nitrogen and consequently halted growth 196 

(Uriarte et al., 1993). Although medium nitrogen levels were not monitored in this study, 197 

based on the initial medium composition (0.14 gN/L) and the Redfield ratio (14.6% N in 198 

biomass), nitrogen in the medium was depleted for the continuous light regime at 199 

stationary phase, as 1.36 g AFDW/L would contain 0.19 gN/L, exceeding the nitrogen 200 

supply from the medium. For the light/dark regime, 0.81 g AFDW/L would correspond to 201 

0.11 gN/L, indicating nitrogen was still available in the medium. This was also confirmed 202 

by the biomass carbohydrate content, as displayed in Fig. 2. On day 28, the biomass 203 

carbohydrate content of D. salina grown under continuous light regime reached up to 204 

30%, while in light/dark regime it only remained around 15%. When microalgae are 205 

experiencing nutrient limitation or starvation, which often happens during the stationary 206 

phase of a batch culture, their carbon-containing compounds such as carbohydrates will 207 

be largely enhanced. This is mainly due to a switch of the metabolism of storage 208 

compound from nitrogen to carbon pool (Pancha et al., 2014).  209 

Regarding the suspension protein content, continuous light regime promoted its build-up 210 

until the linear growth phase reaching a maximum of 0.62 g/L at day 16 and it declined to 211 

0.49 g/L by 20% at stationary phase, day 28 (Fig. 1B). This is a result of both slower growth 212 

and sharp reduction of biomass protein content, as can be seen in Fig. 1B. Conversely, 213 

light/dark regime contributed to a steady accumulation of suspension protein, reaching 214 

0.43 g/L in the stationary phase.  215 



12 
 

3.2 Impact of light regime and growth phase on protein quality 216 

Apart from the protein quantity, protein quality as EAA content also varied during the 217 

different growth phases. From day 7 to day 28 ranging from the exponential phase to the 218 

stationary phase, both EAA content (excluding tryptophan) and EAA profile of D. salina 219 

from two light regimes presented an accumulating trend, with optimum EAA profile 220 

achieved in the stationary phase (Fig. 1E, Fig. 3). EAA content built up towards the 221 

stationary phase, reaching 44% and 30% of total protein for continuous light and 222 

light/dark regime, respectively (Fig. 1E). D. salina EAA content positively compares with 223 

the FAO/WHO reference, it is therefore clear that D. salina is capable of producing high-224 

quality protein for human nutrition, regardless of the light regime applied. Since day 16, 225 

roughly around the linear growth phase, biomass from both light regimes presented an 226 

EAAI of useful and good quality, 0.90 for continuous light regime and 0.78 for light/dark 227 

regime (Fig. 1E). Further on day 28 in the stationary phase, both EAAI reached above 1 228 

(1.53 for continuous light and 1.06 for light/dark regime), indicating a matching quality of 229 

EAA profile in the biomass (Fig. 1E). Moreover, the more EAAI above 1, the better quality 230 

of protein it stands for. For instance, if replacing food source with EAAI of 1 with 231 

microalgal biomass with EAAI of 1.53, 35% of biomass can be saved to still match the 232 

human requirement.  233 

Regarding the content of the individual EAA, until day 16, they all showed a similar 234 

accumulating pattern reaching similar level regardless of light regimes (Fig. 3A, 3B). 235 

However from day 16 to day 28, all the individual EAA contents of continuous light regime 236 
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increased dramatically by 17-125%, where every EAA surpassed the level of human 237 

requirement (Fig. 3C). Meanwhile for light/dark regime the increase was only 5-58% (Fig. 238 

3C). The overall accumulating trend, especially sharper increase of EAA under continuous 239 

light regime, seems to be related to the growth phases. Towards the stationary phase, 240 

protein synthesis diminishes, and therefore the cells may attempt to preserve those 241 

amino acids. Despite the complexity of protein synthesis, microalgae also rely on nitrogen 242 

assimilation pathways, initiated by the nitrate reductase, which converts the nitrate 243 

transported inside the cells into nitrite. Nitrite is then reduced to ammonia, which can be 244 

assimilated into glutamate/glutamine via glutamine synthase and NADPH-dependent 245 

glutamine:2-oxoglutarate aminotransferase (GS/GOGAT) pathway (Alipanah et al., 2015; 246 

