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Abstract 19 

Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also 20 

produce high-quality protein. The optimal conditions for D. salina to co-produce 21 

intracellular pools of both compounds, however, are yet unknown. This study investigated 22 

a two-phase cultivation strategy to optimize combined high-quality protein and 23 

carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations 24 

was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. 25 

Results reveal optimized protein quantity, quality (expressed as essential amino acid index 26 

EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation 27 

in phase-one was followed by high illumination during phase-two. Adopting this strategy, 28 

productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, 29 

with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human 30 

nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A 31 

activity. 32 

Key words 33 

Single-cell protein; pigment; nitrogen limitation; food; microalgae 34 

 35 

 36 

 37 

 38 
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1. Introduction 39 

The global population will reach 9.3 billion by 2050, with 6.4 billion of people in urban 40 

areas (Corcoran et al., 2010). The societal changes of both population and living standard 41 

are leading to 50% increase of protein demand, and even 82% and 102% increase of dairy 42 

and meat products by 2050, respectively (Boland et al., 2013). Along with protein 43 

shortage, the deficiency of functional nutrients in food, like β-carotene, are causing severe 44 

health problems for human. Specifically, β-carotene is essential for the human body due 45 

to its antioxidant pro-vitamin A activity, and insufficient uptake of β-carotene will lead to 46 

severe vitamin A deficiency, prompting human blindness and affecting immune response 47 

systems (Sommer, 2001). Currently, β-carotene and vitamin A deficiency have become a 48 

major public health concern in more than 70 countries (Sommer, 2001). To sustainably 49 

fulfill the protein gap for human consumption, novel protein sources such as microalgae 50 

are considered important contributions (Muys et al., 2019). Moreover, microalgae with 51 

elevated carotenogenesis can further increase nutritional quality by preventing vitamin A 52 

deficiency. Particularly, natural β-carotene found in microalgae, fruits and vegetables has 53 

the advantage of its mixed stereoisomers of all-trans and 9-cis β-carotene, which are more 54 

fat-soluble and less crystallizable than synthetic β-carotene (all-trans β-carotene) (Ben-55 

Amotz, 1993). By consuming carotenoid-rich diet, potentially lower incidence of various 56 

kinds of cancer can be expected (Ben-Amotz, 1993) 57 

Microalgal production is conventionally aiming at one specific target, such as biomass 58 

from Chlorella, protein from Spirulina and β-carotene from Dunaliella (Ben-Amotz, 1993). 59 
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Consequently, individual production lines are required to achieve production of multiple 60 

target compounds. If one microalgal species possesses the ability to optimally co-produce 61 

both high-quality protein as well as β-carotene at the same time, the efficiency in 62 

production of multiple high-value products can be substantially increased. 63 

It is well established that the microalga Dunaliella salina is one of the best sources of 64 

natural β-carotene, which can contribute up to 14% of the cell dry weight (Aasen et al., 65 

1969). Up to date, many studies have shown that stress conditions are major factors 66 

enhancing the accumulation of β-carotene in D. salina, such as high light intensity, high 67 

salinity, extreme temperatures and nitrogen (N) deficiency, as a protective mechanism to 68 

prevent cellular damages e.g. photo-damage (Lamers et al., 2008; Marín et al., 1998). 69 

While carotenogenesis by D. salina has been widely studied, its potential as protein source 70 

has drawn limited attention. In fact, D. salina can display high protein content (up to 80% 71 

of ash free dry weight), which is subjected to different cultivation conditions and growth 72 

phases (Sui and Vlaeminck, 2019). Furthermore, the essential amino acid (EAA) content of 73 

D. salina fulfills human requirement as indicated by FAO/WHO reference, which defines its 74 

high-quality protein profile (Becker, 2007; Sui et al., 2019). When comparing with other 75 

microalgae such as Chlorella and Spirulina, both protein and EAA content of D. salina have 76 

either comparable or even superior values (Becker, 2007; Muys et al., 2019; Sui et al., 77 

2019). Based on the characteristics of D. salina, it strongly appears to be a valuable 78 

candidate as novel food source, containing both high-quality protein and β-carotene. 79 
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Based on both lab- and large-scale experience with cultivating Dunaliella for β-carotene 80 

production, a two-phase cultivation system was proven to be successful, and has been 81 

applied by commercial producers (Ben-Amotz, 1995). The concept of such two-phase 82 

systems is to increase microalgal biomass level at phase-one with optimum growth 83 

conditions, and to induce β-carotene production at phase-two with enhanced stress 84 

conditions, e.g. high light intensity and N deficiency (Ben-Amotz, 1995). Moreover, it has 85 

been reported that stress conditions can also contribute to the up-regulation of EAA levels 86 

in plants and microalgae (Galili et al., 2016; Obata and Fernie, 2012). Specifically, high light 87 

intensity and N deficiency have been shown to enhance the production of EAA, especially 88 

lysine, threonine, methionine, valine and isoleucine in microalgae (Kiyota et al., 2014; 89 

