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Featured Application: The systematic and generic method proposed in this study for the kinematic
design and dynamic modelling for a class of complex hybrid robots is useful and applicable for
the development of new hybrid robot products. Based on the proposed method, the mechanism
of a new hybrid robot can be synthesized and analysed effectively; the dynamic model and control
law of a complex robot can be formulated and simulated in a simplified and effective manner.

Abstract: Recently, more and more hybrid robots have been designed to meet the increasing demand
for a wide spectrum of applications. However, development of a general and systematic method for
kinematic design and dynamic analysis for hybrid robots is rare. Most publications deal with the
kinematic and dynamic issues for individual hybrid robots rather than any generalization. Hence,
in this paper, we present a novel method for kinematic and dynamic modelling for a class of hybrid
robots. First, a generic scheme for the kinematic design of a general hybrid robot mechanism is
proposed. In this manner, the kinematic equation and the constraint equations for the robot class are
derived in a generalized case. Second, in order to simplify the dynamic modelling and analysis of the
complex hybrid robots, a Lemma about the analytical relationship among the generalized velocities
of a hybrid robot system is proven in a generalized case as well. Last, examples of the kinematic and
dynamic modelling of a newly designed hybrid robot are presented to demonstrate and validate the
proposed method.

Keywords: Hybrid robot; kinematic design; dynamic modelling; local-closed loop; serial manipulator

1. Introduction

Generally, the robotic mechanisms can be categorized into three main groups: the open-loop
mechanism, the closed-loop mechanism and the hybrid mechanism. A robot of the first group is
usually designed with an end-effector connected to a fixed base by means of a single serial kinematic
chain. Meanwhile, each robot of the second group is a mechanism which is usually composed of a
moving end-effector connected to a fixed base by at least two kinematic chains, such as the parallel
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robots. A hybrid manipulator is a mechanism which is usually composed of some open-loop kinematic
chains combined with some closed-loop linkages [1–34].

The main advantages of the serial robots are the large workspace, the high dexterity of the
end-effector and the large non-singular range of the joint variables. However, the robots of this
group suffer from several drawbacks, such as relatively low stiffness and accuracy, low nominal
load/weight ratio and heavy structure [21]. Therefore, in the last decades, several types of robots having
closed-loop kinematic chains have been investigated in order to obtain better kinematic performances.
The main advantages of these robots are low weight, compact structure, better accuracy and stiffness.
Nevertheless, this robot group also have some disadvantages, such as a small workspace, a complex
mechanical design and a complex procedure for dynamic modelling and control. For these reasons,
in recent years, great attention has been paid to the development of hybrid robots which have combined
advantages of the serial robots and the closed-loop architectures. More and more hybrid robots
are designed and developed to meet the increasing demand for a wide spectrum of hybrid robotic
applications [10–30].

In practice, the hybrid robots have been designed in a large variety of kinematic configurations
and structures, and they can be classified into three main classes as follows:

The first class (Class I) includes all the hybrid robots whose structure has several parallel modules
connected in series [1–10] (Figure 1a).
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Class II consists of the hybrid robots which have a basic parallel module combined with a serial
manipulator [11–24] (Figure 1b).

Class III is a family of the hybrid robots which are composed of some local closed-loop chains
appended to a main serial mechanism [25–33] (Figure 1c).

It is clearly seen that the main architecture of a hybrid robot Class I or II is a parallel mechanism.
Other parallel modules or serial links are connected to such the main structure to complete a hybrid
serial-parallel robot.

Different from the robots Class I and II, each hybrid robot Class III is usually designed with a
serial module as the main structure of a robot. To provide with desirable mechanical advantages for a
hybrid robot, some local closed-loop mechanisms are added to the main serial module. For example,
when designing manipulators which suffer a heavy payload and operate in a large workspace,
parallelograms were added and hydraulic cylinders were used for driving some revolute joints of the
manipulators [26,28–31]. The addition of parallelograms to the main arm is to increase the rigidity of
the robot, and also to restrict the orientation of the end- effector as desired. The use of the hydraulic
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cylinders is to increase the structural stiffness and to avoid the counterweights for the robot structure.
The parallelograms and cylinders and other links of the serial arm naturally compose local closed
loops of the entire robot mechanism. Other examples of using local closed-loop linkages to optimize
the design and control for a robot can be found in [26–34].

In recent decades, a huge number of hybrid robot prototypes and products have been designed
and developed [10–30]. The dynamic modelling and control for some of these complex robots have
been addressed as well. However, to develop a generic method for formulating the dynamic model of
a generalized hybrid robot mechanism is challenging.

In the literature, there have been efforts that focused on the kinematic modelling of the hybrid robots
Class I [1–5]. The kinematic modelling and analysis of two serially connected parallel mechanisms
were investigated in [1]. In [2], the kinematic redundancy issue of a serial-parallel manipulator was
addressed. The Screw theory and the Jacobian approach were applied for the kinematic modelling of
a serial-parallel robot [3,4]. In particular, the dynamics and the structural stiffness models of some
specific hybrid robots Class I were formulated and analysed [6–9].