Halsey et al., 2011; Remmers et al., 2018; Sanz-Luque et al., 2015). As glutamate and 247 

glutamine are the initial amino acids synthesized from nitrogen source, they play a crucial 248 

role in the continuation of amino acids biosynthesis by providing the critical nitrogen entry 249 

point (Guerra et al., 2013). For instance, glutamate provides the amino groups for other 250 

amino acids and glutamine provides amide to various amino groups of other amino acids. 251 

EAA and other more complex amino acid synthesis may depend on the availability of 252 

glutamate/glutamine and their synthesis could essentially take longer. Nevertheless, the 253 

dynamics of glutamate/glutamine content throughout the growth stage cannot be 254 

predicted, as a simultaneous production and conversion pathway of glutamate/glutamine 255 

is expected to happen. In this study, the glutamine content also presented an 256 

accumulating trend throughout the growth phases, suggesting a possible preservation of 257 
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nitrogen content by the cells during stationary phase (data not shown). The sharp increase 258 

of EAA under continuous light regime at later growth phase suggests a major response of 259 

microalgal cells to preserve the cellular nitrogen capacity by activating e.g. nitrogen 260 

scavenging mechanisms involved in the acquisition, remobilization and redistribution of 261 

intracellular nitrogen (Alipanah et al., 2015; Halsey et al., 2011; Lv et al., 2017; Remmers 262 

et al., 2018; Zhang et al., 2016). These nitrogen related bio-pathways however can lead to 263 

different results depending on the microalgal species. It has also been suggested that the 264 

qualitative changes in amino acid content during low nitrogen availability may reflect 265 

changes in structural and metabolic proteins required for growth, rather than free amino 266 

acids, that are often more present during nitrogen abundance (Angell et al., 2014). The 267 

marine microalga Isochrysis zhangjiangensis performed similarly to this study, showing an 268 

increase in several amino acid and especially in phenylalanine content after nitrogen 269 

deprivation, which is possibly due to the nitrogen scavenging from other nitrogen-270 

containing substances e.g. nucleotides and rubisco protein (Zhang et al., 2016). Higher 271 

proportions of alanine, serine, glycine, and the EAAs phenylalanine, threonine and valine 272 

were found in the green macroalga Ulva ohnoi with low nitrogen content (Angell et al., 273 

2014). During the nitrogen starvation period an increased amino acid content, including all 274 

essential ones except histidine which was not measured, was also found in Synechocystis 275 

sp. (Kiyota et al., 2014). In addition to nitrogen limitation, it has been reported that 276 

phosphorus and sulfur limitation can also result in an increase of most EAA content in D. 277 

salina (Giordano et al., 2000; Lv et al., 2018, 2017). In contrast, Dunaliella tertiolecta 278 
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showed significant decrease of most EAA when shifted to nitrogen deprivation condition 279 

(Lee et al., 2014). Therefore, additionally to nutrient supply, the EAA profile in microalgae 280 

can also vary depending on the species. Nevertheless, the boost of EAA under continuous 281 

light regime can be considered a result of nutrient limitation rather than longer light 282 

regime, yet continuous lighting during nutrient limitation can also cause a more 283 

detrimental effect on several cellular pathways, including photosynthesis (Alipanah et al., 284 

2015; Halsey et al., 2011; Remmers et al., 2018; Schmollinger et al., 2014; Zhang et al., 285 

2016). From the aspect of human nutrition, several EAAs like valine, methionine, 286 

threonine and isoleucine are of hyper importance as they are necessary for the 287 

maintenance of inner nitrogen balance, without which pronounced symptoms such as 288 

poor appetite, extreme fatigue and high nervous irritability can be caused (Rose et al., 289 

1951). From this study, these four EAAs have shown to be mostly boosted at the 290 

stationary phase under continuous light due to possible nitrogen limitation (Fig. 3C). 291 

Consequently, D. salina is not only capable of producing high-quality protein, but also 292 

highlights the hyper important EAAs for human nutrition. Besides in algal biomass, 293 

accumulation of EAA has been reported under several stresses in plants as well, especially 294 

accumulation of lysine, threonine, methionine and valine has been shown in plants during 295 

abiotic and light stress conditions (Galili et al., 2016; Obata and Fernie, 2012). In this 296 

study, these four amino acids have also shown the highest accumulation at later growth 297 

phase (Fig. 3C). Interestingly, the biosynthesis of methionine, lysine and threonine derive 298 
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from aspartate, which could suggest a biochemical activation of this pathway during later 299 

stage of growth and/or abiotic stress.  300 

These findings overall suggest the importance of adopting the suitable microalgal species, 301 

understanding the biochemical pathways, and optimizing cultivation conditions. 302 