Zhang et al., 2016). For D. salina, there is no report on the regulation of EAA affected by 90 

cultivation conditions, and the combined production of two main nutritional compounds 91 

from D. salina has not been studied yet (Sui et al., 2019). Instead of a process targeting 92 

either β-carotene or protein production, a two-phase cultivation approach adopting 93 

sequential stress conditions may prove to be an effective way to boost both high-quality 94 

protein and β-carotene production from D. salina.  95 

In this study, the impact of a gradient in N availability together with N pulses and high light 96 

intensities on the dynamics of biomass, protein, EAA and β-carotene production in D. 97 

salina have been explored over different growth phases in a two-phase cultivation 98 

approach. This study intends to demonstrate for the first time an optimized cultivation 99 
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condition and harvest regime for the maximum production of both EAA and β-carotene of 100 

D. salina. 101 

2. Materials and methods 102 

2.1 Microalgal strain, two-phase cultivation approach and cultivation conditions 103 

D. salina CCAP 19/18 was purchased from Culture Collection of Algae and Protozoa (CCAP, 104 

Scotland, UK). Sterilized Modified Johnson’s medium (Borowitzka, 1988) as standard 105 

medium for D. salina with different N levels was used for cultivation. Six treatments 106 

covering a gradient of N concentrations were tested in phase-one (N1 to N6; Table 1). 107 

When the algae reached stationary phase, each treatment was divided into two further 108 

conditions for phase-two: high N (NN1 to NN6) and high light intensity (NL1 to NL6; Table 109 

1). All treatments were performed in triplicates for both phases. Triplicates in phase-two 110 

were derived from the pooled triplicates of corresponding treatments in phase-one. The 111 

initial biomass concentration in phase-one was around 40,000 cells/mL. Experiments were 112 

conducted in a water bath with a controlled temperature of 25°C. Continuous light was 113 

provided by fluorescent tubes at an incident irradiance of 70 µmol photons/m2/s for 114 

standard conditions, and 110 µmol photons/m2/s for high irradiance conditions (Philips TL-115 

D 30W/33-640, the Netherlands). Mixing and aeration were given by a mixture of pre-116 

humidified air and 2% CO2. Although pH was not controlled, it was found stable (7.8-8) 117 

over the experiment due to the CO2 addition (Table 1). 118 



7 
 

2.2 Sample analyses, calculations and statistics 119 

Daily samples from all treatments were analyzed directly for cell number and cell volume, 120 

and preserved at -20°C for protein, carotenoids and EAA analyses at the end of the 121 

experiment. A Multisizer 3 Coulter Counter was used for both cell number and volume 122 

measurement. The protein content was determined following Markwell method, a 123 

modified Lowry method with bovine serum albumin as standard (Markwell et al., 1978). 124 

Total carotenoids content was measured according to Lichtenthaler, (1987) with 100% 125 

acetone extraction:  126 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑎 (𝑚𝑔 𝐿⁄ ) = 11.24 × 𝑂𝐷661.6 − 2.04 × 𝑂𝐷644.8 127 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑏 (𝑚𝑔 𝐿⁄ ) = 20.13 × 𝑂𝐷644.8 − 4.19 × 𝑂𝐷661.6 128 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠 (𝑚𝑔 𝐿⁄ )129 

=
1000 × 𝑂𝐷470 − 1.90 × 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑎 − 63.14 × 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑏

214
 130 

where OD661.6, OD644.8 and OD470 refer to the optical densities of the extracted supernatant 131 

measured at 661.6 nm, 644.8 nm and 470 nm, respectively.  132 

To prepare for EAA analysis, samples were centrifuged (5,000 x g, 10 min), hydrolyzed (6M 133 

HCl, 110°C, 24 hours) with vacuum and evaporated, after which samples were re-134 

dissolving in 0.75mM HCl and stored at -20°C before analysis. For EAA determination, the 135 

EZ:faast amino acids analysis procedure was adopted (Phenomenex, 2003), with 136 

separation using gas chromatography (Agilent HP 6890, USA) and detection using mass 137 

spectrometry (Agilent HP 5973, USA). The essential amino acids index (EAAI) was derived 138 
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based on the EAA content with FAO/WHO EAA requirements for human as reference 139 

(Oser, 1959; WHO/FAO/UNU Expert Consultation, 2007): 140 

𝐸𝐴𝐴𝐼 = √
𝑎𝑎1

𝐴𝐴1
×

𝑎𝑎2

𝐴𝐴2
× … … ×

𝑎𝑎𝑛

𝐴𝐴𝑛

𝑛

 141 

where aan and AAn are the EAA content over total protein content (mg EAA/g protein) in 142 

the sample and FAO/WHO reference, respectively. An EAAI value of ≥ 1, 0.95-1, 0.86-0.95, 143 

