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Abstract 

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily 

used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of 

the structural components, but they are also affected by the varying environmental conditions the structures are faced 

with, such as the temperature change, which limits the use of most damage detection methods presented in the litera- 

ture that did not account for these effects. In this article, a damage detection method capable of distinguishing between 

the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. 

This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features 

obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two 

extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measure- 

ments are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced 

for processing each data set so that patterns can be extracted and damage can be distinguished from environmental 

effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from 

the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitor- 

ing period. The results demonstrate the robustness of the proposed method for damage detection under changing envi- 

ronmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on 

damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time 

monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage 

evolution monitoring. 
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Introduction 

Civil structures, such as bridges and buildings, are in 

constant degradation due to the severe environmental 

During the past decades, researchers have been 

active in developing methods for damage detection of 

civil structures, and these methods are mainly based on 

and operational conditions they are faced with. To pro-    

vide a reliable and safe society, a robust structural 

health monitoring (SHM) system is required to moni- 

tor the health conditions of the structures. It could 

allow the authorities to take appropriate measures to 

repair or replace defect structural components before 

catastrophic failures occur. As a result, the safety and 

lifetime of the structures could be increased. 
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analyzing the vibration properties (e.g. natural frequen- 

cies) of the structures which change when damages 

occur. However, even though these techniques have 

been tested and validated using numerical and experi- 

mental model structures, difficulties have arisen in 

implementing them for real-time monitoring of in- 

service structures. The primary reason behind this is 

that the vibration properties used as damage sensitivity 

features in the developed damage detection methods 

are also affected by the changes occurring in the envi- 

ronmental conditions (e.g. ambient temperature) the 

structures are faced with, which were not considered in 

most of the developed methods.1 

In the literature, it was found that, for bridge struc- 

tures, temperature plays a major role in the variability 

occurring in the vibration properties of the bridges.2–7 

It was reported that temperature may cause up to 5%– 

10% variation in the natural frequencies of highway 

bridges, which unfortunately can mask the changes 

produced by structural damage.8 For example, for the 

Alamosa Canyon Bridge, Farrar et al.2 found out that 

the first natural frequency fluctuated by about 5% over 

a monitoring period of 24 h. Similar variation in natu- 

ral frequency was also observed in other modes of 

vibration of the bridge. These variations in natural fre- 

quencies were found to have a clear correlation with 

the temperature differentials across the bridge’s deck. 

Similarly, Alampalli3 reported that the changes in natu- 

ral frequencies of an abandoned bridge caused by freez- 

ing support were greater than those due to the effects of 

damage. Moreover, Peeters and De Roeck4 found out 

that temperature had a major influence on the natural 

frequencies of the Z24 Bridge in Switzerland. When the 

bridge was in its undamaged condition, a bilinear rela- 

tionship was found for most combinations of natural 

frequency versus temperature (temperature of deck sof- 

fit, temperature of wearing surface, etc.). The authors 

concluded that the nonlinear relationship was attrib- 

uted to the asphalt layer which, at temperature below 

08C, contributed to the increase in stiffness of the struc- 

ture, while at warmer temperature, it did not have an 

influence. 

The variability occurring in the vibration properties 

of bridge structures due to temperature may be attrib- 

uted to several factors. These factors have been dis- 

cussed by Zhou and Yi9 and are summarized below. For 

example, the shear modulus and Young’s modulus of 

the bridges’ materials, which mainly determine the 

vibration properties of the structures, vary with the 

fluctuation of temperature. The stiffness of the sup- 

ports and expansion joints of the bridges may also 

change due to the daily and seasonal temperature var- 

iations, which as a result, weaken or strengthen their 

constraints. These modifications may then change the 

vibration properties of the structures. Also, the sizes of 

the bridges’ elements change because of thermal con- 

traction and expansion due to temperature variations. 

This, therefore, changes the physical parameters of 

bridges and hence the vibration properties. Moreover, 

the temperature across the whole structure is usually 

non-uniform and changes with time, which, as a result, 

produces an asynchronous change in the physical para- 

meters of the structure, thus contributing to the 

changes in vibration properties. Finally, thermal stres- 

ses induced by temperature and the stress redistribution 

in the structures also affect the vibration properties of 

structures. 

Due to the contributing factors mentioned above  

that affect the vibration properties of  structures,  the 

use of these properties as damage sensitivity features 

for damage detection is restrained because false dam- 

age alerts may occur. Hence, to provide a robust and 

reliable damage detection method which does not give 

false damage alerts due to the effects of the changing 

environmental conditions, these effects should be taken 

into account while deriving the method. In the litera- 

ture, dealing with these effects for damage detection is 

often referred to as data normalization problem.1 One 

approach used extensively in data normalization is to 

perform regression analysis between the damage sensi- 

tivity features (e.g. natural frequencies) and their corre- 

sponding environmental parameters (e.g. temperature) 

in which they were obtained.4,10–14 This approach cre- 

ates a model that can predict the values of damage sen- 

sitivity features given the conditions the structures are 

faced with. Any large error can then be attributed to 

damage. To use this approach, however, the baseline of 

the undamaged structure should be composed of dam- 

age sensitivity features obtained from a wide range of 

environmental conditions, so that it covers all possible 

scenarios the structure may encounter. The damage 

sensitivity features and their corresponding environ- 

mental conditions should also be measured for each 

observation which, therefore, introduces some practical 

difficulties. For example, although it is easy to measure 

the damage sensitivity features and their corresponding 

environmental parameters, the optimal locations to 

place the sensors can be difficult to determine and to 

emplace.15 Also, after the baseline has been created, the 

sensors must remain at the same locations on the struc- 

ture.16 Any failure occurring in any of the sensors may 

affect the performance of the SHM system. Moreover, 

since each structure is different, difficulties will arise in 

choosing which environmental parameters most affect 

the damage sensitivity features to measure, since past 

experience of other structures cannot be reliably used. 

Due to these aforementioned constraints, the use of this 

approach for data normalization is therefore limited. 

Another common approach that has been proposed 

in the literature is to extract features that are sensitive 



to damage but less sensitive to the effects of the chang- 

ing environmental conditions.15,17–19 It has the advan- 

tage over the previous approach in that measurements 

of the environmental parameters are not required; only 

the damage sensitivity features are needed. Among the 

numerous techniques adopted in this approach, princi- 

pal component analysis (PCA) has been widely used. 

For example, Manson20 proposed to perform PCA on 

the damaged sensitivity features data set and to per- 

form an outlier analysis on the last principal compo- 

nents to indicate the presence of damage. The principle 

behind the method is that the first principal compo- 

nents, which contain most of the variances in the data 

set, will account for the effects of the changing environ- 

mental conditions affecting the data set, while the last 

principal components will account for other effects of 

the likes of damage. Therefore, by analyzing only the 

last principal components, the effects of environmental 

conditions affecting the data set can be eliminated 

while the effects of damage are retained. Similar to 

Manson,20 Yan et al.16 also used the concept that the 

effects of environmental conditions and the effects of 

structural damage will be accounted for by different 

principal components. They proposed to retain and use 

the higher variance principal components as a model to 

reconstruct the original data set so that the minor fac- 

tors of the likes of damage affecting the data set can be 

eliminated. Then, by subtracting the newly formed data 

set from the original data set, a residual error can be 

obtained and be used to indicate damage. Any large 

residual error can then be attributed to the presence of 

damage. 