Consequently, EAA content and profile of biomass can be improved to a larger extent, 303 

presenting high-quality protein for human consumption.  304 

3.3 Microalgal protein content dynamics in one diel cycle 305 

To gain an in-depth knowledge on the behavior of D. salina during one diel cycle, a 24-306 

hour time series analysis on day 15 was performed for both light regimes (Fig. 4A, B). As 307 

shown in Fig. 4A, during continuous light regime, biomass grew steadily over 24 hours 308 

with 11.4% biomass increase at specific growth rate of 0.13 d-1. During the light phase of 309 

the light/dark regime, biomass showed 12.9% increase at specific growth rate of 0.31 d-1, 310 

both higher than those under continuous light regime (Fig. 4B). Especially the specific 311 

growth rate increased substantially by 138%, indicating a much faster growth. This was 312 

also observed for most cultivation period, where the light-phase specific growth rate of 313 

the light/dark regime presented a higher level than that of the continuous light regime, 314 

especially during the exponential phase and early linear phase, roughly between day 8 and 315 

day 16 (Fig. 4C). This might also indicate that the light/dark regime is better at maintaining 316 

the high specific growth rate than continuous light regime. During the dark phase of the 317 

diel cycle, the biomass concentration remained the same level with 1% difference, thus 318 

was considered no change (Fig. 4B). Table 1 also summarized the biomass concentration 319 
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of both light phase and dark phase under light/dark regime from three different growth 320 

phases, which revealed no significant night biomass loss. This was supported by the dark-321 

phase specific growth rate in Fig. 4C, which stayed constantly around zero. These suggest 322 

that D. salina can be a good microalgal species coping with night biomass losses, hence 323 

increase biomass productivity. Similar findings were observed in Chlorella pyrenoidosa by 324 

Ogbonna and Tanaka (1996) where the growth rate of the light phase in a light/dark 325 

regime was higher than that of continuous light regime. Nevertheless, the biomass 326 

concentration during the dark phase decreased (Ogbonna and Tanaka, 1996). Such 327 

changes of biomass during the dark phase is reported to be highly species-dependent and 328 

mediated by cultivation conditions (Edmundson and Huesemann, 2015; Han et al., 2013; 329 

Ogbonna and Tanaka, 1996). For instance, different growth phases prior the dark phase 330 

and the temperatures during the dark phase can result in 1-22% night biomass loss 331 

(Edmundson and Huesemann, 2015). 332 

The diel cycle did not affect the biomass protein level, which remained around 65% over 333 

AFDW regardless of the light regimes (Fig. 4A, B). Furthermore, biomass protein content of 334 

D. salina after the dark phase also showed no significant difference compared with its light 335 

phase (Table 1). This showed that no protein loss occurred in D. salina during the dark 336 

phase at all stages of growth. This finding is partly in line with the present literature on 337 

many microalgal species, as some studies suggest that biomass protein content increases 338 

during the dark phase due to continuing protein synthesis (Cuhel et al., 1984; Hidasi and 339 

Belay, 2018; Ogbonna and Tanaka, 1996; Torzillo et al., 1991), while others also found no 340 
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effect of dark phase on the protein content (de Winter et al., 2017; Hidasi and Belay, 341 

2018; Ogbonna and Tanaka, 1996). In our study, D. salina showed less susceptibility to 342 

dark-phase cultivation and further demonstrated to be a robust species for microalgal 343 

protein production. 344 

Apart from the protein content, cell growth and cell division were also associated with the 345 

light/dark regime. By analyzing the cell number and volume change following the above-346 

mentioned formula of D. salina from both light regimes, different behaviors were 347 

noticeably observed (Fig. 5). During the growth under continuous light regime, both cell 348 

number and volume increased steadily, resulting in an overall biomass accumulation (Fig. 349 

5). Differently during the light/dark regime, the cell number increased mainly during the 350 

dark phase and the cell volume changed predominantly during the light phase (Fig. 5). As 351 

suggested by Cuhel et al. (1984), photosynthetic organisms commonly accumulate 352 

sufficient amount of energy from the light phase for the night metabolism such as cell 353 

division, thus despite the biomass growth halt or loss during the dark phase, cell division 354 

still occurs (de Winter et al., 2013; Xu et al., 2016). Adversely, cell growth in diameter and 355 

volume were primarily found during the light phase for both D. salina CCAP 19/30 and 356 