0.75-0.86 and ≤ 0.75 indicates its superior quality, high quality, good quality, useful quality 144 

and inadequate quality, respectively (Kent et al., 2015). For comparison purposes, it has 145 

been calculated that the EAAI value of egg and soybean are 1.65 and 1.34 separately 146 

(Becker, 2007). 147 

Total protein and carotenoids per liter of culture (mg/L) were defined as suspension 148 

protein and carotenoids content. The protein, carotenoid and EAA productivity (mg/L/d) 149 

were calculated from their suspension content (mg/L) divided by the time of cultivation 150 

(days) at each sampling point. 151 

Samples at the end of the two phases were analyzed for nitrate (NO3
-), ammonium (NH4

+) 152 

and phosphate (PO4
3-) concentrations in the medium. As ammonium concentrations were 153 

not detected in any treatment, they were not reported in this study. Filtered samples 154 

were diluted with de-ionized water accordingly and a Seal QUAATRO Auto Analyzer (Seal 155 

Analytical Inc., the Netherlands) was used for determination following standard methods 156 

(APHA, 2012). 157 
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Multiple regression analysis in SPSS statistics 24 was used to compare data in Fig. 3. A 158 

significance level p < 0.05 was considered as statistically different. All results were 159 

expressed as means ± standard deviations in tables and figures (apart from EAA and EAA 160 

derived parameters). The values stated in the main text were without standard deviation 161 

for better readability. 162 

3. Results and discussion 163 

3.1 Biomass growth 164 

Both the N level and light intensity greatly affected the microalgal growth. During phase-165 

one, the microalgal cells reached different concentrations at stationary growth phase from 166 

N1 to N4, ranging from approximately 2×105 cells/mL to 2.5×106 cells/mL. This was mostly 167 

contributed by the differences in initial N concentrations in the medium, which were 168 

depleted at the end of phase-one (Table 2). From N4 to N6, the cell densities did not 169 

change, despite different initial N concentrations (Fig 1A). Considering that there was still 170 

N remaining in the medium after phase-one for N5 and N6, the cells in these treatments 171 

were limited by another factor, while for N4 cells may have been co-limited. One likely 172 

limiting factor can be phosphorus (P), as the residual P in the medium from N4 to N6 was 173 

zero (Table 2). Besides, light limitation could occur as well, which will be discussed in more 174 

detail later. 175 

During phase-two, both higher N and higher light intensity had effect on biomass growth. 176 

Specifically, from NN1 to NN3, cell numbers increased with extra N addition as a result 177 
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from their N starvation in phase-one. Differently, cell concentration from NN4 to NN6 did 178 

not increase, and even slightly decreased after N addition, indicating that N was not the 179 

limiting factor. Higher light intensity did not affect the cell concentration in NL1, most 180 

likely due to the N scarcity reached during phase-one. For NL2 and NL3, higher light 181 

intensity promoted cell growth, although N or P was limiting. It is possible that D. saline in 182 

NL2 and NL3 might have stored both N and P inside the cell to be used for further growth 183 

under higher light intensity (Dortch et al., 1984). From NL4 to NL6, higher light intensity 184 

did not affect much or slightly lowered the biomass, which demonstrates that light is not 185 

the limiting factor. At this point, P concentration in the medium is expected to be the main 186 

limiting factor which prohibited the further growth of cells (Table 2). This finding is in line 187 

with previous work, where higher light intensity could not further boost cell densities of 188 

Arthrospira platensis when P was depleted (Markou et al., 2012).  189 

Besides cell densities, also cell sizes were subject to changes in response to the N and NN 190 

treatments (Fig. 1). An oscillation pattern was visible, indicating the variations of cell sizes 191 

at different growth stages. This pattern might be related to cell division, where cells grew 192 

exponentially in the exponential growth phase, and reached their maximum in stationary 193 

phase. These findings suggest that microalgal cells start increasing in size until they reach 194 

a critical point for cell division, which can be likely affected by external energy supply e.g. 195 

light, temperature and nutrients (Zachleder et al., 2016). This explains the less 196 

pronounced oscillation in NN5 and NN6 even when extra N was supplied, indicating again 197 

that cells were P limited. Nonetheless in this study, higher light intensity does not seem to 198 
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result in distinct cell volume changes (Fig 1A). It has been shown that cell oscillation by 199 

lighting can be species-specific, where cell volume changes are not restricted to a fixed 200 

pattern (Agusti and Kalff, 1989). 201 

3.2 Protein and carotenoids dynamics  202 

During phase-one, all treatments from N1 to N6 showed increases of suspension protein 203 

along with cell growth, and the more initial N in the medium, the more suspension protein 204 

was reached at the end of phase-one, ranging from 17 mg/L in N1 to 597 mg/L in N6 (Fig 205 

