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Abstract 

 

The epithelial permeation of water-soluble fluorescent PAMAM dendrons based on 7H-

benz[de] benzimidazo [2,1-a] isoquinoline-7-one as a fluorescent core across epithelial cell 

models MDCK I and MDCK II has been quantified.  

 

Hydrodynamic radii have been derived from self-diffusion coefficients obtained via pulsed-

gradient spin-echo Nuclear Magnetic Resonance (PGSE-NMR). Results indicate that these 

dendritic molecules are molecularly disperse, non-aggregating, and only slightly larger than 

their parent homologues. MDCK I permeability studies across epithelial barriers show that 

these dendritic molecules are biocompatible with the chosen epithelial in-vitro model and can 

permeate across MDCK cell monolayers. Permeability is demonstrated to be a property of 

dendritic size and cell barrier restrictiveness indicating that paracellular mechanisms play the 

predominant role in the transport of these molecules.  

 

 

Keywords: PAMAM dendrons, water-soluble fluorescent dendrons, self-diffusion 

coefficient, hydrodynamic radii, permeability, imaging and visualisation. 
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1. Introduction 

There is continuing interest in water-soluble fluorescent dendrimers for biological applications 

for visualization and diagnostic imaging purposes.[1-6] Fluorescent labels are required to have 

high sensitivity, appropriate excitation and emission maxima, and specific functionality. It is 

these requirements that necessitate the development of new fluorescent labels with high 

detection limits and appropriate fluorescent behaviour.[7] Self-quenching is one of the key 

challenges in aqueous media due to the aggregation of the often hydrophobic fluorophore. 

Hence, it has been found beneficial to use bulky water-soluble dendritic structures to hinder 

self-association.[6] Fluorescent units can be incorporated within a dendrimer as either 

peripheral groups, branch points or as the core. It is clear that the location of the fluorophore 

influences its properties but also has a major role in directing the method and complexity of 

the synthesis of the dendrimer [6]. The loading of fluorophores onto the periphery of 

dendrimers can present many technical complexities including difficulties in the stoichiometric 

control of the synthesis.[8, 9]  Intramolecular fluorescent quenching issues are also more likely 

to occur when the fluorescent label is attached to the dendrimer’s periphery, leading to the 

reduced overall fluorescent activity of the dendrimer.[6, 8, 9] These disadvantages may be 

avoided by incorporating the fluorophore as the core of a dendrimer or at the focal point of a 

dendritic molecule (dendron).  

Due to their strong fluorescence and high photostability, derivatives of 1,8-naphthalimide are 

widely used as fluorescent markers in biology,[10] light-emitting diodes,[11-13] photo-

induced electron transfer sensors,[14-18] fluorescent switches,[19-21] and photo-

chemotherapeutic inhibitors.[22-26] A number of 1,8-naphthalimide derivatives were screened 

for fluorescence and 7H-benz[de]benzimidazo[2,1-a]isoquinoline-7-one (BBIQ) selected for 

use as the fluorophore due to its strong fluorescence (as assessed by relative fluorescence 

quantum yields).[7, [27]-43]  

Since their development in the mid-1980s, PAMAM dendrimers have shown great potential in 

being utilised as drug delivery vehicles due to their biocompatibility, low polydispersity indices 

and high hydrophilicity. PAMAM dendrimers can additionally mimic globular proteins,[28] 

are readily transported across the epithelial barrier of the gut,[29-31] inhibit protein-protein 

binding,[32] and can be tailored to carry multiple cargo due to their high multi-valency. While, 

in general, PAMAM dendrimers are of biomedical interest, it is the anionic carboxylate-

terminated PAMAM dendrimers which are considered to be of greater potential as drug 

delivery vehicles given their high biocompatibility in contrast to the high generation cationic 
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dendrimers, [29],[33] whilst also displaying rapid transport across epithelial barriers. [34]  

 

Various studies have repeatedly demonstrated that the transport of PAMAM dendrimers across 

epithelial barriers is a function of their concentration, surface charge and their molecular size, 

especially at higher generations.[29-31, 35] Cationic PAMAM dendrimers terminated with -