There have also been attempts working on the modelling and analysis of the hybrid robots
Class II [11–21]. A real-time implementation of path planning, trajectory generation, and servo
control for a hybrid manipulation was presented in [11]. The kinematic modelling, the kinematic
design, the workspace modelling and other aspects related to the kinematics of the hybrid robots
Class II were studied [12–17]. The dynamic modelling and analysis of the robots Class II were also
investigated [18,19]. In addition, the structural synthesis and the stiffness of the hybrid robots of this
class were studied [20–22].

Apart from the aforementioned works, there have been investigations that emphasized on design
and development of the hybrid robots Class III [25–33]. A valuable comparison of the conventional
serial robot architectures and the hybrid robots Class III was presented in [34]. In the research [25],
some theoretical issues related to the kinematic modelling of multi closed-loop mechanisms were
addressed. In addition, some closed-form solutions to the kinematics problem of individual hybrid
robots Class III were presented in [26–28]. These solutions played an important role in validating the
design of the robots. The workspace and mobility analysis were also investigated in [28,29]. Other
aspects related to the design analysis of heavy-duty robots were presented in [30,31]. The control
issues were studied in [32,33]. It is noticeable that the dynamic modelling of a hybrid manipulator
Class III (forestry robot) was investigated in [33]. However, the effects of the local closed-loops on the
dynamic responses of this robotic system were overlooked.

Most of the efforts working on the hybrid robots Class III mainly focused on the design and control
of some individual robots for the kinematical aspects. Though the dynamic modelling of the robots was
addressed in a few researches, e.g., [33], however, the mass and inertia of the local closed-loop linkages
that have significant effects on the robot motion were neglected; the geometrical and kinematical
constraints due to the presence of the local closed-loop linkages were usually ignored. Moreover,
little attention has been paid to the development of a general method for the kinematic and dynamic
modelling of this robot class. Therefore, in this paper, a new method for designing the kinematic chain
and formulating the dynamic model of the hybrid robots is developed. First, a generic scheme for the
kinematic design of a generalized hybrid robot mechanism is proposed. In this scheme, the generalized
hybrid mechanism is synthesized with m local closed-loop linkages appended to a general n-link serial
manipulator. Each locally closed linkage is regarded as a four bars mechanism which is made up of
two successive links of the main serial arm, and other two added links. Second, the kinematic equation
for the generalized hybrid mechanism and constraint equations for the closed loops are derived in a
generalized case. Third, a Lemma about the relationship among the generalized velocities of the hybrid
robots is proven, which is useful for transforming the dynamic equation and constraint equations into
a minimal and compact form. Last, the kinematic and dynamic modelling of a real robot prototype
are presented to demonstrate and validate the proposed method. It is shown clearly that, since the
kinematic and dynamic modelling of a hybrid robot take into account the constraint equations and the
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dynamic effects of all the local closed loops, the kinematics and dynamics models of a hybrid robot are
formulated in a better and more accurate manner. Therefore, the method proposed in this study is
advantageous and plays a crucial role in the development of hybrid robot products.

2. Kinematics of a Generalized Mechanism for The Hybrid Robots Class III

Let us consider a manipulator which is designed with n serial links
{
li
}
i=1÷n

and m local closed-loop
mechanisms {Θk}k=1÷m, (m < n ≤ 6) as shown in Figure 2. The serial chain of n links is the main
mechanism of the robot arm, and the closed-loop mechanisms are designed as sub-mechanisms
appended to the main one. The degree of freedom number (DOFs) of the designed robot equals the
DOFs of the main mechanism, n. The presence of the local closed-loop mechanisms does not change
the DOFs of the robot.
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Each local closed mechanism Θk is designed with two successive links li−1 and li of the main arm
and other two appended links lk1

and lk2
. See Figures 2 and 3. In other words, each local closed-loop

mechanism is designed as a four bar linkage which is composed of the links li−1, li, lk1
and lk2

. In a
local closed chain linkage, the link li−1 is a local base link, and the remained links li, lk1

and lk2
move

relative to the base link li−1.
As shown in Figure 3, there exists four types of the local closed-loops, Type A, B, C and D, which

can be designed by combining a couple of successive links li−1 and li of the main arm and other two
links lk1

and lk2
added to the robot architecture.

In a local closed-loop Type A (Figure 3a), the two links lk1
and lk2

are added to the main arm, and
the output link is a link li. Meanwhile in Type B (Figure 3b), the two links lk1

and lk2
are inserted in

between the links li−1 and li, but the output link is the link lk2
. When a loop Type B is added to the

main kinematic chain, the link lk2
is inserted in between li and li+1.
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When the two links lk1
and lk2

are not connected together, there exists two more combinations of
the links li−1, li, lk1

and lk2
as shown in Figure 3c,d. In a loop Type C, the output link is li, meanwhile in

Type D, the output link is lk2
.