1B). The corresponding cellular protein content also reached the highest level in N6 (233 206 

pg/cell) from N1 (83 pg/cell). Higher protein levels at increased N concentrations in 207 

suspension, cell, and biomass have all been reported for various species such as Dunaliella 208 

tertiolecta, Scenedesmus sp. LX1, and Chlorella sp. (Fabregas et al., 1989; Kiran et al., 209 

2016; Zhuang et al., 2018), while N starvation is well known to reduce the protein content 210 

(Gao et al., 2018). 211 

During the high-N treatments in phase-two, both suspension protein and cellular protein 212 

were significantly boosted from NN1 to NN4. Such rises were observed very shortly after 213 

N addition and continued until the end of phase-two (Fig 1B). The biggest increase of 214 

suspension protein occurred in NN1 with 3460% (from 17 mg/L to 599 mg/L), which was 215 

due to the extremely low protein and biomass concentration in N1. The highest 216 

suspension protein at the end of phase-two reached 902 mg/L in NN4. For cellular protein, 217 

similar results were found with 404% increase in NN1 reaching 419 pg/cell, which is 218 

comparable with NN2-NN6. When microalgae are supplied with excess of substrate after a 219 
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period of starvation, overcompensating mechanisms can occur, in which cells are 220 

triggered to uptake and store higher substrate amounts than necessary (Brown and 221 

Shilton, 2014). The boost of protein production in NN1-NN4 can likely be a result of these 222 

mechanisms. Another event that can occur when enough N is present in the culture is 223 

called “luxury uptake’’, which implies the natural uptake of resources beyond necessity 224 

without prior starvation. The increase in protein content of NN5-NN6 could be a result of 225 

this mechanism (Brown and Shilton, 2014). Both mechanisms linking to the survival of 226 

microalgae are commonly found and thoroughly described (Xie et al., 2017). Due to these 227 

two phenomena, protein or N content of many microalgal species such as Chlorella 228 

vulgaris, and also macroalgal species such as Oedogonium could be boosted with N 229 

addition (Cole et al., 2015; Dortch et al., 1982; Xie et al., 2017). 230 

During the higher-light treatments in phase-two, however, both suspension and cellular 231 

protein level for NL1-NL4 did not substantially change, likely due to N depletion from the 232 

previous phase. In NL5 and NL6, however, where N was still present, suspension and 233 

cellular protein levels increased by up to 37% and 77%, respectively. Higher protein 234 

content induced by higher light intensity has been observed for Chlorella vulgaris and 235 

Chlorella pyrenoidosa (Chen et al., 2015; Ogbonna and Tanaka, 1996). However, other 236 

microalgal species could also present either decreased protein content or no change at all 237 

following higher light intensity, especially with low N availability (Chen et al., 2015; 238 

Markou et al., 2012). Thus, the results from both high-N and higher-light treatments 239 

suggest that N levels directly links to the total protein accumulation.  240 
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The dynamics of carotenoids generally showed the opposite pattern of protein. During 241 

phase-one from N1 to N4, both suspension and cellular carotenoids accumulated, with 242 

maximum 29 mg/L and 16 pg/cell reached during the stationary phases of N3 and N1, 243 

respectively (Fig 1C). This trend is a consequence of N deficiency, which is one of the most 244 

effective ways to induce β-carotene accumulation in D. salina (Lamers et al., 2012). The 245 

cellular carotenoids showed no changes in N5 and N6, although a slight increase of 246 

suspension carotenoids occurred, which was mainly due to an increase in biomass (Fig 247 

1C). During the higher-N treatment in phase-two, all cellular carotenoids from NN1 to NN6 248 

dropped to initial levels, around 4-8 pg/cell. Due to different biomass levels in this phase, 249 

the suspension carotenoids either dropped or slightly increased, but remained in a similar 250 

range from 9 to 22 pg/cell for all treatments (Fig 1C). During the higher-light treatment in 251 

phase-two, both cellular and suspension carotenoids increased rapidly in NL1 to NL4. The 252 

increases started shortly after the switch to higher light and continued till the end of the 253 

experiment, with maximum 196% cellular carotenoids increase in NL4 and 262% 254 

suspension carotenoids increase in NL2 (Fig 1C). Very little changes of carotenoids levels 255 

were found in NN5, NL5, NN6 and NL6, primarily due to the presence of N, which suggest 256 