Since PCA is a linear analysis tool and the effects of 

environmental conditions on the damage sensitivity 

features are usually nonlinear, Yan et al.21 further 

extended the previous method to take into account the 

nonlinear effects. They proposed to first cluster  the 

data set into several linear data sets, followed by ana- 

lyzing each linear data set similar to the linear case. As 

a result, the nonlinear system is linearized. Sohn et al.22 

proposed the use of auto-associative neural network to 

perform nonlinear principal component analysis 

(NLPCA). The NLPCA is trained using the auto- 

associative neural network to extract the dependency of 

the damage sensitivity features on the environmental 

conditions. The auto-associative neural network  used 

in the NLPCA consists of three hidden layers with the 

first being the mapping layer, the second being the bot- 

tleneck layer, and the third being the de-mapping layer. 

The unmeasured environmental conditions are repre- 

sented in the bottleneck layer. The target output is  

equal to the input which is the damage sensitivity fea- 

tures. Damage is indicated when the prediction error 

increases. They proposed to obtain the damage sensi- 

tivity features through the use of auto-regressive and 

auto-regressive with exogenous inputs (AR-ARX) 

model. Reynders et al.23 proposed  to use kernel PCA  

to create a nonlinear output-only model of the unda- 

maged structure to be used as baseline. New measure- 

ments can be compared  to the model, and any growth 

in the prediction error can then be attributed to  

damage. 

For all the methods mentioned above, however, as 

for the regression analysis approach, it is important to 

capture the damage sensitivity features from a wide 

range of environmental conditions so that the baseline 

can cover all possible scenarios the structure may 

encounter. Therefore, developing a method that does 

not require the damage sensitivity features to be 

obtained from a wide range of environmental condi- 

tions will make the SHM system easier to construct. 

Also, using only damage sensitivity features and 

removing the needs to measure the environmental para- 

meters the structures are faced with after the baseline 

has been formulated, will make the damage detection 

method less prone to  failure. Furthermore, developing 

a method that can analyze one time measurement at a 

time without requiring a group of measurements for 

analysis is a way forward for real-time monitoring of 

structures. 

In this article, a damage detection method for data 

normalization that does not require the baseline to con- 

sist of damage sensitivity features obtained from a wide 

range of environmental conditions is proposed. Since 

usually some environmental parameters are measured, 

to make full use of them, some of the parameters are 

used to help in the creation of the baseline. In the pro- 

posed method, the baseline consists of damage sensitiv- 

ity features obtained at two extreme and opposite 

environmental conditions. Subsequent measurements 

can then be added to the baseline one at a time to form 

new data sets to be analyzed separately for damage 

detection. PCA is proposed to be used to process each 

new data set to distinguish between damage effects and 

environmental effects affecting the damage sensitivity 

features. Analyzing one data set at a time allows the 

proposed method to perform near real-time monitoring 

of structures. It is worth noting that after the baseline 

has been created, the environmental measurements are 

not required anymore and only the damage sensitivity 

features are needed for future analysis. The proposed 

method uses a two-dimensional (2D) truss structure 

model subjected to a varying temperature to simulate a 

varying environmental condition and the Z24 Bridge in 

Switzerland to test and validate its robustness. The 

results demonstrate the effectiveness of the proposed 

method in distinguishing between the effects of damage 

and the effects of the changing environmental condi- 

tions affecting damage sensitivity features through the 

use of principal components obtained by applying 
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robustness of using PCA in the proposed method to 

analyze real-life structures is shown with the high suc- 

cessful rates obtained in classifying the undamaged and 

damaged cases of the Z24 Bridge. 

The remainder of the article first starts with the pre- 

sentation of the methodology used, with an in-depth 

description of the proposed method, given. Then, in 

section ‘‘Case studies,’’ the two case studies are 

described with the results and analysis given altogether. 

Finally, section ‘‘Conclusion’’ concludes the article. 

Methodology 

This section introduces the proposed damage detection 

method to distinguish damage effects from environmen- 

tal effects affecting damage sensitivity features of struc- 

tures. First, a brief introduction on PCA, which is used 

for data processing, is given along with a visualization 

interpretation on how PCA can be used in the context 

of this study. Then, the damage detection method is 

described in detail, followed by a summary of the pro- 

cedures in order to implement the proposed method 

given to conclude this section. 

PCA 

PCA is a multivariate statistical technique used to high- 

light the similarities and differences in a data set by 

finding patterns in the set. It is mainly used to reduce 

the dimensions of the original data set without losing 

much of the information.24 It forms new variables rep- 

resenting the factors which most characterize the var- 

iances in the original data set using linear combination 

of each of the original variables.25 

Damage sensitivity features collected from civil 

structures subjected to varying environmental condi- 

tions can be processed using PCA to extract the main 

factors driving the variances in the data set. These fac- 

tors may be due to the varying environmental condi- 

tions of the likes of ambient temperature as well as to 

damage of structural components. A brief description 

on the principle behind PCA is given below. 

Let Z denote a n 3 p data set of damage sensitivity 

features collected from p observations with n \ p. For 

each observation, n numbers of damage sensitivity fea- 

tures are collected. If, for example, natural frequencies 

of the structure are chosen as the features, then n repre- 

sents the number of frequencies selected and p repre- 

sents the amount of time the natural frequencies are 

collected 

zn, 1 · · ·  zn, p

To perform PCA on the damage sensitivity features 

data set, mean centering of the data set is first required. 

This is achieved by subtracting the mean of each row 

of the data set to each measurement in that row. The 

resulting matrix X after mean centering will have the 

same dimensions (n 3 p) as the original data set Z. 

Note that performing data centering does not change 

the relative location of each point to each other; it only 

changes the mean to zero and the centroid location to 

zero coordinates. 