NH2 have consistently demonstrated a detrimental effect on cell barrier integrity in-vitro. This 

is highlighted by their effect of decreasing the transepithelial electrical resistance (TEER) and 

increasing in the transport of paracellular markers such as 14C-mannitol, especially with 

cationic dendrimers with higher generations.  In contrast, TEER and 14C-mannitol transport 

were not influenced by PAMAM dendrimers terminated with OH groups and COOH 

groups;[36] These studies point to an optimum size and charge of PAMAM dendrimers that 

can effectively translocate drug molecules across the epithelial barrier of the kidney and gut. 

Conversely, a systematic correlation between the effect of charge, size, and degree of surface 

modification of these dendrimers on their permeability across the intestinal barrier have not 

been assessed.  

 

The objective of this work is to investigate the physicochemical properties of novel PAMAM 

dendritic carboxylate-terminated molecules with fluorescent cores and their transepithelial 

transport using an in-vitro model.   

 

2. Materials and methods 

 
2.1. Materials 

Precursors were purchased from Sigma-Aldrich or Acros Organics/Fisher Scientific and were 

used without further purification. Anhydrous dichloromethane was obtained by distillation 

over calcium hydride under nitrogen atmosphere. All reactions involving air/moisture sensitive 

reagents were performed in oven-dried glassware, under a nitrogen atmosphere. TLC analysis 

refers to analytical thin layer chromatography, using aluminum-backed plates coated with 

Merck Kieselgel 60 GF254. Flash chromatography was performed on silica gel 60A (35-

70 micron) chromatography grade (Fisher Scientific). Melting points were recorded using a 

Gallenkamp Melting Point Apparatus. Infrared spectra were recorded in the range 4000-600 

cm-1 using a Perkin-Elmer 1600 series FTIR instrument either as a thin film or as a nujol mull 

between sodium chloride plates. UV Absorption spectra were recorded on a JASCO (V-570) 

UV/Vis/NIR spectrophotometer. 1H and 13C NMR spectra were recorded in MeOD or CDCl3 
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solution (as stated) using an Avance Bruker DPX 400 instrument (400 MHz) or an Avance 

Bruker DPX 500 (500 MHz). All chemical shifts (δ) are reported in ppm with referenced to 

TMS (δ = 0.0). Low-resolution mass spectrometric data were determined using a Fisons VG 

Platform II quadrupole instrument using electrospray ionisation (ES) unless otherwise stated. 

High-resolution mass spectrometric data were obtained in electrospray (ES) mode on a Waters 

Q-TOF micromass spectrometer. Matrix Assisted Laser Desorption - time of flight Mass 

Spectrometry (MALDI-TOF) is available using a Waters Maldi Micro MX research grade 

instrument. 

 

 
2.2. Methods 

 

2.2.1.  Preparation of  fluorescent PAMAM-based dendritic Molecules  

The Synthetic procedures and characterizations of the fluorescent PAMAM-based dendritic 

carboxylic salt molecules G0.5, G1.5 and G2.5 (Figure 1) are presented in supplementary 

information (SI).  

Figure 1 

 

 

2.2.2.  Pulsed-Gradient Spin-Echo NMR (PGSE NMR)   

PGSE-NMR measurements were conducted on a Bruker AMX360 NMR spectrometer using a 

stimulated echo-sequence [37]. Dendron samples were prepared in D2O at concentrations 

ranging from 9.0 - 23 mM L-1 and all measurements made at 37 oC.  

 

2.2.3.  Self-diffusion coefficient (Ds).  

The self-diffusion coefficient, Ds were extracted by fitting the measured PGSE-NMR peak 

integral to equation 1. 
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where A (G, δ) is the measured NMR peak integral, γ is the magnetogyric ratio, Δ the diffusion 

time (140 ms), σ the gradient ramp time (250 μs), δ the gradient pulse length (500 μs < δ < 3 

ms) and G the field gradient strength (0.5< G < 3 Tm-1). 