N limitation to be the determining factor for effective carotenoids induction. When light 257 

intensity is higher than needed for photosynthesis in D. salina, β-carotene is produced in 258 

excess to overcome light stress and potential photo-oxidative damage, and it has been 259 

well documented that high light intensity can significantly increase the production of β-260 

carotene in D. salina (Lamers et al., 2010; Raja et al., 2007). This is also one important 261 
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reason why large-scale cultivation of D. salina is located wherever high light intensity is 262 

expected (Ben-Amotz, 1993). 263 

3.3 Protein and carotenoids productivities 264 

In phase-one, protein productivities generally declined (N1 and N3), or rose and declined 265 

(N2, N4-N6) towards the stationary phase (Fig 1D). These results showed that higher 266 

protein productivity was obtained with high N availability. The highest protein 267 

productivities reached were 7, 28, 35, 50, 50 and 49 mg/L/d, for N1 to N6, respectively, 268 

and mostly occurred between exponential and linear growth phase. This is in agreement 269 

with earlier work on D. salina tested at different salinities, pH levels and light regimes (Sui 270 

et al., 2019; Sui and Vlaeminck, 2019). For treatments with N starvation at the end of 271 

phase-one, namely N1-N4, higher-N treatment in phase-two (NN1-NN4) significantly 272 

stimulated their protein productivity by 37-1024%. This again can be linked to N 273 

overcompensating mechanism. Differently, for N5 and N6, where N was still abundant 274 

after phase-one, protein productivity in phase-two (NN5-NN6) did not show notable trend 275 

changes but kept declining (Fig 1D). During the higher-light treatment in phase-two, all 276 

protein productivities continued to decrease, as a result from prolonged cultivation time 277 

and rather stable protein content (Fig 1B, 1D). Overall, these results show that when D. 278 

salina cells experience N starvation, extra N addition enhances protein productivity, likely 279 

due to overcompensating mechanisms. These findings can be used to optimize the design 280 

for harvesting strategy, which could increase biomass protein content. When abundant N 281 

is provided, the optimal harvesting point will be around exponential to linear growth 282 
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phase. This recommendation, however, only applies to maximize protein quantity without 283 

considering its quality. 284 

Differently from protein productivity, carotenoids productivities showed consistent 285 

increase pattern during phase-one from N1 to N4, with a maximum of 3 mg/L/d reached 286 

in N3 (Fig 1E). These high carotenoids productivities followed the pattern of their 287 

suspension carotenoids contents, which depends on both biomass and cellular 288 

carotenoids accumulation (Fig 1C). During higher-light treatment in phase-two, NL1 to NL4 289 

all showed significant increases of carotenoids productivity, ranging from 15 to 107%. The 290 

highest carotenoids productivity reached was 4 mg/L/d in NL3 (Fig 1E). In contrast, the 291 

high-N treatments in phase-two contributed negatively to all carotenoids productivities 292 

from NN1 to NN4, which decreased by 5 to 54% (Fig 1E). For the treatments of N5, NN5 293 

and NL5, as well as N6, NN6 and NL6, low productivities without evident changes in 294 

carotenoids were observed throughout the experiment, which was possibly due to the 295 

presence of excess N. Generally, N starvation in D. salina enhances the accumulation of 296 

carotenoids, which further increases with higher-light exposure. Thus, the combination of 297 

N starvation and subsequent exposure to higher light can be a beneficial way to boost 298 

carotenoids production.  299 

3.4 EAA dynamics and productivities 300 

A few samples have been selected for a more detailed analyses of EAA. They were the 301 

intermediate treatment on the intersection of N and P limitation (N4) and the highest N 302 

treatment (N6) as reference, together with the respective high nitrogen (NN4 and NN6) 303 
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and light (NL4 and NL6) treatments, both just after the transfer (start) and at the end of 304 

the experiment (end). At the end of phase-one, N4 clearly showed higher levels of EAA 305 

content, EAA productivity and EAAI relative to N6 (Fig 2A). The EAAI of N4 reached 1.3, 306 

which is of superior quality for human consumption (threshold EAAI = 1), while the EAAI of 307 

N6 was only 0.4, showing inadequate quality. Looking at individual EAA levels, all the EAA 308 

in N4 were substantially present in higher amounts as compared to N6, exceeding 309 

FAO/WHO reference except for valine (Fig 2B, 2C and Table 3). These findings indicate that 310 

D. salina with EAAI of 1.3 is well suited to be incorporated into food which perfectly match 311 

human requirement (EAAI = 1), and actually saving 23% of biomass, further increasing the 312 

efficiency of food consumption. Protein and amino acid synthesis in microalgae naturally 313 

relies on N assimilation pathways, where nitrate is transported inside the cell and 314 

converted to nitrite by nitrate reductase. Ammonia is then obtained by further reduction 315 

of nitrite and incorporated into glutamate/glutamine via glutamine synthase and NADPH-316 

dependent glutamine:2-oxoglutarate aminotransferase (GS/GOGAT) pathway (Alipanah et 317 

al., 2015; Halsey et al., 2011; Remmers et al., 2018; Sanz-Luque et al., 2015). 318 