PCA transforms the data set X into a new m 3 p 

data set Y with smaller dimensions which characterizes 

most of the variances in the original data set. The rela- 

tionship between Y and X can be expressed using a 

transformation matrix T which has dimensions m 3 n 

as follows 

Y = TX ð2Þ 

Y, the newly formed data set, is called the score 

matrix. It is a new set of data which combines the 

scores of each observation obtained for different fac- 

tors affecting the original data set into a matrix. The 

factors here are called principal components and they 

may represent the environmental effects as well as 

damage of structural components affecting the dam- 

age sensitivity features. The principal components are 

formed in such a way that the first principal compo- 

nent accounts for most of the variances in the original 

data set and the second component accounts for the 

second most variances, and so on. The principal com- 

ponents in the matrix Y are arranged in descending 

order, with the first principal component representing 

the factor(s) producing the greatest variances in the 

original data set, while the last principal component 

representing the factor(s) producing the least var- 

iances. The score of each observation for each princi- 

pal component can be thought of as  a  coordinate  

along the principal component axis representing the 

location of each observation along each axis. The 

scores for the first principal component will have the 

greatest span over the axis, whereas the last principal 

component will have the smallest span.  PCA makes  

the first principal component to have the greatest span 

by rotating the cloud of data in such a way to mini- 

mize the distance of each point in the cloud to the first 

principal component axis while assuring that the axis 

goes through the zero centroid. It is  for  this  reason 

that PCA requires mean centering of the original data 

set prior to application. 

. . . 
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In mathematical term,  the transformation matrix T  

is called the loading matrix, and it contains coefficients 

which are used to compute the score matrix through  

linear combinations of the variables in the data set X. 

The rows of the loading matrix T correspond to the 

eigenvectors of the covariance matrix of X, and they 

can be obtained by decomposing the matrix X using 

singular value decomposition and use that decomposi- 

tion to construct the covariance matrix of X as follows 

damage detection can be performed. It should be noted 

that the number of principal components to be ana- 

lyzed should be chosen carefully so that false alarms do 

not occur. An approach to choose the number of princi- 

pal components to be analyzed will be given later in this 

section, with an in-depth explanation behind the con- 

cept given in section ‘‘Case studies,’’ so that illustrations 

and examples can be used for better understanding. 

1 

p - 1 
XXT = U 

S
2

p - 1 
UT ð3Þ 

Visual interpretation 

To illustrate how PCA can be used to distinguish 

where U is an orthonormal matrix (UUT = I) whose col- 

umns represent the eigenvectors of the covariance 

matrix of X (hence T = UT), and S is given as 

between the effects of damage and the effects of chang- 

ing environmental conditions affecting damage sensitiv- 

ity features of structures, a visual interpretation is  

given here. Consider the data set given in Table 1, 

S =
S1 0 

l 
ð4Þ 

which  represents  the  performance of  four students  in 
eleven tests. The rows  represent the  marks  (maximum 

0 S2 

with the diagonal terms being represented by the singu- 

lar values S1 = diag(s1, s2, :::, sm) and S2 = diag(sm + 1, 

sm + 2, :::, sn). 

The singular values S1 and S2 are arranged in des- 

cending   order    (s1     s2     · · ·   sm     sm + 1  ·············  

sn 0). Each singular value indicates how much var- 

iance its corresponding eigenvector explains in the orig- 

inal data set. Therefore, S1 represents factors that have 

the largest influence on the original data set (e.g. the 

effects of the changing environmental conditions and 

the effects of damage), while S2 represents the factors 

with the least effects on the original data set (e.g. noise). 

Since S2 can be very small and close to zero, it is usu- 

ally discarded to reduce the dimensions of the original 

data set. If the contribution of all the eigenvectors are 

added together, they will explain all the variances in the 

original data set (i.e. 100% in terms of percentage infor- 

mation of the original data set). Since each principal 

component has a corresponding eigenvector from 

which they are calculated, to know the percentage of 

variance (information) each principal component 

describes, the eigenvalue of that principal component 

can be divided by the summation of all the eigenvalues 

which represent the total information of the original 

data set. 

By applying equation (2), the score matrix Y can be 

generated. Usually, to reduce the dimensions of the 

original data set, only the first m rows (eigenvectors) of 

the loading matrix T are used to construct the score 

matrix. However, in this study, all the rows are kept to 

construct the score matrix, since in this study, PCA is 

used to extract the similarities and differences in the 

original data set rather than reducing the dimensions of 

the original data set. Analyzing only the first few rows 

100%) obtained by each student in a particular test, 

while the columns represent the marks obtained by the 

individual student in each test. For this case, the stu- 

dents represent the different observations (i.e. p = 4), 

while the tests represent the different variables (i.e. n = 

11) affecting the data set (i.e. data set Z). For this illus- 

trative example, the number of variables is more than

the number of observations (n . p). Therefore, there

will only be p 1 number of eigenvectors, hence, only

p   1 number of principal components. Having only

p 1 principal components instead of n components is

not of great importance because when applying PCA

with the proposed damage detection method, only the

first few principal components which have a major con- 

tribution on the data being analyzed will be examined.

Thus, even though this illustration is not of the same

dimensions as the data set of damage sensitivity fea- 

tures (i.e. damage sensitivity features data set with

dimensions n \ p having n principal components) that

will be analyzed, it will not affect the principle behind

the approach adopted due to the fact that only the first

 

 
Table 1. Test results for the four students. 

of  the  score  matrix  (first  few  principal components), 

Test no. Student A Student B Student C Student D 

1 70 71 71 73 
2 65 63 64 65 
3 75 77 75 76 
4 80 81 79 82 
5 79 82 80 80 
6 70 70 65 72 
7 71 70 64 71 
8 80 82 75 80 
9 60 61 60 60 
10 65 67 70 65 
11 85 87 85 86 
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Figure 1. Graph of (a) first principal component and 

(b) second principal component.

few principal components will be examined and the last 

few principal components which have almost no influ- 

ence on the data set will not be investigated. 

Looking at the data alone, it is difficult to extract 

useful information on how each student compares with 

each other; therefore, by applying PCA on the data set, 

common patterns can be extracted to show the students 

with similar performances and to highlight those who 

performed differently. Figure 1 gives the plots of the 

first and second principal components for all four stu- 

dents. It can be seen from plot in Figure 1(b) that no 

useful information on which student is outlier from the 

rest can be extracted since the scores of the students are 

well distributed throughout that component. However, 

from plot Figure 1(a), a clear distinction can be seen 

between student C and the remaining students. Student 

C seems to perform differently from the rest of the stu- 

dents. Looking back at the data set given in Table 1, it 

can be seen that student C performs better in test 10 

than in tests 6 and 7 while students A, B, and D per- 

form better in tests 6 and 7 than in test 10.  From  

Figure 1, it is evident that by applying PCA, the pat- 

terns in the data set can be extracted and important 

information on how the students compare can be 

obtained. Thus, similar to this example, it is expected 

that damage effects can be distinguished from environ- 

mental effects affecting damage sensitivity features of 

structures for damage detection. 

Damage detection method 

As shown previously, PCA can be used to extract pat- 

terns in a data set. When PCA is applied, the first prin- 

cipal component will represent the factor(s) that creates 

most of the variances in the original data set, the second 

principal component for the factor(s) that creates the 

second most variances, and so on. Therefore, to enable 

the first principal component to represent the effects of 

the changing environmental conditions affecting the 

damage sensitivity features, data from two extreme and 

opposite environmental conditions (e.g. temperature of 

30 C and 70 C) can be used to enhance the variability 

in the data set caused by the environmental effects. As a 

result, the plot representing the environmental factor 

will have the greatest span and hence largest variance. 