Neochloris oleoabundans (de Winter et al., 2013; Xu et al., 2016). It is important to notice 357 

that the night metabolism of microalgae can be dependent on a complex of factors like 358 

prior light intensity and photoperiod before dark phase, nutrient status and the microalgal 359 

species (Cuhel et al., 1984). Overall the results highlighted the intricate metabolism of 360 
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microalgal cells and how changes in cell characteristics may significantly affect the 361 

biochemical and nutritional composition of these microorganisms. 362 

3.4 Optimum lighting and timing for protein quantity and quality 363 

When aiming at optimum high-quality protein production from D. salina, productivities of 364 

biomass, protein and EAA are important parameters to interpret the overall performance. 365 

Besides, their yields on light energy are also essential to estimate their light-usage 366 

efficiency, thus energy input. As seen in Fig. 1C, biomass and protein productivities of both 367 

light regimes showed increase-decrease patterns. The highest biomass productivity for 368 

both light regimes was obtained during the linear growth phase (day 16), 60.6 mg/L/d for 369 

continuous light regime and 35.4 mg/L/d for light/dark regime, respectively. The 370 

respective 22% and 20% decline towards the stationary phase is mainly due to the halting 371 

biomass growth towards the stationary growth phase. For an outdoor raceway pond 372 

cultivating Nannochloropsis gaditana in Spain, biomass productivity as high as 190 mg/L/d 373 

can be achieved high light intensity, temperature and CO2 enrichment (San Pedro et al., 374 

2015). In accordance, it is foreseen that better lighting and extra inorganic carbon addition 375 

can enhance productivities in our cultivation system. The highest protein productivity of 376 

both light regimes was achieved during the exponential growth phase: 43.4 mg/L/d on day 377 

10 for continuous light regime and 25.0 mg/L/d on day 7 for light/dark regime, while a 378 

respective 59% and 39% reduction was observed towards the stationary phase (Fig. 1C). 379 

This is likely due to the higher protein content present in the biomass during the 380 

exponential phase (Fig. 1B). A similar trend has been observed for EAA productivity under 381 



20 
 

continuous light, with highest level of 10.1 mg/L/d reached on day 16, and decreased by 382 

21% towards the stationary phase (Fig. 1F). EAA productivity under light/dark regime 383 

however increased to the highest level of 4.8 mg/L/d during the stationary phase (Fig. 1F). 384 

It is shown that biomass, protein and EAA all accumulated more during the continuous 385 

light regime without considering the light energy input. However, providing artificial 386 

illumination comes with both high cost and energy input (Blanken et al., 2013). As shown 387 

in Fig. 1A, in the light/dark regime 50% less light was provided and biomass showed only 388 

22% slower growth and 40% less biomass concentration compared with continuous light 389 

regime. For light/dark regime, the maximum biomass yield on light of 0.76 mg/mol photon 390 

was reached at the linear phase, the maximum protein yield on light of 0.54 mg/mol 391 

photon was reached at the exponential phase, and the maximum EAA yield on light of 0.1 392 

mg/mol photo was reached at the stationary phase (Fig. 1D and Fig. 1F). These values are 393 

17%, 15% and 20% higher than those from continuous light regime, respectively. Clearly, 394 

the energy from an extended lighting period was not efficiently used by the biomass, 395 

resulting in lower yields on light energy. This is possibly due to the induction of photo -396 

inhibition by the excess light energy from continuous light to the microalgal 397 

photosynthetic apparatus, leading to an inhibition of both biomass growth and protein 398 

synthesis (Janssen, 2002). Consequently, continuous lighting is not suggested in practice 399 

for microalgal cultivation despite higher protein quantity obtained.  400 

Based on the findings, it is clear that light regime and growth phase play important roles in 401 

the microalgal protein production process, determining intrinsic changes of protein 402 
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quantity and quality, and further affect their productivities. For the light regime, 403 

considering that lighting contributes significantly to the high energy consumption and 404 

cost, light/dark cycling is preferred for the higher light-usage efficiency, thus overall higher 405 

biomass, protein and EAA yields on light energy. For the growth phases under light/dark 406 

conditions, the stationary phase proves to be the optimum harvesting point where, 407 

despite lower biomass and protein productivities and yields on light energy, all EAA 408 

productivity, EAA yield on light energy and EAAI reached the maximum. To further boost 409 