For all four types of the local linkages, the base link is li−1, and the formation of all the closed-loop
mechanisms does not change the DOFs of the robot.

Let us consider the main kinematic chain of the hybrid robot. In Figure 2, O0 ≡ (O0x0y0z0) is the
reference frame, and O1 ≡ (O1x1y1z1) to On ≡ (Onxnynzn) are the local coordinate systems which are

attached to all the links of the main arm. Let us denote q =
[

q1 q2 q3 . . . qn
]T

as the vector
of joint variables on the main arm, correspondingly.

As usual, the geometric and kinematic parameters of a link li are denoted as θi, di, ai and αi.
By using the Denavit–Hartenberg notation, the transformation matrix for the end-effector (EEF) can be
calculated as follows:

H0E = H01(q1)H12(q2)H23(q3) . . .H(n−1)n(qn) (1)

where H(i−1)i

(
qi

)
is the transformation matrix for a link li.

In other words, H0E can be expressed as follows:

H0E =

[
A(q) r(q)

0 1

]
(2)

where A(q) is the rotation matrix, and r(q) is the translation vector for the EEF. Equation (2) describes

the kinematic relationship of the robot. If we denote pE =
[

xE yE zE α β γ
]T

as the posture

of the EEF in O0, where
[

xE yE zE
]T

is the position and
[
α β γ

]T
the orientation of the EEF,

the kinematic equation can be written as follows:

pE = f(q) (3)

Let us consider all the local-closed loops Type A, B, C or D, which can be added to the main
kinematic chain, as shown in Figure 3. The presence of a closed chain Type A does not change
Equation (1). However, Equation (1) must be recalculated if a closed loop Type B, C or D is designed
for the robot.

For a local linkage Type B, since a link lk2
is inserted in between li and li+1, the transformation

matrix Hi(i+1)

(
qi+1

)
in Equation (1) must be recalculated as follows:

Hi(i+1)

(
qi+1

)
= Hik1

(
qk1

)
Hk1k2

(
qk2

)
Hk2(i+1)

(
qi+1

)
(4)
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For a local linkage Type C and D, the matrix H(i−1)i

(
qi

)
is replaced by the following matrix:

H(i−1)i

(
qi

)
= H(i−1)k1

(
qk1

)
Hk1i

(
qi

)
(5)

In particular, for a linkage Type D, not only H(i−1)i

(
qi

)
is re-calculated with Equation (5), but also

the matrix Hi(i+1)

(
qi+1

)
must be re-calculated as follows:

Hi(i+1)

(
qi+1

)
= H(i−1)k2

(
qk2

)
Hk2(i+1)

(
qi+1

)
(6)

Note that the variables qk1
and qk2

in Equations (4)–(6) can be determined with respect to qi via
the two constraint equations of a corresponding closed-loops Θk, which will be presented later in the
next section.

Constraint equations
Different from the formulation of the kinematics model for a serial robot, the formulation of the

hybrid kinematics models of the hybrid robots Class III must take into account the constraints due to
the presence of the local closed-loops.

As discussed before, each linkage Θk includes two sub-kinematic chains that move relative to the
base link. For example, as shown in Figure 4a, the first sub-chain of a linkage Type A is the link li, and
the second sub-chain includes the two link lk1

and lk2
. Obviously, the two sub-chains of a linkage are

closed at an intersection point M (see Figure 4).
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In order to derive the constraint equation for a loop Θk, the position of the point M are determined
along the two sub-chains.

On one hand, the point M, ri
M =

[
xi

M yi
M zi

M 1
]T

represented in the coordinate Oi of the
link li, can be determined via the position and orientation of the link li that can be calculated relative to

the base link li−1. On the other hand, the point M, rk2
M =

[
xk2

M yk2
M zk2

M 1
]T

expressed in Ok2 , can be
calculated through the position and orientation of the link lk2 . Consequently, the constraint equation
for a loop Type A and B can be yielded as follows:

H(i−1)i(qi) · ri
M = H(i−1)k1

(
qk1

)
·Hk1k2

(
qk2

)
· rk2

M (7)

For a loop Type C and D the constraint equation can be written as follows:

H(i−1)k2

(
qk2

)
· rk2

M = H(i−1)k1

(
qk1

)
·Hk1i(qi) · ri

M (8)
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Note that, for a closed-loop Type A or Type C, the point M coincides the point Ok2 , thus

rk2
M =

[
0 0 0 1

]T
. In addition, for a closed-loop Type B or Type D, ri

M =
[

0 0 0 1
]T

.
In essence, Equations (7) and (8) can be rewritten as three constraint equations corresponding to

three axes of the coordinate system Oi−1. However, among such the three constraint equations, there
exist only two independent ones, since all the closed-loops under consideration are planar four bar
linkages. As a consequence, corresponding to a loop Θk, the two independent constraint equations can
be written as follows:

fk
(
qi, qk1 , qk2

)
=

 fk1

(
qi, qk1 , qk2

)
fk2

(
qi, qk1 , qk2

)  = 0 (9)