Each extreme case will be at the opposite side of each 

other on the first principal component plot. Generally, 

only one or two environmental conditions will have a 

large effect on the damage sensitivity features of struc- 

tures; therefore, the first principal component alone is 

generally enough to represent most of the variances in 

the data set. The other components will represent other 

minor factors of the likes of noise affecting the damage 

sensitivity features of the structure. 

If data from an observation gathered at a normal 

environmental condition (e.g. temperature at 208C) 

from the undamaged structure is added to the two 

extreme and opposite cases data set and PCA is per-  

formed, the score of this observation will lie in between 

the two extreme cases in the first principal component 

plot. For this undamaged structure, the first principal 

component alone will account for most of the informa- 

tion of the data set since only the environmental effects 

that have a consequent influence on the data set. Now, 

if data gathered from a damage state structure at a 

normal environmental condition is added to the two 

extreme cases and PCA is applied, the score for that 

damage state will also lie in between the two extreme 

cases in the first principal component plot since that 

component represents the environmental effects. 

However, unlike the undamaged state, for this damage 

state, the second principal component will also repre- 

sent a significant amount of the information  of  the  

data set. This second principal component will repre- 

sent the undamaged and damaged effects affecting the 

structure. In that second component, the two extreme 

cases will cluster together with a separation between 

them observed and will be at the opposite end to the 

damage state observation score on the plot since the 

undamaged structure and the damaged structure have 

completely different behavior from each other. This 

approach can thus be used to distinguish between dam- 

age and environmental effects affecting damage sensi- 

tivity features of structures. The only requirement is 

that a baseline consisting of damage sensitivity features 

obtained at two extreme and opposite environmental 

conditions needs to be created. Subsequent measure- 

ments can then be added to the baseline one at a time  

to create different data sets, and PCA be performed on 

each set for data processing. Analyzing the plots of the 

first few principal components, damage effects can then 

be differentiated from environmental effects. The 

undamaged structure will lie in between the two 

extreme cases, while the damaged structure will lie out- 

side the baseline. Thus, the indicator of the presence of 

damage for this proposed damage detection method is 
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Figure 2. Procedures to follow for damage detection. 

when the monitored observation lies outside the two 

extreme and opposite conditions used as baseline for 

the undamaged structure. 

As mentioned previously, the number of principal 

components to analyze needs to be chosen carefully to 

avoid false alerts. As a general rule, the principal com- 

ponents that have the baseline scores obtained from the 

two extreme cases to have a separation between them 

should be analyzed for damage detection. The principal 

component in which the two baseline cases are mixed 

together should be discarded as well as the following 

components. The reason behind this is that in the cre- 

ation of the baseline, two extreme and opposite cases 

have been selected on purpose so that they have a 

separation between them to indicate two different 

behaviors obtained by the effects of the same factor(s). 

More information on that will be given in the next sec- 

tion so that illustrative examples can be used for better 

understanding. 

Damage detection procedure 

A description of the procedures to follow to implement 

the proposed damage detection method is given in 

Figure 2. Procedures 4–8 should be repeated to analyze 

new measurements for near real-time monitoring. 

Procedure 3 and the last part of Procedure 8 are 

optional since they are not compulsory for the imple- 

mentation of the proposed method. They are here to 

help distinguish whether a new factor that did not  

affect the baseline data set affects the monitored cases. 

 

Case studies 

To illustrate and test the proposed damage detection 

method, two cases are considered in this section. A 

numerical truss structure model, which is subjected to a 

varying temperature to simulate the effects of a varying 

environmental condition, is first analyzed. Then, the 

method is applied to the Z24 Bridge, which was moni- 

tored for nearly one year with realistic damage scenarios 

introduced to the bridge near the end of the monitoring 

period. 

Simulated truss structure model 

The finite element model of the 2D truss structure 

shown in Figure 3 consists of 30 elements. The 
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Figure 3. Two-dimensional truss structure model. 

Figure 5. Variations of natural frequencies with temperature. 

Table 2. Description of undamaged and damaged cases. 

Figure 4. Graph of Young’s modulus versus temperature. 

structure is pin-connected to a wall and all elements are 

pin-connected to each other. All the members are 

assumed to be made with the same steel material with 

Young’s modulus of 200 GPa, density of 7850 kg/m3, 

and cross-sectional area of 0.001 m2. Only one environ- 

mental condition is assumed to be applied to the struc- 

ture, which is a varying temperature condition. To 

simulate the varying temperature condition, Young’s 

modulus is assumed to be temperature dependent 

(Figure 4) with reference temperature taken at 208C. 

The range of temperature considered in this study is 

Case Temperature (8C) Element Extent (%) 

Undamaged 1 10 – – 
Undamaged 2 10 – – 
Undamaged 3 20 – – 
Undamaged 4 40 – – 
Damaged 1 0 8 10 
Damaged 2 40 8 10 
Damaged 3 0 8 5 
Damaged 4 -10 14 and 30 5 and 5 

Four undamaged and four damaged cases subjected 

to varying temperature are used to test the robustness 

of the proposed method. The descriptions of the cases 

are given in Table 2. To further illustrate, for example, 

for the first undamaged case, it is assumed that the tem- 

perature of the structure is at 108C, while for the first 

damaged case, the temperature is assumed to be at  08C 
108C to 408C. The temperature across the whole 

structure is assumed to be the same. It is assumed that 

the first four natural frequencies of the structure are 

readily available to be used as damage sensitivity fea- 

tures. Damage in the structure is assumed to be repre- 

sented by reductions in axial stiffness of the truss 

members. 

A plot of the variations of natural frequencies with 

temperature is given in Figure 5. It can be seen that the 

natural frequencies decrease with an increase in tem- 

perature. Hence, the use of natural frequencies as dam- 

age sensitivity features can give rise to false damage 

alerts if the effects of the temperature change are not 

considered. Thus, the proposed method is applied to 

distinguish between damage effects and temperature 

effects affecting the natural frequencies of the truss 

structure. 

with element 8 having a damage extent of 10% (reduc- 

tion in stiffness). 

To distinguish damage effects from temperature 

effects affecting the damage sensitivity features of the 

truss structure, the baseline of the undamaged structure 

should consist of natural frequencies of the structure 

obtained at two extreme and opposite temperature con- 

ditions. For a better performance of the proposed 

method, the baseline is made to consist of 10 extreme 

cases with five cases taken at temperatures of 268C to 

308C and five cases at temperatures of 668C to 708C 

with 18C interval. Five cases at low temperature and 

five cases at high temperature are chosen so that the 

relationship between the natural frequencies and the 

low and high temperatures can be extracted. 