 

2.2.4.  Hydrodynamic radii (Rh) 

The hydrodynamic radius (Rh) of the three fluorescent PAMAM–COONa terminated (G0.5, 

G1.5 and G2.5) dendrons as a function of concentration were investigated by diffusion NMR. 

The self-diffusion coefficients for each of the three PAMAMs as a function of concentration 

were fitted to a power series (Figure 2) and extrapolated to infinite dilution, from which the 

hydrodynamic radius was calculated using the Stokes-Einstein equation (2).[38]  

Rh=
KBT

6πηDs
                                   (2) 

 

where (kB) is the Boltzmann constant, (T) is the temperature in Kelvin, (η) is the viscosity of 

the solvent (water) and (Rh) is the hydrodynamic radius of the fluorescent Dendron. 

 

2.2.5.  Permeability studies 

MDCK I and MDCK II cells were seeded at 45,000 cells/cm2 onto polyester 24-well 

Transwell® filters of 0.8 µm mean pore size, 0.33 cm2 surface area (Corning Incorporated, 

Corning, NY).  Cells were maintained in T-75 flasks using Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine serum, 10,000 units/mL penicillin, 

10,000 µg/mL streptomycin at appropriate growth conditions (37 oC, 5% CO2 and relative 

humidity). Growth medium was changed every 2 days and cells were passaged at 70-90% 

confluency using 0.25% trypsin/ethylenediamine tetraacetic acid (EDTA) solution. Transport 

medium consisted of DMEM-F12 Invitrogen. and used for transport experiments 4 days post-

seeding.  

The transport of fluorescent core PAMAM dendrons was investigated in the apical-to-

basolateral (A-B) direction (Figure 2) at a donor concentration of 1.0 mM. Permeability 

experiments were conducted in a humidified atmosphere of 37 °C. Samples were collected 

from the receiver (basolateral) chamber at 30, 60, 90 and 120 min. Samples were then analyzed 

using a Fluostar fluorometer with fluorescent-core PAMAM dendron samples being detected 

with an excitation wavelength of 460 nm and an emission wavelength of 540 nm. 

Figure 2 
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The apparent permeability (Papp) coefficients were calculated as follows: 

 

                                                                                  (3) 

 

where A is the surface area of the membrane filter (cm2), C0 is the initial concentration in the 

donor chamber, and dQ/dT is the rate of transport. 

The cell monolayer integrity was monitored using an epithelial voltohmmeter (EVOM™) to 

measure the TEER (Trans-Epithelial Electrical Resistance). 

 

3. Results and discussion 

 
3.1. Syntheses  

The fluorescent PAMAM-based dendritic carboxylic salt molecules G0.5 (7), G1.5 (8) and 

G2.5 (9) (Figure 1) synthesis, following a well-established method,[39, 40] was instigated from 

the precursor 3-(2-aminoethylamino)-7H-benz[de]benzimidazo[2,1-a]isoquinoline-7-one  with 

exclusive Michael addition of methyl acrylate occurring at the aliphatic primary amine, 

sequential amidations with ethylenediamine and Michael additions with methyl acrylate 

followed by alkaline hydrolysis of oligoesters, by stirring with ethanolic NaOH at room 

temperature using a previous reported procedure.[41]  Synthetic procedures and 

characterization in more details are presented in supplementary information (SI).  

 
3.2. Physicochemical characterization studies   

3.1.1 Pulsed-Gradient Spin-Echo NMR (PGSE NMR)    

PAMAM dendrimers have a flexible and loose structure allowing the interior hydrophilic 

branches to fold outwards in water.[42, 43] The potential aggregation behaviour of the three 

synthesized fluorescent PAMAM–COONa terminated (G0.5, G1.5, G2.5) was investigated via 

their absolute self-diffusion coefficients and comparison with their parent homologues. Self-

diffusion coefficients where obtained using PGSE-NMR which is well-suited for studying 

aggregation.[44].  