For every local linkage, only one joint variable among qi, qk1
and qk2

is independent. The kinematic
relationships among qi, qk1

and qk2
are determined via the two constraint equations, Equation (9),

for each closed-loop Θk. Therefore, in the case that, instead of qi, the variable qk1
or qk2

is selected as the

independent joint variable of Θk, the variable qi in the transformation matrix H(i−1)i

(
qi

)
in Equation (1)

must be changed by the variable qi = hk

(
qk1

)
or qi = gk

(
qk2

)
, respectively, where the functions hk and

gk can be determined with respect to the kinematic relationships among qi, qk1
and qk2

.

3. Dynamic Modelling of the Hybrid Robots Class III

u =
[

u1 u2 u3 . . . un
]T

is the vector of n independent generalized coordinates which are

selected among n joint variables
{
qi
}
i=1÷n of the main arm, and 2×m joint variables

{
qk1 , qk2

}
k=1÷m

of m
closed-loops. In other words, u is the vector of all active joint variables.

z = [z1 z2 . . . z2m]
T is the vector of 2m dependent generalized coordinates.

s =
[

u z
]T

is the vector of all (n + 2m) generalized coordinates of the robot system.

f =
[

f11 f12 . . . fm1 fm2
]T

is the vector of 2m constraint equations.

τ =

 τ1 τ2 . . . τn︸                 ︷︷                 ︸
n

0 . . . 0︸        ︷︷        ︸
2m


T

is the vector of applied torques/forces.

By using the Lagrangian formulation, the equations of motion including constraint equations for
the robot can be written as follows: M(s, t)

..
s + C

(
s,

.
s, t

) .
s + g(s, t) + JT

s λ = τ(t)
f(s, t) = 0

(10)

Note that the size of the global matrices M(s, t) and C
(
s,

.
s, t

)
is (n + 2m) × (n + 2m). The global

mass matrix M(s, t) must be formulated with respect to all the links of the robot including n links of
the serial chain and 2m links added to m local closed-loops.

The global mass matrix is calculated as follows:

M(s, t) =
n+2m∑

j=1

(
m jJT

T j
JT j

+ JT
R j

I jJR j

)
(11)

where m j and I j are the mass and inertia of a link j. The translational and rotational Jacobian matrices

are calculated as JT j
=

∂rCj
∂s and JR j

=
∂ω j

∂
.
s

, where rCj is the centre of mass, and ω j is the angular
velocity of a link j, respectively.

The Coriolis and centrifugal matrix C
(
s,

.
s, t

)
is calculated by using Cristoffel notation.

The matrix g(s, t) is calculated as follows:

g(s, t) =
[
∂Π
∂s

]T

(12)
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where the total potential energy of the entire system is calculated as

Π =
n+2m∑

j=1

m jgTrCj (13)

The Jacobian matrix Js is derived with respect to 2m constraint equations as Js = ∂f
∂s , and

λ =
[
λ1 λ2 . . . λ2m

]T
is the vector of 2m Lagrangian Multipliers.

It is clear that the system of DAE equations seen in Equation (11) consists of (n + 2m) differential
equations of second order and 2m constraint equations f(s, t) = 0. Moreover, Equation (10) has not
only n independent variables u, but also 2m dependent variables z and 2m unknown Lagrangian
Multipliers λ. Therefore, if using this complex system of DAEs to analyse the dynamics behaviour and
to design a control law for the robot, the time complexity of the formulation and computation will be
increased dramatically. For this reason, it is necessary to transform Equation (10) into a more compact
form in which the Lagrangian Multipliers λ should be cancelled, and the number of the differential
equations is minimized.

By using the following Lemma, (n + 2m) differential equations of second order, Equation (10),
can be transformed into only n differential equations of second order which are expressed in
terms of only n independent generalized coordinates, not including 2m Lagrangian Multipliers

λ =
[
λ1 λ2 . . . λ2m

]T
.

Lemma. Consider a generalized hybrid robot mechanism Class III which has n independent joint variables

u =
[

u1 u2 u3 . . . un
]T

and 2m dependent joint variables z = [z1 z2 . . . z2m]
T. The relationship

between u and z is expressed as
.
s =

[ .
u

.
z

]T
= R

.
u, in which the matrix R is explicitly calculated as

R =

[
E

−J−1
z Ju

]
, where E is an identity matrix of appropriate dimension, Ju =

∂f
∂u and Jz =

∂f
∂z , where

f(s, t) = 0 is the constraint equation.

As a consequence of this Lemma, the following important relationships, Equations (14) and (15),
can be proved easily.