For the method to perform near real-time monitor- 

ing, each new observation to be monitored should be 
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added to the baseline one at a time to create new data 

sets and PCA be applied on each new data set for pro- 

cessing. Each new data set Z will be a matrix of dimen- 

sions 4 3 11 with the 4 rows corresponding to the first 

four natural frequencies of the structure, while the 11 

columns to the 10 baseline observations plus the new 

observation which needs to be analyzed 

f1, 1 · · ·   f1, 10 f1, ob 

Z =   
f2, 1 · · ·   f2, 10 f2, ob 5 
f3, 1 · · ·   f3, 10 f3, ob 

f4, 1 · · ·   f4, 10 f4, ob 

where fij means the ith frequency from the jth observa- 

tion; ob represents the new observation that needs to be 

monitored. 

Since temperature is the only environmental para- 

meter considered here and two extreme and opposite 

cases have been considered, as a result, the temperature 

effects will be represented by the first principal compo- 

nent. This is because the first principal component 

which accounts for most of the variances in the original 

data set has been forced to account for the effects of the 

varying temperature by selecting two extreme and 

opposite temperature conditions which will have com- 

pletely opposite behavior to each other. The following 

principal components will account for the other factors 

of the likes of damage affecting the data set. The results 

of the four undamaged cases are first presented in 

Figure 6. Note that only the plots of the first two princi- 

pal components are given in Figure 6. For all the cases, 

only the first principal component is retained for analy- 

sis for damage detection since only in that component 

the low and high temperatures baseline observations 

have a separation between them. The first 10 observa- 

tions (dots) on the plots represent the two extreme cases 

used as baseline, while the eleventh observation (cross) 

is the monitored case that needs to be analyzed. 

From the  first  principal  component  plots  in  

Figure 6, it can be seen that for all  the  undamaged 

cases under the varying temperature condition, the pro- 

posed method does not raise the damage alert. All the 

monitored cases are between the two extreme and 

opposite cases, which indicates that the only conse- 

quent factor(s) affecting the natural frequencies of the 

structure is the temperature variation. It can therefore 

be concluded that the proposed method performs well 

for the undamaged cases subjected to varying tempera- 

tures. In addition to assessing the structural conditions 

of the structure, this method can also give a rough indi- 

cation of the temperature condition the structure is 

faced with without directly recording the temperature 

measurement. From the first principal component plots 

in Figure 5, the evolution of temperature from unda- 

maged case 1–undamaged case 4 can be seen clearly. It 

Figure 6. Graph of first and second principal components for 

undamaged (a) case 1, (b) case 2, (c) case 3, and (d) case 4. 

can be seen that the cross representing the monitored 

cases  moves   from   one   extreme   temperature   case 

( 308C) to the other extreme temperature case (70 8C) 

with increasing temperature. 

It is interesting to note that the first principal com- 

ponent of the first undamaged case represents almost 

100% of the information of the original data set, and 

the second principal component represents 1.4954 3 

10-16  (%), while  the  rest  of the components  represent



even less.For the other undamaged cases, the first prin- 

cipal component also represents almost 100% of the 

information of the original data set. Since the principal 

components are formed using the loading matrix,  

which is directly related to the eigenvectors and singu- 

lar values of the covariance matrix of X, those percen- 

tages are reflected on the magnitudes of the principal 

component scores. It can also be seen from Figure 6 

that the magnitude of the observations in the first prin- 

cipal component plot is much larger than that in the 

second principal component plot for all four unda- 

maged cases since the first principal component repre- 

sents nearly 100% of the information of the original 

data sets, while the second component merely repre- 

sents any information. 

The principal components plots for the damaged 

cases in Table 2 are given in Figure 7. Since only the 

first two principal components have low- and high- 

temperature baseline observations not being mixed with 

each other, plots of only the first two principal compo- 

nents are given for each damaged case. The plots of the 

first principal component for all damaged cases show 

the monitored cases between the two extreme cases. 

Similar to the undamaged cases, this indicates that the 

temperature condition the structure is faced with is 

between the two extreme cases. The evolution of the 

temperature condition can also be seen from the first 

principal component plots. For example, it can be seen 

that the first principal component plots for damaged 

cases 1 and 3 are quite similar since both cases have the 

same temperature of 08C. However, in damaged case 2, 

the monitored observation moves toward the high- 

temperature baseline since the temperature for that case 

is above 08C; while in damaged case 4, it moves toward 

the low temperature baseline since the temperature for 

that case is below 08C. 

From the second principal component plots in 

Figure 7, it can be seen that damage alert is raised for 

all the cases since the monitored cases are separated 

from the two extreme cases used as baseline. The two 

extreme cases cluster together on one side of the plot 

with a separation between them being observed, while 

the monitored cases are at the other end on the plot. 

This suggests that a factor other than the temperature 

variation has a consequent influence on the data set, 

and this is attributed to damage. Damage evolution 

from case to case can also be seen clearly from the 

plots. For example, for cases 1 and 3, which have the 

same temperature and same damage element but with 

different damage extent, the second principal compo- 

nent differs. The damaged case 3 has a smaller devia- 

tion from the baseline than damaged case 1 in the 

second principal component plot. This is because dam- 

aged case 3 has a smaller damage extent (5%) than 

damaged case 1 (10 %), thus producing a smaller 

Figure 7. Graph of first and second principal components for 

damaged (a) case 1, (b) case 2, (c) case 3, and (d) case 4. 

variance in the data set when compared to damaged 

case 1. Therefore, from the results obtained, it can be 

concluded that the proposed method performs well in 

distinguishing damage from temperature effects affect- 

ing the natural frequencies of the structure. Small dam- 

ages as well as multiple damages in the structure are 



Figure 8. Graph of (a) first principal component and 

(b) second principal component for data set D1.

also well detected, which show the robustness of the 

proposed method. 

For the damaged scenarios, it is worth noting that  

the first and second principal components, when com- 

bined together, contribute to almost 100% (99.9995% 

and 0.0005%, respectively) of the information of the 

original data set. Also, the observations in the first 

principal component for the damaged cases have rela- 

tively the same magnitude as that of the undamaged 

cases. However, in the second principal component, the 

observations of the damaged cases have much higher 

magnitude than those of the undamaged cases, which 

therefore may indicate that another factor affecting the 

data set was not present in the undamaged cases. 

An explanation on the number of principal 
components to analyze 

To select the number of principal components to ana- 

lyze for damage detection, it may be tempting to 

choose those principal components that when summed 

up together describe almost 100% of information of  

the original data set. However, using this approach is 

subjective and can lead to false alerts. Generally, the 

environmental effects as well as damage effects will 

account for most of the information in the data set. 

However, other factors of the likes of noise and some 

nonlinear effects might also affect the data set greatly 

and these factors might account for some percentages 

of the information. Thus, analyzing these principal 

components which represent the noise effects and other 

nonlinear effects might lead to false alerts since these 

factors might affect the two extreme cases and the mon- 

itored case in a similar way, thus mixing and clustering 

them together in the principal component plots. As a 

result, false damage alerts may be raised in cases where 

the undamaged monitored cases lie outside the mixed 

baseline observations. Hence, a more  practical 

approach to choose the number of principal compo- 

nents to analyze is also proposed in this article. 