 

0

/

CA

dTdQ
Papp


=



Page 8 of 19 

 

3.1.2. Self-diffusion coefficient (Ds). 

The obtained Ds values for G0.5, G1.5 and G2.5 as a function of concentration are presented 

in Figure (3). In each case, due to their small size, only a modest decrease in the diffusion 

coefficient is observed as the concentration increases which is in agreement with the behavior 

observed for the parent homologues.[44] 

Figure 3 

 

 

3.1.3. Hydrodynamic radii (Rh) 

The hydrodynamic radius (RH) of the three dendrons at infinite dilution, were found to be RH 

(G0.5) = 11 Å, RH (G1.5) = 15 Å, and RH (G2.5) = 17 Å. These results demonstrate that over 

this relatively high concentration range (“high” compared to those used in the fluorescence 

studies), the diffusion coefficients of G0.5, G1.5 and G2.5 do not significantly vary either as a 

function of concentration, or from the values characterizing their parent homologues, 

demonstrating the non-aggregating properties of these dendritic molecules. This assumption is 

supported by our previous studies, [41] where we reported that the emission intensity increased 

almost linearly with concentration for aqueous solutions of G0.5, G1.5  and G2.5 salts 

indicating that there was no aggregation-induced self-quenching over the concentration range 

0.83-5.75x10-4 mM L-1.[41, 44-48]  As a result from the these statements, we concluded the 

fluorescence self-quenching of aqueous solutions of  the three PAMAM compound salts (G0.5, 

G1.5  and G2.5) is caused from Photoinduced Electron Transfer (PeT) intramolecular 

quenching mechanism involving the amine groups of PAMAM different generation, and it is 

not from intermolecular quenching mechanism concerning the aggregation or self-association.  

As the PET process (an electron transfer from the primary amine receptor to the excited state 

of the fluorophore core) would quench fluorescence emission.[49] However, the possibility of 

PET happening is very low due to the receptor being a primary amine rather than a tertiary 

amine for which the PET process is more favoured.[50] This trend is due to the effect of the 

tertiary amines within the PAMAM substituent, which can interact with the fluorophore core 

via the PET mechanism (Figure 4)[49] and, as the PAMAM generation increases, the number 

of amines also increases, which enhances the PET process. [41, 51-53] 

 

Figure 4 
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3.3.  In-Vitro permeability studies 

Having demonstrated there is no aggregation in these materials, the study then focused on the 

investigation of the epithelial transport of these dendrons salts (G0.5, G1.5 and G2.5) across 

cell barriers, using the widely used epithelial in-vitro cell model MDCK (Madin–Darby Canine 

Kidney). [54-57]  Over 2–6 days, confluent MDCK monolayers form a tight junction network 

visible by confocal microscopy.[58] MDCK I and MDCK II share very similar properties 

except that in the expression of some tight junctional proteins, namely claudin-3, resulting in 

drastic differences in their paracellular restrictiveness. For instance, the MDCK I cell line 

present high restrictiveness, e.g. transepithelial electrical resistance (TEER) of 5000-5250 

Ω.cm2, while the MDCK II cell line is more permeable with a TEER of 75-85 Ω.cm2.   These 

cell lines were used to study the effect of both monolayer integrity and dendron size upon 

transport of these auto-fluorescent dendrons to assess the role of paracellular mechanisms in 

the transport of these dendritic molecules.  

 

3.3.1.  Permeability of  fluorescent core PAMAM dendrons across MDCK I,  II 
cell monolayers.  

PAMAM dendrons with fluorescent cores displayed a size-dependent rate of transport across 

the modestly restrictive  MDCK II cell monolayers (TEER = 75-85 Ω.cm2) where Papp of 

fluorescent PAMAM dendron G0.5 salt was the highest, followed by G1.5 salt which displayed 

a 7 –fold slower rate of transport (compared to the G0.5) and finally the G2.5 salt. For the G2.5 

salt, the transport rate was too slow to be quantified at all time points, due to being below the 

limit of quantitation (BLQ) (Table 1; Figure 5). For the highly restrictive MDCK I cells (TEER 

= 5000-5250 Ω.cm2), these PAMAM dendrons displayed a similar trend with the smallest 

dendron displaying the fastest transport rate (albeit 5 fold slower than across MDCK II), while  

both G1.5 and G2.5 transport rates were too slow to be quantified, again due to samples at all 

time points being below the limit of quantitation (BLQ) (Table 1; Figure 5). The maximum 

possible rate of absorption is calculated for those dendrimers that were too slow to be quantified 

based on their lower limits of quantitation (LLQ).  