RTJT
s = 0 (14)

..
s=R

..
u+

.
R

.
u (15)

In Equation (14), the Jacobian matrix Js can be expressed as follows:

Js = ∂f
∂s

=
[

∂f
∂u

∂f
∂z

]
=

[
Ju Jz

] (16)

Note that Equations (14) and (15) play a very important role in transforming the complex system
Equation (10) into a minimal form. With respect to Equations (14) and (15), multiplying RT with both
sides of Equation (10) yields

M(s, t)
..
u + C

(
s,

.
s, t

) .
u +

¯
G(s, t)u = τq(t) (17)

where

M = RTM(s, t)R,C = RT
(
M(s, t)

.
R + C

(
s,

.
s, t

)
R
)
,

¯
G = RTg(s, t), and τq = RTτ(t).

Different from the complex ADEs system in Equation (10), which has n+ 2m differential equations
with the presence of 2m dependent variables z, and 2m unknown Lagrangian Multipliers λ, the minimal
form of the dynamic equation, Equation (17), consists of only n differential equations which are expressed
for n independent generalized coordinates u only. Moreover, the matrix form of Equation (17) is similar



Appl. Sci. 2020, 10, 2567 9 of 19

to the form of any dynamic equation that is usually written for a conventional industrial robot. Hence,
by using Equation (17), the dynamic analysis and control law computation for any complex hybrid
robot Class III can be implemented in an effective and simplified manner.

Proof of the Lemma. Taking a time derivative of the constraint equation f(s, t) = 0 yields

Js
.
s = 0 (18)

Substituting Equation (16) into Equation (18) obtains

Ju
.
u + Jz

.
z = 0 (19)

Rewriting the relationship
.
s =

[ .
u

.
z

]T
= R

.
u in the following form:

.
s =

[ .
u
.
z

]
= R

.
u

=

[
E
T

]
.
u

(20)

Note that E is an identity matrix and T is an unknown matrix which needs to be proved.
With respect to Equation (20), the vector

.
z can be expressed as follows:

.
z = T

.
u (21)

Multiplying Jz with both sides of Equation (21) yields

Jz
.
z = JzT

.
u (22)

Substituting Equation (22) into Equation (19) yields

− Ju
.
u = JzT

.
u (23)

Hence
T = −J−1

z Ju (24)

Finally, substituting Equation (24) into Equation (20) yields

R =

[
E

−J−1
z Ju

]
(25)

Equation (25) completes the proof. �

4. Example: Kinematic and Dynamic Modelling of a Real Robot

In this section, the kinematic and dynamic modelling of a newly designed hybrid robot Class
III are presented. The robot was designed and implemented with the purpose of handling material
for a hot forging press shop floor. The 3D design of the robot and the robot prototype are shown in
Figure 5a,b, respectively. The functional tests of the robot prototype and the numerical simulation of
the kinematic and dynamic responses shows clearly the effectiveness and advantages of the method
proposed in this study.
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Figure 5. The forging robot: (a) The 3D design, and (b): The robot prototype.

The kinematic diagram of the robot is presented in Figure 6, which is designed with 4 serial links{
li
}
i=1÷4

, and 4 local closed loops {Θk}k=1÷4 ( Figure 7). The reference frame O0x0y0z0 is located on
the ground. The coordinate systems O1x1y1z1, O2x2y2z2, O3x3y3z3 and O4x4y4z4 are located on the
serial links.
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Figure 7. The local closed-loop linkages of the forging robot: (a) Loop Θ1,(b) Loop Θ2, (c) Loop Θ3,
and (d) Loop Θ4.

The joint variables of the main serial chain are q =
[

q1 q2 q3 q4
]T

(Figure 6).
Each local closed loop presented in Figure 7 is a four-bar linkage which is made up of two serial

links (in red colour) and other two additional links (in green colour). Note that Θ1 and Θ2 are the loops
of Type A; Θ3 and Θ4 are the loops of Type B.

The loop Θ1 includes the link l1, l2, l11 and l12. The joint variables of the loop are q2, q11 and
q12. The loop Θ2 consists of l2, l3, l21 and l22. The joint variables of the loop are q3, q21 and q22.
The loop Θ3 consists of l1, l2, l31 and l32. The joint variables of the loop are q2, q31 and q32. The loop Θ4

consists of l3, l32, l41 and l42. The joint variables of the loop are q3, q41 and q42. Table 1 presents the
Denavit–Hartenberg notations of the four loops. Table 2 presents the dynamics parameters of the robot.

Table 1. The D-H notations of the four local closed loops.