In the proposed approach, as mentioned previously, 

only the principal components that have the two 

extreme cases baseline observations to be separated 

from each other that should be analyzed for damage 

detection. The principal component that has baseline 

observations to be mixed together should be discarded 

as well as the following components. The reason behind 

this is that the baseline is made to consist of damage 

sensitivity features obtained at two extreme and oppo- 

site conditions so that for the same factor(s) (e.g. tem- 

perature and damage of structural components) 

affecting the original data set greatly, the two extreme 

cases will behave differently from each other, thus cre- 

ating a distinction between them in the principal com- 

ponent plots. An illustrative example is given below 

using the data obtained from the truss structure case 

study for better understanding. 

First, consider a data set D1 composed of the first 

four natural frequencies of the undamaged truss struc- 

ture (Figure 3) used as baseline in the truss structure 

case study above (matrix Z with dimensions 4 3 10). 

This data set D1 is also used as a baseline here for the 

proposed method. PCA is applied to the data set and  

the first and second principal component plots are  

given in Figure 8. In the first principal component plot 

(Figure 8(a)), the high-temperature measurements clus- 

ter together toward the left-hand side while the low- 

temperature measurements cluster together on the right-

hand side of the plot as was meant to by choosing these 

two extreme and opposite temperature condi- tions. 

This separation between them indicates that the high-

temperature measurements behave differently from the 

low-temperature measurements for that par- ticular 

principal component, and since it is known that two 

extreme and opposite temperature conditions have been 

chosen, it is concluded that the first principal 

component represents the temperature factor affecting 

the data set. In the second principal component plot 

(Figure 8(b)), the measurements from both temperature 

groups are mixed together and no clear distinction 

between them exists. This may be attributed to some 

factors that have the same influence on the high- and 

low-temperature measurements. It can also be seen that 

the magnitude of the observations in that component is 

relatively small when compared to the first principal 

component, which means that this factor does not 

influence the original data set greatly when compared 

to the temperature effects. Thus, it is proposed to ana- 

lyze the first principal component only, since only in 

that component that a clear distinction between  the  

two temperature groups can be seen, which was purpo- 

sely designed for, through the two extreme cases 

adopted. 

Now, consider another data set D2 with dimensions 

4 3 11, composed of the natural frequencies of D1 used 



Figure 9. Graph of (a) first principal component and 

(b) second principal component for data set D2. Figure 10. Graph of (a) first principal component and 

(b) second principal component for data set D3.

as baseline for damage detection plus another set of fre- 

quencies obtained from the undamaged case  1  in 

Table 2 used as the monitoring case. The first and sec- 

ond principal component plots for this data set are 

given in Figure 6(a). For convenience, the plots are 

given again here in Figure 9. From the first principal 

component plot, it can be seen that the low- and high- 

temperature baseline observations are well separated as 

was the case for data set D1. This, therefore, implies 

that this component represents the same factor as the 

first principal component of D1, which is the tempera- 

ture factor. Moreover, in this plot, the observation that 

needs to be monitored lies between the baselines hence 

indicating that the temperature of this observation lies 

somewhere between the two extreme cases. In the sec- 

ond principal component plot, the baseline observa- 

tions are mixed together and no separation can be seen 

between the high- and low-temperature measurements 

as was the case for data set D1. Furthermore, the mag- 

nitude of the observations for that component is rela- 

tively small, which indicates that this factor does not 

have a consequent influence on the data set. Hence, it 

can be concluded that this principal component does 

not need to be analyzed since the low- and high- 

temperature baselines are not separated from  each 

other which was initially designed to be by using the 

two extreme cases. Thus, for data set D2, only the first 

principal component needs to be analyzed, and from  

the plot, it is concluded that the structure is  

undamaged. 

It should be noted that if the second principal com- 

ponent plot of data set D2 is analyzed, damage alarm 

needs to be raised since the monitored case lies outside 

the baseline. This may be due to the fact that this sec- 

ond principal component affects the baseline and the 

monitored case in a similar way and hence there might 

be some cases where the monitored case will lie outside 

the baseline. 

Figure 10 presents the first and second principal 

component plots of another data set D3, composed of 

natural frequencies of D1 used as baseline for damage 

detection and damaged case 4 of Table 2 used for mon- 

itoring. These two plots are the same as those given in 

Figure 7(d). They are given again here for convenience 

since this damaged case is being used as an example to 

demonstrate how the principal components will behave 

under the presence of damage. The first principal com- 

ponent plot has the low- and high-temperature base- 

lines being separated from each other similar to cases 

D1 and D2. This, therefore, indicates that this compo- 

nent represents the temperature effects affecting the 

data set. In the second principal component plot, a 

separation between the low- and high-temperature 

baselines can also be seen. In this plot, the two baseline 

cases cluster together on the right-hand side of the plot 

with a separation between them can be observed, while 

the monitored case is at the extreme other end of the 

plot on the left-hand side. When compared to the sec- 

ond principal component plots of data set D1 and D2,  

a distinct difference can be seen in the way the observa- 

tions cluster as well as the magnitude of the observa- 

tions in that principal component. Thus, this indicates 

that another factor(s) affects the data set D3 which did 

not affect the data sets D1 and D2. Since the baseline 

and the monitored case are at two ends and since the 

baseline cases are well separated, thus, it can be con- 

cluded that this component represents the undamaged 

and damaged effects affecting the structure. Hence, for 

this case, the first and second principal components 

should be analyzed for damage detection. From the 

second principal component plot, damage can be con- 

cluded to have occurred since the monitored case lies 

outside the baseline. 
Figure 11 gives the third and fourth principal com- 

ponent plots for data set D3. They are given here to 

determine whether these components should be retained 

for analysis or they can be discarded. From the third 

principal component plot, it can be seen that all the 

baseline  observations  are  mixed  together.  Thus,  this 



Figure 12. Z24 Bridge (Adapted from Peeters and De Roeck.4) 

Figure 11. Graph of (a) third principal component and 

(b) fourth principal component for data set D3.

component as well as the following components should 

not be analyzed for damage detection. 

To determine the number of principal components  

to analyze for damage detection, it is proposed to ana- 

lyze only the plots where the two extreme and opposite 

cases used baseline have a separation between them. 

This can be achieved by plotting the first few principal 

components and discarding the principal component in 

which the two extreme cases used as baseline are mixed 

together as well as the following components. To get a 

better understanding of the factors that affect the data 

set as well as to make sure that the selected extreme 

cases baseline will be separated from each other after 

the application of PCA, it is suggested to apply PCA  

on the baseline data set alone first to get an overview  

of which principal components have the baseline being 

separated. Then, when applying PCA for monitoring, 

the results can be compared to the principal compo- 

nents obtained from the baseline data set alone to see 

whether they are similar, or whether a new factor(s) is 

affecting the data set. Usually, the first principal com- 

ponent will represent the effects of the selected environ- 

mental condition used to create the baseline since two 

extreme and opposite cases have been adopted, and the 

second principal component will represent the effects of 

damage since this is the second most consequent effect 

affecting the data set. However, there will be cases 

where the first principal component will represent the 

undamaged and damaged effects. This will be the case 

when damage in the structure is big enough to create a 

bigger variance in the data set than the two extreme  

and opposite environmental conditions used  as 

baseline. 