Glutamate/glutamine sequentially provides the critical entry point of N into cellular 319 

biochemicals, which can subsequently be used for synthesis of other EAAs (Guerra et al., 320 

2013). Although N availability associates closely with EAA production in microalgae, as 321 

shown in this study and many others, a higher N level does not necessarily lead to higher 322 

EAA production. When microalgal cells become N limited, mostly towards the stationary 323 

growth phase, their major response is to preserve cellular N capacity via scavenging 324 
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mechanisms, by which EAA biosynthesis can still occur using intracellular N (Alipanah et 325 

al., 2015; Halsey et al., 2011; Lv et al., 2017; Remmers et al., 2018; Zhang et al., 2016). 326 

However, when N deprivation occurs in the long term, EAA synthesis is interrupted and 327 

results in sharp decreases of protein and amino acids (Kiyota et al., 2014; Van de Waal et 328 

al., 2010; Zhang et al., 2016). 329 

Several studies have shown that N limitation or a short period of starvation can boost EAA 330 

production in microalgae and macroalgae. For instance, it has been shown that all EAA 331 

levels of D. salina SAG 184.80 were enhanced towards stationary growth phase, when N 332 

became limited and then shortly starved (Sui et al., 2019). Synechocystis sp. also exhibited 333 

rising levels of all EAA during short N starvation, while longer N starvation resulted in 334 

dropping of EAA levels (Kiyota et al., 2014). Similarly, short N starvation contributed to the 335 

production of several EAAs, especially phenylalanine, in marine microalga Isochrysis 336 

zhangjiangensis, which can be the consequence of N scavenging of e.g. nucleotides and 337 

rubisco protein. Nevertheless, significant decreased EAA levels were found after long-338 

exposed N deficiency (Zhang et al., 2016). Besides, the macroalgae Ulva ohnoi was also 339 

shown to exhibit higher proportions of alanine, serine, glycine, and the EAAs 340 

phenylalanine, threonine and valine with low N concentration (Angell et al., 2014).  341 

When extra N was supplied during phase-two, EAA content, EAA productivity and EAAI 342 

from NN4 (start) decreased sharply, resulting in inadequate protein quality (Fig 2A). A 343 

similar drop was also observed in NN6 (start). Regarding individual EAA levels, higher N 344 

addition also led to their reductions, where the overall level of EAA decreased 345 
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dramatically from N4 to NN4 (start and end) (Fig 2B and Table 3). Overall, these results 346 

clearly demonstrate that short N starvation promotes EAA accumulation in D. salina, while 347 

high N levels has a negative impact. At the end of phase-two after N addition, EAA 348 

content, EAA productivity, and EAAI in NN4 (end) and NN5 (end) all increased by 14-28%, 349 

3-14%, and 35-55%, respectively. This again indicates that cells tend to preserve EAAs 350 

towards later growth phases to maintain the N capacity and cell functions, possibly due to 351 

the drop of N concentration in the environment (Fig 2A, Table 2). 352 

While the complex biosynthesis of EAAs following various pathways are associated with N 353 

availability, it is not always easy to link them to other environmental conditions. Here, 354 

higher light intensity in phase-two seemed to have differential effects on EAA production. 355 

In the higher light treatment, NL4 (start and end) did not respond positively, resulting in 356 

slight decreases of EAA content, EAA productivity, and EAAI (Fig 2A). Nonetheless, protein 357 

quality of the biomass at this stage still remained superior for human consumption, as 358 

indicated by EAAI and relatively high amounts of individual EAAs (Fig 2A, 2B and Table 3). 359 

Although D. salina biomass seems to maintain protein quality during the higher-light 360 

treatment, thus only slight differences between NL4 (start) and NL4 (end) in EAA content, 361 

the EAA productivity in NL4 (end) decreased by 46%, which was mainly attributed to 362 

growth stage (Fig 2A). In NL6 (start and end), higher light intensity evidently promoted the 363 

accumulation of EAA in the biomass with higher EAA content (Fig 2A). Shortly after 364 

introducing higher light in NL6 (start), EAA content, EAA productivity and EAAI increased 365 

with 49, 25, and 30%, respectively. At the end of phase-two in NL6 (end), such increases 366 
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were even 232, 152, and 189%, reaching 36%, 14 mg/L/d and 1.2, respectively. Similarly, 367 

the individual EAA levels rose in NL6 from start to end (Fig 2C). The photo-acclimation 368 

response of microalgae towards excess light has been well-described, and upregulation of 369 

EAA during photo-acclimation was found in both microalgae and plants in response to 370 

high light exposure (Davis et al., 2013; Galili et al., 2016). Davis et al., (2013) suggest that 371 

the elevation of EAA could be due to an induction of de novo amino acid biosynthesis 372 

and/or protein catabolism from photodamage. Nevertheless, the fact that EAA content in 373 