Loop Θ1 Loop Θ2 Loop Θ3 Loop Θ4

Link l2 l11 l12 l3 l21 l22 l2 l31 l32 l3 l41 l42

θ q2 q11 0 q3 q21 0 q2 q31 q32 q′3 q41 q42

d 0 0 q12 0 0 q22 0 0 0 0 0 0

a L2 −L1 cos q11 0 L3 − b3 −L2 cos q21 0 L2 L2 0 L3 − b3 L3 − b3 0

α 0 π
2

−π
2 0 −π

2
π
2 0 0 0 0 0 −π

2
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Table 2. Dynamic parameters of the robot.

Index j Link
Mass Centre (m) Mass (kg)

xC yC zC

1 l1 0 b1/2 0 m1 = 81.3

2 l2 L2/2 0 0 m2 = 50.6

3 l11 0 0 L11/2 m3 = 25.6

4 l12 0 L12/2 0 m4 = 5.70

5 l3 L3/2 0 0 m5 = 58.4

6 l21 0 0 L21/2 m6 = 25.6

7 l22 0 L22/2 0 m7 = 5.70

8 l42 0 0 L42/2 m8 = 37.7

9 l4 0 0 L4/2 m9 = 73.1

10 l31 L2/2 0 0 m10 = 7.20

11 l32 c2/2 0 0 m11 = 12.9

12 l41 L3/2 0 0 m12 = 6.50

The length of the links are given as follows: L1 = 0.7; L2 = 0.7; L3 = 0.8; L4 = 0.2; L11 = 0.4;
L21 = 0.4; L42 = 0.2; b1 = 0.3; b2 = 0.3; b3 = 0.2; c1 = 0.2; c2 = 0.2.

Note that q1, q2, q3, q4, q11, q12, q21, q22, q31, q32, q41 and q42 are 12 generalized coordinates of the
robot, in which

u =
[

q1 q12 q22 q4
]T

is the vector of 4 independent generalized coordinates,

z = [q2 q3 q11 q21 q31 q32 q41 q42]
T is the vector of 8 dependent generalized coordinates and

s =
[

u z
]T

is the vector of all 12 generalized coordinates of the robot.
Constraint equations
By using the formulation Equation (7), the constraint equations can be derived for 4 closed loops

as follows:
f1 = (L2 − b2) cos q2 + L1 − (q12 + L11) cos q11 = 0 (26)

f2 = (L2 − b2) sin q2 − (q12 + L11) sin q11 = 0 (27)

f3 = b3 cos q3 − (L2 − c2) + (q22 + L21) cos q21 = 0 (28)

f4 = b3 sin q3 + (q22 + L21) sin q21 = 0 (29)

f5 = c1 cos(q2 + q32 − 3π/2) + L2 cos q2 − L2 cos q31 + c1 = 0 (30)

f6 = c1 sin(q2 + q32 − 3π/2) + L2 sin q2 − L2 sin q31 = 0 (31)

f7 = −(L3 − b3) cos(q32 + q41) − (L3 − b3) cos q3 − c1 sin(q3 + q42) − c1 cos q32 = 0 (32)

f8 = (L3 − b3) sin(q32 + q41) + (L3 − b3) sin q3 − c1 sin(q3 + q42) + c1 sin q32 = 0 (33)

Kinematics of the robot
By using the formulation Equation (1), the transformation matrix for the end-effector is calculated

as follows:
H04 = H01(q1)H12(q2)H23(q3)H34(q4) (34)

Since Θ3 and Θ4 are the loops of Type B, by applying Equation (4), the matrices H23
(
q3

)
and

H34
(
q4

)
are recalculated as follows:

H23
(
q3

)
= H2(31)

(
q31

)
H(31)(32)

(
q32

)
H(32)3

(
q3

)
(35)
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H34
(
q4

)
= H32(41)

(
q41

)
H(41)(42)

(
q42

)
H(42)4

(
q4

)
(36)

Finally, the position of the end-effector E =
[

xE yE zE
]T

is yielded as follows:
xE

yE

zE

 =


cos q1(L4 + L42 + (L3 − b3) cos(q2 + q3) + L2 cos q2)

sin q1(L4 + L42 + (L3 − b3) cos(q2 + q3) + L2 cos q2)

(L3 − b3) sin(q2 + q3) + L2 sin q2 + b1

 (37)

Note that

cos q2 =
(q12 + L11)

2
− L1

2
− (L2 − b2)

2

2L1(L2 − b2)
(38)

cos q3 =
−(q22 + L21)

2 + b3
2 + (L2 − c2)

2

2b3(L2 − c2)
(39)

Note that all the joint variables and the position of the end-effector in Equations (34)–(39) must be
functions of time t. However, to simplify the representation of such the complex equations, the term
(t) is truncated.

In order to verify the formulation of the kinematics model, the following numerical experiments
were carried out:

1. Calculate the trajectory of the end effector E(t) = [xE(t)yE(t)zE(t)]
T, with the input data is

given as q1(t) = π
18 × t, q12(t) = 0.1 + 0.01× t and q22(t) = 0.15 + 0.005× t. Figure 8 shows the curves

of E(t) = [xE(t) yE(t) zE(t)]
T.
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Figure 8. The trajectory of the end-effector.