Z24 Bridge 

The Z24 Bridge (Figure 12), a post-tensioned concrete 

box girder bridge, was located in Switzerland connect- 

ing Koppigen and Utzenstorf and overpassing the A1 

highway between Bern and Zurich. It was a three-span 

Table 3. Description of the progressive damage cases applied 

to the Z24 Bridge. 

Test no. Case description 

1 Reference state 
2 System installation for pier settlement 
3 20-mm settlement of pier
4 40-mm settlement of pier
5 80-mm settlement of pier
6 95-mm settlement of pier
7 Foundation tilt
8 New reference state
9 12 m2-chipping of concrete
10 24 m2-chipping of concrete
11 Landslide
12 Concrete hinges failure
13 2 anchor heads failure
14 4 anchor heads failure
15 Rupture of 2 tendons out of 16
16 Rupture of 4 tendons out of 16
17 Rupture of 6 tendons out of 16

 

bridge with a main span of 30 m and two side spans of 

14 m each. It was monitored for almost a year to col- 

lect different environmental parameters as well as accel- 

eration measurements. The acceleration measurements 

were recorded for almost every hour and an automatic 

system identification system was in place to derive the 

modal parameters of the bridge. The Z24 Bridge was 

gradually damaged near the end of the monitoring 

period so that researchers could use the bridge as a 

benchmark structure to detect damages in the presence 

of the varying environmental conditions it was faced 

with. 

The damaged cases that the bridge was subjected 

with are presented in Table 3. The damaged cases were 

selected so that they represented the possible damage 

scenarios that could arise to bridges during their life- 

time. Therefore, this gives a good benchmark to test  

the proposed method to detect real damaged scenarios. 

Krä mer et al.26 gave a detailed review of the damage 

cases introduced to the bridge. 

The first four natural frequencies of the bridge along 

with several environmental parameters were made 

available to researchers. Therefore, the first four natu- 

ral frequencies of the bridge are used as damage 



Figure 13. The variations of the first four natural frequencies 

over the whole monitoring period. 

sensitivity features in this study. Figure 13 gives the plot 

of the variations of the first four natural frequencies of 

the bridge with time over the whole monitoring period. 

It can be seen that the natural frequencies  fluctuate 

over time and analyzing the changes in natural frequen- 

cies without considering the environmental effects, at 

different time instance, cannot be used for damage 

detection. This would lead to false damage alerts. 

Using the proposed method presented in this article, 

damage detection under the varying environmental 

conditions can therefore be realized. 

To perform the damage detection method proposed 

in this article, a baseline must first be established using 

natural frequencies obtained at two extreme and oppo- 

site environmental conditions. Since temperature had a 

major influence on the natural frequencies of the 

bridge, as was reported by Peeters and De Roeck,4 and 

since the temperature of the air is the environmental 

parameter that affects the rest of the temperature of the 

structure, it is chosen as the key parameter to help in 

the creation of the baseline. A bilinear relationship can 

be found between the temperature of the air and the 

first four natural frequencies of the bridge as shown in 

Figure 14 (graph only for monitored cases before dam- 

age was introduced). Peeters and De Roeck4 suggested 

that the bilinear relationship is attributed to the asphalt 

layer which, at temperature below 08C, contributed to 

the increase in stiffness of the structure while at warmer 

temperature, it did not have an influence. These, there- 

fore, affected the vibration properties differently. 

Consequently, the baseline should consist of natural 

frequencies obtained at temperatures below 08C and at 

Figure 14. Graph of temperature versus the Z24 Bridge’s 

(a) first natural frequency, (b) second natural frequency,

(c) third natural frequency, and (d) fourth natural frequency.

temperatures above 08C to take into account this non- 

linear effects. It was decided that the baseline will be 

made up of 16 observations, with 8 observations 

obtained from the day having the lowest temperature 

and 8 observations from the day having the highest 

temperature so that the relationship between the low or 

high temperatures and the natural frequencies can be 

captured. 

It should be noted that in the creation of the base- 

line of the undamaged structure, the ambient tempera- 

ture parameter is used because in the literature, it was 

found that when compared to other environmental 

conditions of the likes of humidity, temperature has a 

major influence on the vibration properties of bridges. 

And since PCA arranges the principal components in 

descending order, to make sure that the first principal 

component will account for an environmental effect, 

the temperature factor is chosen since it has the greatest 

effect on vibration properties when compared to other 

factor. The remaining environmental factors affecting 

the natural frequencies of the bridge will then be repre- 

sented by the minor principal components. Hence, 

although the ambient temperature is used in the cre- 

ation of the baseline, the proposed method will be able 

to separate the effects of other environmental condi- 

tions from damage effects since those environmental 

conditions will be represented by other minor principal 

components. 
To get a rough indication on how many principal 

components  are  affected  by choosing the two extreme 



Figure 15. Graph of (a) first principal component and 

(b) second principal component for the baseline.

and opposite ambient temperatures to construct the 

baseline, PCA is first applied to the baseline data set 

alone (matrix Z with dimensions 4 3 16). The first and 

second principal component plots are given in Figure 

15. The high-temperature measurements in the first

principal component plot cluster together on the left- 

hand side, while the low-temperature measurements

cluster together on the right-hand side. Since two

extreme and opposite temperature measurements have

been chosen, this therefore indicates that the tempera- 

ture variation affecting the data set is represented by

the first principal component. In the second principal

component plot (Figure 15(b)), the low- and high- 

temperature measurements cluster and mix together.

The magnitude of the observations for that component

is also relatively small when compared to the first prin- 

cipal component. This second principal  component

may represent other factors affecting the extreme cases

in a similar way of the likes of other environmental

conditions (e.g. humidity) or some nonlinear  effects

and noise. The way the baseline observations cluster

and the magnitude of the observations in the principal

components are noted for further comparison when the

damage detection method is applied for monitoring.

After the baseline has been formulated, each subse- 

quent measurement can be added to the baseline data 

set one at a time to give a 4 3 17 matrix (matrix Z),  

and PCA be applied to obtain the principal compo- 

nents (to obtain matrix Y of equation (2)). To verify 

that the method does not alert damage when the struc- 

ture is undamaged, and that it alerts damage when the 

structure is damaged, all the undamaged and damaged 

observations recorded are tested. Plots of results (first 

and second principal component plots only) of three 

randomly chosen undamaged cases and three randomly 

chosen damaged cases are given in Figures 16 and 17, 

respectively. 