NL4 (start and end) was not elevated might be related to their extreme N deficiency (Table 374 

2). As stated, when N deprivation and high light were both applied to Dunaliella tertioecta, 375 

most amino acids were significantly decreased (Lee et al., 2014). 376 

3.5 Optimized biomass with both high-quality protein and carotenoids 377 

As the parameters indicating protein quantity, protein quality and carotenoid content 378 

varied substantially depending on the cultivating conditions, Fig 3 and Table 4 elucidate 379 

the effects of N and light intensity on the biomass quality of D. salina. Nitrogen 380 

concentration in the medium and light intensity, but particularly their interaction, 381 

significantly affected EAAI (Table 4; Fig 3B, 3C). These findings suggest that short N 382 

starvation and higher light intensity together enhance EAA production in D. salina, rather 383 

than either factor alone. Similar results were estimated for carotenoids content, where 384 

highest content was found with a combination of decreasing N and increasing light 385 

intensity, while only N starvation and not higher light showed also a significant separate 386 

effect (Table 4). It is noted however, that the correlation of light intensity to carotenoids 387 
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content was limited by the low sample sizes. When the effect of light intensity on 388 

carotenoid contents was analyzed from more samples obtained from this study, it indeed 389 

becomes evident that light intensity is correlated to carotenoid contents (Table 4; Fig 3G). 390 

Together, these results indicate that short N starvation and subsequent higher light 391 

intensity together are favored for carotenoids accumulation. 392 

Overall, short N starvation together with higher light intensity are beneficial for the 393 

production of both EAA and carotenoids. Specifically, treatment NL4 (end) presented 394 

exceptional EAA enhancement and carotenoids accumulation in D. salina, indicating the 395 

possibility to produce microalgal biomass with both high protein quality and anti-oxidant 396 

strength. Consequently, D. salina demonstrated to be a valuable, and potentially unique 397 

species as novel protein source with high anti-oxidant activity for humans. Having been 398 

successfully applied in commercial production of D. salina using two-phase cultivation 399 

system, minor modifications can be applied to optimize biomass value, where short N 400 

starvation should be reached in the stationary phase in phase-one and a higher-light 401 

treatment should be applied in phase-two.  402 

Broadly looking at the market of microalgal products, microalgae are mainly supplied as 403 

food supplement with high protein content and other nutritional values like vitamins. 404 

Specifically for D. salina, the global market is mainly for high-value food and feed 405 

supplement. To the authors’ knowledge, there is no microalgal product in the food 406 

industry which provides both high-quality protein and carotenoids at the same time. The 407 

results from this study thus present a step further towards production of microalgae with 408 



21 
 

multiple high-value compounds, which largely improves the production efficiency. The 409 

biomass can therefore be a superior source for food supplement and food ingredient, 410 

either consumed next to food sources or be incorporated into food products. 411 

Conclusions 412 

Protein quality and carotenoids content of D. salina could be simultaneously enhanced 413 

applying a two-phase cultivation strategy. Short N starvation should be reached in the 414 

stationary phase in phase-one to upregulate EAA production, and phase-two should be 415 

given higher illumination to boost carotenoids production. The optimized cultivation 416 

conditions resulted in production of D. salina biomass with an EAAI of 1.1 and cellular 417 

carotenoids content of 24 pg/cell. This study reveals that D. salina is a valuable, and 418 

potentially unique species bringing together both high-quality protein and carotenoid, 419 

thus can be used as protein source with antioxidant pro-vitamin A effect for humans.  420 
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Figure captions 564 

Fig. 1. Effect of two-phase cultivation on D. salina: (A) cell number and cell volume, (B) 565 

suspension protein and cellular protein, (C) suspension carotenoids and cellular 566 

carotenoids, (D) protein productivity and (E) carotenoids productivity. Different N levels 567 

were applied in phase-one and both N addition and higher illumination were applied in 568 

phase-two. Cultivation occurred at 25°C and pH 7.8-8. Data are expressed as means ± 569 

standard deviation (n = 3) 570 

Fig. 2. Effect of two-phase cultivation on D. salina at the end of each phase: (A) EAAI, EAA 571 

content and EAA productivity, (B) individual EAA level in treatment N4, NN4 (start and 572 

end) and NL4 (start and end) and (C) individual EAA level in treatment N6, NN6 (start and 573 

end) and NL6 (start and end). Different N levels were applied in phase-one and both N 574 

addition and higher illumination were applied in phase-two. Cultivation occurred at 25°C 575 

and pH 7.8-8. Data are expressed as means ± standard deviation (n = 3) 576 

Fig. 3. N and light intensity on EAAI and carotenoids content in ten D. salina samples: (A) N 577 

and light intensity vs. EAAI, (B) N vs. EAAI, (C) light intensity vs. EAAI, (D) N and light 578 

intensity vs. carotenoids content, (E) N vs. carotenoids content and (F) light intensity vs. 579 

carotenoids content. Highlighted blue dots represent all conditions where an EAAI above 1 580 

was obtained. The corresponding carotenoids content obtained from above conditions 581 

were highlighted as orange dots. Light intensity vs. carotenoids content from 24 D. salina 582 

samples was presented in (G). 583 
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Table 1 Experimental conditions of all treatments in phase-one and phase-two 