the EAA quality and production, nitrogen limitation seems to be an effective way, as 410 

demonstrated from the findings under continuous light regime. Consequently, it is 411 

foreseen that having nitrogen limitation during the stationary phase of biomass growth 412 

under light/dark regime will be the most effective way to produce high-quality protein 413 

from D. salina. Further investigations should thus focus on understanding the effect of 414 

nitrogen limitation on the dynamics of EAA synthesis. Furthermore, to harvest the 415 

biomass before dark phase is preferred since no biomass and protein change was found 416 

after the dark phase, and 12-hour prolonged cultivation can be eliminated. To add on, 417 

freshly added biomass can directly benefit from the next light phase. Nevertheless, how 418 

EAA can vary during the dark phase needs to be studied. 419 

As shown in this study, protein quantity and quality can be greatly affected by different 420 

operational conditions and growth phases, such evolution of variations can further give 421 

evidence for other types of single-cell protein studies at large.  422 
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4 Conclusions  423 

D. salina can produce extremely high-quality protein for human nutrition at stationary 424 

phase, regardless of the light regime. The EAA content accumulated throughout the 425 

growth phases with an optimum achieved during the stationary phase, and may have 426 

been boosted by nitrogen limitation. Light/dark regime showed higher light-usage 427 

efficiency with no biomass and protein loss during the dark phase. This study highlights D. 428 

salina for high-quality protein production, and provides useful cultivation guidelines, 429 

including the application of light/dark cycling with nitrogen limitation during cultivation, 430 

and biomass harvest in the stationary phase to maximize the EAA production. 431 
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Figure captions 576 

Fig. 1. Impact of light regime (24-h light vs. 12-h/12-h light/dark) and growth phase on 577 

Dunaliella salina: (A) biomass concentration, (B) biomass and suspension protein content, 578 

(C) biomass and protein productivity, (D) biomass and protein yield on light energy, (E) 579 

essential amino acid index (EAAI) and EAA content and (F) EAA productivity and EAA yield 580 

on light energy. Cultivation occurred at 20°C, pH 7.5 and a light intensity of 55 µmol/m2/s. 581 

Data are expressed as means ± standard deviation (n = 3) 582 

Fig. 2. Impact of light regime (24-h light vs. 12-h/12-h light/dark) and growth phase on 583 

carbohydrate content of Dunaliella salina. Cultivation occurred at 20°C, pH 7.5 and a light 584 

intensity of 55 µmol/m2/s. Data are expressed as means ± standard deviation (n = 3) 585 

Fig. 3. Impact of light regime and growth phase on essential amino acid index (EAAI) of 586 

Dunaliella salina: (A) 24-h light, (B) 12-h/12-h light/dark and (C) individual EAA increase 587 

from day 16 to day 28 588 
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Fig. 4. Growth and biomass protein of Dunaliella salina during 24-hour impacted by (A) 24-589 

h light, (B) 12-h/12-h light/dark together with (C) specific growth rate impacted by light 590 

regime. Cultivation occurred at 20°C, pH 7.5 and a light intensity of 55 µmol/m2/s. Data 591 

are expressed as means ± standard deviation (n = 3) 592 

Fig. 5. Impact of light regime (24-h light vs. 12-h/12-h light/dark) on Dunaliella salina: (A) 593 

cell number change and (B) cell volume change. Cultivation occurred at 20°C, pH 7.5 and a 594 

light intensity of 55 µmol/m2/s. Data are expressed as means ± standard deviation (n = 3) 595 

  596 
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Table 1 Light- and dark-phase biomass concentration and biomass protein content of 597 

Dunaliella salina in different growth phases under the 12-h/12-h light/dark regime. 598 

 
Phase in the 

light/dark regime 
Biomass concentration 

(g AFDW/L) 
Biomass protein 

(%AFDW) 

Exponential phase 
(day 7) 

Light 0.229 ± 0.003 82.0 ± 8.9 
Dark  0.232 ± 0.003 82.2 ± 4.9 

Linear phase 
(day 15) 

Light 0.532 ± 0.012 63.1 ± 2.7 
Dark  0.534 ± 0.009 64.6 ± 2.3 

Stationary phase 
(day 28) 

Light 0.801 ± 0.018 53.8 ± 3.7 
Dark  0.813 ± 0.014 51.2 ± 2.5 

All parameters between light and dark phase had no significance difference (p > 0.05) 599 
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