2. Take the data E(t) = [xE(t)yE(t)zE(t)]
T obtained in Step 1 as the input for the inverse kinematic

analysis, and calculate the displacement of the joints q′1(t), q′12(t) and q′22(t). The results are shown in
Figure 9.

It is clearly shown in Figure 9 that the curves q′1(t), q′12(t) and q′22(t) obtained in Step 2 match
exactly the given data q1(t), q12(t) and q22(t), respectively. This demonstrates and validates the
proposed kinematic modelling method.

Dynamic Modelling and Analysis of the Robot
The dynamic equation of this robot can be derived directly by using the formulation Equation (17).

In order to formulate M(s, t),C
(
s,

.
s, t

)
,

¯
G(s, t) and τq(t), the matrices M(s, t), C

(
s,

.
s, t

)
, g(s, t) and R

must be computed.
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In this manner, M(s, t) can be calculated with Equation (11), where the masses m j are given
in Table 2, and the inertias I j can be calculated based on the geometrical dimension of the links

given in Table 2 as well. In Equation (11), the Jacobian matrices are calculated as JT j
=

∂rCj
∂s and

JR j
=

∂ω j

∂
.
s

, where the centre of mass rCj and the angular velocityω j are calculated and presented in the

Appendix A. Based on all the components of M(s, t), the matrix C
(
s,

.
s, t

)
is then calculated by using

Cristoffel notation.
The component g(s, t) is calculated with Equation (13), where the total potential energy of the

robot, Π, is calculated and presented in the Appendix A also.
The matrix R is calculated with Equation (25), where the Jacobian matrices Ju and Jz are presented

in the Appendix A, respectively.
Finally, all the terms of Equation (17) can be formulated properly that can be used for the dynamic

analysis and the control law computation. In the following example, we demonstrate an inverse

dynamic solution τq =
[
τ1 F12 F22 τ4

]T
that was calculated with respect to a input data given

as follows: q1(t) = π×t
18 , q12(t) = 0.1 + 0.01t, q22(t) = 0.15 + 0.005t and q4(t) = π×t

36 . The responses of

τq =
[
τ1 F12 F22 τ4

]T
are shown in Figure 10.

It has shown that instead of the complex governing equations seen in Equation (10), the minimal
form of the dynamic Equation (17) can be used directly for computation of the control (the inverse
dynamic analysis) for the robot. In addition, analysing the dynamic model of a hybrid robot does not
need to take into account the unknown Lagrangian Multipliers λ.
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5. Conclusions

A new method for the kinematic and dynamic modelling for a class of hybrid robots was introduced
in this study. The proposed method can be applied for the kinematic design of a robot mechanism
composed of m local closed-loop linkages appended to a general n-link serial manipulator. In this
manner, the kinematic equation for a generalized hybrid robot mechanism and the constraint equations
due to the closed-loop linkages of a robot are derived effectively. Since a Lemma about the analytical
relationship among the generalized velocities of a hybrid robot system was proven in a generalized
case, the dynamic equation and constraint equations can be transformed into a minimal and compact
form, so that the dynamics model of any hybrid robot can be formulated and analysed in an effective
and simplified manner. Finally, to demonstrate and validate the proposed method, examples about
the kinematic and dynamic modelling of a real robot are presented. It was shown clearly that, since
the kinematic synthesis and the dynamic modelling of a hybrid robot take into account the constraint
equations and the dynamic effects of all the local closed loops, the kinematics and dynamics model
of a hybrid robot is formulated in a better and more accurate manner. In addition, since the method
presented in this study was proposed and validated in a generalized case, it can be applied effectively
for the kinematic and dynamic modelling of any individual hybrid robot Class III. In particular, when
designing a new hybrid robot, the designers can follow all the steps of the kinematic design procedure
presented in this paper to archive easily an optimal mechanism for the robot. The control law of
the designing robot is then designed and simulated in an effective and useful manner by using the
dynamic modelling procedure presented in this study as well. Therefore, the method proposed in this
study is advantageous and plays an important role in the development of the hybrid robot products.
All the experimental procedures for development of next versions of the robot prototype will be the
future work of this study. The simulation of the kinematic and dynamic modelling of the hybrid robots
having closed loops Type C and D will be the future study of the authors.
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Appendix A