 

The direct correlation between monolayer permeability (Papp) and dendritic size as well as the 

direct correlation between the transport rate of these dendritic molecules and the restrictiveness 

of the cell monolayers as determined from TEER measurements indicate a significant role of 

paracellular mechanisms in the transport of these fluorescent dendrons.  

Table 1 



Page 10 of 19 

 

Figure 5 

 

3.3.2.  Effect  on monolayer integrity by measuring transepithelial  electrical 
resistance (TEER) 

The effect of modified fluorescent core PAMAM dendrons upon the epithelial integrity of the 

two MDCK cell types was determined by measuring of the transepithelial electrical resistance 

across MDCK monolayers. Measurements where made before and after a 120 minute 

incubation of the fluorescent dendrons at donor concentrations of 1mM. The cell monolayer 

integrity was monitored using an epithelial voltohmmeter (EVOM™) to measure the TEER 

(Trans-Epithelial Electrical Resistance) at t = 0 and 120 min. 

For both MDCK I and MDCK II cell line, the TEER studies indicate that the presence of any 

of the three fluorescents (Figures 6 & 7). 

Figure 6 

Figure 7 

 

4. Conclusion 

In conclusion, the physicochemical studies indicate that from the magnitudes of the self-

diffusion coefficients (and inter alia hydrodynamic radii), and their insensitivity to 

concentration, these amphiphilic dendritic molecules are non-aggregating.  The water 

solubility, high fluorescence at near-neutral pH, and absence of aggregation suggest these new 

dendrons are promising for further utilization in biological studies. 

 

The transport studies suggest that these PAMAM dendritic molecules are biocompatible with 

an epithelial barrier model and display an ability to permeate across MDCK cell monolayers 

in a trend that is a function of both the size of the dendrons and restrictiveness of the barrier 

which indicates that  paracellular mechanisms play a predominant role in their transport across 

epithelia. These studies pave the way for future detailed mechanistic and morphological studies 

to elucidate the nature of the interaction of fluorescent core PAMAM dendrons with epithelial 

cells. 
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Figure [1]: Chemical structures of compound G0.5, G1.5 and G2.5 salts. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure [2]: Schematic of a Transwell® insert showing the separation of apical and 

basolateral chambers by a permeable membrane with a confluent cell monolayer on the apical 
surface.[59] 

 



Page 17 of 19 

 

 
 

 
Figure [3]: Self-diffusion coefficient (Ds) of G0.5, G1.5 and G2.5 fluorescent dendron salts 

in D2O at 25 oC as a function of concentration. 
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Figure [4]: Strong fluorescent quenching process resulting from PET in the case of tertiary 

amine receptor. 
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Figure [5]: The permeability of Fluorescent PAMAM dendrons across MDCK I, II cell 

monolayer in AB (apical-to-basolateral) directions at concentration 1mM. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure [6]: The effect of 1mM fluorescent PAMAM G0.5, G1.5 or G2.5 on (MDCK I) 
monolayer integrity as exhibited by their effect on the trans epithelial electrical resistance 

(TEER) at 0, 120 min. 
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Figure [7]: The effect of 1mM fluorescent PAMAM G0.5, G1.5 or G2.5 on (MDCK II) 
monolayer integrity as exhibited by their effect on the trans epithelial electrical resistance 

(TEER) at 0, 120 min. 

 
 
 

 
 
 
Table [1]:  
Permeability Coefficient (10-6 cm.s-1) for dendron generations across  

Dendron 
Papp (MDCK I) 

x10-6 cm.s-1  

Papp (MDCK II) 

x10-6 cm.s-1  

G0.5  1.81 ± 0.17 8.93 ± 2.1 

G1.5  BLQ < 0.58 1.38 ± 0.24 

G2.5   BLQ < 0.35  BLQ <3.48  
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