Treatment 
Phase-one 

Phase-two 
(higher N) 

Phase-two 
(higher light intensity) 

N1 N2 N3 N4 N5 N6 NN1-NN6 NL1-NL6 

N concentration (mg-N/L) 1.4 11.2 22.4 44.8 179.2 716.8 932.8 n.a. 

Light intensity (µmol/m2/s) 70 110 

Erlenmeyer flask volume (mL) 500 250 

Culture volume (mL) 400 200 

Temperature (°C) 25 

pH 7.8-8 

NaCl concentration (g/L) 117 

Aeration (L/h) 3.3 

n.a. not applicable 

 

 

 

 

 

 

 



Table 2 Nitrate and phosphate concentration in the medium at the end of different treatments 
 

Standard deviation is listed in brackets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 N1 NN1 NL1 N2 NN2 NL2 N3 NN3 NL3 N4 NN4 NL4 N5 NN5 NL5 N6 NN6 NL6 

NO3
- 

(mg-N/L) 
0 

(0) 
1098 
(84) 

0 
(0) 

0 
(0) 

953 
(83) 

0 
(0) 

0 
(0) 

742 
(46) 

0 
(0) 

0 
(0) 

691 
(56) 

0 
(0) 

88 
(5) 

687 
(33) 

44 
(1) 

558 
(61) 

827 
(45) 

716 
(51) 

PO4
3- 

(mg-P/L) 
7.2 

(2.3) 
0 

(0) 
7.1 

(0.7) 
3.4 

(0.4) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 



Table 3 Individual and total amino acid content of selected treatments and FAO/WHO reference 
 

Underlined values indicate levels above FAO/WHO reference. 

 

  

mg/g 
protein 

Histidine Isoleucine Leucine Lysine Methionine + 
Cysteine 

Phenylalanine + 
Tyrosine 

Threonine Valine Total 
EAA 

N4_end 24.4 30.1 63.7 51.5 40.4 87.0 31.8 24.8 353.7 

NN4_start 22.3 12.3 23.5 33.9 33.5 31.1 5.7 9.9 172.3 

NN4_end 22.6 21.8 39.2 41.4 33.6 34.2 7.9 19.2 220.0 

NL4_start 22.6 28.4 52.9 43.3 36.5 69.8 29.7 27.3 310.4 

NL4_end 21.9 26.2 50.8 45.3 37.0 63.6 27.8 22.9 295.6 

N6_end 20.7 4.7 9.2 30.2 29.7 19.6 4.2 4.9 123.2 

NN6_start 20.7 1.1 4.9 29.8 29.7 18.7 4.1 2.1 111.1 

NN6_end 20.7 6.0 10.6 30.1 29.8 19.8 4.0 5.6 126.6 

NL6_start 20.9 13.2 22.8 34.8 29.7 21.9 4.4 12.5 160.2 

NL6_end 21.8 47.6 79.6 64.0 30.6 46.3 11.6 55.0 356.5 

FAO/WHO 15 30 59 45 22 38 23 39 271 



Table 4 Correlation of N and light intensity on EAAI and carotenoids content from statistical results on data from Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

*: significant difference (p < 0.05) 

1: statistical analyses using 10 samples with EAA contents determined in this study. 

2: statistical analysis using 24 samples with carotenoids content determined in this study 

 

Model R2 Significance Corresponding figure 

Dependent variable: EAAI 

Predictors: Nitrogen, Light1 
0.582 0.047* Fig. 3A 

Dependent variable: EAAI 

Predictors: Nitrogen1 
0.534 0.016* Fig. 3B 

Dependent variable: EAAI 

Predictors: Light1 
0.421 0.042* Fig. 3C 

Dependent variable: Carotenoids content 

Predictors: Nitrogen, Light1 
0.461 0.115 Fig. 3D 

Dependent variable: Carotenoids content 

Predictors: Nitrogen1 
0.426 0.041* Fig. 3E 

Dependent variable: Carotenoids content 

Predictors: Light1 
0.211 0.182 Fig. 3F 

Dependent variable: Carotenoids content 

Predictors: Light2 
0.511 0.000* Fig. 3G 