 

 

 

 

 

 

Figure 16. Graph of first and second principal components 

for randomly chosen undamaged (a) case 1, (b) case 2, and 

(c) case 3.

From the first principal component plots given in 

Figures 16 and 17, it can be seen that the low- and 

high- temperature measurements for the two extreme 

cases used as baseline have a clear distinction between 

them, while they are mixed together in the second prin- 

cipal component plots. Hence, the second principal 



Figure 18. Results of the first principal component for all 

undamaged cases observation. 

Figure 17. Graph of first and second principal components for 

randomly chosen damaged (a) case 1, (b) case 2, and (c) case 3. 

component is discarded and only the first principal 

component plots are analyzed to distinguish damage 

effects from environmental effects. For the undamaged 

cases (Figure 16), the monitored cases lie between the 

two baselines in the first principal component plots. 

Thus, it is concluded that the structure is undamaged 

and the only significant factor affecting the data set is 

the temperature variation. The different temperature 

conditions the bridge was faced with from case to case 

can also be seen from the plots. For the damaged cases 

(Figure 17), the first principal component plots show 

that the monitored cases lie outside the baselines. This 

indicates that another factor(s) other than the tempera- 

ture variation affects the data set significantly. This is 

attributed to damages which were introduced to the 

bridge during the monitoring period. Thus, damaged 

alert is raised for these damaged cases. The first princi- 

pal component for the undamaged cases represents the 

temperature factor, while for the damaged cases, it rep- 

resents the undamaged and damaged effects affecting 

the data set, and this is due to the fact that the dam- 

aged and undamaged effects produce a greater variance 

in the data set than the temperature effects. 

To give a better representation of the results 

obtained for all the cases, plots of the first principal 

component for all the undamaged cases and damaged 

cases are given in Figures 18 and 19, respectively. All 

the cases are adjusted to have baseline values of 0 (high 

temperature) and 1 (low temperature). It should be 

noted that the plots give only the monitored cases being 

analyzed. The two horizontal dotted lines in the plots 

represent the baselines. It can be seen from both figures 

that most of the cases being analyzed are well classified. 

The successful rate of alerting damage for the damaged 

bridge is 98.0% while alerting undamaged when the 

bridge is undamaged is 97.8%. Some undamaged cases 



Figure 19. Results of the first principal component for all 

damaged cases observation. 

are not well classified using the proposed method, and 

this may be attributed to the time lag in which the tem- 

perature of the whole bridge’s materials change. The 

baseline of the undamaged structure was constructed 

with the help of the ambient temperature measure- 

ments. However, it is the temperature of the materials 

of the bridge that determines  the vibration properties  

of the structure. Thus, if there was a time lag in which 

the temperature of the materials of the bridge change, 

the actual baseline used may not represent the real 

extreme cases. The two extreme temperature cases of 

the materials might have happened several hours later, 

thus the observations used in the baseline might not be 

those that should be used. Therefore, some of the unda- 

maged cases will lie outside the baseline as can be seen 

in Figure 18. 
From the results given in Figure 18, the temperature 

variations the structure was faced with can be seen 

clearly. The damage evolution can also be observed 

using the proposed method as can be observed from 

Figure 19. Moreover, from the results obtained, it can 

be seen that even though the ambient temperature was 

used in the selection of the baseline, this did not affect 

the performance of the proposed method to distinguish 

between damaged effects and all the environmental 

effects (e.g. humidity) affecting the natural frequencies 

of the bridge structure. It can therefore be said that this 

method proves its robustness in analyzing near real 

time this real-life bridge structure which was subjected 

to varying environmental conditions which had non- 

linear effects on the damage sensitivity features. 

Conclusion 

A damage detection method is developed in this article 

to analyze structures that are subjected to varying envi- 

ronmental conditions. An approach to create the base- 

line of the undamaged structure, which consists of 

damage sensitivity features obtained at two extreme 

and opposite environmental conditions, is proposed.  

To allow near real-time monitoring of structures, sub- 

sequent measurements can be added to the baseline one 

at a time to create different data sets, and PCA is 

adopted for data processing. Analyzing the first few 

principal components of each data set, damage effects 

can then be distinguished from the effects of the vary- 

ing environmental conditions. To decide on the number 

of principal components to be analyzed, it is proposed 

to analyze only the principal components that have the 

two extreme and opposite baseline observations to be 

separated from each other. The principal component 

that has the two extreme baseline observations to be 

mixed together should be discarded as well as the fol- 

lowing components. 

The proposed method is tested and validated using a 

numerical truss structure subjected to a varying tem- 

perature to simulate a varying environmental condition 

and the Z24 Bridge in Switzerland. The results demon- 

strate the ability of the proposed method in distinguish- 

ing damage effects from environmental effects affecting 

the damage sensitivity features of the structures. 

Damage evolution as well as the environmental condi- 

tions the structures are faced with can also be obtained 

from the proposed method. The method also proves its 

robustness in analyzing structures having damage sensi- 

tivity features which have nonlinear relationship with 

the environmental conditions in which they are 

obtained. The high successful rates obtained, show that 

the method does not require the baseline to consist of 

damage sensitivity features obtained from a wide range 

of environmental conditions. After the baseline is cre- 

ated, the environmental measurements are not required 

anymore to perform the proposed method, which, 

decreases the risk of failure of the SHM system. 

Another positive aspect of the proposed method is that, 

the control limits of the baseline created from the unda- 

maged structure, is dictated by the extreme environ- 

mental conditions used. This, as a result, removes the 

needs of the engineers to make judgments on which 

control limits to adopt for damage detection. Also,  

even though the temperature measurements have been 

used for the creation of the baseline, other environmen- 

tal factors of the likes of humidity and wind have been 

well separated from damaged effects using the pro- 

posed method as can be seen from the Z24 Bridge case 

study. Moreover, since the method allows the moni- 

tored cases to be analyzed one at a time, thus, this 



method can be used for near real-time monitoring of 

structures. The two possible factors that hinder real- 

time monitoring are (1) the time required to gather the 

damage sensitivity features and (2) the amount of time 

to perform the analysis. Due to all these aforemen- 

tioned positive aspects of the proposed method, it can 

be concluded that the proposed method is a step for- 

ward for the implementation of real-time damage 

detection of real-life civil structures. 

However, the proposed method has the limitation 

that it requires the baseline to consist of damage sensi- 

tivity features obtained at two extreme and opposite 

environmental conditions. This can sometimes be diffi- 

cult to obtain. Moreover, the method requires the base- 

line to be selected using one environmental parameter 

which can lead to difficulties in choosing which envi- 

ronmental parameter to use since different environmen- 

tal parameters may lead to different baselines as was 

discussed in the Z24 Bridge case study. Further work is 

on course to develop an approach to create the extreme 

cases baseline which will not be reached by the struc- 

ture under its normal environmental conditions without 

using measurements of the environmental parameters  

so as to ensure that all the monitored observations in 

their undamaged status will lie inside the baseline. 
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