The centre of mass calculated for all the links of the robot

rC1 =


0
b1
2
0

 rC7 =


(
L21 + q22 −

L22
2

)
Cq1C(q2 + q21) + c2Cq1Cq2(

L21 + q22 −
L22
2

)
Sq1C(q2 + q21) + c2Sq1Cq2(

L21 + q22 −
L22
2

)
S(q2 + q21) + c2Sq2 + b1



rC2 =


L2
2 Cq1Cq2
L2
2 Sq1Sq2

L2
2 Sq2 + b1

 rC8 =


Cq1

(
L42
2 + (L3 − b3)C(q2 + q3) + L2Cq2

)
Sq1

(
L42
2 + (L3 − b3)C(q2 + q3) + L2Cq2

)
(L3 − b3)S(q2 + q3) + L2Sq2 + b1



rC3 =


1
2 L11Cq1Cq11 − L1Cq1
1
2 L11Sq1Cq11 − L1Sq1

1
2 L11Sq11 + b1

 rC9 =


Cq1

(
L4
2 + L42 + (L3 − b3)C(q2 + q3) + L2Cq2

)
Sq1

(
L4
2 + L42 + (L3 − b3)C(q2 + q3) + L2Cq2

)
(L3 − b3)S(q2 + q3) + L2Sq2 + b1



rC4 =


(
L11 + q12 −

L4
2

)
Cq1Cq11 − L1Cq1(

L11 + q12 −
L4
2

)
Sq1Cq11 − L1Sq1(

L11 + q12 −
L4
2

)
Sq11 + b1

 rC10 =


Cq1

(
L2
2 Cq2 − c1

)
Sq1

(
L2
2 Cq2 − c1

)
L2
2 Sq2 + b1



rC5 =


Cq1

(
(L3−2b3)

2 C(q2 + q3) + L2Cq2

)
Sq1

(
(L3−2b3)

2 C(q2 + q3) + L2Cq2

)
(L3−2b3)

2 S(q2 + q3) + L2Sq2 + b1

 rC11 =


Cq1

(
L2Cq2 −

c2
2

)
Sq1

(
L2Cq2 −

c2
2

)
L2Sq2 + b1



rC6 =


Cq1

(
L21
2 C(q2 + q21) + c2Cq2

)
Sq1

(
L21
2 C(q2 + q21) + c2Cq2

)
L21
2 S(q2 + q21) + c2Sq2 + b1

 rC12 =


Cq1

(
(L3−b3)

2 C(q2 + q3) + L2Cq2

)
Sq1

(
(L3−b3)

2 C(q2 + q3) + L2Cq2

)
(L3−b3)

2 S(q2 + q3) + L2Sq2 + c1 + b1



The angular velocities of the robot links
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ω1 =


0
0
.
q1

 ω2 =


.
q2Sq1
−

.
q2Cq1

.
q1

 ω3 =


.
q11Sq1
−

.
q11Cq1

.
q1



ω4 = ω3 ω5 =


Sq1

( .
q2 +

.
q3

)
−Cq1

( .
q2 +

.
q3

)
.
q1

 ω6 =


Sq1

( .
q2 +

.
q21

)
−Cq1

( .
q2 +

.
q21

)
.
q1



ω7 =ω6 ω8 = ω1 ω9 =


.
q4Cq1
.
q4Sq1

.
q1



ω10 = ω2 ω11 = ω1 ω12 = ω5

The potential energy of the robot∏
= 1

2 m1gb1 + m2g
(L2

2 Sq2 + b1
)
+ m3g

(
1
2 L11Sq11 + b1

)
+m4g

((
L11 + q12 −

L4
2

)
Sq11 + b1

)
+ m5g

(
(L3−2b3)

2 S(q2 + q3) + L2Sq2 + b1

)
+ m6g

(L21
2 S(q2 + q21) + c3Sq2 + b1

)
+ m7g

((
L21 + q22 −

L7
2

)
S(q2 + q21) + c2Sq2 + b1

)
+m8g((L3 − b3)S(q2 + q3) + L2Sq2 + b1) + m9g((L3 − b3)S(q2 + q3) + L2Sq2 + b1)

+m10g
(L2

2 Sq2 + b1
)

+ m11g(L2Sq2 + b1)

+ m12g
(
(L3−b3)

2 S(q2 + q3) + L2Sq2 + c2 + b1

)
The Jacobian matrices Ju and Jz

Ju =



0 Cq11 0 0
0 Sq11 0 0
0 0 Cq21 0
0 0 Sq21 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Jz =



(L2 − b2)Sq2 −Sq11(q12 + L11) 0 0 0 0 0 0
−(L2 − b2)Cq2 Cq11(q12 + L11) 0 0 0 0 0 0

0 0 −b3Sq3 −Sq21(q22 + L21) 0 0 0 0
0 0 b3Cq3 Cq21(q22 + L21) 0 0 0 0

L2Sq2 0 0 0 0 −L2Sq2 0 0
c1 − L2Cq2 0 0 0 0 L2Cq2 c1 0

0 0 c1Cq2 + (L3 − b3)Sq3 0 c1Cq2 0 (L3 − b3)Cq3 − c1Cq2 (L3 − b3)Cq3

0 0 −c1Sq2 − (L3 − b3)Cq3 0 −c1Sq2 0 (L3 − b3)Sq3 + c1Sq2 (L3 − b3)Sq3
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